## DREDGE OYSTER (OYU 5)-Foveaux Strait

(Ostrea chilensis)


Figure 1: Foveaux Strait (OYU 5) stock boundary and outer boundary of the 1999 dredge survey area encompassing almost all the commercial fishery.

## 1. FISHERY SUMMARY

### 1.1 Commercial fishery

The Foveaux Strait dredge oyster fishery has been fished for over 140 years. From the late 1880s to 1962 the fishery was managed by limiting the number of vessels licensed to fish. During this period vessel numbers varied between 5 and 12. The fishery was de-licensed in 1962 and boat numbers increased to 30 by 1969. Boundaries of statistical areas for recording catch and effort were established in 1960 and the outer boundary of the licensed oyster fishery in 1979. The western fishery boundary in Foveaux Strait is a line from Oraka Point to Centre Island to Black Rock Point (Codfish Island) to North Head (Stewart Island). The eastern boundary is from Slope Point, south to East Cape (Stewart Island). The OYU 5 stock boundaries and statistical reporting areas are shown in Figure 1.

Catch limits were introduced in 1963. In 1970, vessel numbers were limited to 23 by regulation. The catch limits were evenly divided between the 23 vessels. In 1979 the oyster fishery was declared a licensed fishery for the 23 vessels, closing a loophole that allowed vessels to fish outside the designated fishery area. Before 1992, landings and catch limits in this fishery were recorded in sacks. Sacks contained an average of 774 oysters and weighed 79 kg . Catch and effort has been traditionally recorded in sacks per hour dredged. Total landings of oysters between the 1880s and 1962 ranged between 15 and 77 million oysters. Reported landings for the period 1907-1962 are shown in Table 1. Catch limits and total landings for 1963-92 are shown in Table 2.

In 1986, Bonamia exitiosa (bonamia) was identified as the cause high mortality in the oyster population and the epizootic reduced oyster density, and the size and number of commercial fishery areas over the next six years (see Cranfield et al. 2005, Doonan et al. 1994). Over that period, management of the fishery used changes to catch limits (Table 2) and spatial fishing strategies to minimise the effects of
disease mortality and the spread of infection. By 1992, fishing was confined to the outer beds and in 1993 the oyster fishery was closed to allow the population to recover.

In 1996, the population had rebuilt sufficiently for the Minister of Fisheries to reopen the fishery with a catch limit of 14.95 million oysters. This catch limit was converted to a catch quota of 1475 t using a conversion factor of 801 oysters per 79 kg sack, based on Bluff Oyster Enhancement Company data. The mean number of oysters per sack landed in 1996 was fewer than 801 so that the quota specified by weight was filled before 14.95 million oysters were landed. The number of sacks landed as well as the number of oysters they contained was tabulated from the 1996 Licensed Fish Receivers Reports (LFRR) data and a new conversion factor of 774 oysters per 79 kg sack estimated (oyster numbers per sack and sack weights vary over time and between vessels). Using this conversion factor, the catch quota for 1997-2001 was 1525 t . From 1996, catches were recorded as numbers of oysters. Catch limits and total landings for 1996-2009 are shown in Table 3.

No heightened mortality was observed in the fishery between 1995 and 2000. Another B. exitiosa epizootic confirmed in March 2000 caused a decline in the oyster population and further reduced landings from 2003 (Table 3). Between 2003 and 2008, the Bluff Oyster Management Company (BOMC) shelved half of the TACC, harvesting about 7.5 million oysters annually. Since 2005, recruitment to the fishery has exceeded B. exitiosa mortality and the population size of recruited oysters has increased (see Table 9). The 2009 OYU 5 stock assessment showed an improvement in the status of the fishery, which was also reflected in oyster vessel catch rates ( 2.4 to 3.3 sacks per hour), and BOMC unshelved $10 \%$ of the shelved quota (Table 3).

The Bluff Oyster Enhancement Company Ltd (BOEC) was established in 1992 to facilitate an oyster enhancement programme in attempts to rebuild the OYU 5 stock back to its pre-1985 level. Between 1992 and 2000, BOEC was granted annual special permits to catch oysters during the breeding season as part of their enhancement programme. Permit allocations and reported landings are shown in Table 4. No special permit was requested in 1998.

In 1997, BOEC was renamed the Bluff Oyster Management Company Limited (BOMC), that became a commercial stakeholder organisation (CSO) to represent the combined interests of owners of Individual Transferable Quota shares in the Bluff Oyster fishery (OYU 5). In April 1997, individual quotas were granted, and quota holders were permitted to fish their entire quota on one vessel. The quota shares were evenly allocated based on the 23 vessel licences. At the same time, the Crown purchased $20 \%$ of the available quota from quota holders by tender from willing sellers and transferred it to the Waitangi Fisheries Commission. The oyster fishery entered the Quota Management System in 1998. The number of vessels in the fishery has dropped from 23 in 1996, to 15 in 1997, to 11 in 2006, and has remained at this level since.

The commercial fishing year for the oyster fishery reporting spans 1 October to 30 September, however, as oysters have been traditionally harvested over a six-month season, 1 March to 31 August (Southland Commercial Fishing Regulations). Commercial and recreational fishery data is reported by calendar year, and customary fishing by fishing year (1 October to 30 September) as customary permits are issued out of season. When the fishery was reopened in 1996, the oyster season started between mid March and early June to avoid disturbing oysters after spawning and to reduce the risk of spreading B. exitiosa infection (based on information available at that time). The oyster season continued to finish on 31 August although many vessels have caught their individual Annual Catch Entitlement (ACE) before then. In 2007, the fishery returned to a 1 March start to the oyster season.

Oysters have been commercially harvested from Foveaux Strait since the 1860s by hand-gathering and since the 1870s by dredge. Currently vessels tow two $460-530 \mathrm{~kg}$, double bit, steel dredges on steel warps. Each dredge is towed off its own derrick, both on the vessel's port side. The dredges are towed along an elliptical track. Once the dredges are shot the vessel drifts down tide under minimal power turning in to the tide to haul the dredge. The dredge contents are emptied on to culching benches and the oysters sorted and sized by hand. Small oysters and bycatch are returned to the sea. Oysters are landed daily, live in the shell.

## DREDGE OYSTER (OYU 5)

Table 1: Reported landings of Foveaux Strait oysters 1907-1962 (millions of oysters; sacks converted to numbers using a conversion rate of 774 oysters per sack). (Data summarised by Dunn, (2005) from Marine Department Annual Reports).

| Year | Catch |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1907 | 18.83 | 1919 | 16.56 | 1931 | 28.28 | 1943 | 56.59 | 1955 | 60.84 |
| 1908 | 17.34 | 1920 | 20.67 | 1932 | 29.01 | 1944 | 49.50 | 1956 | 58.63 |
| 1909 | 19.19 | 1921 | 19.01 | 1933 | 32.64 | 1945 | 58.85 | 1957 | 60.14 |
| 1910 | 18.20 | 1922 | 21.11 | 1934 | 40.44 | 1946 | 69.16 | 1958 | 64.44 |
| 1911 | 18.90 | 1923 | 22.28 | 1935 | 38.48 | 1947 | 63.09 | 1959 | 77.00 |
| 1912 | 19.00 | 1924 | 18.42 | 1936 | 49.08 | 1948 | 73.10 | 1960 | 96.85 |
| 1913 | 26.26 | 1925 | 20.01 | 1937 | 51.38 | 1949 | 75.34 | 1961 | 84.30 |
| 1914 | 19.15 | 1926 | 21.54 | 1938 | 52.05 | 1950 | 58.09 | 1962 | 53.42 |
| 1915 | 25.42 | 1927 | 16.26 | 1939 | 58.16 | 1951 | 70.15 |  |  |
| 1916 | 22.61 | 1928 | 30.03 | 1940 | 51.08 | 1952 | 72.51 |  |  |
| 1917 | 17.20 | 1929 | 30.44 | 1941 | 57.86 | 1953 | 55.44 |  |  |
| 1918 | 19.36 | 1930 | 33.11 | 1942 | 56.87 | 1954 | 51.29 |  |  |

Table 2: Reported landings and catch limits for the Foveaux Strait dredge oyster fishery from 1963-1992 (millions of oysters; sacks converted to numbers using a conversion rate of 774 oysters per sack). Catch rate shown in sacks per hour. (Data summarised by Dunn, (2005) from Marine Department Annual Reports).

|  | Reported <br> landings | Catch <br> limit | Catch <br> rate | Year | Reported <br> Landings | Catch <br> limit | Catch <br> rate |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1963 | 58 | 132 | 6.0 | 1978 | 96 | 2 | 89 |

1 Landings include catch given as incentive to explore 'un-fished' areas.
2 Landings include catch given as an incentive to fish Area A.
3 Season closed early after diagnosis of $B$. exitiosa infection confirmed.
4 Catch limit reduced by the proportion of the fishery area with oysters infected by B. exitiosa and closed.
5 Landings include catch given as an incentive to fish a 'firebreak' to stop the spread of B. exitiosa.
6 Fishing only permitted in outer areas of fishery.
Table 3: Reported landings and catch limit for the Foveaux Strait dredge oyster fishery from 1996-2009. TACC was 14.95 million oysters over this period. Landings and catch limits reported in numbers (millions) of oysters. Reported catch rate based on number of sacks landed in CELR data, and revised catch rate based on numbers of oysters landed and converted to sacks ( 774 oysters per sack). Catch rate does not include oysters taken by crew as recreational catch. The numbers of oysters per sack can vary considerably depending on the sizes of oysters and epifauna attached. Some oysters are landed in bins, and bins converted to sacks using a conversion factor of 0.5 .

| Year | Reported <br> landings | Catch limit including voluntary <br> Catch limits from 2003 | Reported <br> catch rate | Revised <br> catch rate |
| :--- | :--- | :--- | :--- | :--- |
| 1996 | 13.41 | 14.95 | 5.9 | 5.8 |
| 1997 | 14.82 | 14.95 | 70 | 7.0 |
| 1998 | 14.85 | 14.95 | 8.3 | 6.7 |
| 1999 | 14.94 | 14.95 | 7.5 | 6.8 |
| 2000 | 14.43 | 14.95 | 7.2 | 6.4 |
| 2001 | 15.11 | 14.95 | 7.0 | 6.8 |
| 2002 | 14.45 | 14.95 | 3.2 | 3.3 |
| 2003 | 7.46 | $7.475^{1}$ | 2.3 | 2.6 |
| 2004 | 7.48 | $7.475^{1}$ | 2.2 | 2.5 |
| 2005 | 7.57 | $7.475^{1}$ | 1.7 | 1.8 |
| 2006 | 7.44 | $7.475^{1}$ | 1.9 | 1.9 |
| 2007 | 7.37 | $7.475^{1}$ | $2.2^{2}$ | $2.3^{2}$ |
| 2008 | 7.49 | $7.475^{1}$ | $3.9^{2,4}$ | 3.4 |
| 2009 | 8.22 | $8.22^{3}$ |  | 3.0 |

1 Fifty percent of the TACC was shelved for the season
2 Fishers on some of the eleven vessels given incentive to sort above MSL to increase market value, and changes in sorting potentially result in lower catch rates compared to previous years.
3 BOMC unshelved $10 \%$ of their shelved quota.
4 Catch reported in bins and sacks, bins converted to sacks by a conversion factor of 0.5.

Table 4: Oyster catches reported from vessels fishing under special permits to the Bluff Oyster Enhancement Company 1992-93 to 1999-2000.

| Summer | Reported catch <br> (millions of <br> oysters) | Permit allocation <br> (millions of oysters) |
| :--- | :--- | :--- |
| $1992-93$ | 2.43 | 3.10 |
| $1993-94$ | 3.09 | 3.10 |
| $1994-95$ | 3.03 | 3.10 |
| $1995-96$ | 0.93 | 0.93 |
| $1996-97$ | 0.20 | 0.88 |
| $1997-98$ | 0.72 | 0.72 |
| $1998-99$ | - | - |
| $1999-2000$ | 1.00 | 1.00 |

Fishing took place over the summer breeding season (November-February) rather than the winter season (March-August). Reported catch and permit allocations 1992-93 to 1995-96 used a rate of 774 oysters per sack. No special permit was requested in $1998(-)$.

### 1.2 Recreational fisheries

In 2002, Fisheries Officers estimated that between 70 and 100 recreational vessels were fishing from Bluff and smaller numbers from Riverton and Colac Bay. Most of these vessels are fitted with GPS and capable of fishing with up to four recreational fishers on board. Recreational fishers may take 50 oysters per day during the open season (March-August). A charter boat fleet (approximately 17 vessels) based at Stewart Island, Bluff, and Riverton also targets oysters during the oyster season. Some charter vessels can have up to 15-20 fishers out for the day (each returning with up to 50 oysters per person).

Four surveys of recreational fishing have been conducted to estimate recreational harvest: the South region 1991-92 survey and the 1996 (Bradford, 1998), 1999-2001 (Boyd \& Reilly, 2004) and 2000-01 (Boyd et al, 2004) national telephone diary surveys. However, the catch of oysters cannot be reliably quantified from these surveys because of the small number of local respondents who reported catches of oysters in their diaries. The Southland Recreational Marine Fishers Association estimated that the annual recreational catch of oysters in Foveaux Strait in 1995 to be about 300000 oysters.

The Ministry of Fisheries considers that the recreational catch increased significantly between 1995 and 2000, but has dropped since then due to the reduced fisher success caused by oyster mortality from bonamia reducing oyster densities. The commercial oyster fleet are a major contributor to the level of recreational harvest. Commercial fishers are entitled to 50 oysters each day (subject to approval under s111 of the Fisheries Act 1996), with each commercial vessel's crew potentially taking up to 400 oysters as recreational catch each day. Recreational catches from commercial vessels have, in the past, been reported in Catch and Effort Returns (CELR); and since 2002, have been separately reported on returns and not included in commercial catch effort statistics. Commercial fishers took 182331 oysters under recreational bag limits during the 2009 oyster season. Recreational catch taken on commercial vessels is shown in Table 5.

Table 5: Reported annual recreational catch (numbers of oysters) taken from commercial vessels March to August 200209 (Ministry of Fisheries CELR data) and reported customary catch (numbers of oysters) October to September 1998-2009 (Tangata taiki data collected by Ngai Tahu).

|  | Recreational catch from |  |
| :--- | :--- | ---: |
| Year | commercial vessels | Customary catch |
| 1998 | NA | 143940 |
| 1999 | NA | 177360 |
| 2000 | NA | 223332 |
| 2001 | NA | 259243 |
| 2002 | 236103 | 184335 |
| 2003 | 282645 | 157980 |
| 2004 | 146567 | 127708 |
| 2005 | 190345 | 76464 |
| 2006 | 139252 | 85312 |
| 2007 | 90544 | 109260 |
| 2008 | 141587 | 202952 |
| 2009 | 182331 | 347390 |
| $l$ Customary catch reported for the period 1 July to 31 December only |  |  |

The total recreational catch is about 0.5 million oysters. The reliability of this estimate is not known.

## DREDGE OYSTER (OYU 5)

### 1.3 Customary non-commercial fisheries

Reporting of Maori customary harvest is specified in the Fisheries (South Island Customary Fisheries) Regulations 1999. Ngai Tahu administers the reporting of customary catch of Foveaux Strait oysters to the Ministry of Fisheries. Customary catch is reported in the quarter it is summarized, landing dates are not reported for catches under customary permits). A small amount of customary fishing is believed to take place between 31 August and 30 September, and no customary permits are issued for the quarter 1 October to 31 December while oysters are spawning. Reported customary catch for 1998 to 2009 is given in Table 5.

### 1.4 Illegal catch

The Ministry of Fisheries estimated the illegal catch of oysters for the 1998 and 1999 fishing years to be about $10 \%$ of the total non-commercial catch (approximately 66000 oysters). The estimate of noncommercial catch, summed estimates of customary catch ( $\sim 160000$ ), recreational catch ( $\sim 302000$ oysters), and the recreational catch from commercial vessels ( $\sim 204000$ ). However, because the estimate of illegal catch cannot be verified, the Working Group is not in a position to modify or determine its acceptability. There is no further information available.

### 1.5 Other Sources of Mortality

### 1.5.1 Mortality caused by Bonamia exitiosa

Bonamia exitiosa is a haemocritic, haplosporid parasite (infects mainly haemocytes or blood cells) of flat oysters. It is known to infect Ostrea chilensis in New Zealand and Chile; Ostrea angasi in Australia; Ostrea puelchana in Argentina; Ostrea (Ostreola) conchaphila in California, USA; Ostrea edulis in Atlantic Spain, probably Gulf of Manfredo, Italy (Adriatic); Ostrea stentina in Tunisia, and possibly northern New Zealand (this isolate is also similar to Bonamia. roughleyi); and Crassostrea ariakensis in North Carolina, USA (Mike Hine, pers. comm.). Further, an unknown species of bonamia has been identified in two species of native oysters from Hawaii.

Mortality of oysters from B. exitiosa is a recurrent feature of the Foveaux Strait oyster population and the main driver of oyster abundance during epizootics. Large numbers of new clocks (shells of oysters that had died within six months) and oysters in poor condition (both indicative of $B$. exitiosa epizootics), were recorded as long ago as 1906. B. exitiosa has been identified in preserved oyster tissues sampled in 1964, at the end of an epizootic that caused a downturn in the fishery (Cranfield et al 2005) and originally attributed to Bucephalus longicornutus (Hine and Jones 1994) A B. exitiosa epizootics occurred in the Foveaux Strait oyster fishery in 1986-92 and again in 2000-09. Prevalence of infection between 1996 and 2000 was not sampled, but is thought to be low (almost undetectable) from the low numbers of new clocks that were recorded in biennial oyster population surveys in that period.

In the early stages of an epizootic when bonamia is spreading through the fishery, levels of infection and mortality are high, and B. exitiosa can be detected throughout the year. In the later stages of an epizootic, infection is generally lower, and infection and mortality is detected mainly from January to March. The annual cycle of infection is described by Hine (1991). The parasite transmits directly, oyster to oyster, and disease spread is thought to be related to oyster density. Some oysters appear more tolerant of infection than others (Hine 1996). The relationship between the intensity and prevalence of infection in one year, the density of oysters, and the probability of oyster mortality the following year are poorly understood (Sullivan et al, 2005).

A B. exitiosa epizootic was first detected in 1986 in the central fishery area (168 9.0 E, 4641.5 S ) and spread throughout the entire fishery area by 1992. Mortality from this B. exitiosa epizootic was initially high (up to $60 \%$ of recruits per year in some fishery areas with high oyster densities), and over the course of the epizootic reduced the Foveaux Strait oyster population to below $10 \%$ of its predisease level (Doonan et al 1994). Surveys of the fishery to determine the status of B. exitiosa infection, and changes to oyster densities and population sizes were undertaken between 1990 and 1995. Although B. exitiosa infection was widespread in March 1995, prevalence (4.5\%) and intensity of infection was low, considered unlikely to cause significant mortality. Monitoring the status of infection ceased in 1995, but biennial population surveys continued. No heightened mortality was observed in the 180
fishery between 1995 and 2000. In the absence of bonamia, the oyster population increased to relatively high oyster densities by 1999, in the areas first affected by bonamia infection.

Another B. exitiosa epizootic was confirmed in March 2000 (Dunn et al, 2000). It was first identified in the same area as the 1980s outbreak (where oysters had rebuilt to high densities), and proceeded to spread throughout Foveaux Strait in a similar pattern and rate to the 1980s epizootic. Estimated mortality of recruited oysters in 2001 was about $12 \%$ ( $95 \%$ confidence interval $11-13 \%$ ), with peak mortality of $56 \%$ ( $95 \%$ confidence interval 48-64\%). Between 2000 and 2002, infection from $B$. exitiosa caused mortality in $66 \%$ of recruited oysters in Foveaux Strait and $72 \%$ of recruited oysters by 2005 . Mortality of oysters in designated commercial fishery areas was $50 \%$ in 2002, and oyster density reduced to one third. Since 2005, mortality from bonamia has been relatively low (less than $10 \%$ of recruited oysters) and recruitment to the fishery has exceeded B. exitiosa mortality and the population size of recruited oysters has increased.

It is not known whether other disease agents (including an apicomplexan, Bucephalus sp., coccidian, and microsporidian) contributed to or caused mortality in oysters during the 1986-92 and 2000-09 epizootics.

Preliminary analysis of the distribution of fishing effort that accounts for $100 \%$ of the annual catch from fishers' logbook data with the distribution of prevalence and intensity of bonamia infection in oysters from fishery independent surveys between 2006 and 2009 show no relationship. No direct and immediate effect of oyster dredging on disease status can be determined.

### 1.5.2 Recent estimates of mortality from Bonamia exitiosa

Since the present Bonamia exitiosa epizootic began in 2000, surveys of the oyster population found all areas with high densities of recruited oysters (including the designated commercial areas) had a high prevalence of infection. Mortality of oysters from 1999-2002 has reduced the oyster population to one-third of the population in 1999, from 1461 to 502 million oysters. By October 2002, mortality from B. exitiosa infection had reduced both the numbers of commercial fishery areas and the oyster densities within them to low levels. Since January 2005, numbers of pre-recruit oysters entering the fishery exceeded mortality from B. exitiosa infection and this trend has continued through to 2009; the density and population size of recruited oysters has increased. Almost all rebuilding is occurring in western, central, and southern fishery areas, including the area where B. exitiosa infection was first detected in 2000 . Bonamia is still causing mortality in eastern fishery areas, even though oyster densities are low.

In 2009, bonamia infection was still widespread in the fishery area. Prevalence of infection was lower than 2007, and the numbers of sample stations with infection have been slowly decreasing since February 2006. Intensity of infection has continued to increase since February 2006, suggesting more of the infected oysters are developing fatal infections.

Oyster mortality from bonamia is still considerably higher than the commercial catch. Based on the number of oysters sampled with category 3 and higher infections, the projected mortality of recruited oysters between surveys and the oyster seasons have been estimated at $14,43,23$, and 46 million oysters for years 2006 to 2009 respectively. Relatively small bonamia surveys are undertaken in years between biennial stock assessment surveys, in key commercial fishery areas, and the size of these surveys may not estimate population size well. Oyster mortality over the summer of 2010 estimated from, new clocks and gapers indicated that at least 7 million recruited oysters had died immediately prior to the survey, and based on category 3 and higher infections, another 53 million oysters could die early in the 2010 oyster season. The $6.5 \%$ of oysters with fatal infections were expected to reduce the recruited oyster population from 809 million oysters in the strata sampled in February 2010 to 756 million oysters.

Trends in the population sizes of pre-recruit and small oysters show low populations of recruit sized oysters lead to declines in small and then pre-recruit oyster numbers, generally with a time lag of two years between size classes. Continuing bonamia mortality could reduce future recruitment. Indicative
estimates of recruit, pre-recruit, and small oyster population sizes from the February 2010 bonamia survey suggest significant increases in all size classes (Table 6).

Table 6: Indicative estimates of recruited, pre-recruit, and small oysters from common strata sampled February 2009 and 2010; mean population size (millions of oysters) with upper and lower $\mathbf{9 5} \%$ confidence intervals in parenthesis.

| Survey | Recruits |  |  | Pre-recruits |  |  |
| :--- | :--- | :--- | :--- | ---: | :--- | ---: |
| $2009(\mathrm{Feb})$ | 357 | $(226-542)$ | 183 | $(111-284)$ | 426 | $(265-656)$ |
| $2010(\mathrm{Feb})$ | 809 | $(510-1235)$ | 367 | $(241-546)$ | 939 | $(611-1404)$ |

### 1.5.2 Incidental mortality caused by heavy dredges

Since 1965, heavy double bit, double ring bag dredges have been used in the Foveaux Strait oyster fishery. These dredges weighed around 410 kg when first introduced. Each oyster skipper fine tunes their dredges and current dredge weights range from 460 kg to 530 kg . These dredges are heavier than the single bit, single ring bag dredges employed between 1913 and 1964.
 compared experimentally in March 1997 (Cranfield et al, 1997). Oysters in the experiment had only a single encounter with the dredge. Numbers of dead oysters were counted seven days after dredging. The experiment found that mortality was inversely proportional to the size of oysters damaged and that lighter dredges damaged and killed fewer oysters. Recruit size oysters appeared to be quite robust ( $1-2 \%$ mortality) and few were damaged. Smaller oysters ( $10-57 \mathrm{~mm}$ in length) were less robust ( $6-8 \%$ mortality), but spat were very fragile and many were killed especially by the heavy commercial dredge (mortality of spat below 10 mm in height ranged from 19-36\%). Incidental mortality from dredging may reduce subsequent recruitment in heavily fished areas but is unlikely to be important once oysters are recruited. The mortality demonstrated experimentally here has not been scaled to the size of the fishery and therefore its importance cannot be assessed.

## 2. BIOLOGY

Ostrea chilensis is a protandrous hermaphrodite that may breed all year round, but breeding peaks in the spring and summer months. Females produce few large ( $280-290 \mu \mathrm{~m}$ ) yolky eggs, which after fertilisation continue to develop to pediveligers in the inhalant chamber for 18-32 days (depending on temperature). Most larvae are thought to settle immediately on release (at a size of 444-521 $\mu \mathrm{m}$ ) and thought to seldom disperse more than a few centimetres from the parent oyster. Some larvae are released early, at smaller sizes and spend some time in the plankton, and are capable of dispersing widely. Little is known about the timing and proportion of larvae released early in the plankton, and how this strategy may vary spatially and temporally, both within natal populations and the fishery.

In Foveaux Strait, spat settlement is primarily during the summer months from December to February. Mean fertility of incubating oysters in Foveaux Strait was determined to be $5.09 \times 10^{4}$ larvae, and only 6$18 \%$ of the sexually mature oysters spawned as females each year.

## Recruitment

Little data are available on recruitment. Stock recruitment relationships for the Foveaux Strait dredge oyster are unknown, but most oysters surviving post settlement, are typically found on live oysters, and to a lesser extent, oyster shell and circular saw Astraea heliotropium (Keith Michael, NIWA, pers. comm.). Generally, recruitment of sessile organisms is highly variable and often environmentally and predation driven (Cranfield, 1979). About $2 \%$ of oyster spat survive the first winter; most mortality appears to result from predation by polychaetes, crabs, and small gastropods. Although settlement predominates on under-surfaces of oysters and shell, most surviving spat are attached to the left (curved and generally uppermost) valve of living oysters. Mean density of six month old oyster spat settled on spat plates at six sites in western and eastern Foveaux Strait over the summer of 1999-2000 was $1700 \mathrm{~m}^{2}$ (range 850-2 $900 \mathrm{~m}^{2}$ ) (Cranfield et al unpublished data).

A strong recruitment pulse was observed in the fishery between 1993 and 2000, suggesting that high levels of recruitment are plausible during periods of low abundance. Between 1999 and 2005, when stock levels were low, the numbers of small oysters found in population surveys remained relatively high. Since 2007, the numbers of small oysters estimated from surveys have decreased, but this may represent a time-lag between low population levels and reduced recruitment. The OYU 5 stock assessment model estimates show recruitment strength below the long-term average since 2002, when the oyster population was reduced to low levels by bonamia (Dunn, 2005).

## Growth

Growth rate of oysters has been estimated from height increment data. It varies between years and between areas of Foveaux Strait. Spat generally grow 5 to 10 mm in height by the winter after settlement. Mean height after one year is 18 to 25,25 to 35 mm after two years, 30 to 51 mm after three years, 40 to 65 mm after four years, and 65 to 75 mm after the fifth year. Oysters recruit to the legal-sized population (a legal-sized oyster will not pass through a 58 mm diameter ring, i.e. it must be at least 58 mm in the smaller of the two dimensions of height or length) at ages of 4-8 years.

Dunn et al (1998a) modelled the growth of a sample of oysters from four areas, grown in cages at the same site in Foveaux Strait. The oysters were measured at six-monthly intervals over three years. There was evidence for strong seasonal variation in growth. Mean growth over the winter was zero or negative growth (the latter presumably due to shell abrasion). Length-based growth parameters from this study are shown in Table 7.

The complexity of these estimates cannot easily be reproduced within the population model and hence the data were re-fitted using a maximum likelihood von Bertalanffy growth model based on the parameterisation of Francis (see Dunn, 2005).

Winter length measurements were ignored, and hence annual growth increment measurements only were considered. The growth parameters at $\alpha=30$ and $\beta=55$ were estimated outside the population model, as $g_{\alpha}=11.91 \mathrm{~mm}$ and $g_{\beta}=3.61 \mathrm{~mm}$; variation in growth had an estimated CV of $\mathrm{c}=0.31$ and $\sigma_{\min }=4.45 \mathrm{~mm}$; and estimated measurement error $\sigma_{E}$ was 2.12 mm .

## Maturity

Jeffs \& Hickman (2000) estimated measures of maturity from the re-analysis of sectioned oyster gonads sampled at around monthly intervals from four sites in Foveaux Strait from April 1970 to April 1971. The sites were located across the main commercial fishery areas. These samples were collected prior to the 1986-92 epizootic, and represent the reproductive cycle before major disruption to the population structure caused by bonamia mortality. Analysis of these samples revealed that oysters were protandrous, maturing first as males by 20 mm in shell height. Beyond 50 mm , most oysters developed ova while continuing to produce sperm, although oysters did not begin brooding larvae until 60 mm . Considerable quantities of ova were present in oysters throughout the year, but only a very small proportion of oysters spawned ova from July to December with a peak in October. Oysters commonly contained and released sperm throughout the year, although peak spawning was from November to March. The phagocytosis of reproductive material from the follicles of oysters was present in a small proportion of oysters throughout the year. However, it was much more common from January to March amongst both male and female reproductive material, including smaller (less than 50 mm ), solely-male oysters.

Dunn 2005 used the data from Jeffs \& Hickman (2000) for the proportion of oysters with female ova, during the months of October-March, to determine the maturity ogive within the model. Figure 2 shows the estimated proportions mature (i.e., proportions of oysters with presence of female ova) by length class, along with exact $95 \%$ confidence intervals.

## DREDGE OYSTER (OYU 5)



Figure 2: Proportions of mature oysters (defined as the proportion of oysters with female ova) by length from the analysis of data of Jeffs \& Hickman (2000). Vertical bars give $\mathbf{9 5 \%}$ confidence intervals, and dashed lines separate the small ( $<\mathbf{5 0} \mathrm{mm}$ ), pre-recruit ( $\geq 50 \mathrm{~mm}$ and $<\mathbf{5 8} \mathrm{mm}$ ), and recruit ( $\geq \mathbf{5 8} \mathrm{mm}$ ) size groups.

## Natural Mortality

Dunn et al (1998b) estimated natural mortality for the years 1974 to 1986 from the reanalysis of tagging data. Estimated natural mortality was found to increase from $0.017 \mathrm{y}^{-1}$ to $0.188 \mathrm{y}^{-1}$ from 19741986 for oysters released in 1974 , and from $0.009 \mathrm{y}^{-1}$ to $0.199 \mathrm{y}^{-1}$ for oysters released in 1973. The weighted average instantaneous natural mortality, M, for all data combined for the years from 1974 to 1986 was $0.042 \mathrm{y}^{-1}$.

A constant value for natural mortality of $0.1 \mathrm{y}^{-1}$ was assumed, implying a maximum age (at which $1 \%$ survive) of 36 years. This assumption was based on estimates of $M$ from Dunn et al (1998b) and two oysters tagged at recruit size (one from 1973 and one from 1976 or 1977) and recaptured (live) in early 2003 (K.P. Michael, NIWA, pers. comm.). These data suggest the value of $M$ plus $F$ was not high, as at least two oysters lived to recruit size and survived a further 26-29 years.

## Table 7: Estimates of biological parameters

| Fishstock | Estimate | Source |
| :--- | :--- | ---: |
| 1. Natural mortality $(M)$ |  | Dunn et al (1998b) |
| OYU 5 | 0.042 | Allen $(1979)$ |
|  | Assumed 0.1 | Dunn (2007) |

2. Length-based growth parameters from Dunn et al 1998a

Length-based growth was estimated from model 3, is presented below. Growth is given for change in diameter.

$$
\Delta \mathrm{l}=\left(\mathrm{L}_{\infty}-\mathrm{area}-11\right)\left(1-\mathrm{e}^{\left.-\mathrm{k}_{\text {area }+ \text { year }}^{(\Delta t+\phi)}\right)-\varepsilon}\right.
$$

Estimated parameter values (and 95\% confidence intervals)

| $L_{\infty}$ | Area A | $92.2 \mathrm{~mm}(86.7-97.9)$ |
| :--- | :--- | :--- |
|  | Bird I. | $76.2 \mathrm{~mm}(73.5-78.9)$ |
|  | Lee Bay | $77.8 \mathrm{~mm}(73.4-81.4)$ |
|  | Saddle | $81.0 \mathrm{~mm}(77.3-84.9)$ |

## Table 7 continued:

| Estimated parameter values (and $95 \%$ confidence intervals) |  |  |
| :--- | :--- | :--- |
| $k$ | 1979 | (reference year) |
|  | 1980 | $-0.29(-0.33--0.25)$ |
|  | 1981 | $0.02(-0.02-0.06)$ |
|  | Area A | $0.48(0.41-0.54)$ |
|  | Bird I. | $0.85(0.76-0.94)$ |
|  | Lee Bay | $0.77(0.68-0.86)$ |
|  | Saddle | $0.51(0.50-0.52)$ |
|  |  | -0.03 |

3. Size at sexual maturity (Females)

50 mm diameter ( 49 mm height)
Cranfield \& Allen (1977)
50 mm in length
Jeffs \& Hickman (2000)
4. Percentage of population breeding as females annually

Foveaux Strait 6-18\%
Cranfield \& Allen (1977)
Foveaux Strait $\sim 50 \% \quad$ Jeffs \& Hickman (2000)

## Disease Mortality

Data on disease mortality events are limited. Anecdotal reports exist of mortality events indicated by large numbers of "clocks" (the articulated shells of recently-dead oysters with the ligament attaching the two valves intact) from the late 1940's to 1960-63. The reported proportions of clocks to live oysters are similar to those found in abundance surveys during the $B$. exitiosa epidemics in the early 1990s and early 2000s. Hine (1996) later noted that the most likely cause of the mortality during the 1960s was B. exitiosa.

Dunn (2005) assumed that the relationship between disease mortality, oyster length, or oyster maturity was the same as the maturity ogive. B. Diggles (unpublished results) analysed 500 oysters from a survey on January 2004 for B. exitiosa infection, sex, and maturity with lengths between 24 and 81 mm . These data provide information on the disease selectivity of oysters, and can be used to determine a length-based selectivity of B. exitiosa (Figure 3).


Figure 3: Proportions of oysters (and $95 \%$ confidence intervals) with a $B$. exitiosa infection of level $1+$ from $B$. exitiosa histological sampling from the January 2004 surveys by length (B. Diggles, unpublished results). Dashed lines separate the small ( $<50 \mathrm{~mm}$ ), pre-recruit ( $\geq 50 \mathrm{~mm}$ and $<58 \mathrm{~mm}$ ), and recruit ( $\geq 58 \mathrm{~mm}$ ) size groups.

Diggles et al. (2003) show category 3 infections are elevated and systemic, with minor tissue damage throughout the host, and these infections rapidly progress to category and 5 infections where tissue damage is extreme throughout the animal leading to death. The proportion of oysters with category 3
or greater infections are used to project oyster mortality likely to occur between the bonamia surveys and the early part of the following oyster season. Projected mortality with reference to commercial landings is given in Table 8.

Table 8: Projected oyster mortality from category 3 and greater B. exitiosa infections. Projected percent of category 3 and greater infection over the entire population (Projected 3+), projected mortality in millions of oysters (Mortality), and commercial landing from the oyster season following the disease survey in millions of oysters (Landings). No data denoted by -.

| Oyster season | Projected \%3+ | Mortality | Landings |
| :--- | :--- | :--- | :--- |
| $2006^{l}$ | 5.0 | 14 | 7.44 |
| 2007 | 6.9 | 43 | 7.37 |
| $2008^{I}$ | 3.3 | 23 | 7.49 |
| 2009 | 6.3 | 46 | 8.22 |
| $2010^{I}$ | 6.5 | 33 | - |

1. Bonamia surveys sample both target stations and a random selection of stations sampled in the previous stock assessment survey, while stock assessment surveys use two-phase, stratified random designs that better estimate population size. Estimates of mortality are indicative only, and comparisons should be made with caution.

## 3. STOCKS AND AREAS

The Foveaux Strait oyster stock area (OYU 5) covers $3300 \mathrm{~km}^{2}$, but oysters are only distributed over some $1200 \mathrm{~km}^{2}$. Almost all the commercial fishery operates in the 1999 oyster survey area, which is less than $1055 \mathrm{~km}^{2}$. Only a small proportion of this commercial fishery area supports commercial densities of oysters and is regularly fished. In 1975, the oyster survey area encompassed almost all the then commercial fishery at that time and covered $374 \mathrm{~km}^{2}$, but commercial oyster areas covered only $12 \mathrm{~km}^{2}$ (Allen \& Cranfield 1979). At that time, the oyster fishery consisted of a number of discrete small dense patches generally separated by extensive areas of barren ground, $91 \%$ of the total oyster population was located in about 50 patches.

Throughout the years, high catches of oysters have been confined to the same locations, suggesting that these localised patches of oysters have remained stable in position over the history of the fishery. Between 1986 and 1992, mortality from $B$. exitiosa progressively destroyed most of the dense patches of oysters. This catastrophic mortality in the established fishery area (the 1975-76 survey area) forced fishers to expand the area fished ahead of the wave of mortality (Doonan et al, 1994).

The Foveaux Strait oyster fishery has been managed as a single stock, and current stock assessments are undertaken in a fishery area defined by the 1999 survey area. Although fishing occasionally occurs outside of this area, oyster population size in these outer areas is small.

## 4. STOCK ASSESSMENT

### 4.1 Population estimates

Surveys of the Foveaux Strait oyster population have been reported since 1906, see Dunn (2005) and Sullivan et al (2005) for details since 1960. Early surveys 1906, 1926-1945 are summarised by Sorensen (1968). Two large surveys to map oyster density were carried out in 1960-62 by Stead (1971), and again in 1975 and 1976 by Cranfield \& Allen (1979). The efficiency of the small dredge used in 1975 and 1976 was poorly estimated at that time and the population estimate from that survey was too inaccurate for use in management. The efficiency of that survey dredge was better estimated during the surveys of 1990 and this new estimate of efficiency for the dredge was used to re-estimate the oyster population in 1975-76 to give a more accurate estimate that is comparable with recent surveys (Doonan et al, 1994).

The absolute population size was estimated in 1990 using a stratified random dive survey. The efficiency of the small survey dredge and of commercial dredges was estimated by comparing oyster density in the same areas using these dredges with the density from the dive survey. In 1992 and 1993 the population was estimated from grid pattern dredge surveys. The population was estimated from stratified random surveys in March and October 1995, and in October 1997, 1999, 2001, 2002, January 2005, February 2007, and in February 2009. Surveys of the Foveaux Strait oyster population have been traditionally in

October after the commercial oyster season had finished, when the seasonal mortality from B. exitiosa was at its lowest, and to allow sufficient time for the stock assessment process to be completed before the next oyster season began the following March. Population estimates from surveys in 1990-1997 used an estimate of dredge efficiency (0.164) and surveyed the whole fishery area with a two-phase random stratified design. Population estimates for these surveys are shown in Table 9. The 1999-2007 population surveys used a revised estimate of dredge efficiency ( 0.166 ) and used information from commercial, exploratory and background areas designated by fishers to stratify the surveys. Since 2003, population surveys have been combined with B. exitiosa surveys in February (see Michael et al, 2008 for details).

Surveys since October 1999 have retained the same survey strata, although strata have been partitioned and their designation as commercial (where fishing is likely to occur the following oyster season), exploratory (areas with relatively high densities of pre-recruit oysters likely to support fishing in the near future), and background areas (with low densities of oyster, unlikely to be fished) changed to reflect changes in the distributions of oyster densities. The designations of strata are based on the distribution of oyster densities from the previous survey, from information in skippers' logbooks, skippers' input, and historical survey data (Figure 4). B1a is a new stratum added in the 2007 survey at the request of fishers, but not included in stock assessments and model projections.


Figure 4: The 1999 survey area and survey strata (black lines), sampled in February 2009. Strata designated commercial by oyster skippers are those with a "C" prefix. Exploratory strata have an "E"prefix and background strata " $B$ ". Original designation in 1999 shown in brackets. B1a is a new stratum added in the 2007 survey and the stratum previously B2 partitioned into two (B2a and B2b) to better delineate oyster densities.

Surveys estimate the absolute population size of three size groups of oysters: recruits (unable to pass through a 58 mm internal diameter ring), and pre-recruits (able to pass through a 58 mm internal diameter ring, but unable to pass through a 50 mm ring), and small oysters (able to pass through a 50 mm internal diameter ring and down to 10 mm in length). Population estimates for these three size groups of oyster from 1960-64 to 2009 are shown in Table 9 and for more details see Fu et al (2009)

## DREDGE OYSTER (OYU 5)

Table 9: Absolute population estimates for Foveaux Strait oysters within the 1999 survey area ( $1055 \mathbf{k m}^{2}$ ) for surveys 1960-2009. Recruited, pre-recruit, and small oyster population size estimates (millions of oysters) and CVs. Survey designs (Design) were either grid surveys (Grid) or stratified random surveys (SR). For longer and more detailed data 1960-2009 see Fu et al (2009). ‘-’ indicates not surveyed.

| Date | Design | Number of <br> stations | Recruits <br> (millions) | CV | Pre-recruits <br> (millions) | CV | Small <br> (millions) | CV |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1960-64 | Grid | 310 | 3059 | 0.21 | - | - | - | - |
| July 1990 | Grid | 293 | 707 | 0.11 | - | - | - | - |
| October 1990 | SR | 116 | 623 | 0.12 | - | - | - | - |
| March 1992 | Grid | 293 | 285 | 0.12 | - | - | - | - |
| October 1992 | Grid | 177 | 397 | 0.10 | 383 | 0.11 | 1004 | 0.10 |
| March 1995 | SR | 49 | 576 | 0.25 | 401 | 0.28 | 402 | 0.25 |
| October 1995 | SR | 154 | 782 | 0.11 | 380 | 0.10 | 718 | 0.21 |
| October 1997 | SR | 107 | 660 | 0.14 | 727 | 0.14 | 918 | 0.14 |
| October 1999 | SR | 199 | 1453 | 0.16 | 896 | 0.12 | 1364 | 0.11 |
| October 2001 | SR | 192 | 995 | 0.11 | 872 | 0.12 | 1410 | 0.12 |
| October 2002 | SR | 155 | 502 | 0.14 | 520 | 0.11 | 1243 | 0.10 |
| January 2005 | SR | 80 | 408 | 0.13 | 415 | 0.15 | 1345 | 0.12 |
| February 2007 | SR | 101 | 663 | 0.11 | 486 | 0.12 | 879 | 0.10 |
| February 2009 | SR | 111 | 720 | 0.08 | 354 | 0.10 | 903 | 0.10 |

### 4.2 Historical estimates of the commercial population and yield

Since 1996, yield was estimated for the commercial population (the part of Foveaux Strait likely to be fished), to prevent recruitment over fishing in areas where oyster populations were rebuilding after $B$. exitiosa mortality. Estimates of commercial population size between 1996 and 1999 used the portion of the population over 400 oysters per tow (roughly equivalent to a commercial catch rate of 6-8 sacks per hour considered economic by fishers in the 1970s and early 1980s) from the entire Foveaux Strait oyster fishery area. A commercial catch rate of 6-8 sacks per hour has no biological basis, but has been used as an indicator of commercial oyster densities. Estimates of the proportion of oysters above 400 oysters per standard survey tow over the entire fishery area 2001-09 are given in Table 10.

From 2000, estimates of commercial population size were based on estimates of the entire recruited oyster population in areas designated as 'commercial' by fishers (Michael et al, 2004), commercial fishery areas in 2009 are shown in Figure 4. The mean commercial population size has increased from 144 million oysters ( $95 \%$ C.I. 93-216) in October 2002 to 196 million ( $95 \%$ C.I.s 124-300) in 2007, and 361 million ( $95 \%$ C.I. 227-549) in 2009. The area of the designated commercial areas increased from $173 \mathrm{~km}^{2}$ in 2002 to $367 \mathrm{~km}^{2}$ in 2005, and remained the same since. Oyster density was halved from 0.83 oysters $/ \mathrm{m}^{2}$ in 2002 to $0.44 / \mathrm{m}^{2}$ in 2005 , and has increased to $0.97 / \mathrm{m}^{2}$ in 2009 .

Table 10: Estimates of the proportion of oysters above 400 oysters per standard survey tow over the entire fishery area 2001-09; the number of stations sampled (No. stations), the mean oyster density per $\mathbf{m}^{2}$ (Mean density), standard deviation (s.d.) of the density estimate, coefficient of variation (CV) of the population estimate, mean population size (Mean population with upper and lower $95 \%$ confidence intervals in parenthesis), and the area of each survey (Area).

|  | No. <br> stations | Mean <br> density | s.d. | CV. | Mean | population <br> $95 \%$ CI | Area <br> $\mathrm{km}^{2}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Year | 0.01 | 192 | 0.59 | 0.10 | 0.17 | 624 | $(359-1012)$ |
| 2002 | 155 | 0.17 | 0.06 | 0.33 | 178 | $(57-331)$ | 1054 |
| 2005 | 80 | 0.03 | 0.02 | 0.58 | 33 | $(0-78)$ | 1054 |
| 2007 | 104 | 0.19 | 0.07 | 0.36 | 204 | $(60-403)$ | 1054 |
| 2009 | 115 | 0.24 | 0.06 | 0.23 | 257 | $(129-441)$ | 1070 |
|  |  |  |  |  |  | 1070 |  |

A possible and significant source of error in the estimates of population size could be changes in dredge efficiency. Dredge efficiency was last calculated in 1990. The distribution of oysters, the structure of commercial fishery areas, the substrate and epifauna, and the number of clocks (shells of dead oysters) are likely to have changed since then and may effect dredge efficiency.

### 4.3 Stock assessment

Before 2004 the Foveaux Strait oyster fishery was managed by current annual yield (CAY, Method 1, see Sullivan et al., 2005) based on survey estimates of the population in designated commercial fishery areas. Since 2004, the TACC has been based on estimates of recruit size stock abundance from the Foveaux Strait oyster stock assessment model (Dunn, 2005, 2007) and projections of future recruit size stock abundance under different catch limits and heightened mortality from B. exitiosa. A spatially explicit epidemiological model of $B$. exitiosa (Gilbert \& Michael, 2006) may incorporate the stock assessment model in the future to provide stock assessment on sub areas of the fishery.

In 2004, Dunn (2005) presented a Bayesian, length-based single-sex, stock assessment model for Foveaux Strait dredge oysters using the general-purpose stock assessment program CASAL (Bull et al, 2005). That model was updated in 2007 (Dunn unpublished) to account for new data available, and a more complex variant of that model was also investigated. The assessment was updated in 2009 to include data from the 2007-08 fishing year and the abundance indices from the February 2009 survey (Fu et al, 2009). The model inputs and results are summarised below.

### 4.4 Resource surveys and other abundance information

Resource surveys of Foveaux Strait dredge oysters have been conducted since 1906 (Hunter 1906). Re-analysed estimates of abundance were made for surveys since 1990, and were based on an estimate of the population size within the 1999 survey area using the dredge calibration from the 1990 dredge/dive survey. These estimates were generated to provide a consistent time series over a constant region (Table 9).

Raw catch and effort data have been collected in the Foveaux Strait dredge oyster fishery since about 1948. The unstandardised CPUE indices (sacks per hour) were split into three series, namely (i) Series A, from 1948 to 1968 when the legal size was defined as 2.125 inches and the typical commercial dredge was about 3.35 m -wide with single-bit and single ring bag and weighing $\sim 150 \mathrm{~kg}$, (ii) Series B, from 1969 to 1984 when the legal size was 2.25 inches, and the typical commercial dredge was about 3.35 m -wide with double-bit and double ring bag and weighing $\sim 400 \mathrm{~kg}$, and (iii) Series C, years after 1984 when the typical commercial dredge was modified by increasing its weight up to 530 kg .

### 4.5 Length frequency of the winter season commercial catch

Length samples from the commercial catch were taken during the 2002 (Michael et al. 2004a), 2003, 2005 (Dunn \& Michael 2006), 2006 (Dunn \& Michael 2007), 2007 (Dunn \& Michael 2008), 2008 (Dunn. et al 2009), and 2009 (Fu et al 2010) fishing seasons. In 2002, 15580 oysters were measured (15 269 recruited and 311 pre-recruits); in 2003, 18940 oysters were measured ( 18189 recruited and 751 pre-recruits); in 2005, 6509 oysters were measured ( 6339 recruited and 170 pre-recruits); in 2006 6801 oysters were measured ( 6635 recruited and 166 pre-recruits); in 2007, 6829 oysters were measured ( 6734 recruited and 94 pre-recruits); in 2008, 6831 oysters were measured ( 6733 recruited and 98 pre-recruits); and in 2009, 7010 oysters were measured ( 6941 recruited and 69 pre-recruits). These data were used to derive the estimates of the catch-at-length frequencies (with associated c.v.s).

### 4.6 Population length frequency estimates

Height data were collected on the October 1990 dive survey, and the 1960-64 dredge survey. Length data were collected from the 1926-27, 1999, and 2001 surveys. Only the height data (converted to length using the method described by Dunn (2005) from the October 1990 dive survey, and the length data from the 1999 and 2001 surveys were included in the assessment model as the population length frequency estimates.

### 4.7 Assessment model

The population model partitioned Foveaux Strait oysters into a single sex population, with length (i.e., the anterior-posterior axis) classes 2 mm to 100 mm , in groups of 2 mm , with the last group defined as oysters $\geq 100 \mathrm{~mm}$. The stock was assumed to reside in a single, homogeneous area. The partition accounted for numbers of oyster by length class within an annual cycle, where movement between length classes was determined by the growth parameters. Oysters entered the partition following
recruitment and were removed by natural mortality including disease mortality, and fishing mortality. The models annual cycle was divided into two time steps (Table 11).

Table 11: Annual cycle of the population model, showing the processes taking place at each time step, their sequence within each time step, and the available observations. Fishing and natural mortality that occur together within a time step occur after all other processes, with $50 \%$ of the natural mortality for that time step occurring before and $\mathbf{5 0 \%}$ after the fishing mortality.

| Step | Period | Process | Proportion <br> time step |
| :--- | :--- | :--- | :--- |
| 1 | in |  |  |

Oysters were assumed to recruit at age $1+$, with a Beverton-Holt stock recruitment relationship (with steepness 0.9 ) and length at recruitment defined by a normal distribution with mean 15.5 mm and c.v. 0.4. Relative year class strengths were assumed known and equal to initial recruitment for the years up to 1984 - nine years before the first available length and abundance data on small (oysters $<50$ mm minimum diameter) and pre-recruits (oysters between $\geq 50$ to $<58 \mathrm{~mm}$ minimum diameter) were available; otherwise relative year class strengths were assumed to average 1.0 . Growth rates and natural mortality (M) were assumed known. Disease mortality is assumed to be zero in the years where there were no reports of unusual mortality, and otherwise estimated.

The models used seven selectivity ogives: the commercial fishing selectivity (assumed constant over all years and time steps of the fishery, aside from changes in the definition of legal size); a survey selectivity, which was then partitioned into three selectivities (one for each for each of the sizegroups) - small ( $<50 \mathrm{~mm}$ minimum diameter), pre-recruit ( $\geq 50 \mathrm{~mm}$ and $<58 \mathrm{~mm}$ minimum diameter), and recruit ( $\geq 58 \mathrm{~mm}$ minimum diameter); maturity ogive; and disease selectivity assumed to follow a logistic curve equal to the maturity ogive. The selectivity ogives for fishing selectivity, maturity, and disease mortality were all assumed to be logistic. The survey selectivity ogives were assumed to be compound logistic with an additional parameter amin, that describes the minimum possible value of the logistic curve. Selectivity functions were fitted to length data from the survey proportions-at-length (survey selectivities), and to the commercial catch proportions-at-length (fishing selectivity).

The maximum exploitation rate (i.e., the ratio of the maximum catch to vulnerable numbers of oysters in any year) was assumed to be relatively high, and was set at 0.5 . No data are available on the maximum exploitation rate, but the choice of this value can have the effect of determining the minimum possible virgin stock size $\left(\mathrm{B}_{0}\right)$ allowed by the model.

The model was run for the years 1907-2009. Catch data were available for the years 1907-2008, with the catch for 2009 assumed to be 7.5 million oysters. Catches occurred in both time steps - with special permit and some customary catch assigned to the 1st time step (summer fishing mortality), and commercial, recreational, remaining customary, and illegal catch assigned to the 2 nd time step (winter fishing mortality).

The priors assumed for most parameters are summarised in Table 12. In general, ogive priors were chosen to be non-informative and were uniform across wide bounds. The prior for disease mortality was defined so that estimates of disease mortality were encouraged to be low. An informed prior was used when estimating the survey catchability, where a reasonably strong lognormal prior was used, with mean 1.0 and CV 0.2.

Table 12: The priors assumed for key parameters. The parameters are mean and CV for lognormal (in natural space); and mean and s.d. for normal.

| Parameter | Distribution | Parameters |  | Bounds |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| CPUE $q$ | Uniform-log | - | - | $1 \times 10^{-8}$ | 0.1 |
| 1976 survey $q$ | Lognormal | 0.5 | 0.3 | 0.15 | 0.95 |
| Mark-recapture survey $q$ | Lognormal | 0.5 | 0.3 | 0.10 | 0.90 |
| YCS | Lognormal | 1.0 | 1.0 | 0.01 | 100.0 |
| Disease mortality | Normal | -0.2 | 0.2 | 0.00 | 0.80 |

### 4.8 Results

Model estimates of numbers of oysters were made using the biological parameters and model input parameters described above. Two model runs were considered. The ' 2009 basic model' updated the basic model in the 2007 assessment with catch and CPUE data for the 2007 and 2008 fishing years, the inclusion of the February 2009 biomass survey indices, and an assumed catch of 7.5 million oysters in 2009. The '2009 revised model' updated the 2007 revised model with similar input data. Table 13 described the two model runs.

## Table 13: Model run labels and descriptions.

| Model run | Description <br> Growth parameters assumed fixed; annual disease rates estimated as independent variables; the disease |
| :--- | :--- |
| basic model | selectivity was the same as the maturity ogive; Relative catchability $q$ for the abundance surveys was fixed to <br> be 1. |
| Growth parameters estimated using tag-recapture data; annual disease rates assumed to be cubic-smooth; <br> revised model <br> decoupled the maturity and disease selectivity ogive; Estimated relative catchability $q$ for the abundance <br> surveys; |  |

A single Monte-Carlo Markov Chain (MCMC) was run on each model, with length $1.5 \times 106$ iterations including a burn-in of $0.5 \times 106$ iterations for the basic model. For the revised models, MCMC chains of length 6x106 iterations including a burn-in of 1 x106 iterations were used. Final posterior distributions were derived from systematic sub-sampling ("thinning") of the chain, excluding the burn-in, to 1000 samples.

For both models, Model fits to recruit sized and pre-recruit sized dredge survey length frequencies, maturity data, and fishing length frequencies were adequate, although there was some evidence of over-fitting to the recruit sized length frequencies. Diagnostic plots of the combined fits to recruit, pre-recruit, and small dredge survey selectivities suggested that the parameterisation of selectivities for the three size groups (recruit, pre-recruit, and small) was adequate. Estimated CPUE q's showed an increase in relative catchability from series A and B to series C, possibly corresponding with improved technology and dredge size. The 1975-76 and mark-recapture abundance data contribute little to the model fits, as these series are short and are unrelated to other abundance data in the model. However, posterior distributions for all the catchability constants were relatively narrow. MPD model fits to abundance indices showed no strong evidence of poor fit to the data. However, most of the historical data provided to the model were derived from the catch-effort indices and it is not known how well these index abundance (although comparisons with survey data suggest that these are broadly informative).

Estimates of the disease mortality rate ranged from 0.0 up to a maximum of $0.80 \mathrm{y}^{-1}$ (the upper bound) in the mid-1980s and early 2000s, and accounted for the dramatic declines in the abundance of oysters during periods of epidemic.

Estimates of relative year class strength were uncertain and variable, but suggest that there may have been a pulse of strong recruitment during the mid to late-1990s. Recent recruitment was estimated to be lower than average. However, without other, better, data on historical levels of recruitment, these estimates could not be validated.

The basic model suggested the virgin equilibrium spawning stock population size to be about 4240 (3 790-4 820) million oysters, and the current spawning stock size to be 1070 ( $940-1210$ ) million oysters (Table 14, Figure 5). The recruit-sized population was estimated as $820(720-920)$ million.

The revised model run suggested a similar stock status as for the basic model, with slightly higher productivity resulting from a slightly faster growth rate. The relative estimates of $\mathrm{B}_{0}$ from these model runs suggested much greater variability in the estimates of the initial population size, but estimates of the current status and recent change in the current status were very similar (see Table 13). Applying a smoothing penalty to the estimated annual disease mortality rates had little impact on the key estimated parameters of the model.

Table 14: Bayesian median and $95 \%$ credible intervals of $B_{0}$ (millions) and SSBs for 2007 and 2009 (millions).

| Model | $B_{0}$ | $B_{2007}$ | $B_{2009}$ |
| :--- | :--- | :--- | :--- |
| 2009 basic model | $4200(3720-4800)$ | $1010(870-1160)$ | $1070(940-1210)$ |
| 2009 revised model | $4480(2730-7970)$ | $1110(660-2000)$ | $1200(700-2160)$ |



Figure 5: Estimated posterior distributions of SSBs. Individual distributions show the marginal posterior distribution, with horizontal lines indicating the median.

### 4.10 Projections

Projected stock estimates were made assuming that future recruitment will be log-normally distributed with mean 1.0 and standard deviation equal to the standard deviation of $\log$ of recruitment between 1985 and 2006 (i.e., 0.34 with $95 \%$ range $0.29-0.39$ ). Projections were made assuming no future disease mortality and with future disease mortality assumed to be $0.0 \mathrm{y}^{-1}, 0.10 \mathrm{y}^{-1}$, and $0.20 \mathrm{y}^{-1}$. Two future catch levels were considered each with 7.5 million oysters in 2009 , and a future annual commercial catch of either 7.5 or 15 million oysters. Future customary, recreational and illegal catch were assumed equal to levels assumed for 2009. Projected output quantities are summarised in Tables $15-18$. The plot of the median expected recruit sized population is given in Figures 6 and 7.

Under the assumptions of future disease mortality, model projections of commercial catch at either 7.5 or 15 million showed little difference in expected population size. For example, the projected population size in 2010 with a commercial catch of 7.5 million was less than $2 \%$ higher than that with a commercial catch of 15 million oysters. Depending on the level of assumed disease mortality, projected status in 2012 ranged from about $34 \%$ more than current levels (assuming no disease
mortality) to a level about $23 \%$ less than the current level (assuming disease mortality of $0.2 \mathrm{y}^{-1}$ ) for the 2009 basic model, and from about $29 \%$ more than current levels (assuming no disease mortality) to a level about $12 \%$ less than the current level (assuming disease mortality of $0.2 \mathrm{y}^{-1}$ ) for the revised 2009 model.

Table 15: Median and $95 \%$ credible intervals of current spawning stock biomass 2009 ( $B_{2009}$ ), and projected spawning stock biomass for 2010-2012 $\left(B_{2008}-B_{2010}\right)$ as a percentage of $B_{0}$ with an assumption of a future catch of 7.5 million oysters in 2009 and 7.5 or 15 million oysters in 2010-2012, and disease mortality rate of $0.0,0.1$, or $0.2 \mathrm{y}^{-1}$ for the 2009 basic model.

| Disease <br> mortality | Catch <br> (millions) | $B_{2009}\left(\% B_{0}\right)$ | $B_{2010}\left(\% B_{0}\right)$ | $B_{2011}\left(\% B_{0}\right)$ | $B_{2012}\left(\% B_{0}\right)$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 0.00 | 7.5 | $25.9(22.3-29.6)$ | $25.4(20.2-31.7)$ | $29.8(23.9-37.3)$ | $34.4(27.5-43.1)$ |
|  | 15.0 | $25.9(22.3-29.6)$ | $25.4(20.2-31.7)$ | $29.7(23.7-37.1)$ | $34.1(27.3-42.8)$ |
| 0.10 | 7.5 | $25.9(22.3-29.6)$ | $24.7(19.6-30.8)$ | $26.1(20.8-32.7)$ | $27.5(22.0-34.8)$ |
|  | 15.0 | $25.9(22.3-29.6)$ | $24.7(19.6-30.8)$ | $26.0(20.7-32.6)$ | $27.2(21.8-34.6)$ |
| 0.20 | 7.5 | $25.9(22.3-29.6)$ | $24.0(19.1-29.9)$ | $22.9(18.3-28.9)$ | $22.4(17.7-28.7)$ |
|  | 15.0 | $25.9(22.3-29.6)$ | $24.0(19.1-29.9)$ | $22.8(18.1-28.8)$ | $22.2(17.5-28.5)$ |

Table 16: Median and 95\% credible intervals of expected recruit-sized stock abundance for 2009-2012 with an assumption of a future catch of 7.5 million oysters in 2009 and 7.5 or 15 million oysters in 2010-2012, and disease mortality rate of $0.0,0.1$, or $0.2 \mathrm{y}^{-1}$ for the 2009 basic model.

| Disease <br> mortality | Catch <br> (millions) | $r B_{2009} / \mathrm{r} B_{2009}$ | $r B_{2010} / \mathrm{r} B_{2009}$ | $r B_{2011} / \mathrm{r} B_{2009}$ | $r B_{2012} / \mathrm{r} B_{2009}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 0.00 | 7.5 | $1.00(1.00-1.00)$ | $0.99(0.81-1.16)$ | $1.16(0.95-1.38)$ | $1.33(1.09-1.63)$ |
|  | 15.0 | $1.00(1.00-1.00)$ | $0.99(0.81-1.16)$ | $1.15(0.94-1.38)$ | $1.32(1.08-1.62)$ |
| 0.10 | 7.5 | $1.00(1.00-1.00)$ | $0.95(0.82-1.09)$ | $1.01(0.86-1.20)$ | $1.07(0.89-1.33)$ |
|  | 15.0 | $1.00(1.00-1.00)$ | $0.95(0.82-1.09)$ | $1.00(0.85-1.19)$ | $1.06(0.88-1.32)$ |
| 0.20 | 7.5 | $1.00(1.00-1.00)$ | $0.88(0.76-1.01)$ | $0.82(0.70-0.98)$ | $0.78(0.64-0.98)$ |
|  | 15.0 | $1.00(1.00-1.00)$ | $0.88(0.76-1.01)$ | $0.81(0.69-0.97)$ | $0.77(0.63-0.97)$ |

Table 17: Median and $95 \%$ credible intervals of current spawning stock biomass 2009 ( $B_{2009}$ ), and projected spawning stock biomass for 2010-2012 $\left(B_{2008}-B_{2010}\right)$ as a percentage of $B_{0}$ with an assumption of a future catch of 7.5 million oysters in 2009 and 7.5 or 15 million oysters in 2010-2012, and disease mortality rate of $0.0,0.1$, or $0.2 \mathrm{y}^{-1}$ for the 2009 revised model.

| Disease <br> mortality | Catch <br> (millions) | $B_{2009}\left(\% B_{0}\right)$ | $B_{2010}\left(\% B_{0}\right)$ | $B_{2011}\left(\% B_{0}\right)$ | $B_{2012}\left(\% B_{0}\right)$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 0.00 | 7.5 | $27.9(23.2-33.5)$ | $26.8(31.4-36.0)$ | $31.4(24.6-42.3)$ | $36.0(27.9-48.3)$ |
|  | 15.0 | $27.9(23.2-33.5)$ | $26.8(20.8-35.5)$ | $31.3(24.5-42.2)$ | $35.8(27.7-48.1)$ |
| 0.10 | 7.5 | $27.9(23.2-33.5)$ | $26.2(20.3-34.6)$ | $28.3(22.0-38.1)$ | $30.1(23.2-40.7)$ |
|  | 15.0 | $27.9(23.2-33.5)$ | $26.2(20.3-34.6)$ | $28.1(21.9-38.0)$ | $29.9(22.9-40.5)$ |
| 0.20 | 7.5 | $27.9(23.2-33.5)$ | $25.6(19.8-33.9)$ | $25.5(19.7-34.5)$ | $25.5(19.4-34.7)$ |
|  | 15.0 | $27.9(23.2-33.5)$ | $25.6(19.8-33.9)$ | $25.4(19.6-34.4)$ | $25.4(19.3-34.5)$ |

Table 18: Median and 95\% credible intervals of expected recruit-sized stock abundance for 2009-2012 with an assumption of a future catch of 7.5 million oysters in 2009 and 7.5 or 15 million oysters in 2010-2012, and disease mortality rate of $0.0,0.1$, or $0.2 \mathbf{y}^{-1}$ for the 2009 revised model.

| Disease <br> mortality | Catch <br> (millions) | $r B_{2009} / \mathrm{r} B_{2009}$ | $r B_{2010} / \mathrm{r} B_{2009}$ | $r B_{2011} / \mathrm{r} B_{2009}$ | $r B_{2012} / \mathrm{r} B_{2009}$ |
| :--- | :--- | :--- | :---: | :--- | :--- |
| 0.00 | 7.5 | $1.00(1.00-1.00)$ | $0.96(0.83-1.13)$ | $1.13(0.95-1.37)$ | $1.29(1.08-1.60)$ |
|  | 15.0 | $1.00(1.00-1.00)$ | $0.96(0.83-1.13)$ | $1.13(0.95-1.37)$ | $1.29(1.07-1.59)$ |
| 0.10 | 7.5 | $1.00(1.00-1.00)$ | $0.96(0.87-1.08)$ | $1.04(0.92-1.21)$ | $1.12(0.96-1.36)$ |
|  | 15.0 | $1.00(1.00-1.00)$ | $0.96(0.87-1.08)$ | $1.03(0.91-1.21)$ | $1.11(0.95-1.36)$ |
| 0.20 | 7.5 | $1.00(1.00-1.00)$ | $0.91(0.82-1.02)$ | $0.88(0.78-1.03)$ | $0.88(0.75-1.08)$ |
|  | 15.0 | $1.00(1.00-1.00)$ | $0.91(0.82-1.02)$ | $0.88(0.77-1.03)$ | $0.87(0.74-1.08)$ |



Figure 6: Estimates of recent recruit-sized stock abundance and projected recruit-sized stock abundance for 20102012 with catch of 7.5 (solid line) and 15 million oysters (dashed line), under assumptions of (a) no disease mortality, (b) disease mortality of $\mathbf{0 . 1 0} \mathrm{y}^{-1}$, and (c) disease mortality of $0.20 \mathrm{y}^{\mathbf{- 1}}$ for the 2009 basic model. Projections for catch limits of 7.5 and 15 million oysters for all levels of disease mortality are overlaid, i.e. there is little difference between catch limits.


Figure 7: Estimates of recent recruit-sized stock abundance and projected recruit-sized stock abundance for 20102012 with catch of 7.5 (solid line) and 15 million oysters (dashed line), under assumptions of (a) no disease mortality, (b) disease mortality of $0.10 \mathrm{y}^{-1}$, and (c) disease mortality of $0.20 \mathrm{y}^{-1}$ for the 2009 revised model. Projections for catch limits of $\mathbf{7 . 5}$ and $\mathbf{1 5}$ million oysters for all levels of disease mortality are overlaid, i.e. there is little difference between catch limits.

## 5. STATUS OF THE STOCKS

## Stock Structure Assumptions

OYU 5 is assessed as a single stock defined by the survey boundaries.

## Foveaux Strait Oysters OYU 5

| Stock Status |  |
| :---: | :---: |
| Year of Most Recent Assessment | 2009 |
| Assessment Runs Presented | Basic model (absolute biomass) and revised model (relative biomass) |
| Reference Points | Target(s): not defined Soft Limit: $20 \% \mathrm{~B}_{0}$ <br> Hard Limit: $10 \% \mathrm{~B}_{0}$ |
| Status in relation to Target | Not applicable |
| Status in relation to Limits | Model $\mathrm{B}_{0}$ $\mathrm{~B}_{2009}$ OB $_{0}$ <br> 2009 basic 4200 1070 $25.9 \%$ <br> 2009 revised 4480 1200 $27.9 \%$ <br> Very Unlikely ( $<10 \%$ ) to be below the Soft Limit and Exceptionally Unlikely ( $<1 \%$ ) to be below the Hard Limit. |
| Historical Stock Stat <br>  | Trajectory and Current Status |

Estimated posterior distributions of Spawning Stock Biomass. Individual distributions show the marginal posterior distribution, with horizontal lines indicating the median.

| Fishery and Stock Trends |  |  |
| :--- | :--- | :---: |
| Recent Trend in <br> Biomass or Proxy | Stock size reached a low point in the early 2000s, which is near the <br> historical minimum, but now appears to be gradually increasing. |  |
| Recent Trend in <br> Fishing Mortality or <br> Proxy | Unstandardised catch and effort data are a good proxy for oyster density and <br> reflect the status of commercial fishery areas. Commercial catch rates have <br> been increasing since 2005. |  |
| Other Abundance <br> Indices | Since 2005, mortality from bonamia has been relatively low (less than10\% <br> of recruited oysters) and recruitment to the fishery has exceeded B. exitiosa <br> mortality and the population size of recruited oysters has increased. In 2009, <br> bonamia infection was still widespread in the fishery area. Prevalence of <br> infection was lower than 2007, and the numbers of sample stations with <br> infection have been slowly decreasing since February 2006. Intensity of <br> infection has continued to increase since February 2006, suggesting more of <br> the infected oysters are developing fatal infections. |  |
| Trends in Other <br> Relevant Indicators or <br> Variables |  |  |

## Projections and Prognosis

Stock Projections or Prognosis

Probability of Current Catch or TACC causing decline below Limits

While recruitment is expected to increase towards the long-term fishery mean, there was some uncertainty around the effects of continuing bonamia mortality on recruitment. The model trajectories and the most recent Bonamia survey show the population size is continuing to increase and the stock size rebuilding.
While uncertainty exists in levels of future recruitment and continued $B$. exitiosa related mortality, projections from the Foveaux Strait oyster stock assessment model indicate that current catch limits are unlikely to have any significant impact on future stock levels.

| Assessment Methodology |  |
| :--- | :--- |
| Assessment Type | Full Quantitative Stock assessment |
| Assessment Method | Bayesian length based stock assessment model |
| Main data inputs | The data include the catch history, unstandardised CPUE, commercial catch <br> sampling, and abundance indices from biomass surveys. |
| Period of Assessment | Latest assessment: $2009 \quad$ Next assessment: 2012? |
| Changes to Model <br> Structure and <br> Assumptions | Stock assessment model to be reviewed in 2012. |
| Major Sources of <br> Uncertainty | Stock size is highly dependent on the mortality caused by the prevalence <br> and intensity on Bonamia. There is variabilty in growth rates and <br> recruitment is highly variable and dependent on Bonamia epizootics |

## Qualifying Comments

## Fishery Interactions

## 7. FOR FURTHER INFORMATION

Allen, R.L.; Cranfield, H.J. (1979). A dredge survey of the oyster population in Foveaux Strait. Rapports et Procès-verbaux des réunions. Conseil Permanent International pour l'Exploration de la Mer 175: 50-62.
Bradford, E. (1998). Harvest estimates from the 1996 national marine recreational fisheries surveys. Wellington, Ministry of Fisheries. 27 p.
Bull, B.; Francis, R.I.C.C.; Dunn, A.; McKenzie, A.; Gilbert, D.J.; Smith, M.H. (2005). CASAL (C++ algorithmic stock assessment laboratory): CASAL user manual v2.07-2005/08/21. NIWA Technical Report 127. In Press: 272 p.
Cranfield, H.J. (1979). The biology of the oyster, Ostrea lutaria, and the oyster fishery of Foveaux Strait. Rapports et Procès-verbaux des réunions. Conseil Permanent International pour l'Exploration de la Mer 175: 44-49.
Cranfield, H.J.; Allen, R.L. (1979). Mark-recapture surveys of the Foveaux Strait dredge oyster (Ostrea lutaria) population. Rapports et Procès-verbaux des réunions. Conseil Permanent International pour l'Exploration de la Mer 175: 63-69.
Cranfield, H.J.; Doonan, I.J.; Michael, K.P. (1997). Incidental mortality of Foveaux Strait Dredge oysters during dredging. No. 17 p.
Cranfield, H.J.; Dunn, A.; Doonan, I.J.; Michael, K.P. (2005). Bonamia exitiosa epizootic in Ostrea chilensis from Foveaux Strait, southern New Zealand between 1986 and 1992. ICES Journal of Marine Science 62(1): 3-13.
Diggles, B.K.; Cochennec-Laureau, N.; Hine, P.M. (2003). Comparison of diagnostic techniques for Bonamia exitiosus from flat oysters Ostrea chilensis in New Zealand. Aquaculture. 220(1-4): 145-156.
Doonan, I.J.; Cranfield, H.J.; Michael, K.P. (1994). Catastrophic reduction of the oyster, Tiostrea chilensis (Bivalvia: Ostreidae), in Foveaux Strait, New Zealand, due to infestation by the protistan Bonamia sp. New Zealand Journal of Marine and Freshwater Research 28(4): 335-344.
Dunn, A. (2005). Stock assessment of Foveaux Strait dredge oysters (Ostrea chilensis) for the 2003-04 fishing year. New Zealand Fisheries Assessment Report 2005/25. 63p.
Dunn, A. (2007). Stock assessment of Foveaux Strait dredge oysters (Ostrea chilensis) for the 2005-06 fishing year. New Zealand Fisheries Assessment Report 2007x. 63p.
Dunn, A.; Doonan, I.J.; Cranfield, H.J.; Michael, K.P.; Stotter, D.R. (1998a). Modelling growth of the Foveaux Strait Oyster (Tiostrea chilensis). Wellington, NIWA. 16 p.
Dunn, A.; Cranfield, H.J.; Michael, K.P. (1998b). Estimates of natural mortality of the Foveaux Strait oyster (Tiostrea chilensis) between 1974 and 1986. Wellington, NIWA. 12 p.
Dunn, A.; Michael, K.P.; Hine, P.M.; Andrew, N.L.; Diggles, B.K.; Cranfield, H.J. (2000). Analysis of a survey of the prevalence and intensity of Bonamia sp. in Foveaux Strait oysters. New Zealand Fisheries Assessment Report 2000(32): 28.
Fu, D.; Dunn, A. (2009). Stock assessment of Foveaux Strait dredge oysters (Ostrea chilensis) for the 2007-08 fishing year. New Zealand Fisheries Assessment Report 2009x. 63p.

Gilbert, D.J.; Michael, K.P. (2006). Preliminary epidemiological model fit for Foveaux Strait oyster population. Ministry of Fisheries Final Research Report Unpublished Report held by the Ministry of Fisheries: 26p.
Hine, P.M. (1991). The annual pattern of infection by Bonamia sp. in the New Zealand flat oyster Tiostrea chilensis. Diseases of Aquatic Organisms 93: 241-251.
Hine, P.M. (1996). The ecology of Bonamia and decline of bivalve molluscs. New Zealand Journal of Ecology 20(1): 109-116.
Hine, P.M.; Jones, J.B. (1994). Bonamia and other aquatic parasites of importance to New Zealand. New Zealand Journal of Zoology [N.Z. J. ZOOL.] 21(1): 49-56.

Hunter, R.C. (1906). Report on oyster beds in Foveaux Strait. Wellington, NIWA. 16 p .
Jeffs, A.; Hickman, R.W. (2000). Reproductive activity in a pre-epizootic wild population of the Chilean oyster, Ostrea chilensis, from southern New Zealand. Aquaculture 183: 241-253.
Michael, K.P.; Dunn, A.; Diggles, B.K.; Forman, J. (2004). Foveaux Strait dredge oyster (Ostrea chilensis) population and bonamia surveys, October 2002. No. 22 p.
Michael, K.P.; Dunn, A.; Forman, J.; Arlidge, A. (2008). A survey of the distribution and absolute abundance of pre-recruit and recruited dredge oysters (Ostrea chilensis) in both non-commercial and designated commercial areas of Foveaux Strait, and estimates of the prevalence and intensity of infection by Bonamia exitiosa, February 2007. New Zealand Fisheries Assessment Report 2008/61: 50 p.
Sorensen, J.H. (1968). Dredge Oyster Survey Foveaux Strait pre-1960. Unpublished Report held by the NIWA Library (Wellington)30p.
Stead, D.H. (1971). Survey of Foveaux Strait oyster beds 1960-64. Unpublished Report held by the NIWA Library (Wellington) 29 p.
Sullivan, K.J.; Mace, P.M.; Smith, N.W.M.; Griffiths, M.H.; Todd, P.R.; Livingston, M.E.; Harley, S.J.; Key, J.M.; Connell, A.M. (2005). Report from the Fishery Assessment Plenary, May 2005: stock assessments and yield estimates. 792 p.

