Catch-at-age for hake (Merluccius australis) and ling (Genypterus blacodes)
in the 2006-07 fishing year and from trawl surveys in summer 2007-08, with a summary of all available data sets
P. L. Horn
C. P. Sutton

Catch-at-age for hake (Merluccius australis) and ling (Genypterus blacodes) in the 2006-07 fishing year and from trawl surveys in summer 2007-08, with a summary of all available data sets

P. L. Horn
C. P. Sutton

NIWA
Private Bag 14901
Wellington 6241

Published by Ministry of Fisheries
 Wellington
 2008

ISSN 1175-1584

©
Ministry of Fisheries

2008

Horn, P.L.; Sutton, C.P. (2008).
Catch-at-age for hake (Merluccius australis) and ling (Genypterus blacodes) in the 2006-07 fishing year and from trawl surveys in summer 2007-08, with a summary of all available data sets.
New Zealand Fisheries Assessment Report 2008/60. 54 p.

EXECUTIVE SUMMARY

Horn, P.L.; Sutton, C.P. (2008). Catch-at-age for hake (Merluccius australis) and ling (Genypterus blacodes) in the 2006-07 fishing year and from trawl surveys in summer 2007-08, with a summary of all available data sets.

New Zealand Fisheries Assessment Report 2008/60. 54 p.
This report describes catch-at-age distributions for hake (Merluccius australis) and ling (Genypterus blacodes) estimated from commercial fisheries for these species in the 2006-07 fishing year (using data and otoliths collected at sea by observers), and from trawl surveys of hoki and middle depth species on the Campbell Plateau in December 2007 (TAN0714) and the Chatham Rise in January 2008 (TAN0801). For each estimated catch at age distribution there is a target coefficient of variation (c.v.) of 30% (mean weighted c.v. across all age classes).

For hake, the mean weighted c.v. targets were met for two of the commercial fishery samples (WCSI and Chatham Rise area 404), but not for the two trawl surveys or the Sub-Antarctic commercial fishery sample. However, all available information was used to calculate the survey and Sub-Antarctic catch-at-age distributions, so there is no way to improve the c.v.s.

For ling, the mean weighted c.v. targets were met for both trawl survey samples and for the trawl fisheries in the Chatham Rise and Sub-Antarctic areas. The targets were not met in the WCSI or Cook Strait commercial trawl fisheries, owing largely to relatively low levels of observer sampling in these fisheries in winter 2007. Of the three ling longline fisheries for which catch at age distributions were produced for 2006-07, only the distribution from the SubAntarctic spawning fishery met the c.v. target. However, the targets were almost met for the Chatham Rise and Cook Strait longline fisheries.

In all distributions for both species where the target c.v. was not met it was not possible to improve the precision as all available data and otoliths had been used in the analyses.

This report also provides summaries of all catch at age distributions available for hake and ling from the various trawl survey and fisheries series. In addition, the definitions of any stratification used in the analyses of the commercial fisheries are defined.

1. INTRODUCTION

The work presented here aimed to determine catch-at-age from the main fisheries for hake and ling in the 2006-07 fishing year, and for hake and ling from trawl surveys conducted during the summer of 2007-08. Catch-at-age data are a vital input into the stock assessment process as they provide important information on the year class strength of recruited cohorts, and enable calculation of selectivity ogives for the trawl surveys and commercial fisheries for these species. This report describes the resulting catch-at-age distributions for hake and ling; the new data extend existing series of catch-at-age data in all cases. It fulfils the first year's reporting requirements for Objectives 4 and 5 of Project MID2007-01 "Determination of catch at age in hoki, hake and ling fisheries", funded by the Ministry of Fisheries. Those objectives are:
4. To determine the catch at age from hake fisheries in HAK 1, 4 and 7 from samples collected at sea by the Observer Programme, by trawl surveys and from other sources in 2006/07, with a target coefficient of variation (c.v.) of 30% for each fishstock (mean weighted c.v. across all age classes).
5. To determine the catch at age from ling fisheries in LIN 3 \& 4, 5 \& 6 and 7 in 2006/07 from samples collected at sea by the Observer Programme, by trawl surveys and from other sources, with a target coefficient of variation (c.v.) of 30% for each fishstock (mean weighted c.v. across all age classes).

The report also summarises all the available catch at age data sets for hake and ling from trawl surveys and commercial fisheries. In recent years, for both species, stratification of the data from the commercial trawl fisheries has been refined. Some of these stratifications have been well described in the formal literature (e.g., ling off west coast South Island (Horn 2008a)), but others are undescribed or have been reported only in Final Research Reports to MFish. Consequently, it is considered desirable to have all stratifications for both species described in a single accessible document, and these are presented below.

2. METHODS

For hake, it was proposed to age the following samples under this project (with the number of aged otoliths in square brackets):

HAK 1 — trawl survey, Dec 2007 (project MDT2007/01) [all available]
HAK 1 — commercial trawl fishery, Sep 2006-May 2007 [600]
HAK 4 - trawl survey, Jan 2008 (project HOK2007/02) [all available]
HAK 4 - commercial trawl fishery, Oct 2006-April 2007 [500]
HAK 7 - commercial trawl fishery, Jun-Sep 2007 [500]
For ling, it was proposed to age the following samples under this project (with the number of aged otoliths in square brackets):

LIN 3\&4 — trawl survey, Jan 2008 (project HOK2007/02) [640]
LIN 3\&4 - commercial longline fishery, Jun-Oct 2007 [580]
LIN 5\&6 - trawl survey, Dec 2007 (project MDT2007/01) [570]
LIN 5\&6 - commercial longline fishery, spawning, Puysegur, Oct-Dec 2006 [500]
LIN 5\&6 - commercial longline fishery, non-spawning, Campbell, Feb-Jul 2007 [500]
LIN 7 — commercial trawl fishery, west coast South Island, Jun-Sep 2007 [600]
LIN 7\&2 — commercial trawl fishery, Cook Strait, Jun-Sep 2007 [500]

Also, the following additional commercial fishery catch-at-age distributions were estimated using age-length keys derived previously from the January 2007 Chatham Rise trawl survey (LIN 3\&4) and the December 2006 Sub-Antarctic trawl survey (LIN 5\&6).

LIN 3\&4 - commercial trawl fishery, Oct 2006-May 2007
LIN 5\&6 - commercial trawl fishery, Sep 2006-Apr 2007
A catch-at-age model describing the age structure of each of the commercial fisheries and surveyed areas was developed as in previous years for both species. For each of the samples, otoliths (for each sex separately) from each 1 cm length class were selected in proportion to their occurrence in the scaled length frequency, with the constraint that the number of otoliths in each length class (where available) was at least one. In addition, all otoliths from fish in the extreme right hand tail of the scaled length frequency (constituting about 2% of that length frequency) were fully sampled. This provides a sample with a mean weighted c.v. similar to that from proportional sampling, but does better than uniform sampling for the older age classes (A. Dunn, NIWA, pers. comm.). Otoliths were prepared and read using the validated ageing technique for hake (Horn 1997) or ling (Horn 1993). Catch-at-age was calculated by constructing age-length keys separately for each sex and applying them to the scaled length frequency data derived from each fishery or survey separately using software developed specifically for this task by NIWA (Bull \& Dunn 2002).

Observer sampling of the HAK 1 and HAK 4 commercial trawl fisheries sometimes provides only small numbers of otoliths. Consequently, catch-at-age distributions for these fisheries are estimated using age-length keys combining commercial fishery and trawl survey age data. For example, the age-length key for the 2006-07 HAK 4 fishery includes otoliths from observer sampling from October 2006 to May 2007 plus age data from the TAN0701 trawl survey in January 2007.

The mean weighted c.v. targets for hake from previous trawl surveys have often not been met. To maximise the chances of meeting the target, all hake from the trawl shots used in the biomass (and scaled length-frequency) calculations were measured and had their otoliths collected. Also, any additional hake caught in survey tows not used for biomass calculations (i.e., foul shots, midwater tows, or night tows) were measured, sexed, and had their otoliths removed. These extra fish were aged, and the data incorporated into the age-length key. Consequently, in the data summaries shown below, the number of aged hake from the trawl surveys is often greater than the number of measured fish (i.e., the fish used to calculate the catch-at-length and catch-at-age).

3. RESULTS

3.1 Observer catch at age data from hake trawl fisheries

3.1.1 Chatham Rise

The fishery on the Chatham Rise had previously been stratified using a tree-based regression on mean lengths of hake in tows where observers had measured five or more hake in all observed trawls from 1989 to 2006 (Horn \& Dunn 2007). The resulting fishery strata are shown in Figure 1, and defined as follows:

1. West shallow (longitude $\leq 178.1^{\circ}$ E, and bottom depth $\leq 530 \mathrm{~m}$)
2. West deep (longitude $\leq 178.1^{\circ}$ E, and bottom depth $>530 \mathrm{~m}$)
3. East excl. area 404 (longitude $>178.1^{\circ}$ E, and excluding Statistical Area 404)
4. Area $404\left(178^{\circ} \mathrm{W} \leq\right.$ longitude $\leq 179.5^{\circ} \mathrm{W}, 42^{\circ} \mathrm{S} \leq$ latitude $\left.\leq 43.75^{\circ} \mathrm{S}\right)$

A tow was included in the catch at age analysis if it occurred between 1 October and 30 April, and if at least five hake had been measured from it.

Mean fish length tends to increase from west to east, and with increasing depth. Area 404 is a known spawning ground. Because landings and intensity of observer effort varied markedly over the four strata between years it was considered necessary to model the Chatham Rise stock with four separate fisheries, each with its own selectivity ogives. Consequently, it was necessary to develop catch-at-length and catch-at-age series separately for each fishery.

Figure 1: Fishery strata defined for the Chatham Rise hake fishery. Dots show positions of tows included in the tree regression analysis; one point may represent many tows. The stratum boundary defined by depth (530 m) is shown only approximately. Isobaths at 1000,500 , and 250 m are also shown.

Observer data from each fishery stratum were converted into catch-at-age distributions if there were at least 400 length measurements and the mean weighted c.v. over all age classes was less than 30%. Any data sets not meeting these criteria were accepted as catch-at-length distributions if they contained at least 278 length measurements. Table 1 summarises the quantities of useful data, and the outcome for each data set (i.e., whether it was converted to catch-at-age or catch-at-length). Note that the 1991 data sets are generally large, but could not be converted to catch-at-age because no age data (or otoliths) are available from that year. The two western fisheries have been generally well sampled, but both eastern fisheries (and particularly the Area 404 fishery) have been poorly sampled. Consequently, for stock modelling, observer data from the western fisheries have been combined to produce a more extensive set of catch-at-age and length distributions (Horn \& Dunn 2007).

Although the observer length data from each year were partitioned into fisheries, the age data from each year were not (i.e., a single age-length key was constructed for each year and applied to all available sets of length data from that year). Horn \& Dunn (2007) showed that mean age at length did not differ between fisheries, so the use of a single age-length key per year has probably not biased the age distributions.

In the 2006-07 fishing year, sufficient length data and otoliths were available to calculate a catch at age distribution for the Area 404 fishery only (see Table 1). Details of that estimated distribution are given in Table 2. Although the sample sizes of measured fish are relatively small, the mean weighted c.v. of 28% was within the 30% target.

All estimated proportion at age distributions from the four Chatham Rise trawl fisheries are presented in Appendix A (Figures A1, A2, A3, and A4).
Table 1：Numbers of measured and aged male（Mal）and female（Fem）hake contributing to samples of proportion at age or proportion at length from the four commercial trawl fisheries on the Chatham Rise．The number of tows sampled by observers and the estimated mean weighted c．v．（\％）by age when a proportion at age distribution was produced are also listed．A dash in the c．v．column indicates that only a proportion－at－length distribution was
Aged

$\underset{\sim}{\Xi}$	N্సু	
$\sum_{\bar{\pi}}^{\text {n }}$	$\stackrel{N}{N}$	

ぞ

	\bigcirc		ㄴㅇㅇ웅

$\sum \quad \overbrace{7}$

荷
11
f
\qquad

Table 2: Calculated numbers at age, separately by sex, with c.v.s, for hake caught during commercial trawl operations on the Chatham Rise (Area 404 fishery) during October 2006-April 2007, and in the Sub-Antarctic during September 2006-May 2007. Summary statistics for the samples are also presented.

3.1.2 Sub-Antarctic

A tree-based regression on mean fish length was able to logically stratify the fisheries on the Chatham Rise likely owing to the shape and orientation of this geological feature, i.e., a relatively flat-topped ridge running consistently along a degree of latitude. However, the Sub-Antarctic area comprises numerous island plateaus, under-sea ridges, and steep drop-offs, so it was considered less likely that a regression analysis primarily based on latitude and longitude would logically stratify the fisheries. Consequently, an initial investigation of mean fish length by depth and sub-area was conducted (Horn 2008b). There were no obvious trends in mean fish length by depth. Mean length, by sex, for hake in sub-areas of 2° latitude/longitude, did show some clear trends. Fish from the Puysegur Bank were the smallest. Relatively small fish were also concentrated around and to the east of Auckland Islands, and to the west of Campbell Island. The remaining sub-areas all had relatively large fish. It was noted that the density of males in the sub-area southwest of the Snares shelf is greater (by at least a factor of 2) than in any other rectangle, and that the percentage of males declines as you radiate out from that subarea (Horn 2008b).

On the basis of mean fish size, four fishery areas were defined (Figure 2). The length-frequency distributions from the four areas exhibited clear differences (Horn 2008b). Most of the hake target fishing occurs in the Snares-Pukaki area (i.e., an average of 94% per year). Puysegur is the next most important area with about 3% of the catch. Available observer data are also concentrated in the Snares-Pukaki region, but it is clear that the other three fisheries have been highly over-sampled in some years (Horn 2008b). The conclusion from that analysis was that there is one major and three very
minor hake fisheries in the Sub-Antarctic area, so a single fishery ogive should be suitable for this stock. However, because of the clear differences in mean fish length between the fisheries, it is important to use the four fishery strata when calculating catch at age distributions. Without stratification, the frequent over-sampling in the minor fisheries could strongly bias the catch at age distributions. However, as shown for the Chatham Rise stock (Horn \& Dunn 2007), it is probably satisfactory to apply a single age-length key to the scaled length-frequency distributions for each fishery to produce the catch at age data. Consequently, commercial age frequencies were developed using the four fishery strata shown in Figure 2, and defined as follows:

1. Puysegur Bank ($165^{\circ} \mathrm{E} \leq$ longitude $\leq 168^{\circ} \mathrm{E}, 46^{\circ} \mathrm{S} \leq$ latitude $\left.\leq 48^{\circ} \mathrm{S}\right)$
2. \quad Snares-Pukaki $\left(165^{\circ} \mathrm{E} \leq\right.$ longitude $\leq 175^{\circ} \mathrm{E}, 46^{\circ} \mathrm{S} \leq$ latitude $\leq 50.25^{\circ} \mathrm{S}$, but excluding the Puysegur Bank stratum)
3. Auckland Island ($165^{\circ} \mathrm{E} \leq$ longitude $\leq 169^{\circ} \mathrm{E}, 50.25^{\circ} \mathrm{S}<$ latitude $\left.\leq 54^{\circ} \mathrm{S}\right)$
4. Campbell Island ($169^{\circ} \mathrm{E}<$ longitude $\leq 174^{\circ} \mathrm{E}, 50.25^{\circ} \mathrm{S}<$ latitude $\left.\leq 54^{\circ} \mathrm{S}\right)$

A tow was included in the catch at age analysis if it occurred between 1 September and 31 May, and if at least five hake had been measured from it. The start of the fishing year was not used as the start of the time stratum because a descriptive analysis of this fishery indicated a landings peak from September to February (Devine 2008), so it is logical to include the September catch with landings from the five months immediately following it, rather than with catches taken about seven months previously.

Figure 2: Fishery strata defined for the Sub-Antarctic hake fishery. Dots show positions of tows included in the stratum analysis; one point may represent many tows. Numbers show latitudes/longitudes of fishery boundaries. Isobaths at 1000, 500, and 250 m are also shown.

Table 3 summarises the quantities of data used each year to produce the catch at age distributions, and also lists the resulting mean weighted c.v.s. The details of the estimated catch at age distribution for
trawl-caught hake in the 2006-07 fishing year are given in Table 2. The mean weighted c.v. of 38.5\% did not meet the target of 30%. However, this value cannot be improved as all available length data and otoliths were used in the analysis.

All estimated proportion at age distributions from the Sub-Antarctic trawl fishery are presented in Appendix A (Figure A5).

Table 3: Numbers of measured and aged male and female hake, and the number of sampled tows and estimated mean weighted c.v. (\%) by age, for the Sub-Antarctic trawl fishery.

Year	Males		Females		Tows	Mean c.v.
	Measured	Aged	Measured	Aged		
1989-90	269	47	548	71	74	42.0
1990-91	175	-	588	-	64	-
1991-92	557	215	1363	409	151	24.9
1992-93	833	183	1218	518	171	27.6
1993-94	512	87	609	173	119	47.8
1994-95	167	-	597	-	92	-
1995-96	289	65	435	110	75	50.0
1996-97	84	-	219	-	54	-
1997-98	390	82	1018	193	154	37.7
1998-99	463	174	1077	322	199	27.4
1999-2000	3007	259	2526	421	307	22.5
2000-01	527	388	1648	698	216	29.6
2001-02	921	333	2026	874	320	23.4
2002-03	271	258	908	739	197	40.4
2003-04	1309	350	969	518	165	24.7
2004-05	179	185	424	305	82	40.1
2005-06	1906	218	1094	506	153	23.2
2006-07	547	224	666	351	73	38.5

3.1.3 West coast South Island

The fishery off WCSI was stratified using a tree-based regression on mean lengths of hake, by sex, in tows where observers had measured five or more hake between 1 June and 30 September in all years from 1989 to 2007. The trees tended to be small (two or three branches), and explained little of the variance (less than 13% in all cases). Mean fish length is greater in shallower than deeper water, and (for females) tends to increase from north to south. For males, two strata based on bottom depth were indicated, with the split at 629 m ; mean fish lengths were 73.6 and 75.5 cm in the deep and shallow strata, respectively. For females, a depth boundary also at 629 m was indicated (mean length 80.9 cm in the deep stratum), and the shallow area was divided at a latitude of $42.55^{\circ} \mathrm{S}$ (mean lengths of 85.3 and 88.9 cm for the northern and southern areas, respectively). Consequently, tows occurring between 1 June and 30 September each year, and with at least five measured hake, were allocated to the following three strata:

1. Deep (bottom depth $\geq 629 \mathrm{~m}$)
2. North shallow (latitude $<42.55^{\circ}$ S)
3. South shallow (latitude $\geq 42.55^{\circ} \mathrm{S}$)

Table 4 summarises the quantities of data used each year to produce the catch at age distributions, and also lists the resulting mean weighted c.v.s. The details of the estimated catch at age distribution for trawl-caught hake in the 2006-07 fishing year are given in Table 5 . The measured sample size was large, and the mean weighted c.v. of 17% was well within the target of 30%.

All estimated proportion at age distributions from the WCSI trawl fishery are presented in Appendix A (Figure A6).

Table 4: Numbers of measured and aged male and female hake, and the number of sampled tows and estimated mean weighted c.v. (\%) by age, for the WCSI trawl fishery.

Year	Males		Females		Tows	Mean c.v.
	Measured	Aged	Measured	Aged		
1989-90	578	210	567	261	57	23.1
1990-91	2288	286	1653	358	146	18.4
1991-92	2592	196	1193	261	121	22.5
1992-93	2129	188	979	163	93	29.1
1993-94	1598	151	1643	272	174	32.5
1994-95	2528	271	2769	342	152	29.2
1995-96	2862	287	1753	326	193	28.9
1996-97	3286	262	1720	198	234	21.3
1997-98	2339	257	1497	253	237	21.4
1998-99	4186	270	3744	240	307	18.3
1999-2000	2705	258	2330	269	285	18.9
2000-01	1529	176	1723	280	192	23.9
2001-02	2281	93	2434	385	380	33.8
2002-03	1917	227	2063	234	296	20.0
2003-04	2702	303	2181	193	353	16.5
2004-05	2305	238	2324	280	217	23.8
2005-06	5502	276	4231	298	395	16.3
2006-07	3385	248	3258	257	132	16.7

Table 5: Calculated numbers at age, separately by sex, with c.v.s, for hake caught during commercial trawl operations off the west coast of the South Island (WCSI) during June-September 2007. Summary statistics for the samples are also presented.

				WCSI
Age	Male	c.v.	Female	c.v.
2	259654	0.171	195025	0.233
3	67346	0.226	57351	0.258
4	51552	0.291	24834	0.350
5	271640	0.115	42240	0.251
6	202063	0.155	123775	0.181
7	162207	0.161	131938	0.181
8	37668	0.355	178364	0.157
9	35452	0.358	154921	0.166
10	17614	0.540	62383	0.260
11	20558	0.466	47892	0.290
12	8844	0.790	19626	0.457
13	6614	0.802	23398	0.394
14	11641	0.628	17277	0.429
15	0	-	4594	1.179
16	0	-	6417	0.875
17	2621	1.144	2293	0.894
18	0	-	2260	1.139
19	7934	0.635	705	1.038
Measured males			3385	
Measured females			3258	
Aged males			248	
Aged females			257	
No. of tows sampled				
Mean weighted c.v. (sexes pooled)	16.7			

3.2 Trawl survey catch at age data for hake

3.2.1 Chatham Rise

Trawl survey catch at age distributions are estimates of the numbers of hake, by sex and age, available to the trawl in the survey area between 200 and 800 m . In some years an additional deeper stratum ($800-1000 \mathrm{~m}$) on the north Rise is surveyed. However, to ensure comparability, the distributions presented here are for the 'core' strata only, i.e., 200-800 m.

Table 6 summarises the quantities of data used each year to produce the catch at age distributions, and also lists the resulting mean weighted c.v.s. The details of the estimated catch at age distribution for hake caught in the January 2008 trawl survey are given in Table 7. The mean weighted c.v. of 38% did not meet the target of 30%. However, this value cannot be improved as all available length data and otoliths were used in the analysis. The 30% target has been met in only one of the 18 surveys (TAN9106, see Table 6).

All estimated proportion at age distributions from the Chatham Rise trawl surveys are presented in Appendix A (Figure A7).

Table 6: Numbers of measured and aged male and female hake, and the number of sampled tows and estimated mean weighted c.v. (\%) by age, for the Chatham Rise resource surveys.

Source	Males		Females		Mean c.v.	
	Measured	Aged	Measured	Aged	Tows	
AEX8903	220	154	212	179	63	39.5
TAN9106	322	233	305	230	122	30.0
TAN9212	243	200	275	225	121	32.7
TAN9401	293	181	355	217	123	33.1
TAN9501	201	170	229	191	87	38.7
TAN9601	149	113	200	165	56	36.4
TAN9701	149	145	159	149	77	36.1
TAN9801	137	135	142	139	55	39.0
TAN9901	94	103	142	157	62	44.1
TAN0001	177	177	178	177	72	35.9
TAN0101	104	112	148	150	66	37.3
TAN0201	104	177	121	172	61	36.4
TAN0301	33	34	69	71	46	61.4
TAN0401	94	82	110	105	53	49.4
TAN0501	115	134	107	113	55	45.3
TAN0601	109	123	126	138	56	33.8
TAN0701	133	158	136	142	61	32.6
TAN0801	55	65	87	99	60	38.0

Table 7: Calculated numbers at age in the survey area, separately by sex, with c.v.s, for hake caught during trawl surveys of the Chatham Rise in January 2008 (survey TAN0801) and the Sub-Antarctic in November-December 2007 (survey TAN0714). Summary statistics for the samples are also presented.

		TAN0801		
Age	Male	c.v.	Female	c.v.
2	2740	1.261	0	-
3	4411	0.866	0	-
4	24988	0.410	4223	0.804
5	20234	0.418	14587	0.502
6	28567	0.397	67258	0.233
7	1470	1.566	24935	0.421
8	7714	0.632	24667	0.432
9	4204	0.979	4593	0.770
10	2338	0.955	24932	0.401
11	1690	1.451	3679	0.839
12	1184	1.411	4976	0.751
13	979	1.749	4433	1.307
14	0	-	3992	0.82
15	1656	1.417	3330	0.713
16	0	-	0	-
17	0	-	2778	0.908
18	0	-	1759	1.321

			TAN0714	
Age	Male	c.v.	Female	c.v.
2	779	1.212	260	1.463
3	20939	0.218	33317	0.219
4	26752	0.503	35608	0.279
5	33536	0.62	22996	0.31
6	16247	0.638	23856	0.388
7	25855	0.484	23918	0.335
8	16994	0.496	32845	0.333
9	20621	0.468	28527	0.38
10	8400	0.715	33885	0.357
11	7684	0.800	22106	0.355
12	7750	0.778	27446	0.427
13	8546	0.765	10695	0.650
14	8205	0.557	15221	0.552
15	565	1.909	10655	0.757
16	3089	0.999	3780	0.919
17	1245	1.614	7483	0.826
18	0	-	1383	1.014
19	0	-	3194	1.572
20	0	-	0	-
21	0	-	0	-
22	0	-	0	-
23	2682	1.450	0	-

Measured males	55	166
Measured females	87	352
Aged males	65	217
Aged females	99	423
No. of tows sampled	60	47
Mean weighted c.v. (sexes pooled)	38.0	35.4

3.2.2 Sub-Antarctic

Trawl survey catch at age distributions are estimates of the numbers of hake, by sex and age, available to the trawl in the survey. The main survey series has been conducted in summer. Those surveys have sampled depths from 300 to 800 m , plus an $800-1000 \mathrm{~m}$ stratum at Puysegur, and, in some years, other 800-1000 m strata off the Campbell Plateau. However, to ensure comparability, the distributions presented here are for the 'core' $300-800 \mathrm{~m}$ strata plus the deep Puysegur stratum only. The catch at age distributions from the spring and autumn surveys are derived from the 'core' 300-800 m strata only.

Table 8 summarises the quantities of data used each year to produce the catch at age distributions, and also lists the resulting mean weighted c.v.s. The details of the estimated catch at age distribution for hake caught in the November-December 2007 trawl survey are given in Table 7. The mean weighted c.v. of 35% did not meet the target of 30%. However, this value cannot be improved as all available length data and otoliths were used in the analysis. The 30% target has never been met in any of the Sub-Antarctic surveys (see Table 8).

All estimated proportion at age distributions from the Sub-Antarctic trawl surveys are presented in Appendix A (Figure A8).

Table 8: Numbers of measured and aged male and female hake, and the number of sampled tows and estimated mean weighted c.v. (\%) by age for the Sub-Antarctic resource surveys.

Survey	Males		Females		Tows	Mean c.v.
	Measured	Aged	Measured	Aged		
Summer surveys						
AEX8902	45	43	76	66	34	52.7
TAN9105	337	117	332	217	61	65.1
TAN9211	14	46	133	168	48	48.6
TAN9310	57	93	181	182	59	47.2
TAN0012	348	239	392	352	56	37.3
TAN0118	219	212	351	349	44	35.6
TAN0219	331	191	490	377	38	36.1
TAN0317	126	186	175	220	30	41.0
TAN0414	178	245	225	283	39	42.8
TAN0515	88	146	265	274	39	39.9
TAN0617	188	190	487	460	39	33.6
TAN0714	166	217	352	423	47	35.4
Autumn surveys						
TAN9204	60	58	113	107	48	46.8
TAN9304	36	36	124	122	54	49.5
TAN9605	32	86	93	137	45	61.9
TAN9805	49	94	146	189	31	52.0
Spring surveys						
TAN9209	76	68	141	113	44	43.8

3.3 Observer catch at age data from ling longline fisheries

3.3.1 Chatham Rise

The line fishery data from the Chatham Rise are analysed using a single area stratum (i.e., FMAs 3 and 4 between 42° and 46° S), and a time stratum of 1 June to 31 October.

Table 9 summarises the quantities of data used each year to produce the catch at age distributions, and also lists the resulting mean weighted c.v.s. The details of the estimated catch at age distribution for Chatham Rise line-caught ling in the 2006-07 fishing year are given in Table 10. Despite a relatively small sample size, the mean weighted c.v. of 31.1% was just above the target value of 30%. This value cannot be improved as all available length data and otoliths were used in the analysis.

Table 9: Numbers of measured and aged male and female ling, and the number of sampled sets and estimated mean weighted c.v. (\%) by age, for the Chatham Rise longline fishery.

Year	Males		Females		Mean c.v.	
	Measured	Aged	Measured	Aged	Sets	
2002	4966	284	2998	309	538	20.4
2003	3038	337	2071	289	429	19.1
2004	1066	302	747	293	139	21.8
2005	889	356	479	234	137	21.6
2006	266	95	294	141	48	36.6
2007	351	174	268	139	62	31.1

Table 10: Calculated numbers at age, separately by sex, with c.v.s, for ling caught during commercial longline operations on the Chatham Rise (LIN 3\&4) in June-October 2007, and in the Sub-Antarctic spawning fishery (LIN 5\&6) in October-December 2006. Summary statistics for the samples are also presented.

			Chatham Rise	
Age	Male	c.v.	Female	c.v.
5	138	1.858	0	-
6	176	1.186	44	1.682
7	603	0.694	461	0.898
8	1612	0.441	132	1.116
9	3151	0.345	418	0.768
10	3232	0.350	1271	0.474
11	3300	0.309	2963	0.313
12	4118	0.274	3590	0.246
13	4020	0.353	2798	0.291
14	2796	0.326	2725	0.320
15	1749	0.446	1609	0.419
16	2057	0.333	1911	0.353
17	2447	0.363	788	0.601
18	1499	0.401	1560	0.434
19	1297	0.498	469	0.743
20	382	0.771	157	1.148
21	136	1.053	0	-
22	562	0.691	0	-
23	237	1.001	125	1.263
24	167	1.188	608	0.750
25	716	0.685	0	-
26	247	1.241	0	-
27	383	0.966	0	-
28	243	1.075	0	-
29	0	-	0	-
30	418	0.948	0	-

Measured males	351	412
Measured females	268	418
Aged males	174	191
Aged females	139	217
No. of sets sampled	62	82
Meanweighted c.v. (sexes pooled)	31.1	25.1

All estimated proportion at age distributions from the Chatham Rise longline fishery are presented in Appendix B (Figure B1).

3.3.2 Sub-Antarctic

The line fishery data from the Sub-Antarctic stock are analysed as two separate fisheries, one spawning and one non-spawning. The spawning fishery was defined as a single stratum comprising the Puysegur Bank and Solander Corridor (i.e., Statistical Area 30), with a time stratum of October to December. The non-spawning fishery was defined as a single stratum comprising all of FMAs 5 and 6, excluding Statistical Area 30 and the Bounty Plateau, with a time stratum of 1 February to 31 July.

Table 11 summarises the quantities of data used each year to produce the catch at age distributions for the two Sub-Antarctic longline fisheries, and also lists the resulting mean weighted c.v.s. The details of the estimated catch at age distribution for spawning Sub-Antarctic line-caught ling in the 2006-07 fishing year are given in Table 10. The mean weighted c.v. of 25% was within the target value of 30%.

There was no observer sampling of non-spawning Sub-Antarctic line-caught ling in the 2006-07 fishing year.

Table 11: Numbers of measured and aged male and female ling, and the number of sampled sets and estimated mean weighted c.v. (\%) by age, for the Sub-Antarctic spawning and non-spawning longline fisheries.

	Males			Females			Mean c.v.
Fishery \& year	Measured	Aged	Measured	Aged	Sets		
Spawning line fishery							
2000	4044	242		4231	278	83	20.6
2001	2084	131	1962	143	55	28.7	
2002	670	197	898	284	157	22.6	
2003	1250	211	1687	307	214	20.0	
2004	887	208	1129	289	168	22.5	
2005	193	88	362	179	54	28.6	
2006	233	108	707	345	94	23.3	
2007	412	191	418	217	82	25.1	
Non-spawning line fishery							
1998	608	73	2763	395	34	23.1	
1999	3316	214	7535	428	136	18.3	
2001	674	103	2040	235	58	25.3	
2003	304	128	611	273	43	29.3	
2005	413	114	716	307	113	25.9	

All estimated proportion at age distributions from the spawning and non-spawning Sub-Antarctic longline fisheries are presented in Appendix B (Figures B2 and B3).

3.3.3 Cook Strait

The line fishery data from Cook Strait are analysed using a single area stratum (i.e., those parts of FMAs 2, 7, and 8 between 41° and $42^{\circ} \mathrm{S}$ and 174° and $175.4^{\circ} \mathrm{E}$, equating approximately to Statistical Areas 16 and 17), and a time stratum of 1 June to 30 September.

Table 12 summarises the quantities of data used each year to produce the catch at age distributions, and also lists the resulting mean weighted c.v.s. The details of the estimated catch at age distribution for Cook Strait line-caught ling in the 2006-07 fishing year are given in Table 13. (These otoliths were not scheduled to be processed under this project, but resources that would have been used to process a Sub-Antarctic non-spawning fishery sample, had one been available, were transferred to this task.) The mean weighted c.v. of 34% did not meet the usual target value of 30%. However, this value cannot be improved as all available length data and otoliths were used in the analysis.

All estimated proportion at age distributions from the Cook Strait longline fishery are presented in Appendix B (Figure B4).

Table 12: Numbers of measured and aged male and female ling, and the number of sampled sets and estimated mean weighted c.v. (\%) by age, for the Cook Strait longline fishery.
Year
2006
2007

	Males	Females		Mean c.v.	
Measured	Aged	Measured	Aged	Sets	
607	319	538	275	116	19.3
238	125	180	92	43	33.8

Table 13: Calculated numbers at age, separately by sex, with c.v.s, for ling caught by commercial longline in Cook Strait in June-September 2007. Summary statistics for the samples are also presented.

			Cook Strait	
Age	Male	c.v.	Female	c.v.
6	148	1.006	214	1.203
7	251	0.782	596	0.494
8	2027	0.310	1143	0.416
9	662	0.595	1098	0.401
10	2024	0.294	1388	0.407
11	1493	0.343	603	0.496
12	1603	0.360	1246	0.419
13	1097	0.315	912	0.396
14	621	0.618	1347	0.308
15	652	0.486	372	0.595
16	785	0.497	238	0.759
17	0	-	124	1.284
18	320	0.689	0	-
19	486	0.673	0	-
20	0	-	0	-
21	109	1.309	0	-
22	0	-	0	-
23	0	-	0	-
24	40	1.482	0	-
25	0	-	0	-
26	0	-	0	-
27	230	1.180	0	-
28	101	1.127	68	1.407
29	30	1.739	0	-
Measured males			238	
Measured females			180	
Aged males			125	
Aged females			92	
No. of sets sampled			43	
Meanweighted c.v. (sexes pooled)	33.8			

3.3.4 Bounty Plateau

The line fishery data from the Bounty Plateau are analysed using a single area stratum (i.e., that part of FMA 6 east of 176° E), and a time stratum of 1 November to 28 February.

Table 14 summarises the quantities of data used each year to produce the catch at age distributions, and also lists the resulting mean weighted c.v.s. There was no observer sampling of Bounty Plateau line-caught ling in the 2006-07 fishing year. All estimated proportion at age distributions from the Bounty Plateau longline fishery are presented in Appendix B (Figure B5).

Table 14: Numbers of measured and aged male and female ling, and the number of sampled sets and estimated mean weighted c.v. (\%) by age, for the Bounty Plateau longline fishery.
Year
1993
2000
2001
2004

	Males			Females	
Measured	Aged		Measured	Aged	
201	52		237	69	
1102	106		2184	185	
405	50		713	66	
1155	200		1628	300	

	Mean c.v.
Sets	
24	50.4
41	26.9
20	43.6
272	20.0

3.4 Observer catch at age data from ling trawl fisheries

3.4.1 Chatham Rise

The trawl fishery data from the Chatham Rise were stratified using a tree-based regression on mean lengths of ling measured in all observed trawls from 1 October to 31 May in all years from 1989 to 2007. Most observed trips were on vessels targeting finfish, but a significant number were on scampi trawlers. Previous investigations had indicated that the length distributions of ling taken in scampi trawls were quite different to those produced when targeting other species (Horn 2002). However, the tree-based regression did not select target species into the stratification. For both sexes, there was an east-west split through the Mernoo Gap (about 174° E), followed by a north-south split along the top of the Chatham Rise (about $43.5^{\circ} \mathrm{S}$). Fish were, on average, smaller in coastal waters than on the Rise, and smaller on the south Rise than on the north (Figure 3). The ling caught by the scampi fishery were not selected as a separate stratum in the regression analysis because that fishery catches both the largest and the smallest ling (see Figure 3). However, because observer coverage on scampi vessels has been extensive in some years, a scampi fishery stratum was added to ensure that data from that fishery (which produces a relatively small proportion of the Chatham trawl catch) does not exert a disproportionate influence on the estimated catch-at-length. Consequently, data from 1 October to 31 May in each fishing year were stratified using the following four strata:

- Coast (longitude $\leq 174^{\circ} \mathrm{E}$, target not scampi)
- Scampi (all tows targeting scampi)
- North Rise (latitude $<43.55^{\circ}$ S, longitude $>174^{\circ}$ E, target not scampi)
- South Rise (latitude $\geq 43.55^{\circ}$ S, longitude $>174^{\circ}$ E, target not scampi)

Table 15 summarises the quantities of data used each year to produce the catch at age distributions, and also lists the resulting mean weighted c.v.s. The details of the estimated catch at age distribution for trawl-caught ling in the 2006-07 fishing year are given in Table 16. The mean weighted c.v. of 23% was better then the value of 30% that is usually used as a target for ling catch at age distributions.

All estimated proportion at age distributions from the Chatham Rise trawl fishery are presented in Appendix B (Figure B6).

Table 15: Numbers of measured and aged male and female ling, and the number of sampled tows and estimated mean weighted c.v. (\%) by age, for the Chatham Rise trawl fishery.

Source	Males		Females		Mean c.v.	
	Measured	Aged	Measured	Aged	Tows	
1991-92	2151	252	2653	281	143	27.0
1993-94	1127	302	768	302	126	32.9
1994-95	359	236	302	201	59	45.1
1995-96	453	306	399	284	87	30.0
1996-97	162	317	240	242	31	41.1
1997-98	3463	348	3117	280	497	18.7
1998-99	3306	336	2469	318	312	20.0
1999-2000	887	322	1013	326	161	24.8
2000-01	1000	312	988	341	188	21.0
2001-02	642	294	708	334	129	23.8
2002-03	694	317	764	347	114	24.3
2003-04	356	303	600	302	99	30.1
2004-05	869	310	666	326	194	27.9
2005-06	251	328	291	330	54	34.5
2006-07	699	310	687	330	135	22.9

Figure 3: Length-frequency distributions of ling from four trawl fisheries (defined by area or target species) on the Chatham Rise. Plots are of raw data in $\mathbf{1 ~ c m}$ bins, with sexes shown separately.

Table 16: Calculated numbers at age, separately by sex, with c.v.s, for ling caught during commercial trawl operations on the Chatham Rise during October 2006-May 2007, and in the Sub-Antarctic during September 2006-April 2007. Summary statistics for the samples are also presented.

			Chatham Rise	
Age	Male	c.v.	Female	c.v.
2	1438	1.194	250	1.693
3	3030	0.713	15339	0.408
4	21672	0.307	23557	0.291
5	36123	0.234	34935	0.245
6	33649	0.226	27039	0.257
7	40820	0.205	45138	0.200
8	35858	0.227	29794	0.253
9	32629	0.254	27850	0.245
10	23606	0.306	26452	0.238
11	23825	0.280	16700	0.352
12	16918	0.362	21372	0.311
13	7117	0.444	14453	0.375
14	6633	0.518	14811	0.358
15	8583	0.488	3439	0.599
16	8866	0.502	5080	0.493
17	7049	0.518	818	1.078
18	3455	0.748	2096	1.048
19	1694	0.788	465	1.343
20	385	1.613	0	-
21	2141	1.076	1212	1.231
22	1041	1.368	0	-
23	693	1.107	0	-
24	1808	0.782	0	-
25	510	1.383	0	-
26	607	1.203	907	0.904
27	0	-	0	-
28	0	-	1212	1.313
29	0	2.318	0	-

			Sub-Antarctic	
Age	Male	c.v.	Female	c.v.
2	1289	0.961	0	-
3	7730	0.714	6804	0.644
4	7952	0.510	9512	0.450
5	45486	0.285	55655	0.360
6	84926	0.278	59974	0.286
7	160497	0.206	82885	0.237
8	132650	0.237	119737	0.215
9	143048	0.258	125390	0.193
10	113606	0.265	105199	0.221
11	174591	0.219	121423	0.200
12	94992	0.351	107411	0.215
13	44889	0.522	68619	0.252
14	38877	0.538	67281	0.278
15	14775	0.720	46228	0.374
16	15773	0.871	36332	0.417
17	9366	1.185	19464	0.489
18	44424	0.543	19262	0.632
19	13597	1.017	10864	0.522
20	10439	0.916	6994	0.733
21	8496	0.985	17601	0.594
22	0	-	13983	0.612
23	36271	0.741	1063	1.633
24	0	-	0	-
25	9605	0.708	640	1.789
26	22639	0.983	0	-

Measured males	699	1644
Measured females	687	1446
Aged males	310	225
Aged females	330	382
No. of tows sampled	135	191
Mean weighted c.v. (sexes pooled)	22.9	24.3

3.4.2 Sub-Antarctic

The fishery in the Sub-Antarctic was initially investigated using a tree-based regression on mean lengths of ling measured in observed trawls in all years from 1989 to 2007. Strata were determined for the data sets separated by sex. This analysis indicated that ling of both sexes caught as a bycatch of the scampi fishery were markedly smaller than those taken in other trawl fisheries. For all other ling, strata based on bottom depth were indicated, with likely stratum boundaries being at about 140 and 450500 m . An examination of mean size of ling by 25 m depth bins indicated that very large ling were most abundant in depths shallower than 150 m (Figure 4), but that ling measured from these depths made up only about 2% of the total observed (non-scampi target) data. For female ling, there was a clear shift in mean size between the 425 and 450 m depth bins; ling were smaller in the shallower depths. There was no clear depth delineation for males; they tended to decrease in average size as depths increased to about 400 m , and then increase in size as depth further increased (see Figure 5). Consequently, data from 1 September to 30 April (the months producing most of the observer data) were stratified using the following four strata:

1. Scampi (all tows targeting scampi)
2. Shallow (bottom depth $\leq 450 \mathrm{~m}$, and target not scampi)
3. Deep (bottom depth $>450 \mathrm{~m}$, and target not scampi)

Figure 4: Mean length (cm TL) of ling, by sex, in 25 m depth bins in the Sub-Antarctic.
The resulting overall length-frequency distributions from the three chosen strata show the clear difference between the scampi and non-scampi target catches, and also show that females are, on average, smaller in shallower waters (Figure 5). The distribution of males has a more clearly defined peak in the deeper, relative to the shallower, stratum.

Table 17 summarises the quantities of data used each year to produce the catch at age distributions, and also lists the resulting mean weighted c.v.s. The details of the estimated catch at age distribution for trawl-caught ling in the 2006-07 fishing year are given in Table 16. The mean weighted c.v. of 24% was better then the value of 30% that is usually used as a target for ling catch at age distributions.

All estimated proportion at age distributions from the Sub-Antarctic trawl fishery are presented in Appendix B (Figure B7).

Table 17: Numbers of measured and aged male and female ling, and the number of sampled tows and estimated mean weighted c.v. (\%) by age, for the Sub-Antarctic trawl fishery.

	Males			Females			Mean c.v.
	Source	Measured	Aged		Measured	Aged	Tows

Figure 5: Length-frequency distributions of ling from the three trawl strata (defined by bottom depth or target species) in the Sub-Antarctic. Plots are of raw data in $\mathbf{1 ~ c m}$ bins, with sexes shown separately.

3.4.3 West coast South Island

The trawl fishery data off WCSI were stratified using a tree-based regression on mean lengths of ling measured from observed trawls from 1 June to 30 September in all years from 1991 to 2005 (Horn 2008a). Strata were determined for the data sets of both sexes combined, and each sex separately. The trees tended to be small (two or three branches), and explained little of the variance (less than 7% in all cases). A bottom depth split at 498 m was chosen first in the combined sexes and female
regressions. For males, a latitude split (42.42°) was chosen first, followed by a depth variable. Consequently, data from 1 June to 30 September each year were stratified using the following three strata:

- Deep (bottom depth $\geq 498 \mathrm{~m}$)
- North shallow (bottom depth $<498 \mathrm{~m}$, latitude $<42.42^{\circ} \mathrm{S}$)
- South shallow (bottom depth $<498 \mathrm{~m}$, latitude $\geq 42.42^{\circ} \mathrm{S}$)

Table 18 summarises the quantities of data used each year to produce the catch at age distributions, and also lists the resulting mean weighted c.v.s. The details of the estimated catch at age distribution for trawl-caught ling in the 2006-07 fishing year are given in Table 19. Observer sampling in winter 2007 produced fewer otoliths and length measurements than in any other sampled year (see Table 18). Consequently, the mean weighted c.v. of 39% did not meet the target of 30%, but this value can not be improved as all available length data and otoliths were used in the analysis.

All estimated proportion at age distributions from the WCSI trawl fishery are presented in Appendix B (Figure B8).

Table 18: Numbers of measured and aged male and female ling, and the number of sampled tows and estimated mean weighted c.v. (\%) by age, for the WCSI trawl fishery.

Year	Males		Females		Mean c.v.	
	Measured	Aged	Measured	Aged	Tows	
1991	563	176	440	220	65	34.8
1994	873	172	1096	221	141	27.9
1995	1051	238	794	268	111	24.3
1996	485	247	448	201	83	28.0
1997	1532	442	901	399	173	19.5
1998	1063	349	700	279	155	23.6
1999	1862	285	1126	263	221	23.7
2000	829	269	783	264	168	26.8
2001	1106	256	924	307	178	29.6
2002	1401	283	1405	321	332	21.4
2003	1157	293	1290	302	286	23.3
2004	1003	243	1540	352	334	21.4
2005	908	282	899	355	184	24.9
2006	763	276	844	361	154	29.0
2007	228	148	258	158	65	38.7

Table 19: Calculated numbers at age, separately by sex, with c.v.s, for ling caught during commercial trawl operations off WCSI during June-September 2007, and in Cook Strait during June-September 2007. Summary statistics for the samples are also presented.

				WCSI
Age	Male	c.v.	Female	c.v.
3	1634	1.242	32	3.156
4	3937	0.670	333	1.569
5	7486	0.483	2149	0.603
6	6486	0.609	3827	0.534
7	13256	0.338	7932	0.504
8	3830	0.528	7800	0.497
9	9255	0.384	7524	0.507
10	6732	0.399	3859	0.680
11	7187	0.437	6890	0.505
12	7251	0.378	6357	0.462
13	7835	0.427	9448	0.337
14	5981	0.575	5283	0.514
15	2588	0.783	5312	0.440
16	3252	0.674	8843	0.391
17	600	1.120	5372	0.426
18	0	-	2922	0.527
19	0	-	1206	0.890
20	346	1.373	1656	1.166
21	0	-	1419	0.713
22	0	-	90	2.006
23	54	1.978	635	1.414
24	0	-	0	-
25	0	-	0	-
26	574	1.795	164	1.866
27	858	1.346	507	1.319
28	0	-	0	-
29	1211	1.539	0	-

			Cook Strait	
Age	Male	c.v.	Female	c.v.
3	0	-	0	-
4	592	0.702	592	0.728
5	2113	0.577	1361	0.533
6	2206	0.554	1806	0.609
7	1356	0.474	1372	0.456
8	941	0.437	1617	0.481
9	1116	0.437	1214	0.433
10	938	0.424	929	0.429
11	1419	0.371	474	0.608
12	973	0.410	1393	0.386
13	737	0.500	638	0.475
14	898	0.428	741	0.504
15	499	0.569	1255	0.430
16	643	0.532	808	0.626
17	552	0.617	182	0.996
18	0	-	341	0.706
19	427	0.644	0	-
20	0	-	80	1.237
21	67	1.236	0	-
22	28	1.513	0	-
23	0	-	0	-
24	61	1.142	0	-
25	0	-	0	-
26	0	-	0	-
27	27	1.634	70	1.306
28	0	-	0	-
29	0	-	0	-
31	76	1.441	0	-
32	194	0.984	0	-

Measured males	228	327
Measured females	258	300
Aged males	148	143
Aged females	158	137
No. of tows sampled	65	19
Mean weighted c.v. (sexes pooled)	38.7	42.0

3.4.4 Cook Strait

The trawl fishery in Cook Strait is analysed using a single area stratum (i.e., those parts of FMAs 2, 7, and 8 between 41° and $42^{\circ} \mathrm{S}$ and 174° and $175.4^{\circ} \mathrm{E}$, equating approximately to Statistical Areas 16 and 17), and a time stratum of 1 June to 30 September.

Table 20 summarises the quantities of data used each year to produce the catch at age distributions, and also lists the resulting mean weighted c.v.s. The details of the estimated catch at age distribution for Cook Strait trawl-caught ling in the 2006-07 fishing year are given in Table 19. The mean weighted c.v. of 42% did not meet the target value of 30%. However, this value cannot be improved as all available length data and otoliths were used in the analysis.

All estimated proportion at age distributions from the Cook Strait trawl fishery are presented in Appendix B (Figure B9).

Table 20: Numbers of measured and aged male and female ling, and the number of sampled tows and estimated mean weighted c.v. (\%) by age, for the Cook Strait trawl fishery.

Year	Males		Females		Mean c.v.	
	Measured	Aged	Measured	Aged	Tows	
1999	226	75	189	54	59	47.9
2000	197	95	191	93	62	40.9
2001	610	205	550	208	72	24.5
2002	583	219	644	241	58	27.9
2003	430	282	437	308	56	24.2
2004	609	269	645	241	48	27.2
2005	617	272	561	264	75	26.4
2006	729	248	539	226	26	26.4
2007	327	143	300	137	19	42.0

3.5 Trawl survey catch at age data for ling

3.5.1 Chatham Rise

Trawl survey catch at age distributions are estimates of the numbers of ling, by sex and age, available to the trawl in the survey area between 200 and 800 m . In some years an additional deeper stratum ($800-1000 \mathrm{~m}$) on the north Rise is surveyed. However, to ensure comparability, the distributions presented here are for the 'core' strata only, i.e., 200-800 m.

Table 21 summarises the quantities of data used each year to produce the catch at age distributions, and also lists the resulting mean weighted c.v.s. The details of the estimated catch at age distribution for ling caught in the January 2008 trawl survey are given in Table 22. The mean weighted c.v. of 22\% was well within the target of 30%, as it has been in all surveys in this series.

All estimated proportion at age distributions from the Chatham Rise trawl surveys are presented in Appendix B (Figure B10).

Table 21: Numbers of measured and aged male and female ling, and the number of sampled tows and estimated mean weighted c.v. (\%) by age, for the Chatham Rise trawl surveys.

Survey
AEX8903
TAN9106
TAN9212

	Males			Females		
Measured	Aged		Measured	Aged		Tows

Table 22: Calculated numbers at age in the survey area, separately by sex, with c.v.s, for ling caught during trawl surveys of the Chatham Rise in January 2008 (survey TAN0801) and the Sub-Antarctic in November-December 2007 (survey TAN0714). Summary statistics for the samples are also presented.

			TAN0801	
Age	Male	c.v.	Female	c.v.
2	3895	1.724	9351	0.975
3	63443	0.364	82325	0.339
4	195853	0.196	144896	0.219
5	100374	0.297	175945	0.222
6	138484	0.262	137156	0.278
7	209252	0.208	155081	0.234
8	155676	0.219	136343	0.216
9	73001	0.287	92072	0.241
10	109240	0.250	75592	0.283
11	118696	0.240	69830	0.290
12	63613	0.349	72396	0.276
13	33487	0.434	29524	0.450
14	59865	0.319	32926	0.372
15	11920	0.610	27977	0.424
16	21581	0.545	13964	0.628
17	23194	0.503	24289	0.600
18	13148	0.642	10917	0.908
19	7238	0.976	13021	0.573
20	10098	0.610	0	-
21	9304	0.721	1704	1.225
22	0	-	14321	0.674
23	5733	1.201	0	-
24	5701	1.017	2126	1.348
25	2518	1.217	0	-
26	0	-	3611	0.979
27	0	-	0	-
28	8707	0.926	2126	1.397
29	2362	1.461	2126	1.313
30	0	-	5229	1.454

			TAN0714	
Age	Male	c.v.	Female	c.v.
2	0	-	0	-
3	56998	0.688	96004	0.488
4	608797	0.205	450905	0.293
5	750438	0.235	776532	0.248
6	532460	0.240	899017	0.199
7	559285	0.232	1048631	0.166
8	363266	0.293	680866	0.200
9	199111	0.313	441056	0.234
10	242989	0.326	407076	0.249
11	192896	0.347	586769	0.214
12	197564	0.351	427431	0.261
13	209929	0.314	391548	0.256
14	78300	0.563	247327	0.293
15	106662	0.469	103217	0.517
16	25479	1.003	126378	0.417
17	68008	0.639	66490	0.674
18	13887	1.145	68325	0.665
19	20522	1.291	54704	0.541
20	5241	1.347	75252	0.534
21	23247	0.840	40281	0.748
22	0	-	12640	1.250
23	0	-	0	-
24	31041	0.799	9010	1.360
25	0	-	10054	1.163
26	5241	1.602	0	-
27	14145	1.261	0	-
28	11634	1.345	9220	1.765
29	0	-	0	-
30	0	-	0	-
33	782	1.705	0	-
				1014
				1288
			229	
				353
			79	
				21.7

Measured males	610	1014
Measured females	623	1288
Aged males	317	229
Aged females	325	353
No. of tows sampled	92	79
Mean weighted c.v. (sexes pooled)	22.3	21.7

3.5.2 Sub-Antarctic

Trawl survey catch at age distributions are estimates of the numbers of ling, by sex and age, available to the trawl in the survey. The main survey series has been conducted in summer. Those surveys have sampled depths from 300 to 800 m , plus an $800-1000 \mathrm{~m}$ stratum at Puysegur, and, in some years, other 800-1000 m strata off the Campbell Plateau. However, to ensure comparability, the distributions presented here are for the 'core' $300-800 \mathrm{~m}$ strata plus the deep Puysegur stratum only. The catch at age distributions from the spring and autumn surveys are derived from the 'core' $300-800 \mathrm{~m}$ strata only.

Table 23 summarises the quantities of data used each year to produce the catch at age distributions, and also lists the resulting mean weighted c.v.s. The details of the estimated catch at age distribution
for ling caught in the November-December 2007 trawl survey are given in Table 22. The mean weighted c.v. of 22% was well within the target of 30%, as it has been in all surveys in this series.

All estimated proportion at age distributions from the Sub-Antarctic trawl surveys are presented in Appendix B (Figure B12).

Table 23: Numbers of measured and aged male and female ling, and the number of sampled tows and estimated mean weighted c.v. (\%) by age, for the Sub-Antarctic trawl surveys.

Survey	Males		Females		Mean c.v.	
	Measured	Aged	Measured	Aged	Tows	
Summer surveys						
AEX8902	760	160	1067	234	133	29.0
TAN9105	1563	213	2079	348	151	19.6
TAN9211	1249	227	1668	354	146	21.1
TAN9310	1520	254	1894	351	127	22.3
TAN0012	1761	244	1696	351	85	18.8
TAN0118	1316	268	1290	326	95	19.6
TAN0219	1661	224	1606	350	88	20.6
TAN0317	1270	243	1156	333	70	22.1
TAN0414	1433	256	1146	339	79	27.0
TAN0515	1095	279	988	300	82	22.0
TAN0617	969	250	1011	355	80	23.1
TAN0714	1014	229	1288	353	79	21.7
Autumn surveys						
TAN9204	1570	221	1498	310	90	21.5
TAN9304	1353	261	1344	373	97	21.1
TAN9605	1129	325	902	303	88	21.9
TAN9805	809	271	765	296	64	22.9

4. DISCUSSION

4.1 Hake

For hake, sufficient otoliths and length-frequency data to produce catch at age distributions that met the target mean weighted c.v.s. were available from the HAK 7 fishery off WCSI and the 'Area 404' section of the HAK 4 fishery on the Chatham Rise. The target has almost always been met for samples in the WCSI fishery (see Table 4). It is pleasing that a catch at age distribution was derived for Area 404 of the Chatham Rise as this has been the main commercial fishing area in most years, but only one catch at age distribution had previously been derived for it (see Table 1). Sampling in previous years on the Chatham Rise tends to have been concentrated on the western Chatham Rise, but in 2006-07, sufficient data were available to produce a length-frequency distribution only for the 'East excluding area 404' section. For the HAK 1 (Sub-Antarctic) commercial trawl fishery, sample sizes of lengths (1213) and aged fish (575) were relatively small. All available data and otoliths were used to calculate the catch at age distribution, but the mean weighted c.v. (38.5\%) did not meet the target of 30%. Sampling intensity in the Sub-Antarctic has varied considerably between years, with consequent wide variation in the mean weighted c.v.s (see Table $3)$.

The Sub-Antarctic trawl survey produced a good sample of aged fish (640), but the Chatham Rise survey was less productive (164 age estimates). Catch-at-age distributions were produced for both the trawl surveys, but neither of the estimated mean weighted c.v.s met the target of 30%. However, no improvements in the precision can be achieved, as all available data and otoliths were included in the analyses.

On the Chatham Rise, catches of younger hake tend to be concentrated in the west, particularly in the late 1990s (see Appendix A, Figures A1-A2). Throughout the 2000s there has been an apparent increase in the mean age of hake caught in that area. Middle-aged and older hake tend to dominate catches in the eastern Rise (see Figures A3-A4). Males and females appear to be about evenly abundant in all areas except Statistical Area 404, where males clearly dominate the catch. No clear year class progressions are apparent in any of the distribution series from the Chatham Rise.

In the Sub-Antarctic, there are some clear year class progressions, particularly in the male distributions. Figure A5 shows the progressions of hake aged 10 in 1990 through to age 16 in 1996, and aged 6 in 1998 through to age 12 in 2004.

The WCSI trawl catch is dominated by hake aged 6-12 years, with no clearly apparent year class progressions (see Figure A6). In some years, large numbers of 1- or 2-year-old fish are taken by the fishery, but these do not manifest as strong cohorts in later years. A characteristic of most of the WCSI distributions is that numbers of fish aged 3 and 4 are generally very low. It seems likely that fish of this age are much less vulnerable or available to the trawl during the winter months of the fishery than younger or older hake..

4.2 Ling

Of the three ling longline fisheries for which catch at age distributions were produced for 2006-07, only the distribution from the Sub-Antarctic spawning fishery met the c.v. target. However, the targets were almost met for the Chatham Rise and Cook Strait longline fisheries. A catch at age distribution was scheduled to be produced for the Sub-Antarctic non-spawning fishery, but it was not sampled by observers in 2006-07. The resources intended to be used to analyse the non-spawning Sub-Antarctic fishery were transferred to the Cook Strait fishery. Only one year's catch at age data was previously available for that fishery, so it was considered desirable to add to that series.

Catch at age distributions were produced for trawl fisheries catching ling in four areas. The Chatham Rise and Sub-Antarctic distributions used observer length data applied to age-length keys obtained from trawl surveys, e.g., Chatham Rise length data collected from October 2006 to May 2007 were applied to the age-length key from the January 2007 (TAN0701) trawl survey of the Chatham Rise. The estimated catch at age distributions from both these areas had mean weighted c.v.s well within the usual target of 30%. Most distributions calculated for these fisheries in previous years had also been within the target. Estimates of catch at age were also produced for the ling taken as bycatch in the WCSI and Cook Strait hoki spawning fisheries. Neither of these estimated distributions met the target c.v. of 30% owing to small available sample sizes of length data and otoliths. For the WCSI fishery, fewer than 500 length measurements and 300 otoliths were collected by observers, the lowest level of sampling since 1994. All available data were used in the analysis, so the mean weighted c.v. of 39% cannot be improved. The Cook Strait catch at age distribution is reliant on a mix of observer and on-shore market sampling. Data from both these sources were at their lowest levels since sampling began. Only six trawl tows were sampled for ling by observers, and only 13 of the programmed 18 ling market samples were obtained. Market sampling of this fishery began in 2001, and the target number and size of samples has generally been met. However, in 2007 there was a greater reticence to land sample of green ling, and the numbers of fish in the samples that were landed tended to be small. Steps have been taken that will hopefully get around this problem in 2008.

Sufficient ling otoliths and length-frequency data were available from the Sub-Antarctic and Chatham Rise trawl surveys to easily meet the mean weighted c.v. target. The target has been met in all surveys from these two areas.

The ling longline fisheries catch few fish younger than 7 years, and much of the catch is older than 12 years. Sex ratios of the longline catch are about $1: 1$ on the Chatham Rise and in Cook Strait, but tend to be biased towards females in the other fisheries. This is particularly apparent in the Sub-Antarctic
non-spawning fishery (see Figure B3). No clear year class progressions are apparent in any of the longline series.

Recruitment to the trawl fisheries is generally about two years earlier than to the line fisheries (i.e., at about 5 years), and most of the catch is 12 years or younger. No clear year class progressions are apparent in any of the trawl series. The ling trawl catch at age distributions from the WCSI fishery often exhibit a trough at about age 6 or 7 . This is consistent with an inflexion point in the lengthfrequency distributions at lengths of about 72 cm for males and 77 cm for females (see figure 3 of Horn 2008a). It seems likely that fish of this size are less vulnerable or available to the trawl during the winter months of the fishery.

5. ACKNOWLEDGMENTS

This work was funded by the Ministry of Fisheries under Project MID2007-01.

6. REFERENCES

Bull, B.; Dunn, A. (2002). Catch-at-age: User Manual v1.06.2002/09/12. NIWA Internal Report 114. 23 p. (Unpublished report held in NIWA Library, Wellington.)
Devine, J. (2008). Descriptive analysis of the commercial catch and effort data for New Zealand hake (Merluccius australis) for the 1989-90 to 2004-05 fishing years. New Zealand Fisheries Assessment Report 2008/60. 73 p.
Horn, P.L. (1993). Growth, age structure, and productivity of ling, Genypterus blacodes (Ophididae), in New Zealand waters. New Zealand Journal of Marine and Freshwater Research 27: 385-397.
Horn, P.L. (1997). An ageing methodology, growth parameters, and estimates of mortality for hake (Merluccius australis) from around the South Island, New Zealand. Marine and Freshwater Research 48: 201-209.
Horn, P.L. (2002). Stock assessment of ling (Genypterus blacodes) around the South Island (Fishstocks LIN 3, 4, 5, 6, and 7) for the 2001-02 fishing year. New Zealand Fisheries Assessment Report 2002/20. 53 p.
Horn, P.L. (2008a). Stock assessment of ling (Genypterus blacodes) on the Chatham Rise, Campbell Plateau, and in Cook Strait for the 2007-08 fishing year. New Zealand Fisheries Assessment Report 2008/24. 76 p.
Horn, P.L. (2008b). Stock assessment of hake (Merluccius australis) in the Sub-Antarctic for the 2007-08 fishing year. New Zealand Fisheries Assessment Report 2008/49. 66 p.
Horn, P.L.; Dunn, A. (2007). Stock assessment of hake (Merluccius australis) on the Chatham Rise for the 2006-07 fishing year. New Zealand Fisheries Assessment Report 2007/44. 62 p.

Appendix A: Summaries of the proportions-at-age data for hake from resource surveys and trawl fishery observer sampling

Figure A1: Age frequencies of hake from commercial catch-at-age data in the Chatham Rise (west shallow) trawl fishery, 1992 to 2007.

Figure A2: Age frequencies of hake from commercial catch-at-age data in the Chatham Rise (west deep) trawl fishery, 1992 to 2007.

Figure A3: Age frequencies of hake from commercial catch-at-age data in the Chatham Rise (east excl. area 404) trawl fishery, 1992 to 2007.

Figure A4: Age frequencies of hake from commercial catch-at-age data in the Chatham Rise (Statistical Area 404) trawl fishery, 1992 to 2007.

Figure A5: Age frequencies of hake from commercial catch-at-age data in the Sub-Antarctic trawl fishery, 1990 to 2007.

Figure A5 ctd.: Age frequencies of hake from commercial catch-at-age data in the Sub-Antarctic trawl fishery, 1990 to 2007.

Figure A6: Age frequencies of hake from commercial catch-at-age data in the WCSI trawl fishery, 1990 to 2007.

Figure A6 ctd.: Age frequencies of hake from commercial catch-at-age data in the WCSI trawl fishery, 1990 to 2007.

Figure A7: Age frequencies of hake (ages 1 to 25) from resource surveys in the Chatham Rise, 1989-90 to 2007-08.

Figure A7 ctd.: Age frequencies of hake (ages 1 to 25) from resource surveys in the Chatham Rise, 198990 to 2007-08.

Figure A8: Age frequencies of hake (ages 1 to 25) from resource surveys in the Sub-Antarctic, 1989 to 2007.

Figure A8 ctd.: Age frequencies of hake (ages 1 to 25) from resource surveys in the Sub-Antarctic, 1989 to 2007.

Appendix B: Summaries of the proportions-at-age data for ling from resource surveys and observer sampling of line and trawl fisheries

Figure B1: Age frequencies of ling from commercial catch-at-age data in the Chatham Rise longline fishery, 2002 to 2007.

Figure B2: Age frequencies of ling from commercial catch-at-age data in the Sub-Antarctic (spawning season) longline fishery, 2000 to 2007.

Figure B3: Age frequencies of ling from commercial catch-at-age data in the Sub-Antarctic (non-spawning season) longline fishery, 1998 to 2005.

Figure B4: Age frequencies of ling from commercial catch-at-age data in the Cook Strait longline fishery, 2006 to 2007.

Figure B5: Age frequencies of ling from commercial catch-at-age data in the Bounty Plateau longline fishery, 1993 to 2004.

Figure B6: Age frequencies of ling from commercial catch-at-age data in the Chatham Rise trawl fishery, 1992 to 2007.

Figure B6 ctd.: Age frequencies of ling from commercial catch-at-age data in the Chatham Rise trawl fishery, 1992 to 2007.

Figure B7: Age frequencies of ling from commercial catch-at-age data in the Sub-Antarctic trawl fishery, 1992 to 2007.

Figure B8: Age frequencies of ling from commercial catch-at-age data in the WCSI trawl fishery, 1991 to 2007.

Figure B8 ctd.: Age frequencies of ling from commercial catch-at-age data in the WCSI trawl fishery, 1991 to 2007.

Figure B9: Age frequencies of ling from commercial catch-at-age data in the Cook Strait trawl fishery, 1999 to 2007.

Figure B10: Age frequencies of ling (ages 1 to 25) from resource surveys in the Chatham Rise, 1989-90 to 2007-08.

Figure B10 ctd.: Age frequencies of ling (ages 1 to 25) from resource surveys in the Chatham Rise, 198990 to 2007-08.

Figure B11: Age frequencies of ling (ages 1 to 25) from summer resource surveys in the Sub-Antarctic, 1989 to 2007.

Figure B12: Age frequencies of ling (ages 1 to 25) from autumn resource surveys in the Sub-Antarctic, 1992 to 1998.

