New Zealand Aquatic Environment and Biodiversity Report No. 40

2009
ISSN 1176-9440

Model-based estimation of New Zealand fur seal (Arctocephalus forsteri) incidental captures and strike rates for trawl fishing in New Zealand waters for the years 1994-95 to 2005-06
M. H. Smith
S. J. Baird

Model-based estimation of New Zealand fur seal (Arctocephalus forsteri) incidental captures and strike rates for trawl fishing in New Zealand waters for the years 1994-95 to 2005-06

M. H. Smith
S. J. Baird

NIWA
Private Bag 14901
Wellington 6241

Published by Ministry of Fisheries
 Wellington
 2009

ISSN 1176-9440

©
 Ministry of Fisheries
 2009

Smith, M.H.; Baird, S.J. (2009).
Model-based estimation of New Zealand fur seal (Arctocephalus forsteri) incidental captures and strike rates for trawl fishing in New Zealand waters for the years 1994-95 to 2005-06.

New Zealand Aquatic Environment and Biodiversity Report No. 40. 90 p.

This series continues the
Marine Biodiversity Biosecurity Report series
which ceased with No. 7 in February 2005.

EXECUTIVE SUMMARY

Smith, M.H.; Baird, S.J. (2009). Model-based estimation of New Zealand fur seal (Arctocephalus forsteri) incidental captures and strike rates for trawl fishing in New Zealand waters for the years 1994-95 to 2005-06.

New Zealand Aquatic Environment and Biodiversity Report No. 40. 90 p.

New Zealand fur seals (Arctocephalus forsteri) are distributed around the New Zealand coastline, on offshore islands, and on subantarctic islands. Inside the New Zealand Exclusive Economic Zone (EEZ), most fur seal captures were observed during trawl operations south of $40^{\circ} \mathrm{S}$. New Zealand fur seals have also been reported caught on surface longlines that target southern bluefin tuna and on bottom longlines in southern waters. This work exclusively reports on observed fur seal captures for fishing using trawl nets and uses model-based prediction methods to predict total fur seal captures and strike rates from trawl fishing south of $40^{\circ} \mathrm{S}$ for the 12 fishing years 1994-95 to 2005-06.

For modelling purposes the trawl fishing region south of $40^{\circ} \mathrm{S}$ was divided into six areas based on the start positions of the tows. These are: east coast Wairarapa/Cook Strait (ECCO), Chatham Rise (CHAT), Sub-Antarctic (SANT), Stewart-Snares shelf/Puysegur (STSP), west coast South Island (WCSI), and the southern blue whiting fishery in FMA 6 (SBW6). All target species are included in each area except for SANT (where all tows except those targeting southern blue whiting are included) and SBW6. Not all tows south of $40^{\circ} \mathrm{S}$ are included in one of the six areas; however, these were in waters where no fur seal captures were observed in the 12 years (Macquarie Ridge waters inside the EEZ and the Golden Bay/Tasman Bay/Taranaki Bight region).

Models are fitted to each area using the observer data, which includes fur seal captures. After fitting, the model for each area is applied to the unobserved tows in the area to obtain the predictive distribution of the fur seal captures for unobserved tows. The observed captures are then added to get the predictive distribution of the total fur seal captures. Predicted strike rate distributions are obtained by dividing total captures by total tows. The model-based method adjusts the capture rates for differences between observed and unobserved tows in suitable covariates that are related to capture rates and, thus, helps correct for any lack of the representativeness of observer coverage.

Predicted annual fur seal captures in the ECCO area varied between 30 and 292 over the fishing years (ignoring the very large predicted number of captures for the 1996-97 fishing year when only 9 tows were observed). The predicted total fur seal captures in the ECCO area over the 12 fishing years is over 2100, but this includes inflated predicted captures for 1996-97 (and for 1994-95) and a more realistic total would be 1600 . Predicted fur seal strike rates vary between 0.3% and 5.9% (in 2005-06) and the strike rate is 1.8% over all years. Except for the 1994-95 and 1996-97 years, when there were few observed tows and no observed captures, the c.v.s for the total captures and strike rates were between 40% and 98%. In the observer data, 15% of fur seals captured in the ECCO area were released alive.

Predicted fur seal captures in the CHAT area over the 12 fishing years varied between 721 in 1996-97 and 208 in 2005-06 with 4700 predicted captures in total. Predicted strike rates varied between 0.7% and 1.6% and the predicted strike rate is 1.4% over all years. All c.v.s were 55% or less. In the observer data, 28% of the fur seals captured in the CHAT area were released alive.

Predicted total fur seal captures in the SANT area ranged between 21 in 1999-2000 and 65 in 200102. The total predicted fur seal captures numbered 490 for all years. Predicted strike rates showed less variation, at between 0.4% and 1.0%, with a strike rate of 0.7% over the 12 years. However, c.v.s are large, between 52% and 124%, as a consequence of the relatively few captures observed in each year. In the observer data, 19% of fur seals captured in the SANT area were released alive.

Predicted fur seal captures in the STSP area varied from 316 in 2002-03 to over 1100 in both 1997-98 and 1998-99. The total number of predicted captures for the 12 years is 7080 . Predicted strike rates varied between 1.7% (in 2002-03) and 5.4% (in 1998-99) and show an apparent downward trend with the four lowest strike rates occurring in the last four years. The c.v.s are moderate and vary between 33% and 47%. In the observer data, 19% of fur seals captured in the STSP area were released alive.

In the WCSI area, the predicted numbers of fur seal captures varied between 1840 in 1995-96 and 573 in 2005-06 and totalled 18908 over all 12 years. Predicted strike rates varied between 10.2% in 199596 and 4.2% in 1994-95 and 2005-06 and have an apparent downward trend. The c.v.s are moderate to small with a range of $32-44 \%$ and a c.v. of 20% for the total captures. In the observer data, 6% of fur seals captured in the WCSI area were released alive.

Predicted total fur seal captures in the SBW6 fishery area averaged more than 100 per year and varied between 49 in 2003-04 and 200 in 1998-99. Total predicted captures for the 12 years numbered 1237. Predicted strike rates varied considerably between 28% in $1994-95$ and 6.7% in $2003-04$, and there is some evidence of a downward trend in the predicted strike rates. The c.v.s vary between 17% and 54% with the lower c.v.s (and higher strike rates) corresponding to years with a higher proportion of tows in the Bounty Plateau subarea where the capture rate is higher than in the rest of SBW6. In the observer data, 2% of fur seals captured in the SBW6 fishery area were released alive.

The mean annual total predicted fur seal captures in New Zealand waters south of $40^{\circ} \mathrm{S}$ varied between 1375 in 2003-04 and 3710 in 1996-97. Most c.v.s are in the range 20-24\%, but the c.v.s for 1994-95 and 1996-97 are inflated because of the very large c.v.s for the predicted captures in the ECCO area in those years. The mean total predicted captures for those years will also be inflated because of the highly skewed predictive distributions in the ECCO area. The predicted total number of captures over the 12 years is 28450 with a c.v. of 15%. The predicted total captures series shows a trend downwards over the years, but the total commercial tows have also trended down. However, a small downward trend in the predicted strike rates is still apparent. In the observer data, an estimated 14% of fur seals captured inside the EEZ south of $40^{\circ} \mathrm{S}$ were released alive, using an average weighted over the areas by the predicted total captures.

There is an issue which may lead to inflated predicted totals for fur seal captures. In the 12 years, only 13 tows (all in the CHAT area) of the 80706 observed tows targeted flatfish species. No fur seals were captured on these tows and very little is known about the capture rate of fur seals during flatfish tows. For modelling and prediction purposes, tows targeting flatfish were included in the shallow group target species, a group that includes barracouta, tarakihi, and red cod. In the four coastal areas, ECCO, CHAT, STSP, and WCSI between 16% and 38% of unobserved tows targeted flatfish. If, as seems likely because of the size of the nets used and the very shallow depths of the tows, the capture rates for flatfish are lower than those for other shallow species, then the predicted total captures will have been correspondingly inflated for those areas. A sensitivity analysis was used to determine what effect setting the capture rate for unobserved tows targeting flatfish to zero would have on the total predicted captures in the four coastal areas. This resulted in lower bounds for total captures, and the reductions in the total predicted captures were 0.3% for the ECCO area, 20% for the CHAT area, 44% in the STSP area, and 32% in the WCSI area.

Inside the EEZ and north of $40^{\circ} \mathrm{S}, 11$ fur seals were captured on the 6862 observed tows in the 12 years. All were caught off the west coast of the North Island in either 2004-05 or 2005-06.

1. INTRODUCTION

New Zealand fur seals (Arctocephalus forsteri) are distributed around the New Zealand coastline, on offshore islands, and on subantarctic islands. The species was heavily exploited during the 18 th and 19th centuries and protection was given to it in 1894, but restricted licences were still issued for seal harvest in certain locations. In 1978, New Zealand fur seals were given total protection under the New Zealand Marine Mammals Protection Act (Mattlin 1987).

Statutory obligations require that the Ministry of Fisheries (MFish) monitors the bycatch of associated or dependent species during commercial fishing operations in New Zealand waters. The MFish Observer Programme collects data on the incidental catch of marine mammals as part of its monitoring programme. Observers record these captures as landed dead or released alive. Data on the interaction between trawl fishing operations and fur seals have been collected since the beginning of the observer programme in 1986, with data in the late 1980s mainly being collected from the west coast South Island hoki (Macruronus novaezelandiae) fishery where large numbers of fur seals were observed caught in 1989 (Mattlin 1994). This incidental capture data collection is secondary to the collection of fisheries data and thus data available for the estimation of marine mammal captures are generally based on programmes that are not specifically designed to collect incidental capture data.

Fur seals have been observed caught during bottom and midwater trawl operations (particularly for hoki, squid (Nototodarus spp.), and southern blue whiting (Micromesistius australis) around the coastline of the South Island and the offshore islands in the southern waters of the 200 n . mile Exclusive Economic Zone (EEZ) (Baird \& Smith 2007). Although most observed captures occur in trawl fishing, New Zealand fur seals have also been reported caught on surface longlines that target southern bluefin tuna (Thunnus maccoyii), and on bottom longlines (for example, bluenose (Hyperoglyphe antarctica)) in waters south of $40^{\circ} \mathrm{S}$ (Baird 2008). Animals caught on tuna longlines are more likely to be landed and released alive, whereas most fur seals caught in trawl nets are dead on landing. This work reports on fur seal captures for fishing using trawl nets exclusively.

This report is concerned with Objective 1 of the project PRO2006/05: to estimate and report the total numbers, releases and deaths of marine mammals where possible by species, fishery and fishing method, caught in commercial fisheries for the years 1990 to the end of the fishing year 2005/06. It was agreed with MFish that the work would cover model-based estimation of fur seal bycatch for trawl fishing south of latitude $40^{\circ} \mathrm{S}$ in the 12 fishing years (1 October-30 September), 1994-05 to 2005-06. This is the region where almost all fur seal captures in trawl nets have been observed in those fishing years.

2. METHODS

This section describes the sources and treatment of data and the model-based prediction method used to predict the strike rates and total numbers of fur seal captures during trawl fishing in New Zealand waters.

2.1 Data sources and treatment

Data sources included Trawl Catch Effort Processing Returns (TCEPR), Catch Effort Landing Returns (CELR), and MFish obs and obs_lf databases. Extensive data grooming and preparation was carried out on both the observer and the commercial data sets (see Figures A1 and A2 for the effects of the grooming on the observed and commercial tow start positions). High resolution position coordinates were included in the observer records, in the TCEPR records, and in the relatively few CELR records
that included positional data. This was necessary to calculate some of the covariates used in the modelling and proved useful for assigning tows to area groupings and for grooming positional data.

Firstly, the observer data set was obtained from the obs database including all observed tows for the fishing years 1994-95 to 2005-06, both north and south of $40^{\circ} \mathrm{S}$ and both inside and outside the EEZ. Tows that were continuations of observed trips commenced in 2005-06 and which continued into the 2006-07 fishing year were also included for completeness. It was found that one tow appeared twice and, after the duplicate was deleted, there were 86224 tows in the complete observer dataset. The dataset was augmented with fur seal capture data from obs_lf. There were 749 tows that were in the 2006-07 fishing year (21 of which were outside the EEZ) and 4769 tows outside the EEZ, leaving a dataset of 80706 observed tows inside the EEZ for the 12 fishing years of the study (Table A1).

Grooming of the observer data was important because the observer data were used to fit the fur seal capture models that were used to predict fur seal captures for the unobserved tows. Grooming of position, date, time, target species, and fishing gear variables was carried out by first using adjacencies of tows within trips, start and finish times and positions, and cross-checking with commercial data, to identify possible anomalies. Necessary changes were then made manually. The effect of the grooming on the start positions of many observed tows is obvious in the plots in Figure A1.

Secondly, we describe the preparation and grooming of the commercial trawl data (data recorded on TCEPR or CELR forms) supplied by MFish in two datasets. The first dataset of 654577 TCEPR records (one tow for each record) and 4997 CELR records (each record comprising one or more tows in a single day targeting the same species, using the same fishing gear and method, and fishing in the same statistical area) comprised all records with start latitudes that were south of $40^{\circ} \mathrm{S}$. The second dataset consisted of a further 203426 records, all recorded on CELR forms with missing start latitude coordinates, but with effort recorded as being in statistical areas 015-017, 036-039, 703, and all statistical areas south thereof. Therefore, the initial dataset of all commercial data consisted of 654577 tows recorded on TCEPR forms and 208423 records (each record usually included multiple tows) recorded on CELR forms.

As for the observer data, possible anomalies in the position, statistical area, date and time, and gear variables were identified using values for adjacent tows by the same vessel and start position plots. The effect of the grooming on the start positions of tows is shown in the plots in Figure A2. Common values or sequences of fishing event database codes were also used in the commercial data to identify wrong times, days, months, and years. Target species were groomed in a similar manner, using adjacent tows by the same vessel for identifying possible anomalies. Sometimes, likely "typo" errors were identified and in other cases (especially where the target was missing) some targets were assigned to broad target groups on the basis of other information such as targets of tows by the same vessel, net depth, and fishing targets by statistical area for the vessel.

In the CELR data, there were large numbers of missing or impossible (the largest was 4500) effort numbers (numbers of tows per record). For these records, new values for effort number were assigned using the median effort number by the vessel grouped by statistical area and by target, and also within duration groups when practicable. If groupings were empty, broader groupings were used to calculate the median. Duration of effort was treated in a similar way with groupings of CELR tows that included effort number (instead of duration) if available. Following grooming, the CELR records were converted to individual tow-by-tow data by repeating each record by the reported number of tows (effort number) for that record. The duration of each tow was set to the total duration for the record divided by the number of tows for the record.

A total of 1116330 commercial tows were used in the predictive method for estimating bycatch over the 12 fishing years (the total for all areas in Table A1), 45% of which were recorded on CELRs.

No automatic changes using generic scripts were made in the grooming, as in our experience these often create further errors by changing the wrong variable. (This was especially evident in some data from the 1990s where some automatic "corrections", based on a wrong assumption about which date or time variable required correcting, led to further changes to what were correct dates and times in order to preserve the order of tows.)

2.2 Model-based predictive method for estimating fur seal bycatch

In the predictive method for estimating fur seal bycatch the trawl fishing region inside the EEZ and south of $40^{\circ} \mathrm{S}$ was partitioned into a number of areas. The definitions of the areas are based on experience gained with earlier model-based estimation of fur seal captures applied to separate fishery areas (Baird \& Smith 2007). The method was applied separately to six of these areas (described in Section 2.3) where fur seal captures were observed in sufficient numbers for models to be fitted successfully. The remaining areas in the trawl fishing region were not modelled because no fur seal captures were recorded on any of the observed tows in these areas in the 12 fishing years covered by this study. The areas not modelled are: the statistical areas 037,038 , and 039 off the west coast of the North Island, statistical areas 205, 206 and the parts of statistical areas 014 and 204 south of $40^{\circ} \mathrm{S}$ off the east coast of the North Island, and the Macquarie Ridge area, which approximates statistical areas 503, 601, and 616. The areas are plotted in Figures A1 and A2 and the unlabelled areas inside the EEZ and south of $40^{\circ} \mathrm{S}$ are the areas not modelled.

A fully Bayesian predictive approach using hierarchical models was used to obtain all the estimates of total captures and strike rates for each area. The method was described by Smith \& Baird (2007), where it was used to predict New Zealand sea lion captures in the SQU 6T fishery, and in other references therein. Each model uses season random effects, vessel-season random effects, and selected fixed covariates. In the predictive approach the model for a particular area is fitted, using Bayesian methods, to a set of observer data for the area that covers all years in the study. The fitted model is in the form of a sequence of realisations (usually 5000) of a Markov chain Monte Carlo (MCMC) sample from the joint posterior distribution of the model parameters. The chain encapsulates the uncertainty in the parameter estimates and is used to provide realisations from the predictive distributions of total fur seal captures and fur seal strike rates for each fishing year.

Each realisation from the predictive distribution of the total fur seal captures is obtained in five steps. There are usually 5000 realisations in total, related to the MCMC sample from posterior distribution of the parameters in the fitted model. Firstly, the unobserved tows are identified. Secondly, the mean capture rate for each unobserved tow is calculated using the current realisation from the posterior distribution of the parameters. If the vessel was not observed in the particular year, a value for the vessel-season effect is generated from the gamma distribution using the current realisation of the vessel-season effects shape parameter $\theta^{\text {vs }}$. Thirdly, a realisation of the actual number of fur seal captures for each tow is drawn from the negative binomial distribution with the mean capture rate for the tow and the current realisation of the extra-dispersion shape parameter θ. Fourthly, the realisations for all the unobserved tows are added to get a realisation from the predictive distribution of the unobserved captures. Finally, the total observed captures are added to get a realisation from the predictive distribution of the total captures. This procedure yields 5000 realisations from the predictive distribution of the total captures from which mean, c.v., and predictive intervals can be obtained. The predictive distribution incorporates uncertainty in the model parameter estimates, uncertainty in the unobserved vessel-season effects (which correlate captures among tows by the same vessel within each season), and variability in the actual number of fur seals captured on every unobserved tow (through the negative binomial error model).

The realisations from the predictive distribution of the fur seal strike rates are obtained in a slightly different way. The same first two steps are used to generate tow by tow realisations of the mean capture rate for each unobserved tow. These are then added to get a realisation of the mean total unobserved fur seal captures, which in turn is added to the total observed captures. The sum is then divided by the total number of commercial tows to get a realisation from the predictive distribution of the strike rate. Note that these realisations only include the uncertainty in the parameter estimates and do not include the added variation from the negative binomial error of the actual unobserved captures.

The realisations are then used to obtain estimates of the characteristics of the predictive distributions such as means, medians, standard deviations, c.v.s, and 95% predictive intervals.
The predictive distributions for total captures and for strike rates each incorporate the finite population correction directly because all the uncertainty comes from the unobserved tows.

2.3 Trawl areas

The region within the New Zealand EEZ, south of $40^{\circ} \mathrm{S}$, excluding statistical areas 014, 037-040, 204-206, and 502, and excluding the Macquarie Ridge, was first divided into five trawl fishery areas. The boundaries were defined, to a greater or lesser extent, by fishing fleet activities, boundaries used in previous work, and statistical area boundaries. Four areas are bounded by the coastlines of the North and South Islands. The remaining region was partitioned into two areas: one fishery area comprising tows targeting southern blue whiting and another area in the south comprising tows targeting any other species. The areas are shown in Figures A1 and A2 and described below:

East coast Wairarapa and Cook Strait area (ECCO)

The area defined by statistical areas 015,016 , and 017 .

Chatham Rise area (CHAT)

The area in the EEZ, east of the South Island, south of $42^{\circ} 10^{\prime} \mathrm{S}$, and north of latitude $46^{\circ} \mathrm{S}$, and statistical areas 018,019 , and 024 .

Stewart-Snares shelf and Puysegur area (STSP)

The area Fisheries Management Area 5 (FMA 5), excluding the Macquarie Ridge, south of $45^{\circ} 30^{\prime} \mathrm{S}$ and east of $165^{\circ} \mathrm{E}$; and the area in FMA 3 and the area in FMA 6, excluding the Macquarie Ridge, south of $46^{\circ} 03^{\prime} \mathrm{S}$, north of $49^{\circ} 30^{\prime} \mathrm{S}$ and west of the line joining $46^{\circ} 03^{\prime} \mathrm{S}$ and $173^{\circ} \mathrm{E}$ with $49^{\circ} 30^{\prime} \mathrm{S}$ and $170^{\circ} 32^{\prime} \mathrm{E}$.

Sub-Antarctic area (SANT)
The area in the EEZ, south of $46^{\circ} \mathrm{S}$, excluding the areas CHAT and STSP and excluding the Macquarie Ridge. Tows targeting southern blue whiting are not included.

West coast South Island area (WCSI)

The area in the EEZ bounded in the south by $45^{\circ} 30^{\prime} \mathrm{S}$, in the east by the coast of the South Island and $172^{\circ} 41^{\prime} \mathrm{E}$, and in the north by $40^{\circ} \mathrm{S}$.

Southern blue whiting fishery area in FMA 6 (SBW6)
The FMA 6 area, excluding the Macquarie Ridge, and only including tows targeting southern blue whiting.

Tows south of $40^{\circ} \mathrm{S}$ in statistical areas $014,037-039,204-206$, and 502 were not included in any of the areas because no fur seal captures were observed in these statistical areas in 1994-95 to 2005-06. All tows in SANT and SBW6 were recorded on TCEPR forms.

Most CELR records have missing position coordinates with the only positional information recorded being the statistical area. This presented a problem for assigning such records to the WCSI area where the boundary does not coincide with the boundary between statistical areas. In the south of the WCSI area the boundary between it and the STSP area is $45^{\circ} 30^{\prime} \mathrm{S}$, which passes through the centre of statistical area 031 . The second situation is the northern boundary of WCSI, $40^{\circ} \mathrm{S}$, which passes through the middle of the statistical areas 036,702 , and 703 . The resolution of these problems is described in Section 2.6.
The use of larger groupings of all target species and all commercial tows (recorded on either TCEPR or CELR forms) is an attempt to obtain comprehensive estimates of fur seal captures covering all of the fishing effort south of $40^{\circ} \mathrm{S}$.

This approach is more flexible than that used by Baird \& Smith (2007) because it includes all target species, which makes for more comprehensive models that can be used to predict fur seal captures for all the unobserved tows in the area and for sub-groupings of unobserved tows such as those targeting individual species.

2.4 Model description

The model-based hierarchical approach used for the prediction of total fur seal captures combines season and vessel-season random effects with covariates to model variation in capture rates among tows. The model is fitted to the observer data for the area and the fur seal captures are predicted for the unobserved commercial data. The predicted captures reflect the differences between the observed and the unobserved data by the adjustment, tow by tow, of the mean capture rate through the covariates and the season and vessel factors. Along with the covariate values for each unobserved tow, season and vessel-season random effects (for any unobserved tows by vessels observed during the season) are used to adjust the mean capture rate for the tow. For the tows by vessels not observed in the season the variation among vessel-season effects is incorporated as additional sampling variation to account for the uncertainty. Finally, the total uncertainty in the actual number of fur seal captures in the unobserved tows is incorporated using the negative binomial error distribution of the model (in relation to the mean total number of captures), together with the uncertainty in the parameter estimates, to give the mean total unobserved captures through the Bayesian predictive approach.

The model used for fitting the observer data and for the prediction of total fur seal captures is described in terms of the mean rates of fur seal captures for the tows (as by Baird \& Smith 2007). The error distribution assumption of the model is that the number of fur seal captures in the $i^{\text {th }}$ season for the $k^{\text {th }}$ tow by the $j^{\text {th }}$ vessel has a negative binomial distribution with mean rate (per tow) parameter $\mathrm{E}\left(y_{i j k}\right)=\mu_{i j k}$ and shape parameter θ. The model allows the mean rate parameters, $\mu_{i j k}$, to vary among tows through a log-linear relationship involving fixed and random parameters and it is also assumed that θ does not vary among the tows. We report the value of θ, indirectly, through its reciprocal, which is the extra-dispersion variance of the negative binomial error model.

Each mean rate parameter is built from the parameters and covariates in a multiplicative way (loglinear). All models are hierarchical and have the following components.

1. A set of base season mean capture rate parameters, λ_{i} (random effects).
2. A set of multiplicative vessel-season random effects, $v_{i j}$ (random effects).
3. A log-linear component involving covariates and parameter coefficients. This component acts as a scaling of the mean capture rate by an exponential function of the standard form linear model. The sets of covariates used in the models vary among areas.

The mean capture rate parameter for the $i j k^{\text {th }}$ tow is then given by

$$
\begin{equation*}
\mu_{i j k}=\lambda_{i} v_{i j} \exp \left(\mathbf{x}_{i j k} \boldsymbol{\beta}\right) \tag{1}
\end{equation*}
$$

where $\mathbf{x}_{i j k}$ is a row matrix of covariate values for tow $i j k$ and $\boldsymbol{\beta}$ is a column matrix of coefficient parameters.

The distributional assumptions for the season random effects are that the base season capture rates $\left(\lambda_{i}\right)$ are an independent sample from a single lognormal distribution, with a log-mean and logvariance parameters. The vessel-season effects $\left(v_{i j}\right)$ are assumed to be an independent sample from a single gamma distribution with mean 1 and a shape parameter $\theta^{\text {vs }}$, which is the same for all seasons and all vessels. Again we report a value of $\theta^{\text {vs }}$ indirectly, through its reciprocal, which is the vesselseason effects variance.

Models, special to each area, are fitted using the observer data for the area. Random effects and vesselseason effects appear in the model for each area. The set of covariates that appears in a model is specific to the area. The covariates used in at least one of the area models are described below.
day.no: day of fishing year. A variable with sine and cosine transformations to give a twocomponent periodic covariate. This is the first harmonic of the Fourier series approximation to a periodic function with period 1 year.
$D N: \quad$ time of day of tow. Factor variable with levels: day (base level) - tow entirely in daylight or twilight
dusk - tow includes end of evening twilight (sun 12° below horizon)
night - tow entirely in darkness
dawn - tow includes start of morning twilight (sun 12° below horizon)
For long duration tows that include more than one twilight event, the level is determined by the first twilight.
duration: duration of tow plus a quarter of an hour to allow inclusion of zero duration tows and to add an arbitrary time for setting and hauling. Continuous variable transformed by the logarithm.
d.shore: distance of start of the tow from the nearest shore. Continuous variable transformed by the logarithm.
gear: type of gear used in trawl. Factor with levels:
BT - bottom trawl gear
MW - midwater trawl gear.
For each fishery, the most commonly used gear type in the observer data was used as the base level in the fitted model.
subarea: the fishery area is divided into sub-areas producing a factor covariate. The sub-areas are specific to the individual areas.
targ.g: target species group, a factor variable. Three or more levels are used in each area, with any added levels for an area being specific species groups that are commonly targeted in the area. The three commonly used target groups are (see Table A2 for the species included in each group):
shallow - species generally targeted in the shallower depths.
mid depth - species generally targeted in the middle depths.
deep - species generally targeted in deep water.
The use of a periodic transformation of the day.no variable ensures that the values of the transformed covariate coincide at the beginning and the end of the fishing year. It is important to ensure that any day.no effects are less likely to get incorporated into the base season effects because of different distributions of effort in different fishing years.

For each area, the grouping of target species for the targ.g factor is dictated primarily by the target species composition of the observer data, but the target groups are designed to group together the targets that would be fished commercially using similar fishing practices. In some areas, a single commonly targeted species is used as an additional group on its own. This is justified when there are sufficient observed tows targeting the single species and targeting the remaining species in the group to which it usually belongs.

As in previous applications of the model-based predictive approach, we did not consider covariates relating directly to individual vessels, such as nationality, power, and length, as any effects will be included in the vessel-season effects.

2.5 Model fitting

Models for each of the six areas were fitted to the observer data using WinBUGS (Spiegelhalter et al. 2003), run from within the statistics package R (R Development Core Team 2008). Limited model selection was carried out in some of the areas and this involved the selection of which covariates were included in the covariate component of the model. Selection decisions were based on the deviance information criterion (DIC) (Spiegelhalter et al. 2002) and the size of the extra-dispersion variance. Covariate components of models used for STSP and WCSI reflect the results that Mormede et al. (2008) obtained in their study of associations of capture rates with covariates.

MCMC samples from the joint posterior distribution of the parameters for the fitted model in each area were obtained by running the chains for 100000 iterations keeping every $20^{\text {th }}$ iteration following a burn in of 100000 iterations. This resulted in samples of 5000 iterations for use in the predictions of total fur seal captures and strike rates. Convergence of the chains was checked using Geweke (Geweke 1992) and Heidelberger and Welch (Heidelberger \& Welch 1983) criteria.

The following subsections describe the models fitted for each area, including the specific covariates used in the fixed effects component for each model. The posterior distributions of the parameters of the fitted model, the goodness of the model fit, and the distributions of observed and commercial effort are discussed. The tables and figures relevant to each of the fishery areas are given in the appendices as follows: all areas in Appendix A, ECCO in Appendix B, CHAT in Appendix C, SANT in Appendix D, STSP in Appendix E, WCSI in Appendix F, and SBW6 in Appendix G.

2.5.1 East coast Wairarapa and Cook Strait area (ECCO)

This area was changed from the HCOOK hoki fishery area used by Baird \& Smith (2007) to include all target species, which resulted in the inclusion of a large number of additional tows recorded on CELR forms (more than 50% of all commercial tows, Table B1). The spatial area was changed to the area containing all tows with starting positions in the statistical areas $015-017$. This was necessary to resolve the problem of assigning CELR tows without positional data to areas (see Figure B1 for maps showing the boundaries).

The area was difficult to model because observer coverage concentrated mainly on tows targeting hoki and scampi (Table A3) and on tows in June to September (density plot of day.no in Figure B2). Observer coverage was very low at less than 2% over the 12 years, with fewer than 100 tows observed in the 1994-95 to 1996-97 and the 2005-06 fishing years (Table B1). Relatively few fur seal captures were observed, none of which occurred in tows targeting shallow species. This led to large uncertainties for the parameters in the fitted model and, consequently, large uncertainties in the total capture estimates, which are, in turn, reflected in the inflated c.v.s.

The model used for ECCO had the covariate component:

$$
D N+\operatorname{targ} . g+\operatorname{periodic}(\text { day.no }) .
$$

The target groups used for targ.g factor in the ECCO area are:
shallow species targeted in the shallower depths,
mid depth (base level) species targeted in the middle depths (except for SCI),
scampi scampi (SCI),
deep species targeted in the deep.
The limited process of model selection started with consideration of the covariate component of the model used by Baird \& Smith (2007) for the HCOOK hoki fishery ($D N+$ gear $+\log$ (duration) + $\log (d . s h o r e))$. The target group variable targ.g was added to the covariate component of the model for the ECCO area. While d.shore proved useful in pinpointing the Cook Strait canyon in the model used by Baird \& Smith (2007) specifically for hoki tows, it was not considered as a candidate covariate for the model for the ECCO area because most tows targeted species other than hoki. A subarea covariate was also not considered for the model for the ECCO area because targ.g effectively divided the observed effort into subareas. About 95% of observed tows targeted hoki or scampi (Table A3) with scampi tows predominating in statistical area 014 (off the Wairarapa coast) and hoki tows predominating in the Cook Strait canyon.

In the model selection phase of the fitting process, the covariate component of targ.g $+D N+$ gear + \log (duration) + periodic(day.no) was the initial model fitted. Dropping the \log (duration) term from the model decreased both the DIC and the mean extra-dispersion variance, so the \log (duration) term was dropped from the model. Next, dropping the periodic day.no term resulted in a large increase in DIC, but a small increase in the mean extra-dispersion variance, so the periodic(day.no) term was retained. Finally, dropping the gear factor resulted in a very small increase in the DIC but produced a 5% decrease in extra-dispersion variance so the gear factor was dropped from the model. This suggests that including the gear factor increases the predictive power of the model slightly, but at the expense of an increase in extra dispersion.

The final model was fitted using a burn in of 100000 iterations and a further 100000 iterations of which every $20^{\text {th }}$ iteration was retained. This gave a sample of 5000 iterations from the joint posterior distribution of the model parameters. The model fit appeared to be satisfactory because the predicted frequencies of fur seal captures per tow coincided well with the observed frequencies (Table B2).

The posterior distributions of some of the model parameters exhibit the large standard errors that were expected from limitation of the observer data (Table B3). In particular, the posterior distributions of the 1995 and 1997 base capture rate parameters and the target shallow and deep parameters have very large standard deviations and c.v.s of more than 250%. This is because no fur seal captures were observed for tows in the 1994-95 and 1996-97 years nor for any tows targeting either shallow or deep species. There were also very few observed tows in these categories (Table B1 and Figure B2). The effects of fishing at dusk, night, and dawn on capture rates are all more than 6 times the rate for tows entirely in the day time. The periodic day.no covariate has a peak multiplicative effect occurring late in July and the lowest multiplicative effect occurring late in January.

2.5.2 Chatham Rise area (CHAT)

This area has minor boundary changes from the HCHAT hoki fishery area used by Baird \& Smith (2007). The CHAT area includes all tows that started in statistical areas 018,019 , and 024 and excludes those that started in statistical areas 205 and 206 (the northern boundary, excluding statistical areas 018 and 019 , was changed from $42^{\circ} \mathrm{S}$ to $42^{\circ} 10^{\prime} \mathrm{S}$ and now coincides with the boundary between FMA 2 and FMA 4). The changes were forced by the inclusion of all tows targeting all species and all tows in CELR records.

The details of the covariates peculiar to the CHAT area, and the selection procedure, are described below. The base level for the gear factor was MW, because this was the predominant gear type in the observer data. The d.shore covariate measures distance from the shore of the South Island. The target groups used for the targ.g factor in the CHAT area are:

```
    shallow species targeted in the shallower depths,
    mid depth (base level) species targeted in the middle depths (except for SCI, JMA),
    jack mac jack mackerels (JMA),
    scampi scampi (SCI),
    deep species targeted in the deep.
```

The model used for predicting captures in CHAT has the covariate component:

$$
D N+\text { gear }+\operatorname{targ} . g+\log (\text { d.shore })+\text { periodic(day.no }) .
$$

The model selection phase of the fitting process was quite limited. A subarea covariate was not considered for the CHAT area because past work had shown that the d.shore variable was quite strongly associated with spatial changes in capture rates (Baird \& Smith 2007). The covariate component targ. $g+D N+$ gear $+\log ($ d.shore $)$ was fitted in our initial model. This was the covariate component of the model used by Baird \& Smith (2007) for their HCHAT hoki fishery area with the \log (duration) term removed and the targ.g factor added. The \log (duration) term was not included in our initial model because the posterior distribution of the \log (duration) coefficient of Baird \& Smith (2007) was centred very close to zero. Inclusion of the term was likely to add randomness to any predictions, with little adjustment to the mean capture rates from any differences between observed and unobserved tow durations. The second model tried was the initial model with the periodic(day.no) term added. This resulted in a reduction in both the DIC and the mean extra-dispersion variance and, consequently the periodic(day.no) term was retained. As a check, the model was run with the \log (duration) term added. The DIC decreased by 1.5%, but the mean extra-dispersion variance increased by more than 9%. Again, the posterior distribution of the coefficient of \log (duration) was centred near zero and therefore it was decided not to include the \log (duration) term in the final model for CHAT area.

The model was fitted using a burn in of 100000 iterations and a further 100000 iterations of which every $20^{\text {th }}$ iteration was retained. This gave a sample of 5000 iterations from the joint posterior distribution of the model parameters. The model fit appeared to be satisfactory because the predicted frequencies of fur seal captures per tow coincided well with the observed frequencies (Table C2).

The posterior distributions of the parameters of the fitted model had relatively small dispersion characteristics (Table C3), reflecting the relatively large amount of observed tows and captures. For the effects associated with factor covariates (base capture rates, $D N$, gear, and targ.g) most had c.v.s less than 100%. The only exceptions were the targ.g, shallow, and deep effects (relative to mid depth) which had very small posterior means.

All the 95% credibility intervals for the parameters associated with the two continuous covariates (d.shore and day.no) excluded zero. This suggests that the capture rate is strongly associated with distance from the South Island and day of the fishing year. The periodic day.no covariate has a peak multiplicative effect of about 4.4 occurring in early September and a trough multiplicative effect of 0.23 in early March.

2.5.3 Sub-Antarctic area (SANT)

For the SANT area, there are major changes from the spatial boundaries of the HSUBA hoki fishery area boundaries used by Baird \& Smith (2007). The spatial extent of the SANT area is that of the old HSUBA hoki fishery area with the STSP area (see Section 2.5.4) removed (see Figures A1 and D1). The SQU6T squid fishery area of Baird \& Smith (2007) is wholly included in SANT. Tows targeting all species, except southern blue whiting, are included. However, the SANT area essentially contains effort targeted at mid depth and deep species because very few observed tows and unobserved tows targeted shallow species (see Table A3). All tows in the SANT area were recorded on TCEPR forms.

The base level for the gear factor is BT. Target species groups for the targ.g factor are:
shallow species targeted in the shallower depths,
mid depth species targeted in the middle depths (except for SCI and SQU),
scampi scampi (SCI),
squid (base level) squid species (SQU),
deep species targeted in the deep.
The model used for predicting captures in SANT has the covariate component:

$$
D N+\text { gear }+\operatorname{targ} . g+\log (\text { duration })
$$

It can be seen from Table D1 and Figure D1 that there were relatively few observed fur seal capture incidents and a low observed strike rate, and therefore it was desirable to have a relatively parsimonious model. The use of a sub-area factor was not considered because the target groups in the observer data define possible sub-areas to a large extent. Although d.shore appeared in the HSUBA hoki fishery model used by Baird \& Smith (2007), the mean of the posterior distribution was very close to 0 and, therefore, unlikely to have much effect on the predicted captures. Thus, d.shore was not included in the initial SANT model. The factors $D N$ and gear and the logarithm of duration were retained from the HSUBA model of Baird \& Smith (2007) and the targ.g factor was added. As a check, a second model was run with $\log (d . s h o r e)$ included. This model had a slightly reduced DIC (by 4%), but the extra-dispersion variance increased by 17%. Again, zero was near the centre of the 95% credibility interval for the d.shore parameter and thus, d.shore was not included in the final model.

The model was fitted using a burn in of 100000 iterations and a further 100000 iterations of which every $20^{\text {th }}$ iteration was retained. This gave a sample of 5000 iterations from the joint posterior distribution of the model parameters. The model fit appeared to be satisfactory because the predicted frequencies of fur seal captures per tow coincided well with the observed frequencies (Table D2).

The posterior distributions of the model parameters have quite large standard deviations, mainly because relatively few captures were observed (compared with the other areas) (Tables D1 and D3). The effect of the shallow target species (relative to the squid target) has a very large standard deviation because there were so few observed tows in this group, none of which caught fur seals. The extradispersion variance was much larger for this area than for any of the other areas, possibly due to the relatively few captures and low strike rate.

2.5.4 Stewart-Snares shelf and Puysegur area (STSP)

The spatial extent of the STSP area combines the spatial extents of the Stewart-Snares shelf squid fishery area (SSTEW) and the Puysegur hoki fishery area (HPUYS) of Baird \& Smith (2007) (see Figures A1 and E1). The area boundaries were adjusted in the west to coincide with the boundaries of statistical areas 029 and 030 and in the east to coincide with the boundary of statistical area 024 . Decision rules, based on target species, for assigning CELR tows in statistical area 031 which is split by the boundary (at $45^{\circ} 30^{\prime}$ S) between the STSP and WCSI are described in section 2.6.

Most observed tows in STSP targeted squid. The jack mackerel tows were also of sufficient number to justify a separate group while leaving sufficient tows in the mid depth group. The target groups in the targ.g factor for the STSP model are:
shallow species targeted in the shallower depths,
mid depth species targeted in the middle depths (except JMA and SQU),
jack mack jack mackerels (code JMA),
squid (base level) squid species (code SQU),
deep species that are targeted in the deep.
The covariate component model used for predicting captures in STSP has the covariate component:
DN + subarea + targ.g + periodic(day.no).

The choice of covariates for the final model was based on work by Baird \& Smith (2007) and Mormede et al. (2008) who studied the STEW (Stewart-Snares shelf) area for all observed target species to determine covariates associated with variation in fur seal capture rates. Mormede et al. (2008) found an association between capture rate and a region factor. In particular, there was a strong increase in capture rate off the south Otago coast north of $46^{\circ} 30^{\prime} \mathrm{S}$ (region A in their analysis). They also found associations between the fur seal capture rate and the time of year, through a third order polynomial transformation of the day.no covariate, and between fur seal capture rates and a target group factor. On the basis of these results we decided to include a subarea factor, a targ.g factor, and a periodic day.no covariate (because of the periodic nature of the covariate) in our model.

The STSP spatial area was divided into three subareas: the Puysegur subarea (coincides with the overlap of the STSP area with the separate hoki fishery area HPUYS of Baird \& Smith (2007)), the Otago coast subarea (identified by Mormede et al. 2008), and the remainder of the STSP area (named the Stewart-Snares shelf subarea and corresponding to the squid fishery area SSTEW in Baird \& Smith 2007, excluding the Otago coast subarea) (see Figure E1). Because of the problem of assigning CELR tows to subareas, the Otago coast subarea was set to the statistical area 026 , which includes all positions with longitudes between $169^{\circ} \mathrm{E}$ and $171^{\circ} \mathrm{E}$ and latitudes between $46^{\circ} 03^{\prime} \mathrm{S}$ and $47^{\circ} 01^{\prime} \mathrm{S}$. The Puysegur subarea includes all positions in STSP west of a line joining the point $47^{\circ} 30^{\prime} \mathrm{S}$ and $166^{\circ} \mathrm{E}$ with the point $45^{\circ} 24^{\prime} \mathrm{S}$ and $167^{\circ} 30^{\prime} \mathrm{E}$ and north of $47^{\circ} 06^{\prime} \mathrm{S}$. The unshaded Stewart-Snares shelf subarea in Figure E1 is the base level of the subarea factor.

The model was fitted using a burn in of 100000 iterations and a further 100000 iterations of which every $20^{\text {th }}$ iteration was retained. This gave a sample of 5000 iterations from the joint posterior distribution of the model parameters. The model fit appeared to be satisfactory because the predicted frequencies of fur seal captures per tow coincided well with the observed frequencies (Table E2).

The posterior distributions of the parameters of the fitted model had relatively small dispersion characteristics (Table E3), reflecting the relatively large numbers of observed tows and captures. For the effects associated with factor covariates (base capture rates, $D N$, subarea, and targ.g), the c.v.s were of moderate size (all less than 40%, but most less than 30%). Both of the 95% credibility intervals for the sine and cosine parameter coefficients associated with day.no excluded zero, with zero more than 3 standard deviations away from the nearest limit in both cases, which suggests that capture rate is strongly associated with day of the fishing year. The periodic day.no covariate has a peak multiplicative effect of about 4 occurring in mid August and the trough multiplicative effect of 0.25 in mid February.

2.5.5 West coast South Island area (WCSI)

There are some changes to the spatial extent of the WCSI area compared with the HWCSI hoki fishery area of Baird \& Smith (2007). These changes are in the north and were the consequence of including tows recorded on CELR forms. The spatial extent of the WCSI area includes all points inside the EEZ, west of the South Island, with latitudes north of $45^{\circ} 30^{\prime} \mathrm{S}$ and south of $40^{\circ} \mathrm{S}$, and with longitudes west of $172^{\circ} 41^{\prime} \mathrm{E}$ (the western boundary of statistical area 036) (Figures A1 and F1). It was necessary to use non-spatial rules to assign the unobserved tows reported from statistical areas 031, 036, and 703 (but with no start position coordinates) to the WCSI area or not (see Section 2.6).

Tows targeting all species were included in the WCSI area. The jack mackerels were separated from the other mid depth species because they are the second largest mid depth fishery (see Table A3) in the WCSI area over the 12 years. The groups in the targ.g factor are:
shallow species targeted in the shallower depths,
mid depth (base level) species, other than JMA, targeted in the middle depths,
jack mack jack mackerels (JMA),
deep species targeted in the deep.
In the observer coverage for the WCSI area, the hoki fishery is over represented with 83% of the observed tows, while the hoki fishery is less than 40% of the unobserved tows (Table A3 and Figure F2, where the mid depth target group is mostly hoki). This fishery will contribute most to the parameter estimates in any model, because models are fitted to the observer data. Mormede et al. (2008) analysed the west coast South Island hoki observer data and found that, for the core fleet, the variables $D N$, region (their subarea factor), and \log (duration) were important in explaining the greatest reduction in deviance. They also found that fishing year and vessel were important and these variables were incorporated in our season and vessel-season random effects. We added the targ.g. factor and defined a subarea factor in a similar way to their region factor. The covariate component of the model we used for predicting fur seal captures in the WCSI area was:

$$
D N+\text { subarea }+ \text { targ.g }+\log (\text { duration }) .
$$

We defined the subarea factor as follows, taking note of the region factor used by Mormede et al. (2008) for the hoki fishery. Firstly, because the deep species group also defines a subarea with limited spatial overlap with other target species in the WCSI area, we defined a deep subarea to be all tows in the deep group of targ.g. Thus, deep is a common level to both the targ.g and subarea factors but cannot be treated as a level for both factors in the fitting of the model. The remaining (non-deep) tows, which target shallow, mid depth, or jack mackerel species groups, were then assigned to 3 subarea
groups with boundaries defined by the latitudes separating statistical areas 034, and 035, and 036, which are $41^{\circ} 45^{\prime} \mathrm{S}$ and $40^{\circ} 47^{\prime} \mathrm{S}$, respectively. The three subarea groups are named Hokitika Canyon, Cape Foulwind, and northern, going from south to north (see Figure F1). The base level group for model fitting is Hokitika Canyon. Initially we bounded Hokitika Canyon in the south by $44^{\circ} 01^{\prime} \mathrm{S}$, which defined a fourth, more southern group. However, there were so few non-deep tows (observed or unobserved) in the fourth group that the two southern groups were amalgamated. The effect for tows in the separate deep group is relative to tows in both the Hokitika Canyon subarea and the mid depth target group.

The model was fitted using a burn in of 100000 iterations and a further 100000 iterations of which every $20^{\text {th }}$ iteration was retained. This gave a sample of 5000 iterations from the joint posterior distribution of the model parameters. The model fit appeared to be satisfactory because the predicted frequencies of fur seal captures per tow coincided well with the observed frequencies (Table F2).

The posterior distributions of the parameters of the fitted model had relatively small dispersion characteristics (Table F3), again reflecting the relatively large amount of observed tows and captures. For the effects associated with factor covariates (base capture rates, $D N$, subarea, and targ.g), the c.v.s were generally of moderate size (with all less than 40% except for the northern subarea effect). The 95% credibility interval for the \log (duration) parameter coefficient excludes zero, with zero nearly 3 standard deviations away from the nearest limit, which suggests that capture rate is strongly associated with duration. The capture rate increases approximately with the square root of the duration (posterior mean of the coefficient is close to 0.5).

2.5.6 Southern blue whiting fishery area (SBW6)

This fishery is exactly the same fishery area that was used in Baird \& Smith (2007). This fishery area represents the confined nature of the southern blue whiting fishery in both space and time of year (August to October include over 97% of the effort) and the good observer coverage. All tows were recorded on TCEPR forms.

The SBW6 fishery fishing year was defined as between 1 April and 31 March after the southern stocks of this species were included in the Quota Management System in late 1999 (Ministry of Fisheries 2008). In this report, we defined a season variable that was different from both the generic fishing year (1 October-30 September) and the SBW6 fishing year. Thus, for this analysis, each season starts on 1 July and overlaps two (generic) fishing years, because the main fishery finishes around the end of October. Consequently, there are 13 levels for the season random factor giving rise to 13 base capture rate coefficients (Table G3). For predicting total captures for the 1994-95 fishing year for example, the 1994 or 1995 base capture effects were both used, depending on whether the unobserved tows were before or after 1 July 1995.
The spatial extent of SBW6 was defined by the positions of all tows targeting southern blue whiting in the 12 years of this study (Figure G1). We used the same distinct fishing subareas as Baird \& Smith (2007), namely: Auckland Islands (6A), Campbell Rise (6I), Pukaki Rise (6R), and Bounty Plateau (6B). Baird \& Smith (2007) found that the capture rate in the Bounty Plateau subarea (6B) was much greater than for the other subareas. A high proportion of the observed fishing effort (80%) and commercial tows effort (83%) was concentrated in the Campbell Rise subarea and this was used as the base level of the subarea factor. The covariate component used to predict fur seal captures in the SBW6 fishery area was:

$$
D N+\text { gear }+ \text { subarea }+\log (\text { duration })+\log (\text { d.shore }) .
$$

This was the same as that used by Baird \& Smith (2007), except that it used four subarea groups compared with the two groups (Bounty Plateau (6B) and the rest) used in the previous modelling. A comparison of the 4 -level and 2-level subarea factors showed that the fit with the 2-level factor was not as good because the DIC increased and the extra-dispersion variance increased very slightly. The d.shore variable in the SBW6 area measures the distance from the nearest land. The gear effect was for bottom trawl nets relative to the use of midwater nets.

The model was fitted using a burn in of 100000 iterations and a further 100000 iterations of which every $20^{\text {th }}$ iteration was retained. This gave a sample of 5000 iterations from the joint posterior distribution of the model parameters. The model fit appeared to be satisfactory as the predicted frequencies of fur seal captures per tow coincided well with the observed frequencies (Table G2).

The posterior distributions of the parameters of the fitted model had relatively small dispersion characteristics (Table G3), again reflecting the relatively large amount of observed tows and captures. Note that a season base capture rate for 1994 is included because of the overlap with fishing years. For the effects associated with the fixed factor covariates (base capture rates, DN, gear, and subarea), the c.v.s were generally of moderate size (with all less than 50% except for the Auckland Islands and subarea effects). There is a greatly increased capture rate (a multiplicative factor of nearly 40 times) for fishing in the Bounty Plateau subarea relative to fishing on the Campbell Rise subarea. However, the size of this effect will be a little inflated to compensate for the d.shore coefficient, which is positive and therefore reduces the capture rates for tows in the Bounty Plateau subarea because they are generally closer to land than they are in the other subareas. Because of the differences between the proportions of observed and unobserved tows in the Bounty Plateau subarea, the size of its effect will be very important for adjusting predicted capture rates. Both of the 95% credibility intervals for parameter coefficients associated with continuous covariates duration and d.shore excluded zero, which suggests that capture rate is associated with both.

2.6 Treatment of missing values in the unobserved data

2.6.1 Missing position values

There were two problems associated with missing position data: assigning tows to the six fishery areas to be modelled and assigning tows to subareas within a fishery area. First, we describe the manner in which tows with problematic position data were assigned to an area. The unobserved tows in the commercial data are used in the model-based prediction method and before a commercial tow can be classified as unobserved it has to be assigned to one of the six areas or determined to be outside of those areas. For most of the commercial data this presents no difficulty. All tows have either start position coordinates or statistical areas and it is only tows which have missing start coordinates or belong to a statistical area overlapping an area boundary that have to be assigned to areas using some other rule. This occurs at the boundary between the STSP and WCSI areas and at the northern boundary (latitude $40^{\circ} \mathrm{S}$) of the WCSI area.

Because the northern boundary of STSP area with the WCSI area (latitude $45^{\circ} 30^{\prime}$ S) passes through the middle of statistical area 031, tows appearing in CELR records without latitude coordinates had to be assigned to either STSP or WCSI by another rule. For commercial tows in statistical area 031 with latitudes recorded, 183 of the 186 tows north of $45^{\circ} 30^{\prime}$ S targeted deep species, whereas only 5 of the 423 tows south of $45^{\circ} 30^{\prime} \mathrm{S}$ targeted deep species. Therefore, of the 414 tows in statistical area 031 with missing coordinates, the 9 tows targeting deep species were assigned to WCSI and the remaining 405 tows were assigned to STSP. The effect of any wrongly assigned tows will be negligible on the fur seal capture predictions for either area because of the small number of reassigned tows.

The northern boundary of WCSI (latitude $40^{\circ} \mathrm{S}$) passes through the centre of statistical areas 036 and 703, the two statistical areas affected that included CELR tows with missing start latitudes. We were unable to formulate a decision rule for separating tows in 036 and 703 into those north or south of $40^{\circ} \mathrm{S}$ because the TCEPR commercial tow dataset was limited to tows south of $40^{\circ} \mathrm{S}$. Consequently, all 4339 unobserved tows without latitude coordinates in 036 and all 32 tows without latitude coordinates in 703 were assigned to the WCSI area. All but 11 of those tows in 036 and 9 of those in 703 targeted shallow species.

Second, we describe the way in which unobserved tows with missing start coordinates were assigned to subareas. This presented a problem only for the subarea covariate factor in the STSP area, because it is the only area where a statistical area overlaps two subareas. For unobserved tows in the STSP area with missing coordinates, the statistical areas $025,027,028$, and 029 are all part of the Stewart-Snares shelf subarea and the unobserved tows in statistical area 031 belong in the Puysegur subarea. However, the statistical area 030 is divided by the boundary between the Puysegur and Stewart-Snares shelf subareas and further criteria were needed to assign unobserved tows in 030 to a subarea. Tows in statistical area 030 without coordinates were assigned between the two subareas by target species, on the basis of the subarea that commercial tows with starting coordinates belonged to. The 30139 tows in statistical area 030 with one or both coordinates missing were recorded on CELR forms, 49.7% targeted flatfish, and 43.6% targeted stargazers. Tows targeting scampi (424 tows), ling (323), spiny dogfish (119), red cod (92), orange roughy (4), or blue cod (3) were assigned to Puysegur and all other tows (all targeting shallow species) were assigned to Stewart-Snares shelf.

Among the commercial tows in statistical area 030 that had start coordinates recorded (13429 tows), this rule would have wrongly assigned to the Puysegur subarea: 217 of 535 scampi tows, 8 of 520 ling tows, 7 of 533 orange roughy tows, and 1 of 590 red cod tows; and wrongly assigned to the StewartSnares shelf subarea: 15 of 121 barracouta tows and 135 of 507 stargazer tows. Most of the tows (93%) with start coordinates were recorded on TCEPR forms and therefore may not be very representative of the tows with missing coordinates, all of which were recorded on CELR forms, and probably from smaller vessels. The largest effect on predicted captures from incorrect assignment of subarea is likely to be from wrongly assigning tows targeting stargazer to the Stewart-Snares shelf (instead of to the Puysegur subarea). The effect is likely to be reduced because smaller vessels are less likely to fish in the Puysegur subarea because of the distance from the nearest fishing port (Bluff). The Puysegur subarea effect, relative to Stewart-Snares shelf, is greater than one (Table E3); consequently, wrongly assigning tows with missing coordinates in this manner is likely to lead to reduced predicted fur seal capture numbers.

2.6.2 Other missing covariate values

It was also necessary, for each area, to assign or impute covariate values that could not be calculated directly because the values of certain variables were still missing from some unobserved tows after the grooming process. However, the day.no covariate was unaffected in this way because all start dates were present in the records for all unobserved tows.

It was not possible to calculate the values of the $D N$ factor for any CELR recorded tows because start time and end time data were not collected on these forms. Therefore all CELR tows were assigned the day level for $D N$. The effect of wrongly assigning the day level in the four coastal areas would be to reduce the predicted captures because all the $D N$ effects, relative to day, are greater than 1 (see Tables B3, C3, E3, and F3). For the few unobserved TCEPR tows with missing end times or missing end coordinates, it was generally possible to impute the level of $D N$ from adjacent tows or, otherwise, an assumption was made about the likely end time.

Missing values for the duration covariate in CELR tows were replaced by the average tow duration for the record (the total duration divided by the number of tows in the record) with a quarter hour added. For the few unobserved TCEPR recorded tows with missing end times, in most cases, it was possible, as for the $D N$ covariate, to impute the duration from adjacent tow start and end times or, otherwise, an assumption was made about the likely end time and a quarter hour was added.

The d.shore covariate was used only in the models for the CHAT and SBW6 areas and, of these, only the CHAT area had tows recorded on CELR forms. For the unobserved CELR tows, missing values for d.shore were replaced by the median of d.shore for tows with the same target group in the same statistical area.

The few missing values for the gear covariate were replaced by the net type used by the same vessel for tows on adjacent dates. Most missing values for target species in the unobserved data were substituted for during the grooming process. Missing values for targ.g were assigned the majority target group for tows by the vessel on adjacent dates in the same statistical area.

3. RESULTS

3.1 Predicted fur seal captures

In this section we report the predicted fur seal captures and the predicted strike rates for the six modelled fishery areas and for the areas combined (trawl effort south of $40^{\circ} \mathrm{S}$).

3.1.1 East coast Wairarapa and Cook Strait area (ECCO)

Fur seal captures for the ECCO area were difficult to predict from the available observer data because the observer data were unrepresentative of the total unobserved fishing effort. The relative proportions of observed and unobserved tows by target group and day of fishing year differ markedly (Figure B2). Most of the unobserved effort was divided between mid depth and shallow groups, whereas the observed effort was concentrated primarily at the mid depth target group, with little coverage of shallow tows; and observed tows were concentrated in July-September, whereas the unobserved effort was more evenly dispersed throughout the year. The model-based prediction method adjusts the capture estimates for differences between observed and unobserved tows, but there are some limitations when there are groupings. The area also has a large proportion of tows recorded on CELR forms (53%, Table B4), but very few were observed (only 5% of observed tows, Table B4).

Differences between the proportions of observed and unobserved tows among the more commonly targeted shallow group species are very apparent in the ECCO area (Table A3). For tows targeting shallow species, 52 tows were observed (2.5% of all observed tows and no captures were observed). Of the unobserved tows, 44% targeted shallow species so the lack of any real capture information for shallow target species meant that there were large uncertainties associated with the predictions for this area.

Predicted fur seal captures in the ECCO area varied between 30 and 292 over the fishing years (ignoring the very large predicted number of captures for the 1996-97 fishing year) (Table B4). The 1996-97 fishing year had the greatest number of tows (14490) and yet only 9 were observed. As a consequence, a very large standard deviation was associated with the 1997 base capture rate (Table B3) and this resulted in a highly skewed predictive distribution (see Figure B3) for the 1997 total captures. When a distribution is highly skewed to the right the mean is very inflated compared with the median, in this case 606 compared with 179 . The same was true, to a lesser extent, for the 1994-95 fishing year where the mean of the predictive distribution of the number of captures was 163 and the
median 66 . The predictive c.v.s are greater than 80% in the years when there was either 0 or 1 observed fur seal capture, confirming that it is primarily the observed number of captures rather than the observed number of tows that determines the accuracy of predicted captures. The predicted total fur seal captures in the ECCO area over the 12 fishing years was 2105 , but this is inflated by the two fishing years with virtually no observer coverage. If the data for these two years are ignored, the total number of predicted captures is 1336 .

Annual predicted strike rates reveal trends and are not affected by any annual variations in the amounts of effort. They are not standardised indices though, because they may reflect different fishing practices (which may have different capture rates) or different vessels fishing in the different years. The predicted strike rates are plotted, together with their 95% prediction intervals, to show any trends (Figure B4). Other than the strike rate in 1996-97, the trend was relatively flat until the last two years when there seems to have been a real increase in the strike rate. The 2004-05 and 2005-06 predicted strike rates are each significantly different from the all strike rates other than the 1994-95, 1995-96, 1996-97, and the 2001-02 predicted strike rates. The 2001-02 predicted strike rate is significantly different from each of the 1997-98, 1999-2000, and the 2003-04 predicted strike rates. No other pairs of predicted strike rates are significantly different. Here, we say two predicted strike rates are significantly different if the 95% prediction interval for the difference between the two strike rates excludes zero.

The predicted total captures for the 2004-05 and 2005-06 years are larger than those for any of the predicted captures in the preceding years other than 1996-97 (Table B4). Nevertheless, the predictive method has made large adjustments to the predicted total compared with the ratio estimates. This has occurred because a high proportion of the total observed captures was made by a single vessel in each of the two years. The inclusion of vessel-season random effects in the model meant that the high capture rates for the two vessels were not applied to unobserved tows by other vessels in the ECCO area.

Because of the influence of the hoki fishery in the ECCO area, predictions were made of captures and strike rates for the ECCO hoki fishery (all tows targeting hoki) (see Table B5). The same problems with lack of observer coverage applied equally to the hoki fishery. It was clear that a very large proportion of the predicted fur seal captures in the ECCO area came from the hoki fishery. The trends in the hoki fishery strike rates (Figure B5) mimic those for all targets in the area, only scaled by a factor of about 2 because about half the effort targets hoki.

In the observer data, 15% of fur seals captured in the ECCO area were released alive. Most fur seal capture incidents caught one fur seal, though up to four animals were observed caught per tow (Table B2).

3.1.2 Chatham Rise area (CHAT)

Over the 12-year period, effort has reduced from a high of 51310 tows in 1997-98 to a low of 29990 tows in 2005-06 (Table C1). Similar numbers of tows were reported from both form types each fishing year, with 49% of the total dataset effort reported on CELR forms. The annual observer coverage varied from between 2.3% and 6.2%, and reasonable numbers of observed captures in each fishing year, ensured that the c.v.s for the predicted captures and strike rates were not as large for CHAT as for some other areas, ECCO in particular.

The observer coverage was reasonably representative for the gear and day.no covariates, less representative for the $D N$ factor covariate, and non-representative for the targ.g and d.shore covariates (Figure C2). There were particularly large discrepancies between the proportions of observed and unobserved target groups: a few percent of observed tows targeted shallow species compared with more than 50% of unobserved tows, whereas most observer coverage targeted mid depth species (over 50%) and deep species (about 40\%). A finer breakdown of target species between observed and
unobserved tows is given in Table A3. It is the discrepancy in the observed and unobserved proportions of tows targeting shallow species that is the main contribution to the peak, at small distances, in the unobserved d.shore density plot (Figure C2). The model-based approach will correct for the discrepancies in observer coverage, but there is concern that the shallow target species effect was not estimated with any accuracy because few tows targeting shallow species were observed. This concern occurs in the four areas where CELRs were used because they all share the problem of the large discrepancy between observed and unobserved proportions of tows targeting shallow species.

Predicted fur seal captures over the 12 fishing years varied between 721 in 1996-97 and 208 in 2005-06 with 4700 captures in total. All c.v.s were 55% or less (Table C4). Total fishing effort dropped over the 12 year period so there is more variation in the total captures than in the predicted strike rates. Plots of the predictive distributions of the total captures are unremarkable, though the greater accuracy since the $1999-2000$ fishing year is obvious (Figure C3). The predicted strike rates varied between 0.7% and 1.6% and the series appears to show lower strike rates in the second half of the time series, though the c.v.s are large enough for any trend to be not significant (Figure C4). However, the 1996-97 predicted strike rate is significantly different from the predicted 1999-2000, 2001-02, and 2005-06 strike rates. No other pairs of predicted strike rates are significantly different.

Total captures and strike rates were also predicted for the hoki fishery in CHAT (Table C5 and Figure C5). This fishery accounted for less than 40% of the predicted captures in the CHAT area. The predicted strike rates for the hoki fishery were greater than for all targets and also show larger values in the earlier years and the most recent years (Figure C5). There also appears to be an increasing trend in recent years but any apparent trends are not significant because of the size of the c.v.s.

In the observer data, 28% of fur seals captured in the CHAT area were released alive. Most fur seal incidents caught 1 fur seal (table C2).

3.1.3 Sub-Antarctic area (SANT)

Fishing in the SANT area targets mid depth and deep species (only 1% of tows targeted shallow species, Table A3) and no trawl effort was recorded by vessels using CELR forms in the 12 years studied. Total effort remained reasonably constant over the years, varying between about 4000 and almost 7000 tows, with no obvious trend (Table D1). However, a smaller number of vessels was responsible for the effort in recent years. Vessel numbers dropped from 76 in 1994-95 to 47 in 200506.

Observer coverage averaged 16% over the 12 years and was reasonably representative for the four covariates used in the model, DN, gear, targ.g, and duration (Figure D2). Only the proportions of observed and unobserved tows for the squid and scampi target groups differ greatly. However, the spatial distribution of observer coverage does vary between years (Figure D1).

Predicted captures varied between 21 in the 1999-2000 fishing year and 65 in the 2001-02 fishing year (Table D4). A total of 490 fur seal captures was predicted for the 12 years of the study. The c.v.s are quite large because of the relatively few captures observed in each year. The relatively high uncertainties in some years are also obvious in the spread of the plots of the predictive densities of the total captures (Figure D3). Predicted strike rates show a little less variation (between 0.4% and 1.0%, Table D4), but any apparent trends are not significant because of the large uncertainty, as shown by the 95% prediction intervals (Figure D4). No pairs of predicted strike rates are significantly different.

In the SANT area, 39% of all tows targeted squid and predicted captures and strike rates were calculated for the 12 fishing years for this fishery. Predicted fur seal captures from the squid fishery varied between 1 and 36 , and the predicted strike rates appear lower in the later years but not significantly so (Table D5). The c.v.s are generally smaller than for all target species (except for years when no captures were observed) because of the higher observer coverage. This is especially so in 2000-01 when there was 97.5% observer coverage in the squid fishery.

Fur seals are captured in the subantarctic hoki fishery and predicted total captures and strike rates have been obtained for theses fisheries (Table D6).

In the observer data, 19% of fur seals captured in the SANT area were released alive. Most observed incidents caught one fur seal (Table D2).

3.1.4 Stewart-Snares shelf and Puysegur area (STSP)

In the 12 year period, 45% of tows were recorded on CELR forms (Table E1) and most of these targeted shallow species (99% of all CELR recorded tows, Table A3)). Flatfish, in particular, were the target of 77% of CELR tows and the target of 35% of all commercial tows. Commercial effort has dropped over the years from a high of 21331 tows in 1996-97 to 16312 tows in 2005-06, but most of the reduction has occurred in tows recorded on TCEPR forms. The numbers of vessels fishing in the STSP area has also dropped over the years, particularly of vessels using TCEPR forms.

Observer coverage in STSP over the 12 years varied between 2.8% in 1995-96 and more than 16% in 2000-01, though coverage in 8 years from 1998-99 was 8% or more, low compared with some of the other areas. Most observed tows targeted either squid or other mid depth species, as reflected in the distribution of observed tows (Table A3 and Figures E1 \& E2). No CELR tows were observed (Table E4). It is apparent that the observer coverage is not very representative (Figure E2) for the factor subarea (few observed tows in the Otago coast subarea), the target group factor targ.g, and the time of year variable day.no (observed tows more concentrated in the first half of calendar year). The modelbased approach corrects the predicted captures and strike rates, to some extent, for the nonrepresentativeness of observer coverage in the model covariates.

Predicted fur seal captures in the STSP area varied from under 400 for each of the years 2002-03 to 2005-06 to over 1100 in each of 1997-98 and 1998-99 (Table E4). The c.v.s are reasonably constant over the years at about 40%. Plots of the densities of the predictive distributions are unremarkable (Figure E3). Predicted strike rates vary between 1.7% and 5.4% and show an apparent downward trend since the 1998-99 year with the four lowest strike rates occurring in the last four years (Figure E4). The trend is unlikely to be significant because of the relatively large c.v.s (Table E4). The 1997-98 and 1998-99 predicted strike rates are each significantly different from the strike rates other than the 1994-95, 1995-96, 1996-97, and the 2002-03 predicted strike rates. Other pairs of predicted strike rates that are significantly different are: the 1997-98 and 1996-97 predicted strike rates, the 1998-99 and 2002-03 predicted strike rates, and the 2001-02 and 2002-03 predicted strike rates. No other pairs of predicted strike rates are significantly different.

The squid fishery is an important fishery in the STSP area and total captures and strike rates were also predicted for all tows targeting squid (Table E5). This fishery accounted for 40% of the effort and 22% of the predicted captures. The predicted strike rates for the squid fishery were similar to those for all targets, but showed more variation between years (Figure E5). The strike rates show a trend downwards from the 1997-98 year.

Fur seals are captured in the Puysegur and Stewart/Snares hoki fisheries and predicted total captures and strike rates have been obtained for theses fisheries (Tables E6 and E7).

In the observer data, 19% of fur seals captured in the STSP area were released alive. Most fur seal incidents caught one fur seal, with the maximum number of four fur seals per observed tow (Table E2).

3.1.5 West coast South Island area (WCSI)

In the period of this study 50% of all tows in the WCSI were recorded on CELR forms (Table F1) and most of these tows (91%) targeted shallow species (Table A3). Effort in the WCSI area dropped over the years from a high of 22362 tows in 1996-97 to the low of 13609 tows in 2005-06. There was also a corresponding drop in the numbers of vessels fishing in the area, from 81 in 1994-95 to 40 in 2005-06.
Observer coverage in the WCSI area varied between 4.7% in $1994-95$ and 9.2% in 2001-02 (Table F1). Relatively large numbers of captures were observed each year. No tows recorded on CELR forms were observed (Table F4). Coverage was reasonably representative for the subarea factor and for the tow duration covariate (Figure F2). However, there were differences between the proportions of observed and unobserved tows for the levels of the $D N$ factor and large differences for the shallow and mid depth target species, primarily due to the influence of the CELR data in the unobserved tows.

With the large amount of annual fishing effort, relatively high strike rates, and proximity of the fishing activity to numerous fur seal haulouts and rookeries, this area has historically been regarded as the region where the largest numbers of fur seals are captured in trawl fishing gear. This status for the region is confirmed by the model-based predicted fur seal captures for the WCSI area. For the 12 years, the predicted fur seal captures, for all target species combined, varied annually between 1840 in 1995-96 and 573 in 2005-06 and totalled 18908 (Table F4). The c.v.s for the annual totals are relatively small (smaller than the other four multi-target areas), with most in the range of $30-40 \%$, and a c.v. of 20% for the total captures for all years. The density plots of the predictive distributions exhibit similar right skewed shapes with differences, over the years, among the mean predicted captures and their standard deviation (Figure F3). Predicted strike rates varied between 10.2% in 1995-96 and 4.2% in 1994-95 and 2005-06. After the peak in 1995-96, the strike rate series shows a downward trend (Figure F4). With c.v.s around 40% and positive correlation between years, this is unlikely to be significant. However, the 1995-96 strike rate is significantly different from each of the strike rates for 1994-95, 1998-99, 2001-02, 2002-03, 2003-04, and 2005-06. No other pairs of strike rates are significantly different in the WCSI area.

The hoki fishery accounted for 42% of the WCSI tows, 83% of the observed tows, and 85% of observed fur seal captures over the 12 years. Predicted captures for tows targeting hoki varied between 710 in 1995-96 and 96 in 2005-06 and totalled 4485 (Table F5). The c.v.s are smaller than for the captures from all tows, which is to be expected because a high proportion of the observed tows targeted hoki (Table A3). Predicted strike rates for the hoki fishery are smaller than those for all targets because the shallow species group was the target for over 50% of the unobserved tows (Table A3) and the model effect for the group is more than 2.6 relative to the mid depth group (Table F3). The strike rates for the hoki fishery varied between 9.4% in 1995-96 and 2.7% in 2005-06 (Table F5). The apparent downward trend in the hoki strike rate series reflects the influence of the hoki fishery on the strike rate (Figure F5).

In the observer data, 6% of fur seals captured in the WCSI area were released alive. Although most fur seal incidents were of 1 animal, this area had a higher proportion of multiple captures per tow compared with all other areas except SBW6, with a maximum of 12 animals in one tow (Table F2). Since 2002-03, no more than 4 fur seals were observed per tow.

3.1.6 Southern blue whiting fishery area (SBW6)

The effort in the SBW6 fishery area is confined mainly to July to October and all tows were recorded on TCEPR forms (Table G1). Between 9 and 14 vessels reported effort during 1997-98 to 2001-02, and in other years 4-7 vessels were in the fishery. The fishing effort remained reasonably steady (around 500-800 tows) over the 12 year period except for 3 years of relatively high effort of over 1100 tows (1997-98, 1998-99, and 2001-02).

Observer coverage in SBW6 was higher on average (37\%) than for any of the other areas, and varied between 28% in 1998-99 and 58% in 2000-01 (Table G1). Over the 12 fishing years the observer coverage was reasonably representative (Figure G2). However, the spatial coverage differed among the 12 years (Figure G1). In particular, the observer coverage in the Bounty Plateau subarea was much higher than it was in the whole of SBW6 in the 1994-95, 1997-98, 2000-01, and 2005-06 fishing years and much lower than in the whole of SBW6 in the 2001-02, 2002-03, and 2003-04 fishing years. As a result of these discrepancies, major adjustments would have been made to the predicted captures and strike rates from the observed captures and strike rates for the different fishing years (Table G4).

Predicted total fur seal captures in the SBW6 fishery area averaged more than 100 per year and varied between 49 in 2003-04 and 200 in 1998-99. Density plots of the predicted captures illustrate the variation between years (Figure G3). Total predicted captures for the 12 years numbered 1237. Predicted strike rates varied considerably between 28% in $1994-95$ and 6.7% in 2003-04. Much of this was due to variation among the fishing years in the proportions of tows in the high capture rate Bounty Rise subarea. The c.v.s of both the predicted captures and the strike rates are the smallest for any of the areas, reflecting the relatively high observer coverage. There is some evidence of a downward trend in the predicted strike rates (Figure G4), but little can be inferred because the sizes of the strike rates mainly reflect the proportions of tows in the Bounty Plateau subarea. The years with the six highest proportions of tows in the Bounty Plateau subarea are exactly the years with the six highest strike rates. Predicted strike rates are not standardised in the sense of standardised catch per unit effort indices. The base capture rate parameters (Table G3) on the other hand, are open to interpretation as standardised relative strike rates. These show much smaller variation.

In the observer data, 2% of fur seals captured in the SBW6 fishery area were released alive. Up to 22 fur seals were reported per tow in SBW6 and in most years this area had the highest proportion of multiple capture tows relative to single capture tows than any of the other areas.

3.1.7 Total fur seal captures south of $40^{\circ} \mathrm{S}$

The main purpose of this work was to produce a 12 year series of predicted total fur seal captures and of predicted strike rates from trawl fishing in the EEZ south of latitude $40^{\circ} \mathrm{S}$. To achieve this for each fishing year, the mean annual predicted captures from each of the five multi-target species areas and from the southern blue whiting fishery (SBW6) were added together to give the predicted mean captures. The mean predicted strike rate for tows in the six modelled areas was the mean total captures divided by the total tows. The five multi-target areas (and SBW6) do not cover the whole of the EEZ south of $40^{\circ} \mathrm{S}$ (Figure A2, lower panel). In the 12 years, nearly 2500 tows were observed in the region south of $40^{\circ} \mathrm{S}$ but outside the study area and no fur seal captures were observed (Table A4). The observer coverage in the outside region was less than 2% in the 12 year period because there were more than 118000 commercial tows (Table A1). It was assumed therefore, that no fur seals were caught in the outside region and consequently the mean predicted total captures for the modelled areas are assumed to be the totals for all fishing in the EEZ south of $40^{\circ} \mathrm{S}$. However, the strike rates apply to all tows within the six modelled areas only.

Total predicted fur seal captures in New Zealand waters south of $40^{\circ} \mathrm{S}$ varied between 1375 in 200304 and 3710 in 1996-97 (Table A5). Most c.v.s are in the range of $20-24 \%$, but the c.v.s for 1994-95 and 1996-97 are inflated because of the very large c.v.s for the predicted captures in the ECCO area in those years. The mean total predicted captures for those years will also be inflated in those years because of the highly skewed predictive distributions in the ECCO area (Figure B3). The predicted total captures series appears to trend downwards over the years, but the total commercial tows also have a strong downward trend (see Table A1) and much of the trend in total captures is due to this. The predicted total captures for the 12 years in total was 28450 with a c.v. of 15%.

The overall strike rate for the six areas varied between 3.4% in $1996-97$ and 1.6% in $2002-03$, with c.v.s less than 25%, except for 1994-95 and 1996-97 (Table A5). There is some evidence of a downward trend in the overall predicted strike rates, because the strike rates are lower in the second half of the series. The overall predicted strike rate covering all six areas and all twelve years is 2.5% with a c.v. of 15%.
In the observer data, an estimated 14% of fur seals captured inside the EEZ south of $40^{\circ} \mathrm{S}$ were released alive, based on an average weighted over the areas by the predicted total capture numbers given in Table A5.

3.2 Fur seal captures observed in trawl fishing north of $40^{\circ} \mathrm{S}$

A total of 6862 tows was observed in the 12 years, north of $40^{\circ} \mathrm{S}$ and within the EEZ (Table A6). Eleven fur seal captures were observed (six captures from six tows in 2004-05 and five captures from four tows in 2005-06). All were off the west coast of the North Island (Figure A1). Nine of the captures occurred on tows targeting jack mackerels and two occurred on tows targeting barracouta.

Outside the New Zealand EEZ, one fur seal capture was observed in 2005-06 on a tow targeting orange roughy on a seamount in the Louisville chain (Figure A1).

4. DISCUSSION

The use of the model-based prediction method takes care of two shortcomings of the ratio estimate method used in earlier work. The method results in more realistic estimates of the dispersion in the capture estimates because they include the contribution from correlation in capture rate among tows by the same vessel. More important though is that the method adjusts for differences between the observer data and unobserved data in covariates that have been included in the models and therefore compensates, in some part, for the non-representativeness of the observer coverage. Because the observer coverage was very unrepresentative in relation to the target species, it would not have been feasible to use ratio estimators of total captures in the five multi-target species areas. For reference, the ratio estimates were included in the tables giving the predicted total captures, and the twelve year totals differ considerably for the ECCO area (Table B4), the STSP area (Table E4), and the WCSI area (Table F4). There is also a more than 50% difference between the ratio estimated and the predicted 12 year totals for the squid fishery in the STSP area (Table E5).

Application of the model-based prediction method has enabled us to extend the prediction of fur seal captures to all fishing in New Zealand waters south of $40^{\circ} \mathrm{S}$. In earlier work (Baird \& Smith 2007), predictions were made only for specific fisheries restricted by target species and area, which covered a small proportion of the fishing effort (mainly the middle depth fisheries that were primarily targeted for observer coverage). In our approach, we have divided the sub $40^{\circ} \mathrm{S}$ region into five areas covering all target species (except SBW) and one area covering all tows targeting SBW for fitting models and predicting captures. The extension of the models to include all target species has meant that more data were available for fitting, which generally means better fitted models. However, the very large differences between the observed and unobserved proportions of different sized vessels (as indicated
by whether tows were recorded in the commercial data on TCEPR or CELR forms, Tables A3, B4, C4, E4, and F4) and also the corresponding differences among the proportions of target species groups (also apparent from Table A3) is likely to be problematic when predicting captures for unobserved tows, particularly in the four areas with coastal waters adjacent to the South Island. The use of the target group covariate in the models helps correct for these differences by scaling by the target group effects. Of necessity the shallow target group includes a number of species (Table A2), some of which are the target of very few or no observed tows in the area (Table A3). Little is known about the fur seal capture rates for tows targeting these species, and for the prediction procedure all unobserved tows targeting shallow species were scaled by the same effect irrespective of the particular shallow species. This extrapolation needs to be acknowledged as a very real source of possible bias in the prediction of total fur seal captures.

The tows targeting the species of all flatfish are particularly susceptible to this problem. In the four areas with waters adjacent to the South Island, not only are there large numbers of unobserved tows targeting flatfish (16% of all unobserved tows in ECCO, 24% in CHAT, 38% in STSP, and 28% in WCSI, Table A3), but no observed tows targeted flatfish (apart from the 13 flatfish observed tows in the CHAT area). Almost all flatfish tows are recorded on CELR forms, which are returned by the smaller vessels using the smallest nets in commercial fishing operations and occur in the shallowest depths, usually less than 30 m deep. It is not known whether any unobserved flatfish tows have caught a fur seal. It seems therefore that the capture rate effect for flatfish tows is likely to be much smaller than for tows targeting barracouta, which comprises the greatest proportion of the observed tows in the shallow group and therefore contributes the most to the shallow group effects in the models.

As a sensitivity analysis, it was decided (on advice from the Aquatic Environment Working Group) to determine the effect of setting the capture rate for unobserved tows targeting flatfish to zero on the total predicted captures in the four areas with coastal waters. To do this it was not necessary to refit the models for the four areas to the observer data as, in three of the areas no observed tows targeted flatfish and in the fourth, CHAT, less than 0.06% of the observed tows targeted flatfish. Predicted total captures in the four areas were recalculated by setting the capture rate effect of the target group covariate to zero for unobserved tows targeting flatfish.

In the ECCO area, there was virtually no change to the mean total captures of the predictive distribution (comparing Table A7 with Table A5). This was to be expected because, in the ECCO area, no observed tow with a target species in the shallow group caught a fur seal and therefore the shallow group effect for the targ.g covariate is close to zero (Table B2). However, for the other three areas, the changes were much more dramatic. In the CHAT area, the mean of the predicted total captures over the 12 years dropped by 20% from 4688 to 3733 , with the totals for each fishing year dropping by between 38 captures (in 2004-05) and 155 captures (in 1998-99). In the WCSI area, the mean of the predicted total captures over the twelve years dropped by 32% from 12851 to 8758 , with the totals for each fishing year dropping by between 193 captures (in 2003-04) and 648 captures (in 1996-97). Proportionally the reductions in the mean predicted captures were greatest in the STSP area (to be expected because the area had the largest proportion of tows targeting flatfish). The mean predicted total captures over the 12 years dropped by 44% from 7080 to 3965 , with the totals for each fishing year dropping by between 146 captures (in 2005-06) and 506 captures (in 1997-98). The mean predicted total captures for all fishing south of 40° S over the 12 years dropped by 29% from 28450 to 20283 , with the totals for each fishing year dropping by between 412 captures (in 2002-03) and 1063 captures (in 1997-98).

No modelling of live and dead captures was carried out. The overall estimate of proportion of fur seal captures that were released alive (14%) is an average weighted by the total predicted captures for each area. If, as might well be the case, target species is related to whether a captured fur seal is alive or not, then this estimate may not be the most accurate. As has been emphasised in the earlier paragraphs, the proportions of observed tows by target species group are very different from the proportions in the unobserved tows (Table A3) in the four areas adjacent to the South Island where most captures
occurred. Other variables that might affect whether a captured fur seal is alive include depth of trawl, location, net type, and time of day.

Great care should be taken in interpreting the effects of the covariates because the covariates themselves are likely to be standing in for other important predictor variables for which no observer data have been collected throughout the time series (possible examples: fur seal abundance by time and location, climate variables, offal discharge, and fishing strategy). There are also some variables, which have observer data available, that have not been considered as covariates because there are no data available for the unobserved tows. The inclusion of a covariate in the model does not imply any cause and effect relationship between the covariate and fur seal captures, but only a statistical association between the covariate and capture rates.

5. ACKNOWLEDGMENT

This work was funded by the Ministry of Fisheries under project PRO2006/05, Objective 1.

6. REFERENCES

Baird, S.J. (2008). Incidental capture of New Zealand fur seals (Arctocephalus forsteri) in longline fisheries in New Zealand waters, 2003-04 and 2004-05. New Zealand Aquatic Environment and Biodiversity Report No. 20. 21 p.
Baird, S.J.; Smith, M.H. (2007). Incidental capture of New Zealand fur seals (Arctocephalus forsteri) in commercial fisheries in New Zealand waters, 2003-04 and 2004-05. New Zealand Aquatic Environment and Biodiversity Report No. 14.98 p.
Geweke, J. (1992). Evaluating the accuracy of sampling-based approaches to calculation of posterior moments. In Bayesian Statistics 4, Bernardo, J.M.; Berger, J.O.; Dawid, A.P.; Smith, A.F.M (eds.), Oxford University Press, Oxford, pp. 163-193.
Heidelberger, P.; Welch, P.D. (1983). Simulation run length control in the presence of an initial transient. Operations Research 31: 585-595.
Mattlin, R.H. (1987). New Zealand fur seal, Arctocephalus forsteri, within the New Zealand region. In, Croxall, J.P.; Gentry, R.L. (eds.), Status, biology, and ecology of fur seals. Proceedings of an international symposium and workshop, Cambridge, England, 23-27 April 1984, pp. 49-51. NOAA Technical Report NMFS 51.
Mattlin, R.H. (1994). Incidental catch of fur seals in the west coast South Island hoki trawl fishery, 1989-92. New Zealand Fisheries Assessment Research Document 93/19. 18 p. (Unpublished report held in NIWA library, Wellington.)
Ministry of Fisheries (2008): Report from the Fishery Assessment Plenary, May 2008: stock assessments and yield estimates. Ministry of Fisheries. 990 p.
Mormede, S.; Baird, S.J. Smith, M. H. (2008). Factors that may influence the probability of fur seal capture in selected New Zealand Fisheries. New Zealand Aquatic Environment and Biodiversity Report No. 19. 42 p.
R Development Core Team (2008). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org.
Smith, M.H.; Baird, S.J. (2007). Estimation of incidental captures of New Zealand sea lions (Phocarctos hookeri) in New Zealand fisheries in 2004-05, with particular reference to the SQU 6T squid trawl fishery. New Zealand Aquatic Environment and Biodiversity Report 2007/12. 31 p.
Spiegelhalter, D.J.; Best, N.G.; Carlin, B.P.; van der Linde, A. (2002). Bayesian measures of model complexity and fit (with discussion). Journal of the Royal Statistical Society B 64: 583-639.
Spiegelhalter, D.J.; Thomas, A.; Best, N.; Gilks, W.; Lunn, D. (2003). BUGS: Bayesian inference using Gibbs sampling. MRC Biostatistics Unit, Cambridge, England.
http://www.mrc-bsu.cam.ac.uk/bugs/

APPENDIX A: TABLES AND FIGURES RELATING TO NEW ZEALAND FUR SEAL CAPTURES FOR ALL AREAS

Table A1: Observed and commercial effort by fishing year for the six areas.
Observed tows

Year	ECCO	CHAT	SANT	STSP	WCSI	SBW6	All areas	Other*	Total
$1994-95$	53	1857	417	703	932	240	4202	824	5026
$1995-96$	60	1153	678	540	1204	144	3779	593	4372
$1996-97$	9	1028	1019	882	998	249	4185	593	4778
$1997-98$	227	2456	726	1252	1101	418	6180	654	6834
$1998-99$	376	1862	477	1724	1585	342	6366	892	7258
$1999-00$	214	1751	1163	1734	1233	316	6411	1240	7651
$2000-01$	279	2597	994	3181	1298	388	8737	378	9115
$2001-02$	318	1945	1127	1847	1425	333	6995	724	7719
$2002-03$	149	2138	882	1525	1014	279	5987	853	6840
$2003-04$	131	1536	1355	1299	1402	251	5974	575	6549
$2004-05$	157	1927	1243	2015	1245	337	6924	788	7712
$2005-06$	78	1681	1054	1402	1180	217	5612	1240	6852
All	2051	21931	11135	18104	14617	3514	71352	9354	80706

Commercial tows

Year	ECCO	CHAT	SANT	STSP	WCSI	SBW6	All areas	Other †	Total
$1994-95$	11799	44395	6182	17664	19636	460	100136	11337	111473
$1995-96$	14393	42975	6972	19014	18080	583	102017	11083	113100
$1996-97$	14490	45421	6321	21331	22362	618	110543	11524	122067
$1997-98$	11207	51310	4595	20691	17750	1181	106734	11499	118233
$1998-99$	10123	47554	3933	20861	21248	1243	104962	9423	114385
$1999-00$	9477	43562	5706	17345	16930	694	93714	8744	102458
$2000-01$	8283	41581	4914	19355	18731	664	93528	8200	101728
$2001-02$	7046	36011	6635	19326	15511	1159	85688	9444	95132
$2002-03$	7953	39715	6500	18985	16019	638	89810	9948	99758
$2003-04$	7783	32867	6840	16898	15406	740	80534	9708	90242
$2004-05$	6482	33028	6108	17736	13726	870	77950	9482	87432
$2005-06$	4991	29990	5189	16312	13609	623	70714	7736	78450
All	114027	488409	69895	225518	209008	9473	1116330	118128	1234458

[^0]
APPENDIX A - continued

Table A2: Target species groups by common name, scientific name, and code.

Group	Common name	Scientific name	Code
shallow	Albacore tuna	Thunnus alalunga	ALB
	Barracouta	Thyrsites atun	BAR
	Blue cod	Parapercis colias	BCO
	Blue shark	Prionace glauca	BWS
	Blue warehou	Seriollela brama	WAR
	Brill	Colistium guntheri	BRI
	Elephantfish	Callorhinchus milii	ELE
	Flatfish		FLA
	Frostfish	Lepidopus caudatus	FRO
	Hapuku	Polyprion spp.	HAP
	Gemfish	Rexea solandri	SKI
	Ghost shark	Hydrolagus novaezealandiae, H. bemisi	GSH
	John dory	Zeus faber	JDO
	Kahawai	Arripis trutta	KAH
	Leatherjacket	Parika scaber	LEA
	Lookdown dory	Cyttus traversi	LDO
	Moki	Latridopsis ciliaris	MOK
	Orange perch	Lepidoperca aurantia	OPE
	Queen scallop	Chlamys delicatula	QSC
	Ray's bream	Brama brama	RBM
	Red cod	Pseudophycis bachus	RCO
	Ribaldo	Mora moro	RIB
	Rig	Mustelus lenticulatus	SPO
	Rubyfish	Plagiogeneion rubiginosum	RBY
	School shark	Galeorhinus galeus	SCH
	Sea perch	Helicolenus spp.	SPE
	Silver dory	Cyttus novaezealandiae	SDO
	Silver warehou	Seriolella punctata	SWA
	Skate	Rajidae Arhynchobatidae	SKA
	Snapper	Pagrus auratus	SNA
	Spiny dogfish	Squalus acanthias	SPD
	Stargazer	Kathetostoma giganteum	STA
	Red gurnard	Chelidonichthys kumu	GUR
	Tarakihi	Nemadactylus macropterus	TAR
	Trevally	Pseudocaranx dentex	TRE
mid water	Hake	Merluccius australis	HAK
	Hoki	Macruronus novaezelandiae	HOK
	Ling	Genypterus blacodes	LIN
	Javelinfish	Lepidorhynchus dentculatus	JAV
	Mackerels	Trachurus declivis, T. murphyi, T. novaezelandiae, Scomber australasicus	JMA
	Scampi	Metanephrops challengeri	SCI
	Squid	Nototodarus sloanii, N. gouldi	SQU
	White warehou	Seriolella caerulea	WWA
deep	Alfonsino	Beryx splendens, B. decadactylus	BYX
	Bluenose	Hyperoglyphe antarctica	BNS
	Cardinalfish	Epigonus telescopus	CDL
	Orange roughy	Hoplostethus atlanticus	ORH
	Oreos	Allocytus niger, Neocyttus rhomboidalis, Pseudocyttus maculatus	OEO
	Patagonian toothfish	Dissostichus eleginoides	PTO

APPENDIX A - continued

Table A3: Comparison of numbers of observed and unobserved tows targeting various species in the four coastal areas and the SANT area for the fishing years $\mathbf{1 9 9 4 - 9 5}$ to $\mathbf{2 0 0 5 - 0 6}$. Tows in each area are categorised as observed tows, unobserved tows recorded on TCEPR forms, or unobserved tows recorded on CELR forms. All tows (observed or unobserved) in the commercial data for the SANT area were recorded on TCEPR forms. Quantities in parentheses are numbers of tows expressed as percentages of all tows in the column.

Target species	ECCO area			CHAT area		
	Observed	Uob TCEPR	Uob CELR	Observed	Uob TCEPR	Uob CELR
Barracouta	0	558 (1.1)	5229 (8.7)	375 (1.7)	11683 (5.1)	10288 (4.3)
Flatfish	0	35 (0.1)	18085 (30)	13 (0.1)	21 (0.0)	111956
Redcod	0	48 (0.1)	5162 (8.6)	32 (0.1)	10277 (4.5)	81935 (34)
Stargazer	0	2 (0.0)	44 (0.1)	0	574 (0.3)	1835 (0.8)
Tarakihi	19 (0.9)	606 (1.2)	8831 (15)	7 (0.0)	1648 (0.7)	10991 (4.6)
other shallow*	33 (1.6)	1253 (2.4)	9889 (16)	90 (0.4)	3054 (1.3)	12905 (5.4)
Hoki	1605 (78)	42742 (82)	12254 (20)	10777 (49)	113986 (50)	1637 (0.7)
Mackerel	0	14 (0.0)	25 (0.0)	369 (1.7)	3913 (1.7)	78 (0.0)
Scampi	339 (17)	2007 (3.9)	36 (0.1)	1398 (6.4)	10856 (4.8)	147 (0.1)
Squid	0	5 (0.0)	25 (0.0)	358 (1.6)	17844 (7.8)	2807 (1.2)
other mid depth*	0	32 (0.1)	75 (0.1)	141 (0.6)	5488 (2.4)	319 (0.1)
deep*	55 (2.7)	4643 (8.9)	377 (0.6)	8371 (38)	48768 (21)	3945 (1.7)
All	2051 (100)	51945 (100)	60032 (100)	21931 (100)	228112 (100)	238843 (100)
			STSP area			WCSI area
Target species	Observed	Uob TCEPR	Uob CELR	Observed	Uob TCEPR	Uob CELR
Barracouta	667 (3.7)	4382 (4.1)	168 (0.2)	258 (1.8)	2745 (3.0)	19498 (19)
Flatfish	0	21 (0.0)	78201 (77)	0	111 (0.1)	55281 (53)
Redcod	2 (0.0)	1005 (0.9)	1507 (1.5)	0	141 (0.2)	7327 (7.0)
Stargazer	0	58 (0.1)	18037 (18)	0	285 (0.3)	1551 (1.5)
Tarakihi	0	3 (0.0)	248 (0.2)	13 (0.1)	721 (0.8)	7768 (7.5)
other shallow*	306 (1.7)	4379 (4.1)	2365 (2.3)	54 (0.4)	1101 (1.2)	2709 (2.6)
Hoki	4288 (24)	36434 (34)	0	12165 (83)	70496 (78)	5699 (5.5)
Mackerel	1343 (7.4)	4950 (4.7)	0	668 (4.6)	6249 (6.9)	23 (0.0)
Scampi	3 (0.0)	353 (0.3)	611 (0.6)	2 (0.0)	70 (0.1)	2 (0.0)
Squid	10064 (56)	44405 (42)	35 (0.0)	0	145 (0.2)	70 (0.1)
other mid depth*	562 (3.1)	5325 (5.0)	498 (0.5)	680 (4.7)	4446 (4.9)	449 (0.4)
deep*	869 (4.8)	4478 (4.2)	125 (0.1)	777 (5.3)	3868 (4.3)	3753 (3.6)
All	18104 (100)	105793 (100)	101795 (100)	14617 (100)	90378 (100)	104130 (100)

		SANT area	
Target species	Observed	Uob TCEPR	
Barracouta	$4(0.0)$	$6(0.0)$	
Flatfish	0	0	
Redcod	0	$41(0.1)$	
Stargazer	0	0	
Tarakihi	0	$1(0.0)$	
other shallow*	$4(0.0)$	$33(0.1)$	
Hoki	$1555(14)$	$10613(18)$	
Mackerel	$18(0.2)$	$15(0.0)$	
Scampi	$1277(11)$	$15081(26)$	
Squid	$6400(57)$	$21081(36)$	
other mid depth*	$26(0.2)$	$1259(2.1)$	
deep*	$1851(17)$	$10717(18)$	
All	$11135(100)$	$58847(100)$	

* other shallow species: ALB, BCO, BRI, BWS, ELE, FRO, GSH, GSP, GUR, HAP, HPB, JDO, LDO, KAH, LEA, MOK, OPE, QSC, RBM, RBY, RIB, SCH, SDO, SKA, SKI, SNA, SPD, SPE, SPO, TRE, SWA, WAR.
other mid depth species:
HAK, JAV, LIN, WWA.
deep species:
BNS, BYX, CDL, OEO, ORH, PTO.

APPENDIX A - continued

Table A4: Observed tows by fishing year and FMA outside the six areas, within the EEZ, and south of $40^{\circ} \mathrm{S}$. No fur seal captures were observed.

Year	FMA2	FMA5	FMA6	FMA7	FMA8	Total
$1994-95$	111	1	14	30	51	207
$1995-96$	39		30	44	16	129
$1996-97$	13	29	48	49	28	167
$1997-98$	89	89	41	12	17	248
$1998-99$	221	45	48	44	14	372
$1999-00$	164	62	157	40	7	430
$2000-01$	59	12		46	26	143
$2001-02$	52	110	38	7	44	251
$2002-03$	46	64	27	34	53	224
$2003-04$		25	16	3	2	46
$2004-05$	16	7	7	49	44	123
$2005-06$	5		8	67	72	152
All	815	444	434	425	374	2492

Table A5: Predicted fur seal captures and strike rates by fishing year for the six areas. All c.v.s are percentages.

Area	ECCO		CHAT		SANT		STSP		WCSI		SBW6		All areas	
Predicted fur seal captures														
Fish. year	Caps	c.v.												
1994-95	163	290	357	55	45	72	561	47	829	41	130	20	2085	32
1995-96	164	97	449	50	55	66	605	44	1840	34	89	41	3202	23
1996-97	606	347	721	52	36	61	547	46	1733	36	67	34	3710	60
1997-98	30	86	443	50	43	116	1118	40	1475	34	111	17	3219	22
1998-99	130	42	716	50	30	73	1134	35	1051	35	200	33	3260	20
1999-00	34	91	292	53	21	79	526	40	1200	33	181	33	2253	21
2000-01	96	40	372	52	27	98	453	33	1098	32	79	16	2124	20
2001-02	202	55	246	54	65	124	740	39	865	35	118	40	2236	21
2002-03	63	74	305	45	34	102	316	41	665	40	53	54	1436	23
2003-04	36	98	258	47	59	59	379	44	593	41	49	37	1375	24
2004-05	289	44	322	53	52	84	343	38	929	38	88	34	2022	21
2005-06	292	60	208	48	24	52	358	39	573	44	73	18	1528	23
All	2105	105	4688	38	490	37	7080	29	12851	20	1237	13	28450	15
Predicted strike rate (\%)														
Fish. year	Rate	c.v.												
1994-95	1.4	289	0.8	54	0.7	68	3.2	47	4.2	40	28.4	15	2.1	32
1995-96	1.1	96	1.0	50	0.8	63	3.2	44	10.2	34	15.2	34	3.1	23
1996-97	4.2	344	1.6	52	0.6	58	2.6	46	7.7	35	10.8	26	3.4	60
1997-98	0.3	84	0.9	49	0.9	115	5.4	39	8.3	33	9.4	13	3.0	22
1998-99	1.3	41	1.5	49	0.8	61	5.4	35	4.9	35	16.1	30	3.1	20
1999-00	0.4	89	0.7	53	0.4	76	3.0	40	7.1	33	26.0	29	2.4	21
2000-01	1.2	39	0.9	52	0.5	96	2.3	33	5.9	32	11.9	11	2.3	20
2001-02	2.9	54	0.7	54	1.0	109	3.8	38	5.6	34	10.2	34	2.6	20
2002-03	0.8	72	0.8	45	0.5	98	1.7	40	4.2	40	8.3	40	1.6	23
2003-04	0.5	96	0.8	46	0.9	56	2.2	43	3.8	41	6.7	30	1.7	23
2004-05	4.5	43	1.0	53	0.8	83	1.9	38	6.8	37	10.1	30	2.6	21
2005-06	5.9	60	0.7	48	0.5	46	2.2	39	4.2	43	11.8	12	2.2	23
All	1.8	104	1.0	38	0.7	35	3.1	29	6.1	20	13.1	11	2.5	15

APPENDIX A - continued

Table A6: Observed tows and observed fur seal captures by fishing year and FMA within the EEZ and north of $40^{\circ} \mathrm{S}$. Numbers of fur seal captures are in parentheses.

Year	FMA 1	FMA 2	FMA 7	FMA 8	FMA 9	FMA 10	Total
$1994-95$	49	239	29	300			617
$1995-96$	344	55	15	47	3		464
$1996-97$	214	107	18	62	25		426
$1997-98$	153	42	12	87	96	16	406
$1998-99$	211	213	38	35	23		520
$1999-00$	486	177	7	22	118		810
$2000-01$		181	11	43			235
$2001-02$	171	69	29	34	170		473
$2002-03$	242	48	29	102	208		629
$2003-04$	180		2	51	296		529
$2004-05$	100	14	$83(1)$	$158(1)$	$310(4)$		$665(6)$
$2005-06$	365	5	37	$388(4)$	$293(1)$		$1088(5)$
All	2515	1150	$310(1)$	$1329(5)$	$1542(5)$	16	$6862(11)$

Table A7: Predicted fur seal captures by fishing year for the six areas and in total, assuming all tows targeting flatfish (FLA) have a zero capture rate. All c.v.s are percentages.

	ECCO		CHAT		SANT		STSP		WCSI		SBW6		All areas	
Fish. year	Caps	c.v.	Caps	.v.										
1994-95	162	270	286	49	45	72	319	38	542	39	130	20	1485	35
1995-96	163	96	354	41	55	66	323	34	1264	30	89	41	2248	20
1996-97	605	337	597	48	36	61	287	36	1085	32	67	34	2676	78
1997-98	30	84	364	42	43	116	612	28	997	31	111	17	2156	18
1998-99	130	42	561	44	30	73	661	23	683	31	200	33	2264	16
1999-00	33	90	226	47	21	79	305	30	928	31	181	33	1695	19
2000-01	96	40	304	46	27	98	270	23	797	30	79	16	1572	18
2001-02	202	53	195	49	65	124	430	27	646	31	118	40	1656	17
2002-03	62	70	238	37	34	102	168	29	470	37	53	54	1024	21
2003-04	35	93	201	40	59	59	192	33	400	38	49	37	937	20
2004-05	288	43	239	43	52	84	187	26	606	35	88	34	1460	19
2005-06	292	64	170	42	24	52	212	31	339	39	73	18	1110	23
All	2099	104	3733	29	490	37	3965	14	8758	15	1237	13	20283	14

APPENDIX A - continued

Figure A1: Start positions of observed tows in the fishing years 1994-95 to 2005-06, before and after data grooming. Also shown are the boundaries of the 5 multi-species areas, with their names given in the upper panel. The start positions of tows with observed fur seal incidents (at least one capture) are shown in the lower panel.

TCEPR tow positions, before grooming

TCEPR tow positions, after grooming

Figure A2: Start positions of Trawl Catch Effort Processing Return (TCEPR) tows for the fishing years 1994-95 to 2005-06, before and after data grooming.

APPENDIX B: EAST COAST WAIRARAPA AND COOK STRAIT AREA (ECCO)

Table B1: Observed and commercial effort and observed fur seal captures, by fishing year, for the ECCO area.

Observed						
				Coverage	Fur seal	Obs. strike
Fishing year	Vessels	Trips	Tows	(\%)	captures	rate(\%)
1994-95	4	5	53	0.4	0	0.0
1995-96	8	8	60	0.4	1	1.7
1996-97	2	3	9	0.1	0	0.0
1997-98	12	13	227	2.0	1	0.4
1998-99	17	20	376	3.7	12	3.2
1999-00	11	11	214	2.3	1	0.5
2000-01	11	13	279	3.4	11	3.9
2001-02	13	14	318	4.5	23	7.2
2002-03	8	9	149	1.9	4	2.7
2003-04	7	7	131	1.7	1	0.8
2004-05	12	15	157	2.4	33	21.0
2005-06	8	8	78	1.6	19	24.4
All	49	126	2051	1.8	106	5.2

Commercial

Fishing year	TCEPR forms		CELR forms		All forms	
	Vessels	Tows	Vessels	Tows	Vessels	Tows
1994-95	45	4637	67	7162	110	11799
1995-96	57	7709	62	6684	118	14393
1996-97	52	7778	57	6712	107	14490
1997-98	46	5240	51	5967	94	11207
1998-99	36	4748	48	5375	84	10123
1999-00	36	4381	54	5096	89	9477
2000-01	38	4005	46	4278	84	8283
2001-02	32	3041	43	4005	75	7046
2002-03	35	3797	44	4156	79	7953
2003-04	30	3253	48	4530	78	7783
2004-05	26	3150	45	3332	71	6482
2005-06	25	2141	33	2850	58	4991
All	88	53880	151	60147	219	114027

APPENDIX B - continued

Table B2: Comparison of observed and expected fur seal capture frequencies for the observer data in the ECCO area.

Observed numbers of tows

	Number of fur seal captures per tow				
Year	0	1	2	3	4
$1994-95$	53				
$1995-96$	59	1			
$1996-97$	9				
$1997-98$	225	1		1	
$1998-99$	366	9			
$1999-00$	213	1			
$2000-01$	269	9	1		
$2001-02$	297	19	2		
$2002-03$	146	2	1		
$2003-04$	130	1			
$2004-05$	137	11	5	4	
$2005-06$	66	7	4		1

Expected numbers of tows

	Number of fur seal captures per tow				
	0	1	2	3	$4+$
$1994-95$	53	0.2	0.0	0.0	0.0
$1995-96$	59	1.1	0.1	0.0	0.0
$1996-97$	9	0.0	0.0	0.0	0.0
$1997-98$	224	1.9	0.1	0.0	0.0
$1998-99$	366	9.3	0.9	0.2	0.1
$199-00$	212	1.7	0.1	0.0	0.0
$2000-01$	269	9.0	0.9	0.1	0.0
$2001-02$	301	13.4	2.5	0.8	0.5
$2002-03$	145	3.6	0.3	0.0	0.0
$2003-04$	129	1.5	0.1	0.0	0.0
$2004-05$	136	14.2	3.9	1.4	1.1
$2005-06$	67	7.2	2.0	0.7	0.8

APPENDIX B - continued

Table B3: Characteristics of the posterior distribution of the parameters in the fitted model for the ECCO area.

Parameter	Mean	sd	Median	95% credibility interval	
1995 base capture rate (\%)	1.26	3.34	0.48	0.02	7.05
1996 base capture rate (\%)	0.64	0.71	0.44	0.05	2.41
1997 base capture rate (\%)	2.54	10.45	0.70	0.02	15.08
1998 base capture rate (\%)	0.20	0.20	0.15	0.02	0.70
1999 base capture rate (\%)	1.01	0.61	0.87	0.30	2.58
2000 base capture rate (\%)	0.29	0.31	0.20	0.03	1.11
2001 base capture rate (\%)	0.85	0.50	0.73	0.24	2.12
2002 base capture rate (\%)	3.46	2.00	3.00	1.09	8.37
2003 base capture rate (\%)	0.59	0.47	0.46	0.10	1.87
2004 base capture rate (\%)	0.33	0.36	0.23	0.03	1.17
2005 base capture rate (\%)	3.68	1.90	3.28	1.23	8.44
2006 base capture rate (\%)	5.16	3.27	4.41	1.36	13.52
DN dusk	7.24	5.51	5.93	1.36	20.62
DN night	7.75	2.61	7.28	4.03	14.28
DN dawn	6.08	4.26	5.10	1.30	17.32
target shallow	0.06	0.42	0.00	0.00	0.49
target deep	0.06	0.59	0.00	0.00	0.49
target scampi	0.15	0.17	0.10	0.01	0.62
sin(day.no) coefficient	-1.52	1.10	-1.47	-3.83	0.48
cos(day.no) coefficient	2.10	1.01	2.04	0.29	4.29
Vessel-season effects variance	0.67	0.37	0.60	0.13	1.57
Extra-dispersion variance	1.46	0.65	1.37	0.44	2.94

APPENDIX B - continued

Table B4: Observer data capture details and characteristics of the predictive distribution of the total number of fur seals captured, by fishing year, for all tows in the ECCO area

Observed

Fishing year	Tows	CELR tows	Coverage (\%)	Captures	Obs. strike rate(\%)	Ratio est. captures
1994-95	53	0	0.4	0	0.0	0
1995-96	60	6	0.4	1	1.7	240
1996-97	9	0	0.1	0	0.0	0
1997-98	227	0	2.0	1	0.4	49
1998-99	376	11	3.7	12	3.2	323
1999-00	214	8	2.3	1	0.5	44
2000-01	279	0	3.4	11	3.9	327
2001-02	318	55	4.5	23	7.2	510
2002-03	149	0	1.9	4	2.7	214
2003-04	131	4	1.7	1	0.8	59
2004-05	157	31	2.4	33	21.0	1362
2005-06	78	0	1.6	19	24.4	1216
All	2051	115	1.8	106	5.2	4344

Predicted

Fishing year	Tows	$\begin{array}{r} \text { CELR } \\ \text { tows (\%) } \end{array}$	Predicted fur seal captures				Predicted strike rate	
			Captures	c.v. (\%)	95\% pre	interval	Rate (\%)	c.v. (\%)
1994-95	11799	60.7	163	290	2	865	1.4	289
1995-96	14393	46.4	164	97	15	573	1.1	96
1996-97	14490	46.3	606	347	5	3593	4.2	344
1997-98	11207	53.2	30	86	4	97	0.3	84
1998-99	10123	53.1	130	42	59	264	1.3	41
1999-00	9477	53.8	34	91	4	114	0.4	89
2000-01	8283	51.6	96	40	44	188	1.2	39
2001-02	7046	56.8	202	55	90	453	2.9	54
2002-03	7953	52.3	63	74	15	183	0.8	72
2003-04	7783	58.2	36	98	4	118	0.5	96
2004-05	6482	51.4	289	44	126	606	4.5	43
2005-06	4991	57.1	292	60	106	711	5.9	60
All	114027	52.7	2105	105	987	5939	1.8	104

APPENDIX B - continued

Table B5: Observer data capture details and characteristics of the predictive distribution of the total number of fur seals captured, by fishing year, for tows targeting hoki (HOK) in the ECCO area

Observed

		Coverage			
Fishing year	Tows	Obs. strike rate(\%)		Ratio est. captures	
Captures					
$1994-95$	0	0.0		2.4	218
$1995-96$	41	0.5	1		
$1996-97$	0	0.0			26
$1997-98$	226	3.9	1	0.4	26
$1998-99$	295	6.1	12	4.1	197
$1999-00$	165	3.5	1	0.6	28
$2000-01$	263	6.4	11	4.2	172
$2001-02$	145	5.8	20	13.8	344
$2002-03$	135	3.5	4	3.0	115
$2003-04$	131	3.3	1	0.8	30
$2004-05$	139	4.9	33	23.7	676
$2005-06$	65	3.6	19	29.2	535
All	1605	2.8	103	6.4	2341

Predicted

Fishing year	Tows	$\begin{array}{r} \text { CELR } \\ \text { tows (\%) } \end{array}$	Predicted fur seal captures				Predicted strike rate	
			Captures	c.v. (\%)	95\% pre	interval	Rate (\%)	c.v. (\%)
1994-95	4923	34.2	163	279	2	909	3.3	281
1995-96	8935	21.5	162	97	15	565	1.8	96
1996-97	8271	15.6	615	399	6	3447	7.4	404
1997-98	5870	22.3	30	86	3	97	0.5	84
1998-99	4852	17.4	128	41	60	254	2.6	40
1999-00	4694	23.4	33	89	4	108	0.7	87
2000-01	4103	23.4	94	40	42	185	2.3	39
2001-02	2494	19.5	191	58	83	438	7.7	57
2002-03	3873	23.8	62	71	15	168	1.6	70
2003-04	3926	27.7	35	95	4	119	0.9	94
2004-05	2846	15.4	280	46	119	577	9.8	45
2005-06	1830	16.9	287	62	103	708	15.7	62
All	56617	21.8	2079	122	967	5703	3.7	124

Trawl effort in ECCO, 1994-95 to 2005-06

Figure B1: Plot of start positions of commercial tows, observed tows, and observed fur seal incidents by fishing year for the ECCO area.

APPENDIX B - continued

Covariates in ECCO, 1994-95 to 2005-06

Figure B2: Bar and density plots for the fixed covariates used in the model for fur seal captures in the ECCO area.

APPENDIX B - continued

Figure B3: Plots of the predictive densities, by fishing year, for fur seal captures for all tows in the ECCO area.

ECCO, tows targeting any species

Figure B4: Predicted strike rates, with 95% prediction intervals, by fishing year, for all tows in the ECCO area.

ECCO, tows targeting hoki

Figure B5: Predicted strike rates, with $\mathbf{9 5 \%}$ prediction intervals, by fishing year, for tows targeting hoki (HOK) in the ECCO area.

APPENDIX C: CHATHAM RISE AREA (CHAT)

Table C1: Observed and commercial effort and observed fur seal captures, by fishing year, for the CHAT area.

Observed				Coverage		
Fishing year	Vessels	Trips	Tows seal Obs. strike			
(\%)	captures	rate(\%)				
$1994-95$	21	34	1857	4.2	10	0.5
$1995-96$	17	23	1153	2.7	16	1.4
$1996-97$	20	24	1028	2.3	18	1.8
$1997-98$	29	36	2456	4.8	8	0.3
$1998-99$	33	35	1862	3.9	22	1.2
$1999-00$	28	32	1751	4.0	6	0.3
$2000-01$	33	49	2597	6.2	15	0.6
$2001-02$	31	36	1945	5.4	8	0.4
$2002-03$	34	44	2138	5.4	16	0.7
$2003-04$	24	33	1536	4.7	17	1.1
$2004-05$	22	32	1927	5.8	17	0.9
$2005-06$	24	34	1681	5.6	16	1.0
All	102	404	21931	4.5	169	0.8

Commercial						
	TCEPR forms		CELR forms		All forms	
Fishing year	Vessels	Tows	Vessels	Tows	Vessels	Tows
1994-95	101	21574	118	22821	219	44395
1995-96	115	23004	113	19971	227	42975
1996-97	110	23532	113	21889	222	45421
1997-98	109	28043	101	23267	208	51310
1998-99	99	24554	108	23000	206	47554
1999-00	81	22671	104	20891	185	43562
2000-01	75	20829	96	20752	171	41581
2001-02	70	18402	92	17609	162	36011
2002-03	76	20269	86	19446	162	39715
2003-04	67	16404	95	16463	162	32867
2004-05	64	15062	89	17966	153	33028
2005-06	63	14917	74	15073	137	29990
All	189	249261	233	239148	410	488409

APPENDIX C - continued

Table C2: Comparison of observed and expected fur seal capture frequencies for the observer data in the CHAT area.

Observed numbers of tows

	Number of fur seal captures per tow				
Year	0	1	2	3	4
$1994-95$	1849	6	2		
$1995-96$	1139	12	2		
$1996-97$	1012	14	2		
$1997-98$	2447	8			
$1998-99$	1840	22			
$1999-00$	1746	4	1		
$2000-01$	2583	13	1		
$2001-02$	1937	8			
$2002-03$	2121	11	1	1	
$2003-04$	1520	15	1		
$2004-05$	1913	11	3		
$2005-06$	1669	10	1		1

Expected numbers of tows

	Number of fur seal captures per tow				
	0	1	2	3	$4+$
$1994-95$	1848	8.3	0.9	0.2	0.1
$1995-96$	1140	11.6	1.2	0.2	0.1
$1996-97$	1014	12.0	1.3	0.3	0.1
$1997-98$	2446	8.7	0.4	0.1	0.0
$1998-99$	1845	15.1	1.6	0.4	0.2
$1999-00$	1744	7.0	0.4	0.1	0.0
$2000-01$	2583	12.5	0.9	0.1	0.1
$2001-02$	1936	8.5	0.7	0.1	0.1
$2002-03$	2120	12.3	1.3	0.3	0.2
$2003-04$	1521	12.6	1.7	0.4	0.3
$2004-05$	1914	10.7	1.3	0.3	0.2
$2005-06$	1667	11.8	1.4	0.4	0.3

APPENDIX C - continued

Table C3: Characteristics of the posterior distribution of the parameters in the fitted model for the CHAT area.

Parameter	Mean	sd	Median	95% credibility interval	
1995 base capture rate (\%)	0.30	0.12	0.28	0.12	0.59
1996 base capture rate (\%)	0.36	0.13	0.34	0.17	0.67
1997 base capture rate (\%)	0.46	0.20	0.41	0.21	0.97
1998 base capture rate (\%)	0.28	0.10	0.26	0.12	0.51
1999 base capture rate (\%)	0.46	0.17	0.43	0.23	0.89
2000 base capture rate (\%)	0.26	0.10	0.25	0.11	0.51
2001 base capture rate (\%)	0.35	0.13	0.33	0.17	0.67
2002 base capture rate (\%)	0.26	0.10	0.25	0.11	0.48
2003 base capture rate (\%)	0.30	0.11	0.29	0.14	0.56
2004 base capture rate (\%)	0.31	0.11	0.29	0.13	0.57
2005 base capture rate (\%)	0.38	0.15	0.36	0.18	0.75
2006 base capture rate (\%)	0.30	0.11	0.28	0.13	0.55
DN dusk	1.96	0.51	1.90	1.13	3.13
DN night	1.72	0.38	1.68	1.10	2.59
DN dawn	1.79	0.46	1.74	1.04	2.85
gear MW	2.49	0.66	2.41	1.44	4.05
target shallow	0.35	0.26	0.29	0.06	1.05
target deep	0.08	0.05	0.07	0.01	0.19
target jack mack	3.06	1.63	2.70	1.02	7.20
target scampi	0.45	0.27	0.39	0.12	1.13
log(distance to land) coefficient	-0.69	0.16	-0.69	-1.03	-0.37
sin(day.no) coefficient	-1.28	0.21	-1.28	-1.69	-0.87
cos(day.no) coefficient	0.74	0.16	0.74	0.44	1.06
Vessel-season effects variance	1.23	0.37	1.18	0.61	2.05
Extra-dispersion variance	3.64	1.10	3.59	1.55	6.29

APPENDIX C - continued

Table C4: Observer data capture details and characteristics of the predictive distribution of the total number of fur seals captured, by fishing year, for all tows in the CHAT area.

Observed

Fishing year	Tows	$\begin{array}{r} \text { CELR } \\ \text { tows } \end{array}$	Coverage (\%)	Captures	Obs. strike rate(\%)	Ratio est. captures
1994-95	1857	0	4.2	10	0.5	239
1995-96	1153	0	2.7	16	1.4	596
1996-97	1028	0	2.3	18	1.8	795
1997-98	2456	0	4.8	8	0.3	167
1998-99	1862	0	3.9	22	1.2	562
1999-00	1751	252	4.0	6	0.3	149
2000-01	2597	7	6.2	15	0.6	240
2001-02	1945	29	5.4	8	0.4	148
2002-03	2138	0	5.4	16	0.7	297
2003-04	1536	17	4.7	17	1.1	364
2004-05	1927	0	5.8	17	0.9	291
2005-06	1681	0	5.6	16	1.0	285
All	21931	305	4.5	169	0.8	4135

Predicted

Fishing year	Tows	$\begin{array}{r} \text { CELR } \\ \text { tows (\%) } \end{array}$	Predicted fur seal captures				Predicted strike rate	
			Captures	c.v. (\%)	95\% pre	interval	Rate (\%)	c.v. (\%)
1994-95	44395	51.4	357	55	133	856	0.8	54
1995-96	42975	46.5	449	50	190	1024	1.0	50
1996-97	45421	48.2	721	52	302	1703	1.6	52
1997-98	51310	45.3	443	50	182	1015	0.9	49
1998-99	47554	48.4	716	50	298	1641	1.5	49
1999-00	43562	48.0	292	53	103	670	0.7	53
2000-01	41581	49.9	372	52	149	866	0.9	52
2001-02	36011	48.9	246	54	90	599	0.7	54
2002-03	39715	49.0	305	45	132	649	0.8	45
2003-04	32867	50.1	258	47	109	550	0.8	46
2004-05	33028	54.4	322	53	133	778	1.0	53
2005-06	29990	50.3	208	48	89	459	0.7	48
All	488409	49.0	4688	38	2550	9313	1.0	38

APPENDIX C - continued

Table C5: Observer data capture details and characteristics of the predictive distribution of the total number of fur seals captured, by fishing year, for tows targeting hoki (HOK) in the CHAT area.

Observed

		Coverage			
Fishing year	Tows	Obs. strike Cate(\%)		Ratio est. captures	
1994-95	497	5.7	9	1.8	157
$1995-96$	753	7.0	15	2.0	215
$1996-97$	413	3.2	16	3.9	498
$1997-98$	1644	10.3	6	0.4	58
$1998-99$	1330	9.1	18	1.4	198
$1999-00$	780	6.0	4	0.5	66
$2000-01$	1377	12.0	10	0.7	84
$2001-02$	972	10.6	4	0.4	38
$2002-03$	877	8.2	13	1.5	159
$2003-04$	589	7.2	17	2.9	235
$2004-05$	804	13.9	14	1.7	101
$2005-06$	741	14.3	13	1.8	91
All	10777	8.5	139	1.3	1901

Predicted

Fishing year	Tows	$\begin{array}{r} \text { CELR } \\ \text { tows (\%) } \end{array}$	Predicted fur seal captures				Predicted strike rate	
			Captures	c.v. (\%)	95\% pred	interval	Rate (\%)	c.v. (\%)
1994-95	8688	1.69	89	37	40	167	1.0	35
1995-96	10809	1.02	177	33	94	319	1.6	31
1996-97	12862	1.54	309	42	150	634	2.4	41
1997-98	15926	0.54	187	37	86	350	1.2	35
1998-99	14625	1.57	249	36	128	465	1.7	35
1999-00	12928	1.91	113	44	44	231	0.9	42
2000-01	11498	2.10	138	38	66	268	1.2	36
2001-02	9163	0.64	83	42	35	169	0.9	40
2002-03	10734	1.35	142	34	69	258	1.3	33
2003-04	8158	2.11	132	36	67	251	1.6	34
2004-05	5785	0.07	117	35	59	218	2.0	33
2005-06	5198	0.21	64	37	32	120	1.2	35
All	126374	1.31	1800	17	1316	2476	1.4	17

Trawl effort in CHAT, 1994-95 to 2005-06

1998-99

2000-01

2002-03

2004-05

1999-00

2001-02

2003-04

2005-06

Figure C1: Plot of start positions of commercial tows, observed tows, and observed fur seal incidents by fishing year for the CHAT area. See Figure B1 for legend.

APPENDIX C - continued

Covariates in CHAT, 1994-95 to 2005-06

Figure C2: Bar and density plots for the fixed covariates used in the model for fur seal captures in the CHAT area.

APPENDIX C - continued

Figure C3: Plots of the predictive densities, by fishing year, for fur seal captures for all tows in the CHAT area.

CHAT, tows targeting any species

Figure C4: Predicted strike rates, with $\mathbf{9 5 \%}$ prediction intervals, by fishing year, for all tows in the CHAT area.

CHAT, tows targeting hoki

Figure C5: Predicted strike rates, with 95% prediction intervals, by fishing year, for tows targeting hoki (HOK) in the CHAT area.

APPENDIX D: SUB-ANTARCTIC AREA (SANT)

Table D1: Observed and commercial effort and observed fur seal captures, by fishing year, for the SANT area.

Observed

			Coverage	Fur seal captures		Obs. strike
rate $(\%)$						

Commercial						
	TCEPR forms		CELR forms		All forms	
Fishing year	Vessels	Tows	Vessels	Tows	Vessels	Tows
1994-95	76	6182	0	0	76	6182
1995-96	75	6972	0	0	75	6972
1996-97	68	6321	0	0	68	6321
1997-98	64	4595	0	0	64	4595
1998-99	62	3933	0	0	62	3933
1999-00	54	5706	0	0	54	5706
2000-01	53	4914	0	0	53	4914
2001-02	55	6635	0	0	55	6635
2002-03	54	6500	0	0	54	6500
2003-04	49	6840	0	0	49	6840
2004-05	50	6108	0	0	50	6108
2005-06	47	5189	0	0	47	5189
All	147	69895	0	0	147	69895

APPENDIX D - continued

Table D2: Comparison of observed and expected fur seal capture frequencies for the observer data in the SANT area.

Observed numbers of tows				
	Number of fur seal captures per tow			
Year	0	1	2	3
1994-95	414	3		
1995-96	671	6	1	
1996-97	1016	4		
1997-98	721	4	1	
1998-99	474	1	1	
1999-00	1161	2		
2000-01	992	2		
2001-02	1115	11	1	
2002-03	882			
2003-04	1345	10		
2004-05	1237	5		1
2005-06	1049	5		

Expected numbers of tows

	Number of fur seal captures per tow			
	0	1	2	3
$1994-95$	415	2.0	0.2	0.1
$1995-96$	672	5.0	0.6	0.2
$1996-97$	1017	3.1	0.2	0.1
$1997-98$	722	3.6	0.3	0.1
$1998-99$	473	2.3	0.3	0.1
$1999-00$	1160	2.5	0.2	0.0
$2000-01$	991	2.9	0.2	0.0
$2001-02$	1116	9.0	1.2	0.4
$2002-03$	880	1.8	0.1	0.0
$2003-04$	1346	7.6	0.8	0.3
$2004-05$	1237	5.4	0.5	0.2
$2005-06$	1049	4.7	0.4	0.1

APPENDIX D - continued

Table D3: Characteristics of the posterior distribution of the parameters in the fitted model for the SANT area.

Parameter	Mean	sd	Median	95% credibility interval	
1995 base capture rate (\%)	0.58	0.45	0.46	0.12	1.70
1996 base capture rate (\%)	0.66	0.51	0.52	0.14	1.98
1997 base capture rate (\%)	0.49	0.34	0.41	0.12	1.31
1998 base capture rate (\%)	0.62	0.47	0.50	0.14	1.85
1999 base capture rate (\%)	0.50	0.37	0.41	0.11	1.42
2000 base capture rate (\%)	0.36	0.25	0.30	0.07	0.98
2001 base capture rate (\%)	0.34	0.23	0.28	0.06	0.91
2002 base capture rate (\%)	0.53	0.35	0.45	0.14	1.42
2003 base capture rate (\%)	0.29	0.21	0.24	0.04	0.82
2004 base capture rate (\%)	0.53	0.33	0.45	0.15	1.39
2005 base capture rate (\%)	0.47	0.30	0.40	0.12	1.20
2006 base capture rate (\%)	0.40	0.26	0.34	0.10	1.03
DN dusk	0.99	0.61	0.87	0.27	2.43
DN night	0.85	0.42	0.77	0.28	1.87
DN dawn	2.48	1.17	2.24	0.94	5.44
gear MW	1.18	0.73	0.99	0.37	3.08
target deep	4.81	5.12	3.27	0.69	18.53
target mid depth	3.80	3.62	2.84	0.76	13.15
target scampi	0.11	0.15	0.06	0.00	0.52
target shallow	0.25	2.84	0.00	0.00	0.62
log(duration) coefficient	0.46	0.29	0.46	-0.08	1.05
Vessel-season effects variance	3.43	1.68	3.13	1.29	8.62
Extra-dispersion variance	10.69	4.37	10.13	3.37	20.02

APPENDIX D - continued

Table D4: Observer data capture details and characteristics of the predictive distribution of the total number of fur seals captured, by fishing year, for all tows in the SANT area. All commercial tows were recorded on TCEPR forms.

Observed

		Coverage $(\%)$	Captures	Obs. strike rate(\%)	Ratio est. captures
Fishing year	Tows	417	6.7	3	0.7
$1994-95$	678	9.7	8	1.2	44
$1995-96$	1019	16.1	4	0.4	25
$1996-97$	726	15.8	6	0.8	38
$1997-98$	477	12.1	3	0.6	25
$1998-99$	1163	20.4	2	0.2	10
$1999-00$	994	20.2	2	0.2	10
$2000-01$	1127	17.0	13	1.2	77
$2001-02$	882	13.6	0	0.0	0
$2002-03$	1355	19.8	10	0.7	50
$2003-04$	1243	20.4	8	0.6	39
$2004-05$	1054	20.3	5	0.5	25
$2005-06$	1135	15.9	64	0.6	425
All					

Predicted

Fishing year	Tows	Predicted fur seal captures				Predicted strike rate	
		Captures	c.v. (\%)	95\% pr	erval	Rate (\%)	c.v. (\%)
1994-95	6182	45	72	13	122	0.7	68
1995-96	6972	55	66	21	144	0.8	63
1996-97	6321	36	61	12	89	0.6	58
1997-98	4595	43	116	12	142	0.9	115
1998-99	3933	30	73	9	77	0.8	61
1999-00	5706	21	79	5	63	0.4	76
2000-01	4914	27	98	5	93	0.5	96
2001-02	6635	65	124	23	173	1.0	109
2002-03	6500	34	102	3	120	0.5	98
2003-04	6840	59	59	24	138	0.9	56
2004-05	6108	52	84	20	121	0.8	83
2005-06	5189	24	52	9	56	0.5	46
All	69895	490	37	296	908	0.7	35

APPENDIX D - continued

Table D5: Observer data capture details and characteristics of the predictive distribution of the total number of fur seals captured, by fishing year, for tows targeting squid (SQU) in the SANT area. All commercial tows were recorded on TCEPR forms.

Observed

		Coverage $(\%)$	Captures	Obs. strike rate(\%)	Ratio est. captures
Fishing year	Tows	286	7.1	2	0.7
$1994-95$	556	12.4	8	1.4	28
$1995-96$	735	19.7	4	0.5	20
$1996-97$	338	23.3	3	0.9	13
$1997-98$	156	39.0	0	0.0	0
$1998-99$	438	36.0	2	0.5	6
$1999-00$	577	97.5	1	0.2	1
$2000-01$	568	34.3	4	0.7	12
$2001-02$	440	25.8	0	0.0	0
$2002-03$	811	27.7	6	0.7	22
$2003-04$	807	29.3	1	0.1	3
$2004-05$	688	27.5	3	0.4	11
$2005-06$	6400	23.3	34	0.5	180
All					

Predicted

Fishing year	Tows	Predicted fur seal captures				Predicted strike rate	
		Captures	c.v. (\%)	95\% pre	erval	Rate (\%)	c.v. (\%)
1994-95	4024	31	79	8	91	0.8	75
1995-96	4478	36	54	14	89	0.8	51
1996-97	3737	22	55	8	51	0.6	51
1997-98	1448	10	66	3	27	0.7	60
1998-99	400	1	131	0	6	0.4	86
1999-00	1217	5	65	2	13	0.4	52
2000-01	592	1	27	1	2	0.2	6
2001-02	1654	10	56	4	25	0.6	49
2002-03	1704	4	104	0	15	0.3	81
2003-04	2926	24	51	10	55	0.8	45
2004-05	2758	15	64	3	40	0.5	55
2005-06	2501	13	63	4	33	0.5	56
All	27439	175	29	105	297	0.6	28

APPENDIX D - continued

Table D6: Observer data capture details and characteristics of the predictive distribution of the total number of fur seals captured, by fishing year, for tows targeting hoki (HOK) in the SANT area. All commercial tows were recorded on TCEPR forms.

Observed

Fishing year	Tows	Coverage $(\%)$	Captures	Obs. strike rate(\%)	Ratio est. captures
$1994-95$	24	12.6	0	0.0	0
$1995-96$	12	6.6	0	0.0	0
$1996-97$	0	0			
$1997-98$	14	1.7	2	14.3	120
$1998-99$	214	22.3	0	0.0	0
$1999-00$	411	21.9	0	0.0	0
$2000-01$	247	14.1	1	0.4	7
$2001-02$	312	13.3	9	2.9	68
$2002-03$	154	7.4	0	0.0	0
$2003-04$	152	13.2	1	0.7	8
$2004-05$	11	2.1	0	0.0	0
$2005-06$	4	13.8	0	0.0	0
All	1555	12.8	13	0.8	202

Predicted

Fishing year	Tows	Predicted fur seal captures				Predicted strike rate	
		Captures	c.v. (\%)	95\% pre	erval	Rate (\%)	c.v. (\%)
1994-95	191	4	261	0	18	1.9	148
1995-96	183	4	192	0	21	2.4	165
1996-97	226	5	228	0	24	2.3	222
1997-98	840	21	181	2	106	2.5	171
1998-99	959	4	184	0	21	0.4	167
1999-00	1880	9	127	0	42	0.5	119
2000-01	1755	18	139	2	74	1.0	134
2001-02	2341	41	93	12	142	1.7	92
2002-03	2074	21	140	1	93	1.0	134
2003-04	1154	17	137	1	74	1.5	127
2004-05	534	14	162	0	59	2.6	154
2005-06	29	0	371	0	4	1.5	189
All	12166	158	70	50	435	1.3	68

APPENDIX D - continued

Trawl effort in SANT, 1994-95 to 2005-06

Figure D1: Plot of start positions of commercial tows, observed tows, and observed fur seal incidents by fishing year for the SANT area.

APPENDIX D - continued

Covariates in SANT, 1994-95 to 2005-06

Figure D2: Bar and density plots for the fixed covariates used in the model for fur seal captures in the SANT area.

APPENDIX D - continued

Figure D3: Plots of the predictive densities, by fishing year, for fur seal captures for all tows in the SANT area.

SANT, tows targeting any species

Figure D4: Predicted strike rates, with 95% prediction intervals, by fishing year, for all tows in the SANT area.

SANT, tows targeting squid

Figure D5: Predicted strike rates, with $\mathbf{9 5 \%}$ prediction intervals, by fishing year, for tows targeting squid (SQU) in the SANT area.

APPENDIX E: STEWART-SNARES SHELF PUYSEGUR AREA (STSP)

Table E1: Observed and commercial effort and observed fur seal captures, by fishing year, for the STSP area.

Observed				$\begin{array}{rl}\text { Coverage }\end{array}$	Fur seal Obs. strike	
captures						

Commercial

Fishing year	TCEPR forms		CELR forms		All forms	
	Vessels	Tows	Vessels	Tows	Vessels	Tows
1994-95	78	10223	58	7441	136	17664
1995-96	74	10140	63	8874	137	19014
1996-97	82	11615	57	9716	139	21331
1997-98	70	12381	55	8310	125	20691
1998-99	79	12703	49	8158	128	20861
1999-00	53	9740	45	7605	98	17345
2000-01	51	10379	45	8976	96	19355
2001-02	48	11047	52	8279	100	19326
2002-03	51	9751	48	9234	99	18985
2003-04	46	8351	45	8547	91	16898
2004-05	44	9307	42	8429	86	17736
2005-06	43	8086	48	8226	91	16312
All	169	123723	135	101795	300	225518

APPENDIX E - continued

Table E2: Comparison of observed and expected fur seal capture frequencies for the observer data in the STSP area.

Observed numbers of tows

	Number of fur seal captures per tow				
Year	0	1	2	3	4
$1994-95$	692	9			2
$1995-96$	524	16			
$1996-97$	873	7	2		
$1997-98$	1220	29	2	1	
$1998-99$	1676	42	4	1	1
$1999-00$	1711	21	2		
$2000-01$	3146	33	2		
$2001-02$	1813	28	5	1	
$2002-03$	1509	16			
$2003-04$	1287	12			
$2004-05$	1987	26			
$2005-06$	1385	16	1		

Expected numbers of tows

	Number of fur seal captures per tow				
	0	1	2	3	$4+$
$1994-95$	692	9.6	1.1	0.3	0.2
$1995-96$	526	12.8	1.2	0.2	0.1
$1996-97$	871	10.4	0.7	0.1	0.0
$1997-98$	1221	28.3	2.2	0.3	0.1
$1998-99$	1677	41.2	4.1	0.8	0.4
$199-00$	1711	22.0	1.3	0.2	0.1
$2000-01$	3145	34.4	1.7	0.2	0.0
$2001-02$	1815	28.8	2.7	0.6	0.4
$2002-03$	1508	15.9	0.9	0.1	0.1
$2003-04$	1286	11.9	0.7	0.1	0.0
$2004-05$	1988	22.2	1.9	0.4	0.2
$2005-06$	1384	16.4	1.1	0.2	0.1

APPENDIX E - continued

Table E3: Characteristics of the posterior distribution of the parameters in the fitted model for the STSP area.

Parameter	Mean	sd	Median	95% credibility interval	
1995 base capture rate (\%)	2.44	0.90	2.29	1.18	4.66
1996 base capture rate (\%)	1.97	0.64	1.89	0.98	3.44
1997 base capture rate (\%)	1.42	0.49	1.35	0.64	2.55
1998 base capture rate (\%)	3.72	1.10	3.56	2.06	6.32
1999 base capture rate (\%)	3.86	1.01	3.74	2.26	6.15
2000 base capture rate (\%)	2.30	0.67	2.21	1.25	3.89
2001 base capture rate (\%)	1.52	0.38	1.48	0.91	2.37
2002 base capture rate (\%)	2.59	0.75	2.47	1.44	4.34
2003 base capture rate (\%)	1.12	0.35	1.07	0.56	1.92
2004 base capture rate (\%)	1.28	0.40	1.23	0.65	2.21
2005 base capture rate (\%)	1.12	0.30	1.09	0.63	1.79
2006 base capture rate (\%)	1.35	0.42	1.29	0.70	2.37
subarea Otago coast	3.29	0.87	3.20	1.86	5.23
subarea Puysegur	2.05	0.48	2.01	1.25	3.15
DN dusk	1.65	0.31	1.63	1.11	2.35
DN night	1.25	0.25	1.23	0.83	1.82
DN dawn	1.61	0.30	1.59	1.08	2.29
target deep	0.00	0.00	0.00	0.00	0.00
target mid depth	0.33	0.10	0.31	0.17	0.57
target shallow	0.31	0.13	0.29	0.12	0.60
target jack mack	0.43	0.15	0.41	0.20	0.78
sin(day.no) coefficient	-0.91	0.18	-0.90	-1.26	-0.56
cos(day.no) coefficient	1.05	0.18	1.05	0.70	1.40
Vessel-season effects variance	0.66	0.19	0.64	0.36	1.09
Extra-dispersion variance	2.70	0.74	2.61	1.49	4.37

APPENDIX E - continued

Table E4: Observer data capture details and characteristics of the predictive distribution of the total number of fur seals captured, by fishing year, for all tows in the STSP area.

Observed

		CELR Tows	Coverage $(\%)$	Obs. strike		Ratio est.
Fishing year	Tows		0	4.0	17	2.4
rate(\%)	captures					

Predicted

Fishing year	Tows	$\begin{array}{r} \text { CELR } \\ \text { tows (\%) } \end{array}$	Predicted fur seal captures				Predicted strike rate	
			Captures	c.v. (\%)	95\% pre	interval	Rate (\%)	c.v. (\%)
1994-95	17664	42.1	561	47	234	1227	3.2	47
1995-96	19014	46.7	605	44	256	1245	3.2	44
1996-97	21331	45.5	547	46	218	1165	2.6	46
1997-98	20691	40.2	1118	40	529	2211	5.4	39
1998-99	20861	39.1	1134	35	594	2130	5.4	35
1999-00	17345	43.8	526	40	248	1067	3.0	40
2000-01	19355	46.4	453	33	245	823	2.3	33
2001-02	19326	42.8	740	39	371	1495	3.8	38
2002-03	18985	48.6	316	41	142	633	1.7	40
2003-04	16898	50.6	379	44	163	791	2.2	43
2004-05	17736	47.5	343	38	164	675	1.9	38
2005-06	16312	50.4	358	39	167	702	2.2	39
All	225518	45.1	7080	29	4230	12224	3.1	29

APPENDIX E - continued

Table E5: Observer data capture details and characteristics of the predictive distribution of the total number of fur seals captured, by fishing year, for tows targeting squid (SQU) in the STSP area.

Observed

		Coverage $(\%)$	Obs. strike Captures rate(\%)		Ratio est. captures
Fishing year	Tows	439	9.1	3	0.7
1994-95	186	5.0	5	2.7	33
$1995-96$	494	10.1	5	1.0	50
$1996-97$	538	10.5	21	3.9	200
$1997-98$	824	13.9	37	4.5	267
$1998-99$	352	17.0	10	2.8	59
$1999-00$	2330	63.6	22	0.9	35
$2000-01$	860	22.0	17	2.0	77
$2001-02$	809	17.2	8	1.0	46
$2002-03$	956	20.0	9	0.9	45
$2003-04$	1638	26.6	12	0.7	45
$2004-05$	638	13.6	3	0.5	22
$2005-06$	10064	18.5	152	1.5	978
All					

Predicted

Fishing year	Tows	$\begin{array}{r} \text { CELR } \\ \text { tows (\%) } \end{array}$	Predicted fur seal captures				Predicted strike rate	
			Captures	c.v. (\%)	95\% pr	interval	Rate (\%)	c.v. (\%)
1994-95	4816	0.0	106	40	47	210	2.2	38
1995-96	3708	0.0	121	38	54	233	3.3	36
1996-97	4892	0.0	116	40	49	229	2.4	38
1997-98	5122	0.1	254	30	140	435	5.0	29
1998-99	5938	0.2	265	21	174	389	4.5	20
1999-00	2065	0.5	63	36	31	119	3.0	32
2000-01	3663	0.0	82	25	51	130	2.2	22
2001-02	3910	0.0	153	31	83	264	3.9	30
2002-03	4700	0.2	74	33	37	130	1.6	31
2003-04	4782	0.0	107	35	52	195	2.2	33
2004-05	6158	0.0	82	29	45	138	1.3	27
2005-06	4682	0.0	103	37	48	196	2.2	35
All	54436	0.1	1528	14	1161	2013	2.8	14

APPENDIX E - continued

Table E6: Observer data capture details and characteristics of the predictive distribution of the total number of fur seals captured, by fishing year, for tows targeting hoki (HOK) in the Puysegur subarea of STSP.

Observed

		Coverage $(\%)$	Obs. strike					
Ratishing est.						Captures	rate(\%)	captures
---:	:---	---:	---:					

Predicted

Fishing year	Tows	Predicted fur seal captures				Predicted strike rate	
		Captures	c.v. (\%)	95\% pr	erval	Rate (\%)	c.v. (\%)
1994-95	318	38	34	20	69	11.8	29
1995-96	542	46	39	20	90	8.4	35
1996-97	817	56	41	22	110	6.8	38
1997-98	565	79	38	35	149	14.0	35
1998-99	485	86	34	41	156	17.8	30
1999-00	604	46	42	18	93	7.6	37
2000-01	914	52	33	27	93	5.7	28
2001-02	553	93	31	51	161	16.8	28
2002-03	492	29	38	13	56	5.8	33
2003-04	144	8	43	3	16	5.3	27
2004-05	292	25	31	14	45	8.7	25
2005-06	108	12	38	7	24	11.5	30
All	5834	570	19	390	814	9.8	18

APPENDIX E - continued

Table E7: Observer data capture details and characteristics of the predictive distribution of the total number of fur seals captured, by fishing year, for tows targeting hoki (HOK) in Stewart/Snares area (including the Otago coast subarea) of STSP.

Observed

		Coverage $(\%)$	Obs. strike		Ratio est. Captures rate(\%)
Fishing year	Tows		2	1.0	26
$1994-95$	195	7.6	2	1.9	51
$1995-96$	213	7.8	4	3.0	106
$1996-97$	100	2.8	3	1.9	71
$1997-98$	313	8.5	6	3.0	94
$1998-99$	564	18.0	17	1.8	82
$1999-00$	722	15.8	13	1.5	67
$2000-01$	457	10.5	7	0.2	9
$2001-02$	449	10.6	1	0.5	11
$2002-03$	426	17.5	2	0.0	0
$2003-04$	101	5.2	0	1.1	11
$2004-05$	90	9.4	1	1.4	10
$2005-06$	146	19.1	2	1.5	539
All	3776	10.8	58	1.5	

Predicted

Fishing year	Tows	Predicted fur seal captures				Predicted strike rate	
		Captures	c.v. (\%)	95\% pre	interval	Rate (\%)	c.v. (\%)
1994-95	2555	60	45	23	127	2.3	43
1995-96	2732	61	41	26	122	2.2	38
1996-97	3521	66	45	25	138	1.9	43
1997-98	3682	104	34	51	190	2.8	33
1998-99	3128	131	25	79	208	4.2	23
1999-00	4574	86	28	49	142	1.9	26
2000-01	4360	69	32	37	124	1.6	30
2001-02	4242	90	40	39	174	2.1	38
2002-03	2436	23	47	9	50	1.0	41
2003-04	1946	26	50	8	59	1.4	45
2004-05	962	16	39	6	30	1.6	29
2005-06	766	12	46	4	26	1.6	37
All	34904	744	16	539	1013	2.1	16

APPENDIX E - continued

Trawl effort in STSP, 1994-95 to 2005-06

Figure E1: Plot of start positions of commercial tows, observed tows, and observed fur seal incidents by fishing year for the STSP area. Grey shaded regions are the Puysegur and Otago coast subareas.

APPENDIX E-continued

Covariates in STSP, 1994-95 to 2005-06

Figure E2: Bar and density plots for the fixed covariates used in the model for fur seal captures in the STSP area.

APPENDIX E - continued

2004-05

Figure E3: Plots of the predictive densities, by fishing year, for fur seal captures for all tows in the STSP area.

STSP, tows targeting any species

Figure E4: Predicted strike rates, with 95% prediction intervals, by fishing year, for all tows in the STSP area.

STSP, tows targeting squid

Figure E5: Predicted strike rates, with $\mathbf{9 5 \%}$ prediction intervals, by fishing year, for tows targeting squid (SQU) in the STSP area.

APPENDIX F: WEST COAST SOUTH ISLAND AREA (WCSI)

Table F1: Observed and commercial effort and observed fur seal captures, by fishing year, for the WCSI area.

| Observed | | | | Coverage |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Fur seal | | | | | Obs. strike

Commercial

	TCEPR forms			CELR forms			All forms	
Fishing year	Vessels	Tows		Vessels	Tows		Vessels	Tows
$1994-95$	81	11305		67	8331		148	19636
$1995-96$	72	8835		65	9245		137	18080
$1996-97$	88	10918		70	11444		158	22362
$1997-98$	82	10248		67	7502		149	17750
$1998-99$	69	9766		75	11482		144	21248
$1999-00$	59	8894		67	8036		126	16930
$2000-01$	65	9999		66	8732		131	18731
$2001-02$	59	8997		61	6514		120	15511
$2002-03$	53	8421		53	7598		106	16019
$2003-04$	52	7120		64	8286		116	15406
$2004-05$	42	5266		51	8460		93	13726
$2005-06$	40	5109		47	8500		87	13609
All	155	104878		163	104130		315	209008

APPENDIX F - continued

Table F2: Comparison of observed and expected fur seal capture frequencies for the observer data in the WCSI area.

Observed numbers of tows

								Number of fur seal captures per tow				
Year	0	1	2	3	4	5	6	7	8	10	11	12
1994-95	912	16	3				1					
1995-96	1104	71	21	2	1	2	1			1	1	
1996-97	955	27	11	2	1				1	1		
1997-98	1039	40	10	3	1	2	4	1				1
1998-99	1543	36	4	1			1					
1999-00	1170	48	10	5								
2000-01	1267	23	2	4	1	1						
2001-02	1386	27	9	2				1				
2002-03	997	15		2								
2003-04	1374	27	1									
2004-05	1178	62	4		1							
2005-06	1158	16	4	2								

Expected numbers of tows

	Number of fur seal captures per tow						
	0	1	2	3	4	5	$6+$
$1994-95$	907	20.0	3.3	0.9	0.3	0.1	0.1
$1995-96$	1115	58.5	15.9	6.4	3.1	1.7	3.3
$1996-97$	953	31.2	7.5	2.8	1.3	0.7	1.3
$1997-98$	1035	42.3	11.6	4.8	2.5	1.4	2.9
$1998-99$	1542	34.5	5.6	1.6	0.6	0.2	0.2
$1999-00$	1176	43.1	9.1	2.9	1.1	0.5	0.5
$2000-01$	1261	29.7	4.9	1.4	0.5	0.2	0.3
$2001-02$	1384	32.6	5.8	1.7	0.6	0.3	0.3
$2002-03$	995	16.2	2.2	0.5	0.2	0.1	0.0
$2003-04$	1376	22.0	3.1	0.8	0.2	0.1	0.1
$2004-05$	1190	42.3	8.2	2.5	1.0	0.4	0.5
$2005-06$	1152	24.1	3.1	0.7	0.2	0.1	0.1

APPENDIX F - continued

Table F3: Characteristics of the posterior distribution of the parameters in the fitted model for the WCSI area.

Parameter	Mean	sd	Median	95% credibility interval	
1995 base capture rate (\%)	2.60	0.95	2.49	1.13	4.72
1996 base capture rate (\%)	5.23	1.69	4.91	2.94	9.25
1997 base capture rate (\%)	4.20	1.34	3.95	2.33	7.43
1998 base capture rate (\%)	4.92	1.57	4.62	2.77	8.76
1999 base capture rate (\%)	3.04	0.92	2.92	1.64	5.21
2000 base capture rate (\%)	4.23	1.28	3.99	2.41	7.32
2001 base capture rate (\%)	3.29	0.93	3.17	1.85	5.54
2002 base capture rate (\%)	3.40	1.01	3.26	1.89	5.85
2003 base capture rate (\%)	2.42	0.83	2.33	1.13	4.27
2004 base capture rate (\%)	2.22	0.80	2.12	0.99	4.02
2005 base capture rate (\%)	3.51	1.08	3.34	1.92	6.05
2006 base capture rate (\%)	2.25	0.79	2.17	0.99	3.99
DN dusk	1.75	0.29	1.74	1.24	2.40
DN night	2.92	0.36	2.90	2.29	3.67
DN dawn	2.38	0.39	2.35	1.70	3.24
subarea Cape Foulwind	0.22	0.04	0.21	0.15	0.31
subarea northern	0.07	0.05	0.06	0.01	0.21
deep	0.00	0.00	0.00	0.00	0.00
target shallow	2.69	0.76	2.58	1.53	4.48
target jack mack	1.23	0.35	1.19	0.70	2.04
log(duration) coefficient	0.48	0.10	0.48	0.28	0.68
Vessel-season effects variance	1.38	0.26	1.35	0.95	1.97
Extra-dispersion variance	5.50	0.54	5.45	4.54	6.65

APPENDIX F - continued

Table F4: Observer data capture details and characteristics of the predictive distribution of the total number of fur seals captured, by fishing year, for all tows in the WCSI area.

Observed

		CELR tows	Coverage $(\%)$	Obs. strike Cate(\%)		
Fishing year	Tows	Ratio est.				
captures						

Predicted

Fishing year	Tows	$\begin{array}{r} \text { CELR } \\ \text { tows (\%) } \end{array}$	Predicted fur seal captures				Predicted strike rate	
			Captures	c.v. (\%)	95\% pre	interval	Rate (\%)	c.v. (\%)
1994-95	19636	42.4	829	41	346	1623	4.2	40
1995-96	18080	51.1	1840	34	1020	3324	10.2	34
1996-97	22362	51.2	1733	36	900	3260	7.7	35
1997-98	17750	42.3	1475	34	800	2693	8.3	33
1998-99	21248	54.0	1051	35	537	1946	4.9	35
1999-00	16930	47.5	1200	33	661	2215	7.1	33
2000-01	18731	46.6	1098	32	588	1958	5.9	32
2001-02	15511	42.0	865	35	453	1592	5.6	34
2002-03	16019	47.4	665	40	295	1322	4.2	40
2003-04	15406	53.8	593	41	259	1178	3.8	41
2004-05	13726	61.6	929	38	459	1820	6.8	37
2005-06	13609	62.5	573	44	241	1163	4.2	43
All	209008	49.8	12851	20	8904	18908	6.1	20

APPENDIX F - continued

Table F5: Observer data capture details and characteristics of the predictive distribution of the total number of fur seals captured, by fishing year, for tows targeting hoki (HOK) in the WCSI area.

Observed

		Coverage $(\%)$	Obs. strike Captes		Ratio est. captures
Fishing year	Tows	814	9.4	28	3.4

Predicted

Fishing year	Tows	$\begin{array}{r} \text { CELR } \\ \text { tows (\%) } \end{array}$	Predicted fur seal captures				Predicted strike rate	
			Captures	c.v. (\%)	95\% pre	interval	Rate (\%)	c.v. (\%)
1994-95	8639	1.8	307	36	143	577	3.6	36
1995-96	7556	4.6	710	26	464	1157	9.4	25
1996-97	8989	4.9	542	29	318	923	6.0	28
1997-98	8554	4.4	660	27	410	1089	7.7	26
1998-99	7584	5.9	321	28	186	525	4.2	27
1999-00	7862	7.9	477	25	306	754	6.1	24
2000-01	8953	7.5	433	27	256	700	4.8	26
2001-02	8131	6.6	346	27	207	574	4.3	27
2002-03	7831	8.7	227	33	112	406	2.9	32
2003-04	6838	10.7	193	32	102	341	2.8	31
2004-05	3937	8.7	173	25	109	278	4.4	24
2005-06	3531	9.9	96	35	49	177	2.7	32
All	88405	6.4	4485	10	3702	5530	5.1	10

Trawl effort in WCSI, 1994-95 to 2005-06

Figure F1: Plot of start positions of commercial tows, observed tows, and observed fur seal incidents by fishing year for the WCSI area. The light-grey shaded regions are the subareas for tows targeting nondeep species: Hokitika Canyon, Cape Foulwind, and northern (going south to north)

APPENDIX F - continued

Covariates in WCSI, 1994-95 to 2005-06

DN

Figure F2: Bar and density plots for the fixed covariates used in the model for fur seal captures in the WCSI area.

Figure F3: Plots of the predictive densities, by fishing year, for fur seal captures for all tows in the WCSI area.

WCSI, tows targeting any species

Figure F4: Predicted strike rates, with $\mathbf{9 5 \%}$ prediction intervals, by fishing year, for all tows in the WCSI area.

WCSI, tows targeting hoki

Figure F5: Predicted strike rates, with $\mathbf{9 5 \%}$ prediction intervals, by fishing year, for tows targeting hoki (HOK) in the WCSI area.

APPENDIX G: SOUTHERN BLUE WHITING FISHERY AREA IN FMA 6 (SBW6)

Table G1: Observed and commercial effort and observed fur seal captures, by fishing year, for the SBW6 fishery area.

Observed						
Fishing year	Vessels	Trips	Tows	Coverage (\%)	Fur seal captures	Obs. strike rate(\%)
1994-95	5	7	240	52.2	92	38.3
1995-96	4	4	144	24.7	17	11.8
1996-97	6	9	249	40.3	30	12.0
1997-98	9	13	418	35.4	66	15.8
1998-99	10	13	342	27.5	42	12.3
1999-00	14	16	316	45.5	85	26.9
2000-01	12	15	388	58.4	58	14.9
2001-02	10	10	333	28.7	13	3.9
2002-03	6	6	279	43.7	9	3.2
2003-04	7	8	251	33.9	13	5.2
2004-05	7	9	337	38.7	37	11.0
2005-06	6	6	217	34.8	52	24.0
All	29	87	3514	37.1	514	14.6

Commercial

Fishing year	TCEPR forms		CELR forms		All forms	
	Vessels	Tows	Vessels	Tows	Vessels	Tows
1994-95	16	460	0	0	16	460
1995-96	11	583	0	0	11	583
1996-97	15	618	0	0	15	618
1997-98	30	1181	0	0	30	1181
1998-99	26	1243	0	0	26	1243
1999-00	21	694	0	0	21	694
2000-01	15	664	0	0	15	664
2001-02	18	1159	0	0	18	1159
2002-03	14	638	0	0	14	638
2003-04	18	740	0	0	18	740
2004-05	19	870	0	0	19	870
2005-06	13	623	0	0	13	623
All	54	9473	0	0	54	9473

APPENDIX G - continued

Table G2: Comparison of observed and expected fur seal capture frequencies for the observer data in the SBW6 fishery area.

Observed numbers of tows

									Number of fur seal captures per tow					
Year	0	1	2	3	4	5	6	7	8	9	10	19	21	22
1994-95	207	15	9	4	1	1			1	1			1	
1995-96	135	3	4	2										
1996-97	234	7	4	1	3									
1997-98	384	22	5	4		1		1			1			
1998-99	316	17	5	1	3									
1999-00	281	18	9	5	1				1					1
2000-01	363	20		2			1	1				1		
2001-02	321	11	1											
2002-03	270	9												
2003-04	246	4								1				
2004-05	314	16	3	2	1	1								
2005-06	197	12	1	3	1		1			1	1			

Expected numbers of tows

	Number of fur seal captures per tow						
	0	1	2	3	4	5	$6+$
$1994-95$	206	18.3	6.3	3.1	1.8	1.2	3.2
$1995-96$	133	7.3	1.7	0.7	0.4	0.2	0.5
$1996-97$	235	10.0	2.0	0.8	0.4	0.3	0.8
$1997-98$	384	20.2	5.8	2.9	1.7	1.1	2.7
$1998-99$	315	16.5	4.9	2.2	1.2	0.7	1.3
$1999-00$	291	14.0	3.6	1.8	1.1	0.8	3.2
$2000-01$	363	18.3	3.5	1.3	0.7	0.4	1.2
$2001-02$	322	9.6	1.2	0.3	0.1	0.1	0.1
$2002-03$	271	7.5	0.7	0.1	0.0	0.0	0.0
$2003-04$	240	8.5	1.3	0.4	0.2	0.1	0.3
$2004-05$	316	13.9	3.2	1.4	0.7	0.4	1.0
$2005-06$	192	13.8	4.7	2.3	1.3	0.8	1.9

APPENDIX G - continued

Table G3: Characteristics of the posterior distribution of the parameters in the fitted model for the SBW6 area. The subarea effects are relative to the SBW 6I, Campbell Rise subarea. All observed tows were in the main fishing season (July-October).

Parameter	Mean	sd	Median	95% credibility interval	
			2.79	1.21	2.61
1994 base capture rate (\%)	3.02	0.89	2.89	1.16	5.48
1995 base capture rate (\%)	3.08	0.98	2.92	1.68	5.06
1996 base capture rate (\%)	3.16	0.95	3.00	1.78	5.42
1997 base capture rate (\%)	2.49	0.67	2.43	1.39	4.01
1998 base capture rate (\%)	2.18	0.68	2.13	1.02	3.69
1999 base capture rate (\%)	3.50	1.05	3.31	1.98	6.04
2000 base capture rate (\%)	3.54	0.96	3.39	2.12	5.82
2001 base capture rate (\%)	2.36	0.71	2.30	1.13	3.90
2002 base capture rate (\%)	2.45	0.73	2.40	1.23	4.08
2003 base capture rate (\%)	2.62	0.77	2.52	1.36	4.39
2004 base capture rate (\%)	2.43	0.71	2.36	1.29	3.99
2005 base capture rate (\%)	2.31	0.70	2.26	1.14	3.88
2006 base capture rate (\%)	1.03	0.26	1.00	0.61	1.61
DN dusk	1.89	0.39	1.86	1.24	2.73
DN night	1.62	0.35	1.59	1.03	2.41
DN dawn	2.43	1.16	2.20	0.92	5.30
gear BT	0.01	0.09	0.00	0.00	0.04
subarea 6A	37.36	12.05	35.32	19.76	65.70
subarea 6B	0.95	0.56	0.82	0.27	2.35
subarea 6R	0.32	0.12	0.32	0.09	0.56
log(duration) coefficient	0.63	0.31	0.63	0.03	1.22
log(distance to land) coefficient	0.44	0.17	0.42	0.16	0.82
Vessel-season effects variance	3.33	0.47	3.30	2.47	4.34
Extra-dispersion variance					

APPENDIX G - continued

Table G4: Observer data capture details and characteristics of the predictive distribution of the total number of fur seals captured, by fishing year, for tows in the SBW6 fishery area. All commercial tows were recorded on TCEPR forms.

Observed

| | | Coverage
 $(\%)$ | Obs. strike
 rate(\%) | | |
| :--- | ---: | ---: | ---: | ---: | ---: | | Ratio est. |
| ---: |
| captures |

Predicted

Fishing year	Tows	Predicted fur seal captures				Predicted strike rate	
		Captures	c.v. (\%)	95\% pr	interval	Rate (\%)	c.v. (\%)
1994-95	460	130	20	102	194	28.4	15
1995-96	583	89	41	43	180	15.2	34
1996-97	618	67	34	40	125	10.8	26
1997-98	1181	111	17	85	155	9.4	13
1998-99	1243	200	33	109	367	16.1	30
1999-00	694	181	33	111	334	26.0	29
2000-01	664	79	16	63	110	11.9	11
2001-02	1159	118	40	55	233	10.2	34
2002-03	638	53	54	21	126	8.3	40
2003-04	740	49	37	25	95	6.7	30
2004-05	870	88	34	52	164	10.1	30
2005-06	623	73	18	58	106	11.8	12
All	9473	1237	13	1004	1611	13.1	11

Trawl effort in SBW6, 1994-95 to 2005-06

Figure G1: Plot of start positions of commercial tows, observed tows, and observed fur seal incidents by fishing year for the SBW6 fishery area. The dashed lines are the boundaries between the subareas: Auckland Islands (6A), Campbell Rise (6I), Pukaki Rise (6R), and Bounty Plateau (6B).

APPENDIX G - continued

Covariates in SBW6, 1994-95 to 2005-06

d.shore

Figure G2: Bar and density plots for the fixed covariates used in the model for fur seal captures in the SBW6 fishery area.

Figure G3: Plots of the predictive densities, by fishing year, for fur seal captures for tows in the SBW6 fishery area.

SBW6

Figure G4: Predicted strike rates, with $\mathbf{9 5 \%}$ prediction intervals, by fishing year, for tows in the SBW6 fishery area.

[^0]: * All observed tows inside the New Zealand EEZ and outside of the 6 areas.
 \dagger All TCEPR and CELR tows inside the EEZ, outside the 6 areas, and south of $40^{\circ} \mathrm{S}$, except that none of the CELR tows in statistical area 014 are included in Other.

