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EXECUTIVE SUMMARY

Smith, M.H.; Baird, S.J. (2005). Representativeness of past observer coverage, and future
coverage required for estimation of New Zealand sea lion (Phocarctos hookert) captures in the
SQU 6T fishery.

New Zealand Fisheries Assessment Report 2005/5. 39 p.

This document reports on the two main tasks of Objective 2 of the project ENV2000/02. It
examines the representativeness of observer coverage of the squid (Nototodarus spp.) trawl fishery
in SQU 6T in the 1992-2002 seasons. It also provides estimates of the observer coverage
proportion necessary to achieve coefficients of variation (c.v.) of 10%, 20%, and 30% for a future
estimate of the total New Zealand sea lion (Phocarctos hookeri) captures in a season.

The representativeness of the observer coverage is assessed using tables of observer coverage
proportions in relation to numbers of tows, vessels, and nationality and from kernel density plots of
the commercial fishing effort plotted beside the observed effort in relation to spatial and temporal

variables. On these criteria the observer coverage isa good representahon of the commercxal ﬁshery
especxally from 1998 to 2002, :

A new method was developed for obtaining the observed proportion of tows required to attain a
specified c.v. To estimate all the variation that can occur between tows within a season, the method
uses an over-dispersed Poisson generalised linear model with vessel random effects. An over-
dispersed cormponent allows for variation in the capture rates due to spatial, temporal, and other
external causes, while the vessel random effects introduce correlation between captures by the same
vessel. An expression is derived for the c.v. of the predicted total number of captures in the fishery
in terms of the parameters of the model, including the variances of the random effects components.
Data from 1998 to 2002, which excluded any tows where a Sea Lion Exclusion Device was present
with its cover net open, were used to fit the model by Bayesian methods. Once the year effects are

accounted for there is virtvally no over-dispersion and a Poisson generalised linear model with
vessel effects was finally fitted.

The capture rate and total fishing effort for a season appear in the expression for the c.v. as their
product. Thus, for a future season, the proportion of observed tows required can be related to the
predicted total captures for that season. A figure is presented containing the proportions of observed
tows required to attain c.v.s of 10%, 20%, and 30%, plotted against the predicted total numbers of
captures. A table of the coverage for various values of the predicted total number of captures is also
included. For example, when the predicted total number of sea lion captures is 70, to attain a c.v. of
30% the proportion of tows that need to be observed is about 21%, and to attain c.v.s of 20% and
10%, the proportions of tows that need to be observed are about 42% and 72% respectively.



1. INTRODUCTION

The Ministry of Fisheries has statutory obligations to provide advice on the adverse effects of
fishing on associated or dependent species in order to avoid, remedy, or mitigate these effects. The
capture of New Zealand sea lions (Phocarctos hookeri) during squid (Notofodarus spp.) trawl
fishing effort, particularly off the Auckland Islands Shelf (in area SQU 6T), has resulted from the
overlap of the fishing grounds with the sea lion foraging areas. This species is classified as “range
restricted” and therefore “threatened” under the DoC Threat Classification (Hitchmough 2002).

Ministry of Fisheries observers have monitored the SQU 6T squid trawl fishery since 1988, and
annual estimates of total captures are obtained by scaling the observed strike rate to the total effort
of the fleet (Baird 2001). Since 1993, vessels have complied with an in-season monitoring system
that allows estimation of the number of captures during the season (February-June) (Doonan 2001).
If this in-season estimate reaches or exceeds the maximum allowable limit of fishing mortality
(MALFiRM), the fishery is closed. Early closure of the fishery occurred in all years since 1996,
except for 1999 (Baird & Doonan 2002, Annala et al. 2004).

Annual changes in the rates of sea lion capture have been documented in the SQU 6T fishery, with
an increasing trend since 1993 (Doonan 2001). These strike rates may be variable within a fishing
season. Appropriate levels of observer coverage are required to ensure that statistically robust
estimates of total sea lion captures can be provided to the managers of the southern squid fishery.
The observer coverage, expressed as the proportion of all tows that are observed, must be
representative of the total effort, both spatially and temporally, and of the vessels. The changing
pature of the fishery, particularly the testing and use of Sea Lion Exclusion Devices (SLEDs),
demands that the amount of observer coverage is reviewed continually.

This report is concerned with Objective 2 of the project ENV2000/02: For New Zealand sea lions
taken in the southern squid fishery, provide estimates of the level of observer coverage required to
achieve the point estimates of sea lion capture with target c.v.s of 10%, 20%, and 30%.

2. METHODS

There are five parts to this methods section. The first subsection outlines the data sources used. In
the second subsection, we consider the methods for determining how representative the observer
coverage has been in the years 1992-2002. In the third subsection, we examine the approach to
calculation of the coefficient of variation (c.v.) of the estimate of total captures that has been used
in the past, and present a new approach for consideration. In the fourth subsection, we present a
new model for New Zealand sea lion captures that enables the coefficient of variation to be
caleulated when there is over-dispersion, and a simple structure for the correlation of captures
within groups of tows. Finally, we add distributional assumptions to the model so that it can be
fitted by Bayesian methods to obtain the parameter estimates used to derive the coverage proportion
required to attain a specified coefficient of variation.

2.1 Data sources and treatment

Two primary data sources were used:

= the MFish observer data based on observer logbooks and obtained from MFish databases
obs and obs_lIfs.

the commercial fishing data reported to the Ministry of Fisheries on Trawl Catch Effort
Processing Return (TCEPR) forms obtained from MFish catch and effort system warehou.

Observer data were extracted for the observed squid trips in SQU 6T for 1992-2002. These trips
were generally in the main part of the fishing season (February-June). The following observer data



were extracted for each fishing operation: vessel identifier, trip, tow, gear type, latitude and
longitude, date, time, number of New Zealand sea lions, as recorded by MFish scientific observers.

The following total fishing effort data for each fishing operation were extracted: vessel identifier
and characteristics (including nationality), trip, fishing operation identifier, target species, gear
type, starting latitude and longitude, and starting time and date,

Information from the autopsy programme contracted to the Department of Conservation (DoC)
under a Conservation Services Programme (CSP) project in which all dead sea lions are returned

from the squid fishery for autopsy (for examples, see Duignan et al. (2003)) was used to verify the
records in the observer database, including the sex of the animais.

Data on the use of SLEDs were obtained from observer logbooks in 2000 and from the industry
data collected for the in season work in other years of SLED use (2001 and 2002). When the device
was present it was used with the cover net either tied down or left open. The latter situation allows
the potential escape of the sea lion from the net. In 2000, al} observed tows with the device present
had the cover net tied down. Thus, there are three categories of tow in relation to SLED use: device
absent, device present with cover net open, and device present with cover net tied down. For the
observer data, 21 of the observed tows, all in 2002, did not have the SLED category available; these
involved 6 trips by 4 vessels. The category for these tows was inferred on the basis of the SLED
status and gear of the tows adjacent in time to the tow with the missing category.

From a total of 4493 observed tows, 3 were omitted from the final dataset after grooming, One tow
in 1994 was omitted as it had no start or finish latitude and longitude coordinates and no start or end
times. Two other observed tows, in the 1992 and 2002 seasons, were omitted from the observer data
because they had zero duration times. None of these tows appeared in the commercial data.

2.2 Representativeneés of observer coverage

- Because capture rates (mean number of captures per tow) are likely to vary spatially and temporally
over the fishing season, it is important that the extent of the commercial fishery be covered by a
representative observer programme. To measure whether the observer coverage is representative,
.we look at important characteristics that are available in the commercial and observer data, and
from other sources, which may relate to possible capture rates. This involves examining, for each
season, coverage by tows, by vessels, and by nationality. Following the method used by Doonan
(2001), kemel density plots of the commercial and observed tows for the variables latitude,
longitude, and day of the year are used to compare the distributions of commercial and observer

tows in relation to each variable. The plots include all the observer tows, whether the SLED was
present or not.

2.3 Observer coverage to meeta spécified coefficient of variation

Determination of the sample size required for a study is a common application of statistical
methodology and Lenth (2001) discussed many of the practical issues. An aim of this study is to
determine the observer coverage required to meet the criterion of estimating the total New Zealand
sea lions captured in a season to the accuracy of a specified coefficient of variation.

In undertaking this work, we have identified a number of problems associated with estimating the
coefficient of variation for the total captures of New Zealand sea lions in a season and we discuss
these in the next section. We introduce a new approach to the calculation of the coefficient of
variation that overcomes many of these difficulties. We also develop a model for sea lion captures
that allows for variation in the strike rate between tows, and which also allows for the correlation of
captures between tows within some groups of tows. Difficulties can arise in the fitting of the model



because of the nature of the sea lion capture data where a very large proportion (over 30%) of tows
have no captures and very few tows capture more than one sea lion.

2.3.1 Approaches to the calculation of the coefficient of variation

Adopting the survey sampling notation that upper case letters refer to finite population quantities
and lower case letters refer to sample quantities, the ratio estimate of the total number of sea lions
captured in a season T, is given by

f=NL ' )
n .

where ¢ is the number of captures observed in the season, N is the total number of commercial tows
in the season, and 7 is the number of observed tows. #/n is the estimated “strike rate” for the season
and this is scaled up by the total effort to estimate the total number of captures in the fishery. The
primary objective of this study is to estimate the observer coverage proportion

n

N
necessary to estimate the total number of captures accurate to a specified coefficient of variation.

2311A simple random sample approach

Bradford (2001) and Doonan (2001) have used the finite population formula from survey sampling

theory to calculate the variance of T, which assumes that the observed tows are a simple random

sample from the population of all commercial tows. This approach follows Cochran (1977), and
gives '

Var(T)= [-1-—- 1) NS?
f
where _
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is the finite population variance of the number of captures per tow,

T=Z::1yi

is the population total captures and y1, ¥», ..., yx are the individual captures for the commercial
tows. Cochran (1977) presented these formulae applied to sample and population means and it is a
simple exercise to rearrange these for the sample total ¢ and the population total T. The coefficient
of variation of T is

ET) EMVS

where E(f) denotes the mean of the estimated total number of sea lion captures.

Estimation is based on the subset of captures for the observed tows, which we denote by
Y1s Y2, ---» Yno This subset is “representative” of all the captures because it is assumed to be a simple



random sample from the finite population. It follows that the ratio estimate, T, is an unbiased
estimate of T, meaning that E(f) =T . Furthermore the sample variance

2_ 1 a _tz | )
NPT S

is an unbiased estimate of the finite population variance 2 (Cochran 1977) The estimated c.v. is
then given by

&Tﬂ.—.}i- &~ )N | e

The use of the estimate %, given by Equation (2), is problematic because the data are count data and
s is an inefficient estimator in such situations. Furthermore, in the presence of “outliers”, the rare
multiple capture tows that can occur, s* can be an unstable estimate of the finite population variance

Another approach is to assume that the finite population, y;, ¥2, ---, ¥n, is an independent sample
from a super population. This incorporates the idea of the representativeness of the observer sample
because it is a subsample from the same super population. The advantage is that the variance can be
related to the estimate of T via the variance function of the distribution of the superpopulation,
which enables the calculation of the c.v. for different estimates of the total captures. For example
Doonan (2001) assumed the binomial distribution (ignoring multiple captures) for the super

population, which leads to a hypergeometnc distribution for the finite population given T and gives
an estimate of the c.v. of

iy = [ 1oL
ov(f) = (f ) ( NJ

. that is expressed in terms of the total capture estimate T.

Doonan (2001) also raised the issue of the su:uple random sample from a finite populatlon
assumption for the observed tows. This asswmption is clearly violated, because observers are
assigned to vessels not individual tows. Furthermore, the mechanism for placing observers on
vessels does not appear to involve randomisation, so it would be wrong to assume that the set of
observed vessels is a simple random sample. A vessel is selected to be observed and observers are
placed on the vessel when it is in port. We assume that every tow made by the vessel is observed
until the vessel reaches port again and the observers disembark. This defines the term observed trip
and a single vessel may have more than one observed trip in a season. A vessel may visit a port
without the observers disembarking and a vessel may also be observed for part of the season and
not observed for the other part. In the commercial data there is no record corresponding to trip as

defined by port visits, so even if it were appropriate to consider the observed trips a simple random
saraple there is no sampling frame of trips available.

2.3.1.2 A predictive approach

We adopt a different approach to the calculation of the variance of T that does not involve any
assumptions that either the observed tows or the observed vessels are a simple random sample.

The total number of captures for the season, T, is estimated from the observed sample by T given
in Equation (1). In the predictive approach T is predicted, not estimated, because it is not a fixed



finite population parameter, but an unknown random quantity. The finite population of a fishery
season is not well defined because there is a complex stopping rule that determines the end of the
season, which could, in some seasons, involve closing the fishery based on the estimated number of
captures. Fishing success aiso contributes to the variation in the number of tows in the season. This,
and the fact that we are trying to predict the total number of captures (which is an unknown random
quantity), rather than estimate a parameter make the predictive approach attractive. Using the
notation above where the first n values yy, y2, ..., yn, of the commercial captures yy, y2, ..., ¥v, -

represent the captures on the n observed tows and the last N - n rcprcsent the captures on the
unobserved tows we see that

T=Z:=1yf +Z::u+15’f =I+Z::u+1yf )

The prediction of T requires the prediction of the total of the unknown unobserved captures {for the
N — n unobserved tows) and, to do this, it is assumed that the observed sample is representative of
the unobserved sample. The advantage of the prédictive approach is that it is no longer necessary to
make the unreasonable assumption that the observed sample is a simple random sample from some
finite population. Prediction of unobserved values based on values of covariates is a common
procedure for linear models; see, for example, Neter & Wasserman (1974).

Under the predictive approach the observed total is known and the N — n unknowns are estimated
using the estimated strike rate. Using the representativeness of the observed tows in the sense that,
on average, the strike rate of the unobserved tows is the same as the average strike rate for the
observed tows, Equation (4) gives

t+(N-—n)i=£r =T
n n
as a predictor of T. To calculate the c.v. of the predictor T, we need to obtain expressions for its
mean and variance. The required expressions for the mean and mean square error of T are derived
in Appendix A.
The assumption of representativeness of the observer tows says that the marginal distribution of the
number of captures for a single tow has a mean pand a variance ¢?and that these are the same for

every tow, whether observed or unobserved. Comelation structure between some tows can be
incorporated by allowing the covariance matrix of the vector of captures y = (1, Y2, ..., Yn), to have

off-diagonal terms, while every entry on the diagonal is o7, Under this assumption, the mean of T
is

E(f)%ﬁ(r)‘:zvu:E(r)

and consequently T is an unbiased estimate of the mean total number of captures. To obtain an
expression for the variance and hénce the coefficient of variation we allow for the two sources of

error in predicting T by T . These are: the error associated with estimating the mean strike rate p
from the observer sample; and the random error of the true total number of captures in the

unobserved tows. Becanse T is an unbiased estimate of the mean of T, the variance of T (as a
predictor of T) is the mean square error of prediction

MSE(F)=B(f -T)2 =E(;1c-t—T)z (5)

Where no correlation exists between tows it follows from Equation (Al) in the Appendix A with
K =0, that the MSE of prediction is
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The c.v. is

() LE0)_o Lo

B(f) NeUS

which is the same, when the estimates of | and ¢ are substituted, as the estimated c.v. for the

simple‘ random sample approach given by Equation (3). Calculation of the MSE of T is tractable
even when there is correlation structure in the tow capture variables and the denva.tlons in
Appendix A enable this calculation to made for the model we are proposing.-

2.4 Development of a model for sea lion captures

In reply to our initial bid for Objective 2 of ENV2000/02 project, the Ministry of Fisheries
requested that we consider correlation structure for the numbers of captures between groups of tows
when estimating appropriate levels of observer coverage. When correlation is present, the simple
random sample/finite population approach is not practicable, nor is it justified. Even if the simple
random sample relates to vessels rather than tows, it becomes mpossxble to express the coefficient
of variation in terms of the sampling fraction of tows. Furthermore, it is a non-trivial task to obtain

a suitable model that allows for correlation structure in count data as well as incorporating variation
in strike rates between tows.

Before developing a2 model for New Zealand sea lion captures, we will first discuss sources and the
nature of the variability in captures. The mean number of captures for a single tow can depend on a
-number of factors. These may include the density of sea lions in the area of the tow, the behaviour
of sea lions at the time of day and time of year, and the fishing practices and gear used by the vessel
" crew. The component of the mean capture rate due to the density and behaviour of the sea lions is
likely to vary both temporally and spatially over the fishery.

- Given the mean capture rate for the particular tow, the number of sea lions captured can be assumed
to have a Poisson distribution. Variability in the mean capture rate between tows will ensure that
the observed captures have what is known as “extra-Poisson variation™ or “over-dispersed Poisson
variation”, Over-dispersed Poisson models have made extensive appearances in the theoretical and
applied literature since the late 1970s and are still an area of active research; see, for example, Cox
(1983), Breslow (1984), Morton (1987), Daniels & Gatsonis (1999), and Booth et al (2003).

A common approach to modelling over-dispersion is to use a mixture distribution where the mean
of the Poisson distribution is given a probability distribution. It is well known that if y has a Poisson
distribution with mean 1, and m is distributed according to a Gamma distribution, then the
marginal distribution of y is a negative binomial distribution. The negative binomial model is often
used to model over-dispersion in a Poisson model (see, for example, Morton (1987)).
Unfortunately, other useful mixing distributions used in conjunction with the Poisson model do not
give mixture distributions in closed form. However, if we represent the mixture by the Poisson
mean scaled by a positive random variable centred on 1, it is possible to calculate the change to the
variance of y brought about by the mixing distribution, even when the marginal distribution is not in
closed form. We will refer to the scaling random variable as an over-dispersion effect. Any mixing

distribution that has a scale invariant form can be represented this way, including the Gamma and
other distributions that could be applied in this situation.



Another important contribution to variation is from the possible correlation between tows carried
out by the same vessel. There are several forms of correlation that may be present. Serial
correlation could result because successive tows are often carried out in close proximity and there
may be a spatial variation in the mean catch rate. It could also arise when fishing practices
contribute to an increased or reduced capture rate for the vessel. Doonan (2001) raised the issue of
correlation between tows and its effect on the c.v. of the estimate and on the confidence intervals.
Manly et al. (2002) considered serial comrelation in their approach to the coverage required for
estimating sea bird captures. The limited numbers of captures in the observer data for New Zealand

sea lions per season would appear to preclude fitting anything more than the very simplest of
correlation structure.

We use a vessel random effects correlation structure model because vessels are easily identifted in -
‘both the commercial aid the observer data. Because a single random effect is used for each vessel,
it will be an average over the tows for the vessel of any serial correlation structure, and it will
include any other vessel-related effects, such as vessel fishing practices and where and when during
the season it fishes. We model the vessel random effect as the random scaling of the mean capture
rate by a random variable with a value that is common to all tows by a vessel, and this results in a
correlation between all tows by the same vessel. Where, in the same season, some tows by a
particular vessel are observed and some are not, we will assign a single random effect to all

observed tows made by the vessel and a second independent random effect to all unobserved tows
made.

- The partial specification of a model that encapsulates the variation between tows in capture rates
and a within-vessel correlation structure is defined below. At this stage, in order to calculate the c.v.

of T, it is unnecessary to make any assumptions about the form of probability distribution models
the vessel random effects and the over-dispersion effects have. Additional assumptions about
probability models for the random scalings will be made for the process of estimating the
parameters of the model. The model, which is defined in the following paragraphs, is the simplest
model that satisfies our requirements of a model for estimating variance components to estimate the
observer coverage. These requirements are that the model has a fixed strike rate p for the season,
accounts for variation in the strike rate for individual tows by way of a variance component, and
accounts for between tow correlation structure in the form of a vessel variance component.

2.4.1 The model

Let yp denote the number of captmes for tow k by vessel j. The model, described below, is a 3 level :
hierarchical model and is a special case of the model used by Daniels & Gatsonis (1999).

Level 1. Within tow variation. The yy, condmonal on the mean capture rate m,, have
independent Poisson distributions mean 7 e

Level 2. Within vessel variation. The 1, are given by
N =Njlip

where the uy, conditional on the vessel mean strike rate n,, are independent random
variables with mean 1 and variance ¢ . The uj; are the over-dispersion effects.
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Level 3. Between vessel variation. The n;, are given by
N; =y,
where the v;, conditional on the overall mean strike rate 1, are independent random variables

with mean 1 and variance ¥ . The v; are the vessel random effects.

Models of this form have been treated by Morton (1987) and Christiansen & Morris (1997). It
follows from the model, that

Np =HVlig
and, taking logarithms, the random effects can be written as

tog(nyz )=log (i) +log(v;) +1og (uy)
=P+b, +e,

Consequéntly the mode] is a 3-parameter, |\, ¢, and Y , random effects model that falls into the

class of Poisson hierarchical Generalised Linear Models (GLM) with random effects (having
unspecified probability models), with the log link function; (see Lee & Nelder 1996). It differs from
a Generalised Linear Mixed Model (GLMM) (see McCulloch & Searle 2001) because we do not
assume that the random effects, the b; and the ey, are normally distributed, nor do we assume that
they have mean 0. The idea of constraining multiplicative random effects by making their means 1,

rather than making the mean of their logarithms 0, was introduced by Lee & Nelder (199@) in their
work on hierarchical GLMs.

Note that no assumptions have been made at this stage about the form of the distributions of the
random scalings u; and v,. Nevertheless, an expression can be obtained for the mean square error
and consequently for the coefficient of variation of T .

We need to introduce further notation. n; is the number of tows by vessel j and M is the number of

vessels involved in the season. Numbering the vessels in order so that the first m vessels are the
observed vessels, it follows that '

N= Zi"l » B =ZT=1"I » T= ZL’J ) 1= Z:‘lnltf

where

=\
] _Zk=1y.ﬂ= ,

is the total captures for all tows by vessel j. Recall that the same fishing vessel will be counted in

both the observed and in the unobserved sets of vessels if, during the season, some but not all of its
tows were observed.

Equation (A4) in Appendix A gives the MSEof T as

MSE(7) =[-Jl;—lJNu(H((1+¢)(1+w)—1)p)
+(1-£)* [%Zr;:x("f - "f) + ‘(N_L'I')?Z;:ml("fz —ny )}W(N w' o ©

The squared coefficient of variation is then

11
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since E( ) Nu.

At the end of the season the tow numbers per vessel and sampling fraction will be known and all

that is needed to estimate the c.v, of T is T itself and the estimates of W, ¢, and v . The square
c.v. is estimated by :

;EIF)=%[¥J[1+((1+6)(1+¢)—1)ﬁ]

+(1 f ( 2Z;=1( - ) 2Zj=m+l( - )}ﬁ ' @
(N ) . - V

using T as the estimate of N, [i for the estimated strike rate, and denoting by ¢ and W
whatever estimates are used for the variance components¢ and  respectively.

It is more difficult to determine the sampling fraction because there are more unknowns. For any
future season, the estimate of the mean strike rate, |, is unavailable, the number of commercial
tows, N, is unknown, as are the numbers of tows by individual vessels, observed and unobserved.
The estimated strike rate and, more especially, N vary considerably from season to season
(Table 1). The standard method of using values from the previous season to calculate coverage
required can therefore be quite misleading because the answer will vary considerably with N and
k. The strong dependence of the coefficient of variation on the mean total number of all captures,
Nu, apparent from Equation (7), enables us to describe the coverage required in terms of this
variable, to a great extent. Rather than producing graphs of the coverage required for a range of N
and a range of p, the coverage required can essentially be plotted against the estimated total number

of captures. For example, if you estimate the total mmnber of captures to be 70, then you will need a
coverage of about 21% to achieve a coefficient of variation of 30%.

The covariance component in (8) contains the expressions

ni’ZL("fz‘"f) and 221“"*1("’ i )

(N-n)

Note that the first expression above represents the proportion of possible ordered pairs of tows for
the m observed vessels relative to the number of pairs if all » tows had been made by a single
vessel. Similarly, the second expression is the proportion of ordered pairs for the M — m unobserved
vessels. The number of ordered pairs of tows within each vessel is important in the comelated
model because each pair of tows by the same vessel contributes W to the total variance. The values
of these expressions relate to the numbers of vessels that are likely to fish in the fishery, and if that
does not vary much from season to season the values of the expressions will be reasonably static.
With the excepnon of the unusual 2001 season, when almost all tows were observed, there has been
little variation in their values from 1998 on (Table 2). The sum of the two proportions varied

12



between 20.9% and 24.7% for the four jrea:s when the observer coverage fraction varied between
and 23.0% and 38.8% (Table3).

_ To calculate the coverage fraction required, we need to solve the following cubic equation for f

2t L oara-ry | |
« _(f I)Num(l f)'B - ®

where ¢ is the specified coefficient of variation,

CA=1+((1+9)(1+v)-1)u

and
g=|Ll it _1]+ 1 (ZLH"JZ _1] v

n n N-—nL N-n

A is the contribution to the c.v. from the Poisson error variance plus over-dispersion variance plus

the vessel random effects variance, and B is the contribution from correlation between tows within
each vessel.

Rearranging Equation (9) and substituting the estimates for the parameters gives the cubic equation
that is solved to obtain the observer coverage required for different values of 7 .

ﬁf(1—f)2'+(c2f+ﬁ-.§)f-ﬁ=o i (10)
where A and B are estimates of A and B respectively and T is the estimate of N

The next subsection addresses the methods for estimating ¢ and y so that suitable estimates of A

and B, A and B, can be found and used to calculate sampling fractions as solutions to the cubic
equation (10) for different values of T .

2.5 Estimation of the components of variance

Different methods are proposed in the large literature for fitting mixed Poisson generalised linear
models. However, there is no real consensus as to which method is best. Most concentrate on the
problem of estimating the fixed effects coefficients. The accuracy of the estimation of any random
effects is only secondary and relates only to the construction of approximate confidence intervals or
to other approximate inferences. To estimate coverage required, we are primarily concerned with
obtaining good estimates of the components of variance associated with the random effects, a much
more difficult problem. Methods that provide sourd estimates of fixed effects are often not
satisfactory for estimating random effects parameters. The difficulties of estimating components of

variance in the Generalised Linear Model setting were addressed by Tsutakawa (1988), Pauler et al.
(1999), Daniels & Kass (1999), and Lee & Nelder (2001). )

We decided to use Bayesian methods for fitting the model for several reasons. Frequentist-based
methods, which include generalised estimating equations, penalised likelihood, and empirical Bayes
methods are primarily based on approximations to the likelihood, which is unavailable in closed
form. Maximum likelihood estimates of variances in Poisson random effects models are well
known to be problematic, and Aragon et al. (1992) showed that infinite maximum likelihood
estimates of random effects parameters are possible. There appears to be no general agreement as to
which methods are appropriate in different situations, though Lee & Nelder (2001) showed via
simulations that their method greatly reduces the estimation of variance components bias that exists
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in the meethods of Schall (1991) and Breslaw & Clayton (1993). Different methods can give widely
differing estimates of the variance components, even when both methods give estimates of fixed

effects that agree to a great extent. Booth et al. (2003) compared two methods that yield very
different estimates of the random effects parameter for the same data.

The Bayesian approach allows more flexibility in the models that can be fitted (Daniels & Gatsonis
1999) and the availability of the program WinBUGS (Gilks et al. 1994) for fitting a variety of
Bayesian models makes the approach attractive. The approach also works especially well for

predictive models, as all sources of uncertainty are accounted for if a full Bayesian analysis is
carried out.

To implement a Bayesian approach to estimation of the random effect variance, we need to assign

probability distributions to the overdispersion and vessel random effects and prior distributions to
the unknown parameters.

For the overdispersion effects (level 2 of the model) we will use the Gamma distribution, so that the
uy, are independent Gamma random variables with shape parameter = 6, and rate parameter = 6,. -
* This ensures the mean of all the overdispersion effects are is 1 and the variance is

=1
¢"e

2

Using the Gamma distribution is equivalent to the assumption that the distributions of the yj,
conditional on the vessel means W, are independent negative binomial random variables with

means |t; and common heterogeneity parameter 6, .

The assignment of a distribution to the vessel random effects, together with the assignment of a
prior distribution to any fixed parameters, requires care for two reasons. In practice, it is difficult to
check any distributional assumption for the random effects without huge amounts of data. The
second problem concerns the prior on the variance of the random effects distribution, In a Bayesian
approach without strong prior information, it is common to use a non-informative prior that may be
improper in the sense that the integral of its dens1ty is infinite. Natarajan & Kass (2000) have
shown that for GLMMSs an improper prior on the variance of the random effects always gives an
improper joint posterior distribution for the parameters. A consequence of this is that estimates of
the random effects parameters are unreliable because the Markov Chain Monte Carlo (MCMC)
method used for fitting does not converge. Maximum likelihood methods, which can be related to
Bayesian methods with uniform improper priors, do not escape the consequences either and can
yield an unreliable estimate of the random effects variance. In some situations the maximum
likelihood estimate is at infinity (Aragon et al. 1992).

Because flexible correlation structure can be incorporated, it is common in the literature to assume
that the logarithms of the vessel effects (as we define them) have a normal distribution with mean 0.

This is the assumption that the model is a GLMM and is equivalent to assuming a lognormal
distribution for the v;- However we want to allow a thick tail in the distribution of the v; which gives
larger probabilities of a large value for a vessel effect than the lognormal distribution does. With
this in mind we have chosen to use a Gamma distribution for the vessel random effects. Thus we
have assumed that the v; are independent Gamma random variables with shape parameter = 6, and

rate parameter = 0,. Again, this ensures that all the vessel random effects have mean 1 and
variance

vl
92

Since B, and 0, are the reciprocals of the variances they can be described as precision parameters. -

14



The priors for the various parameters of the distributions of random effects need to be specified. I
an unsuitable prior is chosen, the posterior distribution may be improper (having an infinite
integral) or close to being improper. Some non-informative priors have this property, and other
standard priors have proved unsatisfactory. Christiansen & Morris (1997) and Daniels & Kass
(1999) suggested the use of a “uniform shrinkage prior” for the prec1s1on parameter where a
Garnma prior is used for the random effects. This type of prior distribution is proper and produce
sound estimates of the random effects variance parameters in simulations carried out by Natarajan
& Kass (2000) on a logit model. Nevertheless, the prior on the precision parameter is diffuse
because it has an infinite mean, as has the corresponding prior induced for variance.

The shrinkage referred to here is the shrinkage of the predicted values of the random effects
towards 1. With no shrinking of the predicted random effects towards 1, very small values will be
assigned to random effects for those vessels that had no captures and large values will be assigned
to those vessels that had well above average capture rates. This type of over-fitting occurs because
of the nature of Poisson responses. With over-fitting of the vessel random effects the estimate of the
variance of these effects will be too high. Without compensating for over-fitting of the vessel
effects, we are ignoring the possibility that, more often than not, a vessel with an observed zero
capture rate will have an under-predicted random effect, and a vessel with a well above average
observed capture rate will have an over-predicted random effect. Daniels & Kass (1999) gave the
argument that leads to the derivation of the density for the prior on a precision parameter 9, which

is equivalent to a uniform prior on the amount of shrinkage of the predicted random effects towards
1. This density is

£(8)=

,0>0, (11)
v+9) '

where v is a hyper-parameter that is the median of the prior distribution. The smaller v is, the
more diffuse the prior is and the smaller the degree of shrinkage towards I, that occurs in the

predicted random effects. This prior is used for the precision parameters for both the over-
dispersion and the vessel random effects. :

The data used for fitting the model using the WinBUGS program comprised the observed tows
from the 1998 to the 2002 squid seasons in SQU 6T. These years were selected because they
represent the current levels of activity in terms of the numbers of tows in the season and the current
regime of observer coverage. From the 1999 season onwards, SLEDs were used on some tows. All
tows where the SLED was present with the cover open were excluded from the analysis. Thus 1667
tows are in the data set for fitting the model, and for these tows 100 sea lions were captured.

Because the data cover five different years, the model for estimating. the random effects variances
includes a different mean capture rate for each year. A hierarchical normal prior structure was used
for the logarithms of the year capture rates with a diffuse normal hyper-prior on the mean and a
diffuse Gamma(0.001, 0.001) hyper-prior for the variance. Any vessel that fished in SQU 6T in
more than one year was assigned a different random effect for each year. .

Because we require only estimates of the over-dispersion and random effects variances, the year
means are nuisance parameters for our purposes.

It is assumed that the variances of the random effects and over-dispersion effects do not vary over
the five years of the data used in fitting the model.
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3. RESULTS
3.1 Representativeness of coverage

To investigate the representativeness of coverage, data from all 11 seasons from 1992 to 2002 are
used. Start positions of the commercial tows and the observer tows are shown in Figure 1.
Coordinates of the latitude and longitude in the commercial data are truncated to the next 0.1° and
this would result in-a grid pattern of commercial tow positions in Figure 1. We added random
values between 0.0° and 0.1° to all commercial coordinates to break up the grid pattern in this plot.

While it is difficult to judge the density of effort from Figure 1, in most years the observer coverage
follows the commercial coverage.

Density plots of observer tows and commercial tows against latitude, longitude, and date are
presented in Figures 2~7. These show that the temporal and spatial representativeness of the
observer coverage is good, especidlly in recent years. From the 1998 season a coverage level of at
least 20% of commercial tows was targeted in the fishery and the increased emphasis on
representativeness of the observer coverage is apparent in Figures 5~7. In 2001, coverage was
98.5%; however small differences between the commercial and observed densities by latitude and
longitude are apparent in Figure 6. These are due to the coarse truncation towards 0 to the next 0.1°
for the coordinates in all the commercial data. The effects of truncation has been only partially
compensated for by adding 0.05° to the latitudes and longitudes when making the density plots.

A breakdown of the numbers of commercial and observed tows and percentage coverage by nation
for the 11 seasons is given in Table 3. Coverage is variable by nation over the different seasons.
However, coverage of the principal nation group, the Commonwealth of Independent States (CIS)
that carried out 66.7% of all commercial tows in the fishery, is very similar to the coverage of all
tows for each season. The numbers of tows by year for the commercial fleet including those vessels
that had observers present and the corresponding percentage coverage for each fishing season and

for all seasons combined are given in Table 4. The table also gives the numbers of vessels involved
in the fishery and their coverage percentage.

Overall, the observer coverage represents the commercial effort well in the SQU 6T fishery, for the
characteristics investigated here (temporal, spatial, vessel and nationality).

3.2 Coverage required to estimate the total captures with a specified coefficlent of
vanaﬂon

Fitting the Bayestan model, using the program WinBUGS, to estimate the components of variance
involved three steps and used the data for the seasons 1998 to 2002. These data exclude all tows
where a SLED was present with the cover open because the model takes no account of any effect of
an open SLED on the mean capture rate. Firstly, attempts were made to fit the full model with over-
dispersion and vessel random effects components. This proved unsuccessful because there was little
evidence of convergence of the Markov Chain Monte Carlo (MCMC) sequence that BUGS
produced. Additional attempts were made to fit the model using a purpose built Gibbs’ sampling
program (see, for example, Gamerman (1997, chapter 5) in the statistical package R (thaka &
Gentleman 1996). Convergence was never attained despite trying numerous variations on lengths of
the chains, numbers of iterations for the. burnin of the chain, prior distributions on the parameters
and distributions on the over-dispersion random effects and vessel random effects.

The frequencies of the observed numbers of captures are compared with the expected frequencies
(Table 5) if the distribution of the number of captures is Poisson with mean equal to the strike rate
for the year (given in Table 1). It is clear that for the seasons 1998-2001 (and for most of the earlier
seasons) the Poisson model has an extremely good fit, and this explains why fitting a mode! with
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both over-dispersion effects and random effects was not successful. Only 2002, when there was one
tow where four sea lions were captured, and 1997 show small signs of over-dispersion. There is
simply no evidence in the data of over-dispersion. This may be because the sample sizes for each
year are not large enough. While over-dispersion may be occurring because of different capture
rates for different tows, the capture rates are so small that there are insufficient data to detect it.

Therefore it did not appear to be possible to fit a mode] that had both over-dispersion effects and
random effects.

Consequently we ﬁtted the Poisson model with vessel random effects but no over-dispersion
effects. The model has six parameters in all, five mean capture rates (one for each of the years
included in the data) and the precision parameter of the vessel random effects. The prior on the
vessel random effects precision parameter, 0, , is the prior given by the density in Equation (11). A
value for the hyperparameter v is required and the assignment of a value is difficult. This
parameter determines the degree of shrinkage of the random effects towards 1; the smaller v, the
less the shrinkage. There appears to be insufficient additional information in the data to help assign
a value to v because a run under WinBUGS with a non-informative prior assigned to v did not
converge. The mean, median and the 95% credible interval for the posterior distribution of the
variance of the vessel random effects are given in Table 6. It is clear that the variance increases as
v decreases; however the rate of increase reduces as v gets smaller. It was decided to use v=0.05
because this represents a low level of informativeness in the prior on the variance.

A run of WinBUGS using 3 chains, each with different starting values and each with a burn-in of
5000 was carried out. After burn-in, each chain was run for 10 000 iterations retaining.every 5®

iteration. Convergence was checked by comparing the characteristics of the three chains in Figure 8
and by the Rhat statistic in Table 7. The near coincidence of the medians and intervals of the 3
chains and the values of Rhat close to 1 suggest that the chains have converged. The time series

plots of the recorded values of the chains are given in Figure 9 and these appear stationary, which
also suggests that convergence has been reached.

As a check on the fit of the model, we plot the residuals against the predicted values of the strike
rates. The predicted strike rates include predicted values of the vessel effects. The results are plotted
in Figure 10. Panel (a) plots the raw residuals, which are in bands because the number of captures
takes only values 0, 1, 2, and in one tow 4. Because interpretation is difficult we have plotted the
randomised residuals, using the method of Dunn & Smyth (1996), in panel (b). This method
spreads out the residuals over a continuum and makes interpretation of discrete model fits easier.
Each vertical band in panel (b) represents the residuals for the tows from a single vessel. There does
not appear to be any problem with the fit of the mode] based on the residual plots.

Figure 11 plots the predicted vessel random effects against year. Our model assumes a common
variance for all years and there is some evidence that the variance of the random effects differ by
year. It would be possible to enhance the model to allow for different variances for different years,
possibly by using a hierarchical approach where the variance for each year is chosen from a hyper-
distribution. Little is likely to be gained from fitting the more complex model because there are so

few captures per year, and also because we are interested in an overall vessel random effects
variance to be applied to future seasons.

To obtain the plots of coverage required as a function of the predicted total number of captures T,
we use Equation (10) and obtain estimates of the parameters using the model. We are estimating the
variance of the over-dispersion effects, ¢, to be 0 and therefore we require only the estimate of the
variance of the vessel effects, v, and the sum of the proportion of ordered pairs of tows by the
observed and unobserved vessels to estimate A and B. The posterior median is used as the estimate
of y for two reasons. Firstly, the posterior distribution of the variance of the vessel random effects

is very skewed to the right and the posterior mean might give an inflated estimate. Secondly, the
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solution of the cubic equation is a non-linear function of the estimate of y . When the poétcrior
median is used as the estimate of y, the estimated coverage proportions will be median values.

The posterior median of y is § = 0.249 (Table.7). This estimate of the variance of the vessel
random effects corresponds to a very small correlation between pairs of tows by the same vessel. If
the mean strike rate is 0.05, then the correlation is 0.0124, and if the strike rate is 0.10 the

correlation is 0.0244. Nevertheless, the within-vessel correlation makes a significant contribution to
the c.v. of the predicted total captures.

In the last five seasons the sum of the proportions of the ordered pairs of tows for each season has
been reasonably constant, apart from the 2001 season when almost all tows were observed (Table
2). The large value for this season arises from the fact that only five vessels were unobserved and
these made only nine tows in total. As an estimate of this proportion for use in the coverage

required calculation, we use the average of the seasons 1998-2000 and 2002. This is 23.5%. The
estimate of B is then A

B=0.235x0.249 =0.0585

The quantity A includes the strike rate, p, which is unknown. To show that it has little effect on the
value of A, we calculate two éstimates of A, one with u=0.05 and one with p=0.10. Because
$=0,

A=1+ju

and the estimates of A are:
m A

005 1013
0.10  1.025

The results of solving the cubic equation, Equation (10), for different values of T using the two
values for A are plotted in Figure 12: the two curves are almost the same. Reading from Figure 12,
. for example, we see that to attain an estimated c.v. of 30% for a predicted total number of captures

of 75, we require the coverage to be just over 20%. The curves depend on the estimate of the vessel
random effects variance, Y . The coverage proportions required for c.v.s of 10%, 20%, and 30% for
predicted value of 7 as multiples of 10 in the range 50 to 100, under the two scenarios of the mean
capture rate i equal to 0.05 and 0.10 are given in Table 8.

As a sensitivity check on the effect of the estimate W on the coverage required, we carried out a
BUGS run with the value of the median of the prior on the vessel random effects of 0.5 (rather than
0.05). For this value there is more shrinkage of the predicted vessel effects towards 1 and it
produced an estimate of § = 0,192 (see Table 6). Figure 13 is a plot of the coverage required
curves similar to those in Figure 8 using this estimate. With the reduction in the within-vessel
correlation there is a reduction in the coverage required compared with that displayed in Figure 8.

Reading from Figure 13, for a predicted total capture of 75 animals the coverage required to attain a
¢.v. of 30% is now about 18%.

Table 1 includes estimates of the total captures for each year together with estimates of the c.v. The
C.v. estimates were obtained from Equation (8) using the estimate § =0.249,
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4. DISCUSSION

In our approach to estimating coverage required to attain a specified coefficient of variation, we
have made a number of changes from what has been done in the past. We have adopted a predictive
approach to calculating the variance of the estimator of the total captures through the predictive
mean square error. This approach does not assume that the observed tows form a simple random
sample from all the commercial tows, and yet still incorporates both the uncertainty about the
estimate of the strike rate and the uncertainty about the captures for the unobserved tows.

Past work to obtain coverage proportion required has used bootstrap estimates of the variance of the
total number of captures from any one year. The main uncertainties from one year to the next are N,
the total number tows in the fishery, and ., the strike rate for that year. We have shown that the
sampling fraction required can be expressed in terms of the estimate of the mean number of total

captures in the fishery and therefore almost all the uncertainty about future is subsumed in this
quantity.

A vessel grouping of tows comprises the tows made by a single vessel in a single year. There are 54
vessel groups in the 1998-2002 data, with 11 vessels observed every year except 1998. The data
involve 29 actual vessels where 12 vessels were observed for only one of the years, 12 vessels were
observed for 2 of the years, 2 vessels were observed in 3 of the years and 3 vessels were observed
in 4 of the 5 years. It may have been possible to fit a inore complex hierarchical model that allowed
for differences in the random effects distributions, between the vessels grouped by nation, for
example. However, the aim of the analysis was to obtain an estimate of the “typical” random effects

variance for use in estimating coverage required, and this combined with the difficulties of fitting a
more complex model suggested that the extra complexity was not warranted.

The form of Equation (Ad4), in Appendix A, for the coefficient of variation highlights the

inefficiency of the estimator T when there are correlations present. Rearranging Equation (9) the
square c.v. of T can be written as

c2=(1_f):—HA+(1_-f)’3 | | )

where

m ] M 2
B = _1_ Z]==Inj _1 + 1 (z_]r:m+lnf
n n

N—nk Nen ¥

B is the contribution to the c.v.2 from the within vessel correlation and unlike the first part of
Equation (12}, B does not go to 0 as the observer sample size, n, gets large. A consequence of this is
that, o matter how large the observer sample is, a sampling proportion of at least

1--&

VB

is required to achieve a specified c.v., c. Using our estimates, this bound is less than 0 for ¢ = 30%
but for ¢ = 20% and 10% the bounds are 17.3% and 58.7% respectively. The existence of these
bounds is suggested by the shape of the curves in Figure 8.

Finally it is important to highlight the paucity of data tbat are available for estimating important
quantities in this fishery. Over the 5 years from 1998 to 2002, 1667 tows have been observed and
yet it is very difficult to estimate the vessel random effects variance and we are unable to estimate
an over-dispersion variance. One hundred captures were observed over the 5 years and this means
that there are typically about 20 captures from which to estimate the year's mean capture rate. If no
captures had been made, then very little could be said about capture rate overall, except perhaps
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that it was below a certain value with 95% confidence, and cbviously nothing could be said about
any differences between capture rates for the different years. In count data the sample size is
relevant only for determining the standard errors of estimates through the expected number of
captures in the sample. This is the product of the sample size and the capture rate. Therefore,
effectively, the estimated standard errors of the yearly capture rates depend on the total number of
captures for the season through the sampling fraction. By this argument the effective sample size
for capture data is the number of captures not the number of tows. It is a nice irony that the more
effective any mitigation practice is for the reduction of sea lion captures the less certain we are
about the degree of their effectiveness.
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Table 1: Numbers of tows in the observed and commercial data sets used in the estimation of coverage
analysis together with numbers of captures of New Zealand sea lions and strike for the observed tows.
Commercial and ohserved tows that had open SLEDs (which occurred only in the 2001 and 2002
seasons) are excluded from the data used for this purpose. Also included in the table are the predicted
total New Zealand sea lion captures for the commercial fishery (excluding tows with open SLEDs) as

well as the estimated c.v. obtained using the random vessel effects model. These estimates are not
oﬁici_al estimates.

Observed : Commercial  Predicted

Number Strike  Number Coverage total
Year of tows Captures rate (%) of tows (%) captures c.v. (%)
1992 218 8 37 2154 10.1 79 40.1
1993 197 5 2.5 707 279 18 433
1994 433 4 0.9 4677 93 43 52.6
1995 28 - 8 2.8 4005 7.1 112 43.0
1996 555 13 23 4 460 124 104 315
1997 731 29 4.0 3710 19.7 147 219
1998 337 15 45 1463 230 . 65 28.8
1999 156 5 32 402 38.8 13 8.6
2000 - 438 25 5.7 1207 36.3 ) 69 220
2001 298 33 1.1 - 307 971 M4 32

2002 438 22 5.0 1523 28.8 76 249,

Table 2: Numbers of observed and unobserved tows and the proportions of all pairs of tows that occur
within the same vessel for each year. Also included are the numbers of vessels in the SQU 6T fishery

that were observed and the numbers that were unobserved. The data used for this table excludes all
tows that had open SLEDs.

Proportion of pairs of tows

Number of tows Number of vessels that are within vessel (%)

" Year Observed Unobserved Observed Unobserved Observed Unobserved Sum
1992 218 1936 7 44 20.3 .34 23.7
1993 197 510 9 34 26.0 67 - 328
1994 433 4244 7 41 21.1 29 24.0
1995 286 3719 7 48 29.1 25 316
1996 555 3905 9 52 139 26 16.6
1997 - 731 2979 14 40 9.4 30 12.5
1998 337 1126 10 31 15.1 5.8 209
1999 156 246 11 32 20.8 6.6 274
2000 438 769 11 21 16.6 58. 224
2001 - 298 s 11 5 19.9 247 - 445
2002 438 1085- 11 23 16.5 6.7 231
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Table 3: Observer coverage by nationality of vessel. The number of commercial tows (Com.) and
percentage covered {(Cov.) by the observer program is shown for each nationality and for each of the
seasons. The total coverage for the combined seasons is also given. CIS denotes the Commonwealth of
Independent States, formerly republics within the USSR.

China CIS Japan Korea NZ Poland
Com. Cov(%) Com. Cov(%) Com. Cov(%) Com. Cov(%) Com. Cov(%) Com. Cov(%)

19952 1772 3.1 145 36.6 208 19 29 0

1993 617 305 34 0 52 113 4 0
1994 3222 . 102 403 14.1 770 6.0 19 0 263 0
1995 106 981 2579 69 299 1.0 676 03 80 0 265 0
1996 3 466 12.3 65 0 579 0 3 0 347 36.6
1997 224 272 1772 245 37 0 1209 144 71 70 377 151
1998 1137 234 244 2719 14 214 68 0
1999 2 0 297 418 3 .0 83 ~ 349 17 0
2000 622 603 2 0 450 140 133 0
2001 345 98.0 4 929 153 993 6 100 . 67 100
2002 ' 851 431 690 71.0% - 251 343 241 0 236 258

Total 332 497 16680 151 1091 160 4675 135 467 30 1773 17.6

Table 4: Numbers and observer coverage of vessels, trips, and tows for 1992 to 2002 in the SQU 6T
fishery. The values in brackets are for the data where all observed tows using an open SLED are
excluded. In 2001 and 2002, 278 and 125 observed tows, respectively, had open SLEDs. In 2000, the
SLED was used on some tows but all had the cover tied down.

Year Commercial Observed Observer coverage

vessels tows  vessels trips tows vessels tows
1992 49 2154 7 7 218 . 14.3 10.2
1993 39 707 9 11 197 23.1 279
1994 43 4677 7 8 433 16.3 23
1995 50 4005 7 7 286 14.0 7.1
1996 52 4460 9 9 555 173 124
1997 42 3710 14 - 14 731 333 19.7
1998 6 1463 10 11 337 27.8 23.0
1999 35 402 11 11 156 314 38.8
2000 26 1207 11 11 © 0 438 423 36.3
2001 23 585 (I11)23  (15)29 (298) 576 1000 (97.1)985
2002 28 1648 (1112 (1315 (438) 563 429 (28.8)34.2

Total 129 25018  (61)63 (117) 133 (4 087) 4 490 48.8 (16.6) 18.0
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Table 5: Frequencies of tows that caught 0, 1, 2, or 3 or more New Zealand sea lions by year. The
columns headed Observed are the actual frequencies ohserved and the columns headed Expected are

. the expected frequencies by year assuming that the number of captures followed a Poisson distribution

mode] with mean given by the observed strike rate for that year, obtained from Table 1.

Observed Expected

Captures per tow Captures per tow

Year 0 I 2 3+ 0 1 2 3+
1992 - 211 6 1 210.1 77 0.14 0.00
1993 192 5 192.1 49 0.06 0.00
1994 430 2 - 1 429.0 4.0 0.02 0.00
1995 278 8 278.1 7.8 0.11 0.00
1996 543 11 1 542.2 12.7 0.15 0.00
1997 706 21 4 702.6 219 0.55 001
1998 322 15 3223 14.3 032 0.00.
1999 151 5 151.1 43 0.08 0.00
2000 414 23 1 413.7 236 . 067 0.01
2001 - 268 27 3 266.8 295 164 0.06
2002 420 16 1 1 416.5 209 0.53 0.01

Table 6: Mean, médian and 95% credibility interval for the posterior distribution of the variance of the
vessel random effects for different values of the hyperparameter v in the prior on the random effects

precision parameter ©,.
v mean  2.5% 50% 97.5%

001 0315 0026 0260 0.888
005 0302 0026 0249 0.891
010 0275 0023 0219 0798
050 0246 0012 0192 0787
100 0194 0010 0163  0.603
200 0.186 0008 0.151 0581

Table 7: The mean, standard deviation and percentiles of the posterior distribution of the parameters
and the expected deviance obtained from the Markov Chain Monte Carlo sample using the package
BUGS. Rhat is the potential scale reduction factor which measures convergence of the chain (at
convergence, Rhat = 1) and n.eff is 2 measure of effective sample size. The mu parameters are the
strike rates for the seasons and var.re is the variance of all the vesse] random effects,

parameter mean sd 25% 25% S50% 75% 97.5% Rhat neff
mul1998 0046 0016 0.022 0035 0043 - 0.054 0084 1.000 6000
mu.1999  0.032 0.017 0009 0.020 0020 0041 0073 1.000 6000
mu2000 0.071 0024 0039 0055 0067 0081 0129 1.001 4000
mn2001 0115 0033 0065 0093 0111 0132 0191 1001 2800
mn2002 0052 0015 0.028 0041 0050 0060 0087 1.001 6000
var.se 0302 - 0231 0026 0132 0249 0413 0.891 1.008 730

deviance 7517 9.156 7337 7455 7518 7584 7688 1002 1100
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Table 8: Percentage coverage required to attain c.v.s of 10%, 20%, and 30% when predicted values of
the total captures are 50, 60, 70, 80, 90, and 100, Aithough the differences are only small, sets of values
of the coverage reqnired are given where the mean strike rate is 5% and 10%.

Strike Coef. of : Predicted total captures
rate  variation (%) 50 60 70 20 90 100
0.05 10 75.6 73.8 724 71.2 70.2 69.3
20 46.5 439 41.8 40.0 38.6 313
30 - 259 23.3 212 195 18.1 16.9
0.10 10 75.8 739 725 71.3 70.3 69.4
20 46.7 44.1 419 40.2 38.7 375
30 26.1 23.5 214 19.7 183 171
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Figure 1: Plots of start positions of observed tows (+) and commercial tows (s) by year. The bottom

right panel combines all years. The Auckland Islands, the 200 m depth contour, and the boundary of
truncated to 0.1°. Random positional components have been added to each coordinate to allow for this

the SQU 6T area are included. In the original commercial data the coordinates of the tows were
and to prevent a large number of points coinciding in the piot.
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Figure 2: Deﬁsity plots of observer coverage against latitude, longitude, and day of year for 1992 and

1993 seasons.
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Figure 3: Density plots of observer coverage against latitude, Iongitude, and day of year for 1994 and
1995 seasons. ,
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Figure §: Diagnostic plots for the convergence of the three chains used to estimate the vessel random
effects model. mu.yr{l}, ..., nu.yr{5] denote the strike rates for the seasons 1998-2002, var.re is the
random effect variance and deviance is the deviance at each sample of the parameter values parameter

values If convergence of the chains has occurred, the three different chains will give similar medians
and intervals. There is little evidence that convergence of the chains has not happened.
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Figure 10: Residual plots of the residuals against the fitted strike rate values. () gives the raw residuals
and (b) the randomised residuals. Randomisation removes the pattern that is de to the discreteness of
the data. Each vertical band contains the tows of a single vessel.

35



o
< :
o
3 s:! - a -] a
2 o °
s | s
3ol s . e 80
@ 8 o o
> 8 e o
o 8 3
« _ o o
(=} < o p 8
-] -]
o o
© 8
[ 4 | 1 I 1
1898 1999 2000 2001 2002
vear

Figure 11: Plot of median predicted vessel random effecis against the year of fishing.

8
8 \
% « \\ cv= 109
a
3 2 :
.§ 4
g .
28
g 4
[
2z ¢
O J
.. [ATES 20%
g \
4 ) cv=30 %
4 —— strike rate = 0.05
== strike rate = 0.1
o
] T
25 50 75 100 125 150

Estimated total captures

Figure 12: Coverage required to estimate the total number of captures with a coefficient of variation of
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Note that the lines for the alternative strike rates of 0.05 and 0.10 almost coincide. These curves use the
estimate of 0.249 for the variance of the vessel random effects.
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APPENDIX A: CHARACTERISTICS OF THE PREDICTOR OF THE TOTAL NUMBER
OF CAPTURES '

Using the model described in Section 5.2 we obtain expressions for the mean predictive error and
the mean square predictive error using the characteristics of the marginal distribution of the vector
of tow by tow captures y. y comprises the captures for all N tows of the season ordered by observed
tows and then the unobserved tows. We will use the notation yj for number of captures for the £”
tow of the j® vessel.
The model implies that mean capture rate for each tow is the sarue, p. Thus

E(T)=Nu

E(7) =E(-I—v—r) =N =Ny

n n :

and so the mean predictive error is

E(f-T)=0

To obtain the mean square predictive error we require the covariance structure of the marginal
distribution of all the tows. This is relatively simple under the model assumptions. The model
implies that there is no covariance between tows by different vessels and that the covariance
between pairs of tows by the same vessel is the same for each pair and does not depend on the
vessel. We denote this covariance by k. The model also assumes the over-dispersion component of
variance, ¢, is the same for each vessel and so the variance of the number of captures, which we

denote by o?, is the same for each tow. Expressions for 6® and x in terms of p, &, and y are
derived at the end of this appendix. '

The total captures for vessel j, ; is given by
n
;= Z jil Y

where j is ordered so that the first m vessels comprise the observed vessels and the remaining N —m
vessels are unobserved.

E(t))=mp
Var(t,)=n,0* +{n," ~n,)x
and the covariance between the total captures by different vessels is 0.

The mean square predictive error of T is

MSE(f) =E(f -T) =E(g—t-—T}2 =E[[%—1Jt——(T _ )z

=E[&-1](r-nu)—(r-r—(N —n)u)}z
[%—1)2Var(t)+Var(T-—t)
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=(% } ™ Var( ‘1)*21 e V()
R PR U RIS N R N
([-11;-1 n+{N - n)]02+[[——1} et - ;)*Zf-mﬂ("fz‘"l)}

ff 2L NP +(1- 1) [ =Y (n-ny )+ (ﬁ';)?ZLﬂ(nf-"f))NzK (A1)

To obtain expressions for o and x in terms of p, ¢ and y we need to confirm that the expected
value of y, is p and calculate expressions for the variance of y; and the covariance between the

captures for two tows by the same vessel, y; and yy.
E(y " Infk ) =Ny =Rutgy;
and
E(y) =E(B(ya[ne))=r
Now '
E(y 'y hf") =My My = e, + W v
Thus
E(y,?) =B{B(yp s ) =B (e, +1lu, )
=u+ut (Q+1)(v+1)

and therefore
o’ =Var(yz )=p+((1+0)(1+y)-1)p? (A2)
To obtain the covariance of yj and y (for different tows by the same vessel} we note that '

E()’jk yjk'!nik’nﬂt') =M =W g,
from which it follows that
E(yjkyjk') = E(E()’jijk' ‘lek’fljk')) =W (L+y)

Thus
k=Cov(yy, Y ) =y (43)
Substituting expressions (A2) and (A3) into equation (A1) gives
o 1-
MSE(T) =7L(1+((1+¢)(1+w)—1)p)Np
l «m
+{1-fY [n_zzj_l (njz _ ) (N 7 Zj:mﬂ( j)}p( Ny (A4)
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