New Zealand Fisheries Assessment Report 2011/20 May 2011 ISSN 1175-1584 (print) ISSN 1179-5352 (online)

> Trawl survey of Mid-East Coast orange roughy, March-April 2010

I. J. Doonan M. R. Dunn

# Trawl survey of Mid-East Coast orange roughy, March-April 2010

I. J. Doonan M. R. Dunn

NIWA Private Bag 14901 Wellington 6241

New Zealand Fisheries Assessment Report 2011/20 May 2011

### Published by Ministry of Fisheries Wellington 2011

ISSN 1175-1584 (print) ISSN 1179-5352 (online)

© Ministry of Fisheries 2011

Doonan, I.J.; Dunn, M.R. (2011). Trawl survey of Mid-East Coast orange roughy, March-April 2010. New Zealand Fisheries Assessment Report 2011/20.

This series continues the informal New Zealand Fisheries Assessment Research Document series which ceased at the end of 1999.

#### **EXECUTIVE SUMMARY**

# Doonan, I.J.; Dunn, M.R. (2011). Trawl survey of Mid-East Coast orange roughy, March-April 2010.

#### New Zealand Fisheries Assessment Report 2011/20.

A trawl survey of the Mid-East Coast (MEC) orange roughy management area was conducted using NIWA's 70 m fisheries research vessel *Tangaroa* in March-April 2010. The survey was a repeat of the 1992–94 surveys over the same area and used a similar design. The 2010 survey used the same vessel, trawl net, trawl warp lengths, and fishing protocols. The survey used a two phase design, with phase 1 stations selected from those that had already been used in one or more of the 1992–94 surveys. The 1992–94 surveys were re-analysed to ensure the time series (1992–94 and 2010) was comparable, and suitable for use in a stock assessment.

In 2010, a total of 187 trawl tows were completed in 33 strata, of which 142 were successful phase 1 stations, 29 were successful phase 2 stations, and 16 were rejected because of poor gear performance. A total catch of 107 t was recorded from all trawl stations. During the voyage 275 species or species groups were recorded. Gonad samples, stomachs, and otoliths were taken from orange roughy. Otoliths or dorsal fin spines were removed from 10 other bycatch species. A total of 14.31 km of fish were measured for length, consisting of 32 713 individual fish.

Two alternative methods were used to estimate abundance. Using the all-relevant-tows method, the total abundance of orange roughy was estimated to be 6800 t (c.v. 17%), which was lower than the average over the 1992–94 surveys, which was 15 300 t (15%). The greatest reduction in abundance was for pre-recruit orange roughy, i.e., from 8900 t to 3300 t. Similarly, using the first-at-site method for the 1992–94 surveys and for 2010, reducing the allocation of phase 2 tows to 10%, the total abundance of orange roughy was estimated to be 7100 t (c.v. 19%), lower than the average of the 1992–94 surveys of 16 200 t (16%). Again, the greatest reduction in abundance was for pre-recruit orange roughy, i.e., from 10 400 t to 3400 t.

Although efforts were made to ensure the 2010 survey was comparable to the 1992–94 surveys, the 2010 survey had a lower trawl net headline height, a slightly smaller door spread, a slightly larger wingtip distance, and a greater between tow distance. However, the surveys used the same vessel, net, towing practice, survey design, and even some officers; and the warp-to-depth ratios, expected phase 2 bias, total bycatch abundances, and orange roughy vulnerability (at size), were all similar. Overall, there was little evidence that the trawl net was less efficient for orange roughy in 2010, and the differences in net parameters seemed unlikely to explain the extent of the observed decrease in the biomass estimates for orange roughy.

#### **1. INTRODUCTION**

The Mid-East Coast (MEC) orange roughy stock has supported one of the largest and most persistent orange roughy fisheries around New Zealand. The landings peaked at 10 500 t in 1989–90 and were maintained for several years at this level before catch limits were reduced in the mid 1990s. The "fishing down" phase for this orange roughy stock was completed by the mid 1990s, by which time the cumulative reported landings exceeded 100 000 t (Dunn 2005).

A variety of fishery independent methods for estimating MEC orange roughy biomass have been used for stock assessment, including egg surveys and acoustic surveys to estimate absolute biomass, and trawl surveys to measure relative biomass (Clark 1996, Dunn 2005). Fishery dependent methods, specifically standardised catch per unit effort (CPUE) have been used for the MEC (Dunn 2005; Anderson & Dunn 2008), but are less desirable because they are particularly susceptible to bias (e.g., Clark et al. 2010).

The recent distribution of spawning orange roughy on the MEC, in particular a relatively small school size with a less predictable distribution, has made the acoustic biomass estimation technique problematic, and potentially subject to large biases (Doonan et al. 2004). Spawning biomass estimates from egg production surveys have not been repeated, as the large spawning aggregations which this method would seek to measure are no longer present. Amongst the fishery-independent stock monitoring methods, this leaves the trawl survey as the only viable option. It was found that repeating the survey method used in the 1992–94 RV *Tangaroa* surveys in 2010 could have substantial leverage in future stock assessments (Dunn 2009). As a result, in March-April 2010, a repeat trawl survey of the MEC was conducted using RV *Tangaroa*.

A primary concern for the 2010 survey was to ensure that it was sufficiently comparable with the 1992–94 surveys that the series could be used for stock assessment. To this end, the same vessel, trawl gear and operation and survey design were used in 2010 as in the 1992–94 surveys. However, the earlier surveys required some adjustments to make them consistent with the 2010 survey. This included excluding the most northern area of the 1992–94 surveys (the region of ORH 2A outside the MEC stock area, known as East Cape (EC), which was defined in 1994–95), using a consistent wingtip distance for biomass estimates, and reallocating some tows into consistent strata.

The work described in this report was carried out under Ministry of Fisheries project ORH2007/01, having the overall objective "To estimate the abundance of orange roughy (Hoplostethus atlanticus) in selected areas.", and the specific objective "to estimate the abundance of orange roughy for the Mid East Coast (MEC) stock, from a trawl survey with a target coefficient of variation (c.v.) of the estimate of 20-30 %."

#### 1.1 Review of previous trawl surveys

The first survey series of the MEC stock took place during 1985–87, at spawning time (June-July), and this was followed by a survey in September-October 1988 (Robertson & Grimes 1987, Fincham et al. 1987, Banks & Annala 1989). These surveys covered only part of the MEC stock distribution.

The precursor to the 1992–94 surveys took place during 1989 and 1990, and these surveys covered the whole of the MEC and EC (quota management areas ORH 2A, 2B, and 3A), depths from 600 m to 1500 m, and were conducted in September-October (Grimes 1990, 1991). The 1989–90 surveys established the survey area, strata and design used for the 1992–94 surveys (Figure 1), and also provided most of the tow positions that were re-used in the latter surveys. The design was stratified random, with two phases (Francis 1984), with a minimum of three stations allocated to each stratum. The vessels used were FV *Will Watch* and RV *Cordella*.

The *Tangaroa* survey series began in 1992, during March-April to avoid possible future clashes in vessel programming (Grimes 1994). The 1992 survey covered the same area as the 1989 and 1990 surveys, but included three new strata based on areas of high commercial catch and catch rates (over 5 t/tow) achieved during March 1990 and 1991. The three new strata covered a relatively small area, and therefore to allow a sufficient number of tows to be completed within them they were not stratified by depth. Except for the new strata, the 1992 survey repeated research trawl positions from the 1990 survey, but without maintaining the same tow direction.

The 1993 survey was similar to that in1992, with some minor modifications to strata. The East Cape and Tolaga sub-areas were combined into a single sub-area, resulting in four less strata, and two further strata were added based upon commercial catches. There was also a redistribution of tows amongst strata based on the 1992 survey results, and an increase in the overall number of tows (Tables 1 & 2). Except for the two new strata, the previous known tow positions were again used. The survey design was unchanged in 1994.

For the 1992–94 surveys, a standard tow length of 2.0 nautical miles at a towing speed of 3.0 knots over the ground was used. The distance towed was determined using Global Positioning System (GPS). During the surveys, some tows were shortened because the ground was too rough to complete the tow path. In a few cases, the trawl gear was flown above the bottom for a short period if it looked possible to get it down again within 20 minutes, and therefore extend the tow length to achieve the required 2.0 nautical miles. In the few instances where the trawl was flown (Table 3), the distance towed was recorded as the sum of the distances during which the net was in contact with the bottom.

The warp to depth ratio generally ranged from 1.7 to 2.1. The procedure used was to start the tow with an expected ratio of 1.7, and let out more warp as required. The tows on hills and deep tows tended to have a lower ratio, close to 1.8, to maintain better control of the net, and the shallower tows tended to have a ratio closer to 2.0. The net used in 2010 was the same as used in 1992–94, and was similar to that used during the 1989 and 1990 surveys. The net is commonly referred to as the "rough bottom roughy net", and it is an Alfredo-style trawl designed for use on rough ground, with large rollers fitted to the ground rope, cut-away lower wings, and a wingspread of about 25 m (Appendix 1).

To estimate orange roughy abundance, a constant door spread of 115 m was assumed for the 1992 survey, and 110 m for 1993–94, based upon door spread sensor readings (Grimes 1994, 1996a, 1996b). It was assumed that there was no herding of orange roughy by the trawl doors and sweeps, with vulnerability calculated to be 0.243 in 1992 and 0.227 in 1993 & 1994, given a trawl wingtip distance of 28 m in 1992 and 25 m in 1993–94 (I do not understand how you can know the vulnerability, do you mean the difference between door spread and wing spread? We do not; this is the term used by Grimes and the parameter name used in the biomass program he used) (Grimes 1994, 1996a, 1996b). Vertical and areal availability were assumed to be 1.0 (Grimes 1994, 1996a, 1996b). The reported total abundances by sub-area are shown in Table 4.

#### 1.2 Survey design

The 1992–94 MEC surveys used a two-phase design, which introduces a modest negative bias, but protects the survey from extreme high estimates (Francis 1984). The proportion of phase 2 tows in the overall survey was 26% in 1992, 23% in 1993, and 21% in 1994. These are in line with the Francis (1984) recommendation of 25% for a new survey, but Francis (2006) recommends that only about 10% are needed if the design is based on past surveys.

Phase 2 tows appear to be needed for the MEC survey because the strata with the greatest estimated biomass have not been predictable (except for perhaps stratum 33). Later in this document, we complete simulations using data from the 1993 and 1994 surveys to investigate the likely size of the bias in biomass estimates resulting from the two phase design.

In the 1992 survey, phase 2 stations appeared to have been poorly applied, since 26 phase 2 stations (out of 51) were allocated to stratum 45, which only had 4 phase 1 stations, and this stratum contributed just 144 t (1%) to the total biomass. However, part of this stratum was split off into a commercial stratum after the phase 2 stations were completed, and the tows in the new commercial stratum were then repeated.

The design of the 1992–94 surveys was not a true stratified random design, but had fixed position phase 1 stations, and stratified random phase 2 stations allocation each year. The use of fixed stations during phase 1 reduced search time and gear damage. The MEC contains many rough ground areas, and the time required to complete a true stratified random phase 1 survey would have proven prohibitive. For the 1992–94 surveys, there was a core of 110 phase 1 stations, with some new phase 1 stations added, and others used only once (Table 5). Since stations could be fished in any direction, for example in response to swell direction, a repeated tow can be considered analogous to a site covering a disc of 1 to 2 nautical miles in diameter, rather than being a single tow path. There were at least 158 of these potential tow sites to choose from for phase 1 of the 2010 survey (Table 5).

A true fixed station design has a bias, but this is compensated for by a lower variance than a random design (random designs being unbiased). The extent of the bias in a fixed station design depends on the strength of any residual trends in density within a stratum (i.e., spatial and temporal correlations). If the bias is constant, then it becomes part of the survey catchability. However, adding more stations and re-distributing the numbers of stations between strata, as was done in 1993 and 1994 surveys, changes the size of the bias. If spatial correlation is weak then the bias is small and it becomes like a random design. Fixed stations surveys are considerably faster to complete (estimated to be about 40% faster for the MEC survey) because trawl tracks do not have to be surveyed first and if unsuitable, another site found nearby.

When fixed station positions from the 1992–94 survey data were examined, it appeared that some were repeated twice or more during the same survey. This could be just a consequence of the spatial scale at which we examined position data, or it could be due to the limited number of suitable tow positions in a stratum, especially when the phase 2 tows tended to be allocated to one or two strata in high densities relative to the stratum area.

The order of occupation of strata was different for all three surveys (Table 6). This was primarily because of weather conditions, which often vary throughout the survey area, with Wairarapa being especially prone to periods of relatively high winds.

## 2. METHODS

### 2.1 Orange roughy abundance estimation

#### 2.1.1 Sites

For the 2010 survey, we planned to repeat stations fished during the 1992–94 surveys. As outlined above, actual tows tracks differed at the same (nominal) tow position, because different weather in each year required a different tow direction. A preliminary analysis found that many of the 1992–94 tow positions were clustered into sites approximately 2 nautical miles across, and that there was some evidence for spatial correlation of catch rates within sites. As a result, the potential tows were clustered into sites, and each of these sites was repeated in the 2010 survey. For the 2010 survey, one tow from each site was randomly selected as the tow line for the 2010 survey.

The list of phase 1 and known phase 2 sites were generated from a hierarchical cluster analysis based on squared Euclidean distance between tow mid-point locations. All tow locations from the 1992–94 surveys were used. The analysis was done using the *hclust* function in R (Murtagh 1985, R Development Core Team 2009) with the agglomeration method set to *average*. Sites were extracted from the resulting hierarchical tree using a *height* of 2.25 nautical miles. This tree height is slightly larger than the normal tow length of 2 nautical miles, so that end-on-end tows were selected as being in the same site. In a few cases, overlapping clusters were merged by hand (two clusters into one for strata 3, 31, 33; 3 clusters into one for stratum 13), and one cluster was split into two (stratum 4). Some examples of sites and their constituent tow lines, including two clusters merged into one site, are shown in Figure 2. Phase 1 sites were defined as those sites containing at least one tow in phase 1, for at least one of the 1992–94 surveys. The strata based on commercial hill fishing, strata 1 to 5, were done differently in each of the 1992–94 surveys, so three sites within each strata were designated as phase 1 sites by hand, for the 2010 survey.

The exception were the commercial strata (1 to 5), where 3 phase 1 sites were designated by hand and the others assigned as phase 2 sites since it was difficult to work out what was a phase 1 or II tow, i.e., in some years, some commercial strata had all tows designated as phase 2.

The number of sites identified for phase 1 was 144, and for phase 2 was 68. The tows assigned to each site for phase 1 and II are given in Appendix 2. The notion of a site, as defined here, meant that the 1992–94 surveys repeated some sites, mainly during phase 2 (Table 7).

### 2.1.2 Survey design

The 2010 survey repeated the design from the 1993-94 surveys (Figures 1 & 3, Tables 1 & 2), except that the EC sub-area was truncated at latitude 38° 23' S, in accordance with the management boundary between the EC and MEC stocks that was in place since 1994–95.

The survey had a stratified design using 144 fixed phase 1 sites and a target of 20% phase 2 sites. Phase 2 tows were allocated to strata following Francis (1984), and selected from the list of additional known sites for each stratum. Where there were not enough sites, new potential sites were randomly generated within the target stratum. Each new site had to be at least two nautical miles from existing sites.

#### 2.1.3 Data analysis

Abundance estimates using wingtip swept area were made for all orange roughy, juvenile (<32 cm standard length (SL)), and adults ( $\geq$  32 cm SL) orange roughy, and also for main bycatch species. All abundance estimates, and stratum allocation of phase 2 tows, were made using the NIWA software *SurvCalc* (Francis & Fu 2009). *Survcalc* is a C++ computer program developed in 2008 to analyse data from stratified random surveys.

The trawl catch of adult orange roughy in the  $i^{th}$  trawl in stratum *s* was converted into fish weight density  $(d_{si})$  using a fixed wingtip width of 25 m. A catchability (q) of 1 was assumed. Thus, the biomass will be given by:

$$\sum_{s}^{strata} A_s \overline{d}_s$$

where  $A_s$  is the stratum area of stratum s, and  $\overline{d}_s$  is the mean density in stratum s.

The variance is given by:

$$\sum_{s}^{strata} A_{s}^{2} \frac{V_{s}}{n_{s}}$$

where  $V_s$  is the sample variance estimate of densities and  $n_s$  is the number of tows in stratum s.

Orange roughy scaled length frequencies distributions by stratum and overall were calculated using *SurvCalc* from the length and weight samples collected during the survey.

The stratum areas for 2010 were the same as used in the 1993–94 surveys. For the abundance estimates for the 1992–94 surveys, the stratum areas used are those reported by Grimes (1994, 1996a, 1996b).

#### 2.2 Survey execution

The survey work was carried out using NIWA's 70 m research vessel *Tangaroa*. All tows used a rough-bottom orange roughy trawl, having the same design as used in the 1992–94 surveys (Appendix 1). This an Alfredo-style trawl, with cut-away lower wings, 305 mm (12 inch) mesh in the forepart of the net reducing to 102 mm (4 inch) mesh, with a 100 mm mesh cod-end, robust ground gear consisting of steel and rubber bobbins, and an expected wingspread of about 26 m and headline height of about 6 m.

Trawl survey work was carried out 24 hours a day. Each trawl tow lasted for 2 nautical miles at 3 knots, whenever possible. The door-spread and headline height, and wing-tip width where possible, were recorded at five minute intervals during each tow from SCANMAR readings. Warp to depth ratios were the same as previously used at each site, and close to 2.0 except on hills, where they were roughly 1.8. To check that the net consistently conformed to the 1994 net plan, the trawl was regularly measured, and any components (e.g., sweeps or bridles) replaced if necessary (e.g., if there was any evidence of stretching after the trawl came fast). Prior to the survey, the net was shipped to Motueka Nets to confirm that it conformed to the net plan.

Any tows that were not successful on the first attempt were not repeated immediately, and the site was rested for at least 24 hours.

The catches from each valid tow were sorted and weighed by species on motion compensating scales to the nearest 0.1 kg. Large catches of fish were sub-sampled and the total catch estimated from the proportions in the sample. For catches too large to be weighed, the catch was estimated from the weighed processed catch using a conversion factor. From each tow, a random sample of up to 200 orange roughy, and 50–200 of other species were randomly selected from the catch to be measured and sexed. Up to 40 individuals of orange roughy were selected randomly for more detailed biological analysis, which included fish length, weight, sex, gonad stage and weight, and otolith extraction.

#### 2.3 Survey recalculations for 1992–94

Two alternative estimates were completed. The first used the survey data as originally collected but with some minor changes ("all-relevant-tows"), and second used only the first trawl at each of the specified sites ("first-at-site").

Some tows in the original calculations were assigned to the wrong strata. These were tows within the new commercial strata, that had been assigned to the parent stratum (since they were done before the new commercial stratum was split off), which had not been corrected after the survey was completed (Table 8).

There was only one trawl in each of the new strata (truncated at latitude  $38^{\circ} 23^{\circ} S$ ) for the Tolaga sub-area in the 1993 and 1994 surveys, so only one station per stratum was available. In these cases, the single station was used as an estimate of abundance, with the coefficient of variation (c.v.) set to 95%. To implement this in *SurvCalc*, another tow was artificially generated and the catches of both tows in the stratum changed so the mean remained the same as the actual catch from the single tow, but the c.v. was 95%.

For the all-relevant-tows estimates, all tows with good performance were used.

For the first-at-site estimates, each phase 1 tow was from a different site. For the first-at-site estimates, the first tow at each site was used for phase 1 sites and phase 2 sites. Phase 2 tows on phase 1 sites were excluded which resulted in substantially fewer phase 2 tows than in the original surveys. Fewer phase 2 tows reduces the phase 2 bias so to make the 2010 survey comparable, the number of phase 2 tows were reduced in 2010 so that the phase 2 bias was similar to the first-at-site estimate for 1992–94 number of phase 2 tows is 10% of phase 1 tows).

All survey estimates were calculated assuming a constant wingtip width of 25 m.

#### 2.4 Comparability across surveys

A key activity for this project was to assess comparability across the four surveys. Comparability can be thought of as having two components; catchability (variability caused by survey conditions, fish life history, environment etc) and bias (caused by, for example, using a phase 2 design). To help evaluate comparability, trawl operation and net parameter distributions were

compiled, the abundance of by-catch species was estimated, and the bias from using phase 2 tows estimated.

Wingtip distance, doorspread distance, headline height, and warp length distributions were compiled for all surveys, and relationships investigated with each other, and also with depth and tow direction (up or down the slope).

Bycatch abundance was estimated for all of the regularly caught species, using the all-relevanttows method, for the 1992–94 and 2010 surveys. The objective of this analysis was to see if there was an overall change in catch rate that would suggest a change in catchability or net efficiency.

#### 2.5 Expected bias from using phase 2 stations

The estimation of the expected bias from using a two-phase design followed Francis (1984), using data from the 1993 and 1994 MEC surveys. The catch data were for recruited fish  $(\geq 32 \text{ cm SL})$ . We assumed a completely random design. In preliminary investigations, the method was extended to fixed sites that had between year correlations at a site, but the overall expected bias was found to be similar to that estimated when using a completely random design. The method assumed that all abundances were lognormal with a common variance in log space. The East Cape stratum areas were adjusted to the Tolaga strata area for 2010. For 1993, stratum 5 was excluded, since it was not included in phase 1 of the 1993 survey. Thus, there were 160 phase 1 tows in 1993, and 166 phase 1 tows in 1994. Simulations of the phase 2 allocation based on results of phase 1 were carried out using 2000 simulations on each survey. The c.v. and bias were averaged over the two surveys. Simulations were carried out with phase 2 allocation at 5%, 10%, 15%, 20% or 25% of the number of phase 1 tows. For re-calculated abundances for 1993 and 1994 (Section 2.3), slightly lower numbers of phase 1 tows were used; for the first-at-a-site method there were 156 phase 1 tows for 1993 and 160 phase 1 tows in 1994. These were considered close enough to the initial estimates (160 and 166 phase 1 tows respectively) that extra calculations were not warranted.

#### 3. RESULTS

#### 3.1 Survey execution

A total of 187 trawl tows were completed in 33 strata, of which 142 were successful phase 1 stations, 29 were successful phase 2 stations, and 16 were rejected because of poor gear performance. Tow positions for valid tows are shown in Figure 4. There were two phase 1 stations not successfully completed, otherwise all planned tows were completed (Table 9). Tow details are given in Appendix 3. A total catch of 107 t was recorded from all trawl stations (Table 10).

Weather conditions were good throughout the voyage, and no time was lost due to unfavorable sea conditions (Appendix 4). The RV *Tangaroa* trawl survey overlapped with a Crown Minerals seismic survey off the Wairarapa coast. This survey consisted of two vessels, MV *Reflect Resolution* and *Ocean Pioneer*, with *Reflect Resolution* using a loud acoustic "boomer", and multiple listening devices fixed on the seabed. The equipment on the seabed was not located near any *Tangaroa* survey sites. Nevertheless, because of concerns about the acoustic "booming" potentially influencing fish catchability, *Tangaroa* moved position to start work about 60 n. miles

(110 km) north of the seismic survey area, only returning to start the Wairarapa strata roughly 2 days after the seismic survey (their final transect, 100 km offshore) had been completed.

Commercial surface longlines initially prevented access to stations near the Rockgarden (Hill stratum 1 in Figure 1), and in Tolaga. Previous surveys had found relatively little orange roughy biomass in Tolaga, so this area at the time was abandoned in favour of Wairarapa, Clarence, and Kaikoura, where historical orange roughy biomass had been relatively high. Tolaga was revisited at the end of the survey, after a request to keep the Tolaga hill and surrounds clear of commercial gear was made via the Deepwater Group. The Tolaga strata were clear of commercial gear, and all but two Tolaga stations were successfully completed.

Sixteen stations were considered unsuitable for biomass estimation (Appendix 3). Most of these stations came fast (stations 10, 13, 51, 53, 60, 126, 147, and 148). Gear damage was suffered on stations 36, 62, 63, and 86, and included ripped wing and belly meshes or lost (imploded) floats or bobbins. The net damage on station 62 (in Tolaga) was extensive, and as a result the second net was used for all subsequent stations. Poor net statistics were recorded for stations 55, 85 and 184 (e.g., poor bottom contact or low headline height). On station 184 the poor net statistics were attributed to a large log stuck in the top of the net. Station 40 was rejected because the tow distance was too short.

On the second to last of the planned survey stations, on 10 April, *Tangaroa* caught roughly 50 t of alfonsino. The entire catch was successfully brought on board, but was too large to be processed. Therefore *Tangaroa* steamed to Napier to offload the fish to a commercial fish processor. As a result of this large catch there was insufficient time to complete the final remaining tow in stratum 17 (see Table 9).

Phase 2 tows for all strata except Tolaga were allocated on 3 April. Twenty-eight randomly allocated sites were investigated in stratum 23, of which 15 were successful. However, only 13 were in stratum 23 as two were mistakenly put into stratum 5 since the annotated charts used at sea were wrong. Three randomly allocated phase 2 sites were also completed in stratum 27, after completion of the Tolaga strata towards the end of the survey. The allocation of phase 2 tows to stratum 27 was determined from a revised phase 2 allocation (i.e., all phase 2 tows completed before Tolaga were excluded from a revised estimate of the phase 2 allocation). The net was flown above the seabed for four tows, with a median distance flown of 0.3 nautical miles.

Gonad samples were taken from 870 orange roughy and preserved in 10% buffered formalin, and stomachs were removed from 972 orange roughy and frozen (Table 11). Pairs of otoliths were removed from 2044 orange roughy (Table 11). A total of 1730 pairs of otoliths were removed from other species; predominantly basketwork eels, Johnson's cod, bigscale slickheads, smallscale slickheads, spiky oreo, smooth oreo, warty oreo, and white rattails. Dorsal spines were sampled from 60 leafscale gulper shark and 214 shovelnose dogfish.

During the voyage 275 species or species groups were recorded. These included 141 teleosts, including 35 macrouridae; 25 sharks, rays, and chimaeras; 16 octopus and squid; and 93 other invertebrates. A total of 14.31 km of fish were measured for length, consisting of 32 713 individual fish, measuring 10-167 cm in length (spiky oreo – frill shark), with an average length across all species of 50.0 cm. See Appendix 5 for a compilation of occurrence of fish species caught and biological measurements made. The green weight of the top 20 species is given in Table 10, with orange roughy accounting for 11.0% of the total catch from all trawls.

Invertebrate fauna represented 5 Porifera (sponges) 26 Cnidaria (anemones), corallimopharians (jewel anemones), corals (stony cup corals, black corals, sea fans, sea pens, soft corals, and jellyfish), 2 Mollusca (not cephalopods), 25 Crustacea (crabs and prawns), 1 polychaete (marine worm), 35 Echinodermata (sea stars and echinoderms), and a sipunculid (peanut worm). Other non-fish records included wood (taken on 58 tows), rocks, salps, rubbish, and discarded fishing gear (longlines).

#### 3.2 Orange roughy abundance estimate

Wingtip measurements were made on 36 tows, and ranged from 23.9 m to 26.4 m, with a mean of 25.4 m and standard deviation of 0.7 m. The depth range for the wingtip measurements was 800 to 1200 m. There was no discernable trend in wingtip distance with depth. There were 20 pairs of concurrent door spread and wingtip measurements, and the mean ratio of wingtip to door spread was 0.245. This ratio was 0.231 in 1992 (n=4), and 0.226 in 1994 (n=43). For this report, we have assumed a constant 25 m for the wingtip distance in 2010, i.e., estimating wingtip from door spread using the estimated ratio was not done.

The spatial distribution of orange roughy catches in 2010 was similar to that reported in 1993 and 1994 surveys, with highest catch rates on the Wairarapa coast (Figure 5). The *SurvCalc* parameter files used to estimate abundance for 2010 are in Appendix 6.

For the all-relevant-tows method, the total abundance of orange roughy was estimated to be 6800 t (c.v. 17%). This was lower than the average for the 1992–94 surveys of 15 300 t (c.v. 15%), with the main reduction in biomass occurring for juveniles (Table 12; Figure 6). A comparison of length frequencies by sub-areas for the four surveys shows that the main reduction in juveniles occurred in the three southern sub-areas (Kaikoura to Wairarapa) (Figure 7). Abundance estimates by stratum for all four surveys are in Appendix 7 (Table 7.1).

Using the first-at-site method and 10% allocation of phase 2 tows, the total abundance of orange roughy for 2010 was estimated to be 7100 t (c.v. 19%). This was lower than the average for the 1992–94 surveys of 16 200 t (c.v. 16%), with the main reduction in biomass occurring for juveniles (Table 13). Abundance estimates by stratum for all four surveys are in Appendix 7 (Table 7.2).

For both the all-relevant-tows and first-at-site methods, the adult orange roughy biomass in 2010 was not significantly different from that in 1992–94, but the biomass for juveniles was significantly lower in 2010 (at the 5% level) (Tables 12 & 13). Appendix 7 (Table 7.3) gives the abundance estimate by stratum for bycatch species.

#### 3.3 Comparability across surveys

The various trawl parameter estimates are shown for the 2010 and 1992–94 surveys in Tables 14 and 15. Door spread in 2010 was on average 6–7 m smaller, headline height in 2010 was about 1– 1.7 m lower, and trawling speed in 2010 was on average 0.2 knots lower than in 1993 and 0.4 knots lower that in 1994, but the same as in 1992 (Figure 8). The only high correlations between trawl parameters were between headline height and door spread (Figure 9), and between wingtip distance and door spread (not shown). There were insufficient environment data, and variability, to allow comparisons between trawl parameters and weather conditions.

The 2010 total catch abundances were similar and within the ranges for the 1992–94 surveys (Table 16), and therefore at this level, the net appeared to be working similarly in 2010 to the previous surveys. This assumes that the total biomass of all species has remained the same, even though some species may have declined or increased during the 16 year gap.

#### 3.4 Expected bias from using phase 2 stations

Table 17 shows the estimated bias from using different proportions of phase 2 tows. With more than a 10% allocation of phase 2 tows, the bias increased only slowly with greater allocation rate. There was little difference in the sample c.v.s for the different allocations of phase 2 tows.

The re-calculated abundances using the first-at-site method had phase 2 allocations of between 5% and 18% (Table 18). The re-calculated 2010 abundance assumed a 10% phase 2 allocation, therefore compared to the 1992–94 surveys no more than a 2% difference in phase 2 bias would be introduced. When using all relevant tows, the bias was about -10% for the 1993–94 surveys, and about -9% for the 2010 survey (Tables 17 & 19).

#### 3.5 Abundance estimates after excluding flown tows

As a sensitivity, all flown tows were excluded from all four surveys and the abundance reestimated using the all-relevant-tows method. The percentage change in total abundance from excluding flown tows varied between 1 and 5% (Table 20).

#### 4. DISCUSSION

The 2010 trawl survey was intended to provide a relative index of orange roughy biomass for use in quantitative stock assessment (Dunn 2005, 2009). The key requirement was therefore that the 2010 survey was as comparable as possible with the 1992–94 surveys. However, some differences in trawl parameters were observed between the 2010 and 1992–94 surveys, and the key questions are therefore (1) is this difference within the range of variability expected for the trawl, and (2) is the difference likely to substantially bias the time series with respect to the target species, orange roughy?

In 2010, the headline height was lower than in the 1992–94 surveys. The headline height expected for the orange roughy rough-bottom trawl net is 5–6 m (Grimes 1994), and therefore the headline height achieved in 2010 was either a little low, or within this range (see Figure 8). Conversely, the headline heights reported for the 1992–94 surveys tended to be a little higher than expected. The warp lengths used were similar in all surveys, so achieving a higher headline height in 2010 would have required more floats, or more layback, both of which would have exceeded the trawl net specifications (see Appendix 1).

The same orange roughy rough-bottom trawl was used by *Tangaroa* for surveys of spawning orange roughy on the north Chatham Rise in 1992 and 1994–96. These surveys reported a towing speed of 3.0–3.1 knots, a door spread of 114–121 m, and a headline height of 5.5–6.9 m (*Trawl* database, held at NIWA, Greta Point). The minimum door spread from the Chatham Rise surveys is actually greater than the median from the 1992–94 and 2010 MEC surveys, and the headline

height higher than the 2010 MEC survey, and similar to or lower than the 1992–94 MEC surveys. Combined with statistics from the MEC surveys themselves (see Table 14), the available trawl net parameters have a fairly wide range, and the 2010 surveys do not seem to be anomalous.

For comparison, trawl surveys on Chatham Rise and Campbell Plateau using *Tangaroa* and a full-wing hoki trawl have reported a headline height between 6.3 and 7.4 m, and a door spread between 114.2 and 126.5 m (Neil Bagley, pers. comm.). The expected variability for this trawl is therefore up to 1.1 m for headline height, and 12 m for doorspread. Trawl surveys on Challenger Plateau using FV *Thomas Harrison* used an orange roughy trawl similar to the MEC survey trawl, during 2005–06 and 2009–10, and reported a headline height between 5.3 and 5.9 m, and a door spread between 134 and 143 m (Doonan et al. 2010). The expected variability for this trawl is therefore up to 0.6 m for headline height, and 9 m for doorspread. The MEC surveys therefore show a relatively high variability in trawl parameters, which may reflect the wider range of ground over which this trawl was used (flat soft seabed through to rough ground, hills and seamounts).

In 2010, the wingtip distance was 1–4% higher, and the door spread was 5–7% lower, than reported for the 1992–94 surveys. This affects the area swept, which is of direct importance to the estimated abundance. However, the difference in swept area seems small relative to the c.v. of the abundance estimate, and to the magnitude of the decline in orange roughy abundance between 1992–94 and 2010, and is therefore not a major concern for the use of the results in stock assessment.

The achieved headline height is unlikely to be a concern for orange roughy catch rates, since orange roughy dive on approach of a trawl. Headline height would have an effect on catch rates if the orange roughy density was so high that the water column was saturated with fish, which may occur in spawning plumes, but such fish densities were not encountered during the MEC surveys. However, the higher headline may indicate that the net was fished "lighter" in the 1992–94 surveys, perhaps to reduce the risk of net damage or coming fast. All of the MEC surveys experienced some net damage. Fishing lighter might affect orange roughy escapement below and through the ground gear. Whilst the trawl has heavy ground gear, and so is expected to be in contact with the bottom, the higher headline height in the earlier surveys may allow the net to bounce more often. However, bouncing ground gear was recorded on the station forms only for a handful of tows (n<10; although small and short bounces may not be readily observed). Bouncing was not reported on the vast majority of the tows, therefore this affect should be minimal.

Other differences between trawl parameters for the MEC surveys were mean towing speed and the proportion of tows where the net was flown. Mean towing speed for 1994 was higher than the other surveys by 0.2–0.4 knots. The net was flown only for a small number of tows (4–5 tows for all surveys except 1992, where there were 12 such tows). Again, these differences are relatively minor and would not account for the decline in orange roughy abundance between 1992–94 and 2010.

The average distance between tows was larger in 2010 than 1992–94, because of the 2010 survey design, where only one tow from each site was occupied. The use of sites meant that some sites had repeat tows during the 1992–94 surveys (mainly affecting phase 2 tows), with the number of tows affected being about 40 per survey. This matters if there is spatial correlation of catch rates within a site, and catch rates were indeed found to be correlated within 4–5 km. However, the abundance estimates from the all-relevant-tows and first-at-site methods were found to be similar, although the c.v.s increased when using the first-at-site method.

There was little difference in the total abundance of bycatch across the four surveys. This result suggested that net efficiency was not dramatically different in any one survey. A regular increase or decrease in the bycatch abundance in a single survey might indicate a change in net performance, assuming that such a regular change would have been unlikely to have occurred naturally (or because of fishing). Even given constant net efficiency, we would expect some differences in catch rates because catchability will vary, perhaps because of environmental variation. Variable catchability is usually allowed for in stock assessment models by adding a 20% process error to trawl survey abundance indices.

In summary, the 2010 survey was different from the 1992–94 surveys in that the headline height was lower (~20%); the door spread was slightly smaller (~ 5%); the wingtip distance was slightly larger (~ 4%); the between tow distance was greater (especially for phase 2 tows); and the 1994 mean towing speed was slightly faster. The similarities between the surveys were that the same vessel, net, towing practice, survey design, and even some officers, were used; the warp-to-depth ratios were the same; the expected phase 2 bias was the same; the total bycatch abundances were similar; and the orange roughy vulnerability was similar (similar length range caught). Overall, there is little evidence that the trawl net was less efficient for orange roughy in 2010, and the differences in net parameters seem unlikely to explain the extent of the observed decrease in the biomass estimates for orange roughy.

#### 5. ACKNOWLEDGMENTS

Thanks to the scientific staff who participated in the voyage and officers and crew of RV *Tangaroa* for a safe and successful voyage. Thanks to Andy McKenzie for reviewing this draft. This work was carried out under Ministry of Fisheries project ORH2007/01.

#### 6. REFERENCES

- Anderson, O.F.; Dunn, M.R. (2008). Descriptive analysis of catch and effort data from New Zealand orange roughy fisheries in ORH 1, 2A, 2B, 3A, 3B, and 7B to the end of the 2006–07 fishing year. *New Zealand Fisheries Assessment Report 2008/58*. 76 p.
- Banks, D. A.; Annala, J. H. (1989). Cruise report: Banks Peninsula to Tolaga Bay, September-October 1988. Fisheries Research Centre Internal Report No. 118. 24 p. (Draft report held by MAF Fisheries Greta Point library, Wellington.)
- Clark, M.R. (1996). Biomass estimation of orange roughy: a summary and evaluation of techniques for measuring stock size of a deep-water fish species in New Zealand. *Journal of Fish Biology* 49 (Supplement A): 114–131.
- Clark, M.R.; Dunn, M.R.; Anderson, O.F. (2010). Development of estimates of biomass and sustainable catches for orange roughy fisheries in the New Zealand region outside the EEZ: CPUE analyses, and application of the "seamount meta-analysis" approach. New Zealand Fisheries Assessment Report 2010/19. 46 p.
- Doonan, I.J.; Coombs, R.F.; Hart, K.C. (2004). Acoustic estimates of the abundance of orange roughy for the Mid-East Coast fishery, June 2003. *New Zealand Fisheries Assessment Report* 2004/54. 22 p.
- Doonan, I.J.; Parkinson, D.; Gauthier, G. (2010). Abundance, distribution, and biology of orange roughy on the southwest Challenger Plateau (area ORH 7A): results of a trawl and acoustic survey, June-July 2010. NIWA Client Report: W.G2010-63. 70 p.
- Dunn, M.R. (2005). CPUE analysis and assessment of the Mid-East Coast orange roughy stock

(ORH 2A South, 2B, 3A) to the end of the 2002-03 fishing year. New Zealand Fisheries Assessment Report 2005/18. 35 p.

Dunn, M.R. (2009). Scenario modeling and information for the Mid-East Coast orange roughy stock. Report to the Ministry of Fisheries, project SAP2008/23. 16 pp.

- Fincham, D. J.; Grimes, P. J.; McMillan, P. J. (1987). Orange roughy trawl survey, Tolaga Bay to Cape Turnagain, 14 June-11 July 1986: cruise report. Fisheries Research Division Internal Report No. 60. 38 p. (Draft report held in MAF Fisheries Greta Point library, Wellington.)
- Francis, R. I. C. C. (1984). An adaptive strategy for stratified random trawl surveys. *New Zealand Journal of Marine and Freshwater Research 18*: 59-71.
- Francis, R. I. C. C. (2006). Optimum allocation of stations to strata in trawl surveys. *New Zealand Fisheries Assessment Report 2006/23*. 50p.
- Francis, R.I.C.C.; Fu, D. (2009). SurvCalc User Manual. 43 p. (Unpublished report held at NIWA, Wellington.)
- Grimes, P. J. (1990). The 1989 Will Watch orange roughy survey between Cape Runaway and Banks Peninsula. MAF Fisheries Greta Point Internal Report No. 148. 32 p. (Draft report held in MAF Fisheries Greta Point library, Wellington.)
- Grimes, P. J. (1991). The 1990 Cordella (COR9003) orange roughy survey between Cape Runaway and Banks Peninsula. MAF Fisheries Greta Point Internal Report No. 168. 30 p. (Draft report held in MAF Fisheries Greta Point library, Wellington.)
- Grimes, P. (1994). Trawl survey of orange roughy between Cape Runaway and Banks Peninsula, March April 1992 (TAN9203). New Zealand Fisheries Data Report 42. 13 p.
- Grimes, P. (1996a). Trawl survey of orange roughy between Cape Runaway and Banks Peninsula, March-April 1993 (TAN9303). New Zealand Fisheries Data Report 76. 18 p.
- Grimes, P. (1996b). Trawl survey of orange roughy between Cape Runaway and Banks Peninsula, March-April 1994 (TAN9403). New Zealand Fisheries Data Report 82. 12 p.
- Murtagh, F. (1985). "Multidimensional Clustering Algorithms", in COMPSTAT Lectures 4. Wuerzburg: Physica-Verlag (for algorithmic details of algorithms used).
- R Development Core Team (2009). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org.
- Robertson, D. A.; Grimes, P. J. (1987). Orange roughy multi-vessel survey: East Cape to Cape Kidnappers, June-July 1985. Fisheries Research Centre Internal Report No. 72. 20 p. (Draft report held in MAF Fisheries Greta Point library, Wellington.)

## Table 1: Sub-areas, hills, and codes used in the survey (as in the 1993 and 1994 surveys)

| Area           | Area<br>code | Area (km <sup>2</sup> ) | QMA    | Boundaries                                                |
|----------------|--------------|-------------------------|--------|-----------------------------------------------------------|
| Flat ground ar | reas         |                         |        |                                                           |
| Kaikoura       | KAIK         | 2 681                   | 3A, 3B | 174° 20'E to 42° 40' S                                    |
| Clarence       | CLAR         | 2 689                   | 3A     | 42° 40' S to C. Palliser                                  |
| Wairarapa      | WAIR         | 4 202                   | 2B     | C. Palliser to C. Turnagain                               |
| Madden         | MADD         | 2 184                   | 2A     | C. Turnagain to 177° 50' E                                |
| Portland       | PORT         | 2 035                   | 2A     | 177° 50' E to 39° 07' S excluding the Ritchie Banks       |
| Ritchie Banks  | RICH         | 1 400                   | 2A     | Ritchie Banks east of the Portland 1000 m contour         |
| Tolaga (East   | EAST         | 6 806                   | 2A     | 39° 07' S to C. Runaway. In 1992, this sub-area was split |
| Cape)          |              |                         |        | into two: East Cape & Tolaga.                             |

| Commercial (Hill) strata |      |     |    |  |  |
|--------------------------|------|-----|----|--|--|
| Tim's Bank               | TIMB | 28  | 2A |  |  |
| SW Ritchie               | SWRI | 50  | 2A |  |  |
| Rockgarden               | ROCK | 100 | 2A |  |  |
| Tolaga Hill              | TOLA | 30  | 2A |  |  |
| Castlepoint              | CLPT | 50  | 3A |  |  |

Small area north of the Castlepoint hills

|         |           |                   |                      | Number o | f stations |
|---------|-----------|-------------------|----------------------|----------|------------|
|         |           |                   | $\Lambda roo (lm^2)$ | complete | d in 1993  |
| Stratum | Depth (m) | Area code*        | Alea (KIII)          | Phase 1  | Phase 2    |
| 1       | 600-1500  | RICH, Tim's Bank  | 28                   | 3        | 0          |
| 2       | 600-1500  | RICH, SW Ritchie  | 50                   | 6        | 0          |
| 3       | 600-1500  | RICH, Rockgarden  | 100                  | 3        | 1          |
| 4       | 600-1500  | TOLA, Tolaga Hill | 30                   | 5        | 0          |
| 5       | 600-1000  | WAIR, Castlepoint | 50                   | 0        | 6          |
| 11      | 600-800   | KAIK              | 1 103                | 3        | 0          |
| 12      | 600-800   | CLAR              | 552                  | 4        | 0          |
| 13      | 600-800   | WAIR              | 640                  | 4        | 0          |
| 14      | 600-800   | MADD              | 366                  | 3        | 0          |
| 15      | 600-800   | PORT              | 392                  | 3        | 0          |
| 16      | 600-800   | RICH              | 167                  | 4        | 0          |
| 17      | 600-800   | TOLA              | 481                  | 3        | 0          |
| 21      | 800-1000  | KAIK              | 517                  | 10       | 4          |
| 22      | 800-1000  | CLAR              | 685                  | 6        | 0          |
| 23      | 800-1000  | WAIR              | 550                  | 9        | 1          |
| 24      | 800-1000  | MADD              | 432                  | 8        | 12         |
| 25      | 800-1000  | PORT              | 499                  | 4        | 0          |
| 26      | 800-1000  | RICH              | 355                  | 4        | 0          |
| 27      | 800-1000  | TOLA              | 448                  | 3        | 0          |
| 31      | 1000-1200 | KAIK              | 4-41                 | 4        | 0          |
| 32      | 1000-1200 | CLAR              | 755                  | 13       | 0          |
| 33      | 1000-1200 | WAIR              | 1 575                | 19       | 20         |
| 34      | 1000-1200 | MADD              | 412                  | 3        | 1          |
| 35      | 1000-1200 | PORT              | 450                  | 11       | 2          |
| 36      | 1000-1200 | RICH              | 357                  | 3        | 0          |
| 37      | 1000-1200 | TOLA              | 420                  | 3        | 0          |
| 41      | 1200-1500 | KAIK              | 619                  | 3        | 3          |
| 42      | 1200-1500 | CLAR              | 696                  | 4        | 0          |
| 43      | 1200-1500 | WAIR              | 1 388                | 5        | 0          |
| 44      | 1200-1500 | MADD              | 974                  | 7        | 0          |
| 45      | 1200-1500 | PORT              | 695                  | 4        | 0          |
| 46      | 1200-1500 | RICH              | 344                  | 3        | 0          |
| 47      | 1200-1500 | TOLA              | 807                  | 3        | 0          |
| Total   |           |                   | 21 997               | 170      | 50         |

#### Table 2: Stratum, stratum areas, and stations completed in the 1993 survey.

# Table 3: The number of tows and distance covered where the trawl net was flown over rough ground (excluding the Ease Cape sub-area).

| Number flown tows | Median distance flown (nautical mile)  |
|-------------------|----------------------------------------|
| 12                | 0.42                                   |
| 5                 | 0.30                                   |
| 4                 | 0.38                                   |
| 4                 | 0.30                                   |
|                   | Number flown tows<br>12<br>5<br>4<br>4 |

|                  |             |               | Survey        |
|------------------|-------------|---------------|---------------|
| Area             | 1992        | 1993          | 1994          |
| Kaikoura         | 5 174       | 4 581         | 1 456         |
| Clarence         | 7 072       | 1 966         | 2 685         |
| Wairarapa        | 2 156       | 3 857         | 5 888         |
| Madden           | 1 464       | 1 424         | 1 089         |
| Portland         | 1 086       | 931           | 521           |
| Ritchie          | 833         | 629           | 280           |
| East Cape/Tolaga | 420         | 884           | 1 235         |
| Total            | 18 205      | 14 272        | 13 154        |
| c.v. (%)         | 29          | 20            | 13            |
| Date range       | 5 Mar–2 Apr | 16 Mar–10 Apr | 16 Mar-10 Apr |

#### Table 4: Total orange roughy biomass (t) estimates by subarea from the 1992–94 trawl surveys.

Table 5: The number of phase 1 stations used in each of the 1992–94 trawl surveys of the MEC that were repeated (i.e., used at least twice over the 3 surveys), and the number of phase 1 stations which were used only once.

| -                                          |      |      | Survey |
|--------------------------------------------|------|------|--------|
|                                            | 1992 | 1993 | 1994   |
| Stations that have been used twice or more | 123  | 158  | 147    |
| Once-only stations                         | 21   | 16   | 0      |

#### Table 6: The order of occupation of strata for the 1992–94 trawl surveys.

| Phase 1 order | 1992              | 1993              | 1994              |
|---------------|-------------------|-------------------|-------------------|
| 1             | Kaikoura          | Kaikoura          | Clarence          |
| 2             | Clarence          | Clarence          | Kaikoura          |
| 3             | Wairarapa         | Tolaga/ East Cape | Tolaga/ East Cape |
| 4             | Madden            | Ritchie           | Ritchie/          |
| 5             | Portland          | Portland          | Portland          |
| 6             | Ritchie           | Madden            | Madden            |
| 7             | Tolaga/ East Cape | Wairarapa         | Wairarapa         |

Table 7: The number of repeated tows in the 1992–94 MEC trawl surveys as a result of using the "site" allocation (excluding the East Cape).

| Number of repeated sites | Total tows in abundance estimation         |
|--------------------------|--------------------------------------------|
| 34                       | 171                                        |
| 45                       | 201                                        |
| 41                       | 201                                        |
|                          | Number of repeated sites<br>34<br>45<br>41 |

 Table 8: Tows that were originally assigned to the wrong strata. These were tows completed before the commercial strata were defined.

| Survey | Station number | Original stratum | New stratum |
|--------|----------------|------------------|-------------|
| 1992   | 93             | 16               | 2           |
| 1992   | 94             | 26               | 2           |
| 1992   | 95             | 36               | 2           |

| Area      | Stratum | Depth (m) | Area (km <sup>-2</sup> ) | Proposed<br>phase 1<br>stations | Completed<br>phase 1<br>stations | Completed<br>phase 2<br>stations |
|-----------|---------|-----------|--------------------------|---------------------------------|----------------------------------|----------------------------------|
| Kaikoura  | 11      | 600-800   | 1 103                    | 3                               | 3                                | _                                |
|           | 21      | 800-1000  | 517                      | 9                               | 8                                | _                                |
|           | 31      | 1000-1200 | 441                      | 4                               | 4                                | 1                                |
|           | 41      | 1200-1500 | 619                      | 3                               | 3                                | 3                                |
| Clarence  | 12      | 600-800   | 552                      | 3                               | 3                                | _                                |
|           | 22      | 800-1000  | 685                      | 5                               | 5                                | _                                |
|           | 32      | 1000-1200 | 755                      | 8                               | 8                                | _                                |
|           | 42      | 1200-1500 | 696                      | 3                               | 3                                | _                                |
| Wairarapa | 5       | Hill      | 50                       | 3                               | 3                                | 2                                |
| -         | 13      | 600-800   | 640                      | 4                               | 4                                | _                                |
|           | 23      | 800-1000  | 550                      | 7                               | 7                                | 13                               |
|           | 33      | 1000-1200 | 1 575                    | 16                              | 16                               | 6                                |
|           | 43      | 1200-1500 | 1 388                    | 5                               | 5                                | _                                |
| Madden    | 14      | 600-800   | 366                      | 3                               | 3                                | _                                |
|           | 24      | 800-1000  | 432                      | 5                               | 5                                | _                                |
|           | 34      | 1000-1200 | 412                      | 3                               | 3                                | _                                |
|           | 44      | 1200-1500 | 974                      | 5                               | 5                                | _                                |
| Portland  | 15      | 600-800   | 392                      | 3                               | 3                                | _                                |
|           | 25      | 800-1000  | 499                      | 3                               | 3                                | _                                |
|           | 35      | 1000-1200 | 450                      | 9                               | 9                                | 1                                |
|           | 45      | 1200-1500 | 695                      | 4                               | 4                                | _                                |
| Ritchie   | 1       | Hill      | 28                       | 3                               | 3                                | _                                |
|           | 2       | Hill      | 50                       | 3                               | 3                                | _                                |
|           | 3       | Hill      | 100                      | 3                               | 3                                | _                                |
|           | 16      | 600-800   | 167                      | 3                               | 3                                | _                                |
|           | 26      | 800-1000  | 355                      | 3                               | 3                                | _                                |
|           | 36      | 1000-1200 | 357                      | 3                               | 3                                | _                                |
|           | 46      | 1200-1500 | 344                      | 3                               | 3                                | _                                |
| Tolaga    | 4       | Hill      | 30                       | 3                               | 3                                | _                                |
|           | 17      | 600-800   | 481                      | 3                               | 2                                | _                                |
|           | 27      | 800-1000  | 448                      | 3                               | 3                                | 3                                |
|           | 37      | 1000-1200 | 420                      | 3                               | 3                                | _                                |
|           | 47      | 1200-1500 | 807                      | 3                               | 3                                | _                                |
|           | Total   |           | 17 378                   | 144                             | 142                              | 29                               |

Table 9: Stratum areas, depths, allocated phase 1 stations, and number of successful phase 1 and II stations from the 2010 MEC orange roughy trawl survey.

| Excludes rocks and broken shell rubble. * catch from all species caught. |              |                         |                              |  |  |  |
|--------------------------------------------------------------------------|--------------|-------------------------|------------------------------|--|--|--|
| Species<br>Alfonsino                                                     | Species Code | Weight (kg)<br>53 125.8 | Percentage of the catch 49.7 |  |  |  |
| Orange roughy                                                            |              | 11 801.7                | 11.0                         |  |  |  |

Table 10: The catch of the main species by weight from all trawl stations in the 2010 MEC trawl survey.

| Alfonsino                   | 53 125.8  | 49.7 |
|-----------------------------|-----------|------|
| Orange roughy               | 11 801.7  | 11.0 |
| Shovelnose dogfish          | 7 889.2   | 7.4  |
| Smallscaled brown slickhead | 4 740.1   | 4.4  |
| Smooth oreo                 | 4 736.4   | 4.4  |
| Hoki                        | 3 592.9   | 3.4  |
| White rattail               | 2 329.2   | 2.2  |
| Spiky oreo                  | 2 030.8   | 1.9  |
| Johnson's cod               | 1 368.3   | 1.3  |
| Javelinfish                 | 1 352.5   | 1.3  |
| Owston's dogfish            | 895.4     | 0.8  |
| Ribaldo                     | 785.2     | 0.7  |
| Baxter's dogfish            | 759.7     | 0.7  |
| Serrulate rattail           | 621.5     | 0.6  |
| Bollon's rattail            | 610.7     | 0.6  |
| Pale ghost shark            | 589.7     | 0.6  |
| Largescaled brown slickhead | 588.0     | 0.6  |
| Basketwork eel              | 570.4     | 0.5  |
| Widenose chimaera           | 564.5     | 0.5  |
| Leafscale gulper shark      | 503.7     | 0.5  |
| Total catch*                | 106 903.8 |      |
|                             |           |      |

# Table 11: Summary of orange roughy biological samples from the 2010 MEC trawl survey.

|                                    | Pre-recruit | Recruit     | Total       |
|------------------------------------|-------------|-------------|-------------|
| Standard length range (cm)         | 12.1 - 31.9 | 32.0 - 43.4 | 12.1 - 43.4 |
| No. sampled for:                   |             |             |             |
| Length                             | 4 319       | 2 573       | 6 892       |
| Sex and macroscopic maturity stage | 4 243       | 2 526       | 6 769       |
| Weight                             | 3 148       | 1 953       | 5 101       |
| Gonad weight                       | 1 983       | 1 127       | 3 110       |
| Otoliths                           | 1 290       | 754         | 2 044       |
| Stomachs                           | 568         | 404         | 972         |
| Gonad histology                    | 539         | 331         | 870         |

|                |                          |        | Po       | opulation         |
|----------------|--------------------------|--------|----------|-------------------|
| Survey         |                          | All    | Juvenile | Adult             |
| 1992           | Biomass                  | 20 128 | 13 139   | 6 989             |
|                | C.v.                     | 30     | 33       | 28                |
| 1993           | Biomass                  | 13 730 | 9 084    | 4 646             |
|                | C.v.                     | 20     | 26       | 15                |
| 1994           | Biomass                  | 12 093 | 7 241    | 4 852             |
|                | C.v.                     | 13     | 14       | 16                |
| 2010           | Biomass                  | 6 838  | 3 265    | 3 573             |
|                | C.v.                     | 17     | 19       | 22                |
| Combined 1992- |                          |        |          |                   |
| 94             | Biomass                  | 15 317 | 9 821    | 5 496             |
|                | C.v.                     | 15     | 17       | 13                |
| t-test         | Combined 1992–94 vs 2010 | 3.3 ** | 3.7 ***  | 1.8 <sup>NS</sup> |
|                |                          |        |          |                   |

Table 12: Estimated 1992–94 and 2010 orange roughy abundance (t) and c.v. (%), using the method all-relevant-tows. Significance tests; NS, not significant;  $p \le ** 0.01$ ;  $p \le *** 0.001$ .

Table 13: Estimated 1992–94 and 2010 orange roughy abundance (t) and c.v. (%) using the first-atsite method. The estimate for 2010 used a 10% allocation of phase 2 tows. Significance tests; NS, not significant;  $p \le ** 0.01$ .

|                  |                          |        |          | <u>opulation</u>  |
|------------------|--------------------------|--------|----------|-------------------|
| Survey           |                          | All    | Juvenile | Adult             |
| 1992             | Biomass                  | 20 838 | 13 252   | 7 586             |
|                  | C.v.                     | 29     | 32       | 29                |
| 1993             | Biomass                  | 15 102 | 10 311   | 4 791             |
|                  | C.v.                     | 28     | 34       | 18                |
| 1994             | Biomass                  | 12 780 | 7 538    | 5 242             |
|                  | C.v.                     | 15     | 15       | 20                |
| 2010             | Biomass                  | 7 074  | 3 370    | 3 703             |
|                  | C.v.                     | 19     | 21       | 25                |
| Combined 1992-94 | Biomass                  | 16 240 | 10 367   | 5 873             |
|                  | C.v.                     | 16     | 18       | 15                |
| t-test           | Combined 1992–94 vs 2010 | 3.2 ** | 3.5 **   | 1.7 <sup>NS</sup> |

| Survey                   | Ν         | Mean   | Median | Inter-quart | ile range | Minimum | Maximum |
|--------------------------|-----------|--------|--------|-------------|-----------|---------|---------|
| Warp length (m)          |           |        |        |             |           |         |         |
| 1992                     | 187       | 2018.8 | 2000   | 1700        | 2350      | 1100    | 2850    |
| 1993                     | 206       | 1948.7 | 1955   | 1690        | 2180      | 1150    | 2850    |
| 1994                     | 208       | 1951.4 | 2000   | 1700        | 2190      | 150     | 2900    |
| 2010                     | 171       | 1905.9 | 1900   | 1650        | 2130      | 1200    | 2800    |
| Start depth – finish dep | oth (gear | ;)     |        |             |           |         |         |
| 1992                     | 189       | -40.9  | -25    | -94         | 9         | -367    | 193     |
| 1993                     | 210       | -45.9  | -23    | -92         | 20        | -500    | 180     |
| 1994                     | 209       | -40.4  | -16    | -85         | 16        | -446    | 321     |
| 2010                     | 171       | -44.9  | -28    | -90         | 12        | -481    | 195     |
| Door spread (m)          |           |        |        |             |           |         |         |
| 1992                     | 76        | 110    | 111    | 106         | 115       | 81      | 123     |
| 1993                     | 4         | 109.5  | 108.35 | 104.2       | 110.5     | 104.2   | 117     |
| 1994                     | 99        | 111.3  | 111.1  | 108.1       | 114.1     | 100.8   | 126.9   |
| 2010                     | 81        | 104.2  | 105.2  | 99.5        | 108.4     | 85      | 120.3   |
| Wingtip spread (m)       |           |        |        |             |           |         |         |
| 1992                     | 4         | 26.4   | 26.4   | 25          | 26.5      | 25      | 28      |
| 1993                     | 19        | 24.4   | 24.7   | 23.5        | 25        | 21      | 27      |
| 1994                     | 53        | 25.1   | 24.9   | 24.4        | 25.6      | 20.7    | 28.6    |
| 2010                     | 36        | 25.4   | 25.4   | 24.8        | 25.9      | 23.9    | 26.4    |
| Headline height (m)      |           |        |        |             |           |         |         |
| 1992                     | 188       | 7.1    | 7      | 6.2         | 7.9       | 5       | 12.6    |
| 1993                     | 209       | 6.4    | 6.2    | 5.7         | 7         | 5       | 10      |
| 1994                     | 209       | 6.6    | 6.6    | 6.1         | 7         | 4.6     | 9.1     |
| 2010                     | 171       | 5.4    | 5.3    | 5           | 5.7       | 4.2     | 7.9     |
| Trawling speed (knots)   |           |        |        |             |           |         |         |
| 1992                     | 189       | 3      | 3      | 2.9         | 3         | 2.4     | 4       |
| 1993                     | 204       | 3.2    | 3.2    | 3           | 3.3       | 2.1     | 3.7     |
| 1994                     | 201       | 3.4    | 3.4    | 3.3         | 3.5       | 2.7     | 4       |
| 2010                     | 171       | 3      | 3      | 3           | 3         | 2.7     | 3.5     |

Table 14: Trawl parameters from the MEC trawl surveys: number of measurements (N), mean, median, inter-quartile range, minimum, and maximum. Door spreads over 150 m were excluded.

Table 15: Median trawl warp to depth ratio in 100 m bins (mean depth of tow) for the MEC trawl surveys. E.g. depth bin 800 means depths between 800 and 899 m.

|        |     |     |     |     |      |      |      |      | De   | epth bin |
|--------|-----|-----|-----|-----|------|------|------|------|------|----------|
| Survey | 600 | 700 | 800 | 900 | 1000 | 1100 | 1200 | 1300 | 1400 | 1500     |
| 1992   | 2.1 | 2   | 2   | 1.9 | 1.9  | 1.9  | 1.9  | 1.8  | 1.9  | 1.8      |
| 1993   | 1.9 | 1.9 | 1.9 | 1.9 | 1.9  | 1.9  | 1.9  | 1.9  | 1.9  | -        |
| 1994   | 2   | 2   | 1.9 | 2   | 1.9  | 1.9  | 1.9  | 1.9  | 1.9  | -        |
| 2010   | 2.2 | 2   | 1.9 | 1.9 | 1.9  | 1.9  | 1.8  | 1.8  | 1.9  | 1.7      |

Table 16: The total abundance of bycatch species for the 1992–94 and 2010 surveys, with and without orange roughy included. The c.v. is derived from those for individual species abundances. Bycatch species used were: Basketwork eel, Baxters lantern dogfish, Bollons rattail, Catshark, *Centrophorus squamosus, Centroscymnus crepidater*, Deepsea cardinalfish, Four-rayed rattail, Hoki, Javelin fish, Johnson's cod, Long-nosed chimaera, Lucifer dogfish, *Nezumia namatahi*, Notable rattail, Pale ghost shark, Ribaldo, Ridge scaled rattail, Roughhead rattail, Serrulate rattail, Shovelnose spiny dogfish, Silver roughy, Slickhead bigscaled brown, Slickhead smallscaled brown, Small-headed cod, Smooth skin dogfish, Smooth oreo, Spiky oreo, *Trachyscorpia capensis*, Unicorn rattail, Warty oreo, White rattail, and Widenosed chimaera. Alfonsino was excluded, which had an abundance of 183 000 t in 2010.

| Year | Total bycatch (`000 t) | C.v. (%) | Total with orange roughy (`000 (t) | C.v. (%) |
|------|------------------------|----------|------------------------------------|----------|
| 1992 | 44                     | 12       | 64                                 | 12       |
| 1993 | 52                     | 9        | 66                                 | 8        |
| 1994 | 41                     | 9        | 53                                 | 8        |
| 2010 | 51                     | 11       | 58                                 | 10       |

Table 17: Expected bias and c.v. of abundance using varying amounts of phase 2 allocation of tows (5%, 10%, 15%, 20% and 25% of the number of phase 1 tows).

|                                         | Expected c.v. |                   |
|-----------------------------------------|---------------|-------------------|
| Phase 2 allocations (% of Phase 1 tows) | (%)           | Expected bias (%) |
| 5                                       | 15.0          | -5.8              |
| 10                                      | 14.0          | -7.8              |
| 15                                      | 13.8          | -8.8              |
| 20                                      | 13.0          | -9.3              |
| 25                                      | 13.0          | -9.8              |
|                                         |               |                   |

Table 18: The number of tows, number of phase 2 tows, and ratio of phase 2 to phase 1 tows, for the MEC trawl surveys, using the first-at-site method, and for 2010 using 10% allocation of phase 2 tows.

| Year | Number of tows | Number of phase 2 tows | Ratio of phase 2 / phase 1 tows (%) |
|------|----------------|------------------------|-------------------------------------|
| 1992 | 137            | 13                     | 10.5                                |
| 1993 | 156            | 7                      | 4.7                                 |
| 1994 | 160            | 24                     | 17.6                                |
| 2010 | 156            | 14                     | 10                                  |

# Table 19: The number of tows, number of phase 2 tows, and ratio of phase 2 to phase 1 tows, for the MEC trawl surveys, using the all-relevant-tows method.

| Year | Number of tows | Number of phase 2 tows | Ratio of phase 2 / phase 1 tows (%) |
|------|----------------|------------------------|-------------------------------------|
| 1992 | 171            | 36                     | 27                                  |
| 1993 | 201            | 44                     | 28                                  |
| 1994 | 201            | 43                     | 27                                  |
| 2010 | 171            | 29                     | 20                                  |

Table 20: The percentage change in total orange roughy abundance estimate after excluding flown tows.

| Year | Abundance change |
|------|------------------|
| 1992 | +5%              |
| 1993 | -1%              |
| 1994 | -1%              |
| 2010 | +1%              |



Figure 1: Survey area for the 1992–94 trawl surveys with the commercial ("Hill") strata used in 1993 & 1994 (Hill Stratum 1-3 were used in 1992). In 1993 & 1994, East Cape was a combined sub-area made up of East Cape in the north and Tolaga in the southern half of the sub-area shown in the plot. In 1992, there were two sub-areas, East Cape and Tolaga.



Figure 2: Tow positions showing clustering into sites. Examples plots are for strata 33 & 31. Red bars represents 2.25 nautical niles. Red circles on stratum 33 site 2 (top left) and stratum 31 site 3 (bottom right) are sites formed by merging 2 clusters by hand.



Figure 3: Survey sub-areas for the 2010 MEC trawl survey. Gray lines are the survey area and these are based on the 600 and 1500 m isobaths.



Figure 4: Location of valid biomass stations for the 2010 MEC orange roughy survey. Faded line is the 1000 m isobath.



Figure 5: Total orange roughy catch rate (kg.km<sup>-1</sup>) for valid biomass stations and the 2010 MEC trawl survey, plotted by tow start position. Circle area is proportional to catch rate; maximum 487 kg.km<sup>-1</sup>, +, zero catch of orange roughy. Faded line is the 1000 m isobath.



Figure 6: Estimated orange roughy numbers-at-length for the four MEC trawl surveys, 1992–94 and 2010, using the all-relevant-tows method.



Figure 7: Orange roughy length frequency distributions for the four MEC trawl surveys by sub-area. Frequencies were constructed assuming a 1:1 sex ratio.



Figure 7 (cont.): Orange roughy length frequency distributions for the four MEC trawl surveys by sub-area. Frequencies were constructed assuming a 1:1 sex ratio.



Figure 8: MEC trawl survey trawl parameter distributions. Door distances were trimmed at 150 m. Del = start – finish depth.



Figure 9: Headline height versus door spread for the MEC trawl surveys. Points labelled 2, 1992; 3, 1993; 4, 1994; 0, 2010. Lines show lowess smoothers through the data; dark solid line, 1992; dotted line, 1994; lower solid line, 2010.



## Appendix 1: net plans



0-----

37

## **ORANGE ROUGHY BOTTOM TRAWL FLOAT PLAN**









| <b>FRAWL</b>  |      |
|---------------|------|
| SOTTOM 7      | RIG  |
| ROUGHY E      | DOOR |
| <b>DRANGE</b> |      |

Compiled by Gear Group Mike Steele Drawn by Graeme Mackay

| <ul> <li>1 – PAIR 6.1 SQ. METRE MORGERE SUPER-VEE DOORS 2,300 kg</li> <li>4 – 10 METRE LENGTHS 24 mm 6x24 PPC WIRE ROPE</li> <li>6 – 19 mm HAMMERLOCKS</li> <li>6 – 19 mm HAMMERLOCKS</li> <li>2 – 2 METRE LENGTHS 19mm G80 CHAIN</li> <li>2 – 2 METRE LENGTHS 34mm STUD LINK CHAIN</li> <li>6 – 17 TONNE RATED D-SHACKLES</li> <li>1 – 20 TONNE RATED KNUCKLE SWIVEL</li> <li>2 – 44 mm G-LINKS</li> </ul> | DOOD DIG COMBONENTS                                     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|
| <ul> <li>4 - 10 METRE LENGTHS 24 mm 6x24 PPC WIRE ROPE</li> <li>6 - 19 mm HAMMERLOCKS</li> <li>4 - 22mm HAMMERLOCKS</li> <li>2 - 2 METRE LENGTHS 19mm G80 CHAIN</li> <li>2 - 2 METRE LENGTHS 34mm STUD LINK CHAIN</li> <li>6 - 17 TONNE RATED D-SHACKLES</li> <li>1 - 20 TONNE RATED KNUCKLE SWIVEL</li> <li>2 - 44 mm G-LINKS</li> </ul>                                                                   | 1 - PAIR 6.1 SQ. METRE MORGERE SUPER-VEE DOORS 2.300 ki |
| <ul> <li>6 - 19 mm HAMMERLOCKS</li> <li>4 - 22mm HAMMERLOCKS</li> <li>2 - 2 METRE LENGTHS 19mm G80 CHAIN</li> <li>2 - 2 METRE LENGTHS 34mm STUD LINK CHAIN</li> <li>6 - 17 TONNE RATED D-SHACKLES</li> <li>1 - 20 TONNE RATED KNUCKLE SWIVEL</li> <li>2 - 44 mm G-LINKS</li> </ul>                                                                                                                          | 4 - 10 METRE LENGTHS 24 mm 6x24 PPC WIRE ROPE           |
| <ul> <li>4 - 22mm HAMMERLOCKS</li> <li>2 - 2 METRE LENGTHS 19mm G80 CHAIN</li> <li>2 - 2 METRE LENGTHS 34mm STUD LINK CHAIN</li> <li>6 - 17 TONNE RATED D-SHACKLES</li> <li>1 - 20 TONNE RATED KNUCKLE SWIVEL</li> <li>2 - 44 mm G-LINKS</li> </ul>                                                                                                                                                         | 6 – 19 mm HAMMERLOCKS                                   |
| 2 - 2 METRE LENGTHS 19mm G80 CHAIN<br>2 - 2 METRE LENGTHS 34mm STUD LINK CHAIN<br>6 - 17 TONNE RATED D-SHACKLES<br>1 - 20 TONNE RATED KNUCKLE SWIVEL<br>2 - 44 mm G-LINKS                                                                                                                                                                                                                                   | 4 – 22mm HAMMERLOCKS                                    |
| 2 – 2 METRE LENGTHS 34mm STUD LINK CHAIN<br>6 – 17 TONNE RATED D-SHACKLES<br>1 – 20 TONNE RATED KNUCKLE SWIVEL<br>2 – 44 mm G-LINKS                                                                                                                                                                                                                                                                         | 2 – 2 METRE LENGTHS 19mm G80 CHAIN                      |
| 6 - 17 TONNE RATED D-SHACKLES<br>1 - 20 TONNE RATED KNUCKLE SWIVEL<br>2 - 44 mm G-LINKS                                                                                                                                                                                                                                                                                                                     | 2 – 2 METRE LENGTHS 34mm STUD LINK CHAIN                |
| 1 – 20 TONNE RATED KNUCKLE SWIVEL<br>2 – 44 mm G-LINKS                                                                                                                                                                                                                                                                                                                                                      | 6 – 17 TONNE RATED D-SHACKLES                           |
| 2 – 44 mm G-LINKS                                                                                                                                                                                                                                                                                                                                                                                           | 1 – 20 TONNE RATED KNUCKLE SWIVEL                       |
|                                                                                                                                                                                                                                                                                                                                                                                                             | 2 – 44 mm G-LINKS                                       |



The *RV Tangaroa* trawl doors:

- Size 6.1 square meters
- Manufactured by Kernohan Engineering Nelson
- Weight 2.3 t in air
- Last major overhaul around 2005

#### Warps:

- 28 mm, 6x19 construction, steel core galvanised wire rope.
- Brand ex Cookes (manufactured in Auckland)
- Diameter 28 mm
- Top 2000 m about 3 years old, bottom 2000 m about 18 months old
- Left hand and right hand lay.

#### Winches:

- Main trawl winches are Hydraulic Brattvagg self tensioning
- Control unit Hydraulic Brattvagg 1991 to ~June 2008. Scantrol ~June 2008 to present
- Date of last major winch overhaul 2002.
- Date of last control system check 23 November 2009
- Winch settings available on request (contact N. Bagley, NIWA)

#### Sweeps:

- 6 x19 galvanised wire rope
- Diameter 28 mm
- Length 50 m
- RH lay

#### Bottom Bridle:

- 6 x19 galvanised wire rope
- Diameter 28 mm
- Length 50 m
- RH lay

#### Top Bridle:

- 6 x19 galvanised wire rope
- Diameter 24 mm
- Length 50 m
- RH lay

Net Electronics:

- Net monitor: Original Kajo Denki KCN 300 replaced with CN22 in mid 1990's. New CN22 net monitor headline unit (January 2010).
- SCANMAR doorspread and wingspread sensors. Various ages i.e. replaced as required.

#### Appendix 2: Sites and their associated tows

Table 2.1: Sites and their associated tows. Site code is ssll, where ss is the stratum number and ll is a letter code, A, B, ..., e.g., "11B" is in stratum 11 and it is the B(second) site. Tow code is yy-ss, where yy is year and ss is station number in that year, e.g., "93-178" is station 178 in the 1993 survey. There are 115 sites that are common to all years (and by design to 2010, but in practice there were 114 since one common Phase 1 tows could not be done).

Site

common

to all 3

| years |  |
|-------|--|
| (-1)  |  |

| years    |      |        |        |        |        |        |        |         |
|----------|------|--------|--------|--------|--------|--------|--------|---------|
| (=1)     | Site |        |        |        |        |        | Assign | ed tows |
| 1        | 1A   | 93-96  | 92-177 | 94-95  | 92-179 |        |        |         |
| 1        | 1B   | 93-98  | 92-180 | 94-96  |        |        |        |         |
| 1        | 1C   | 94-84  | 92-181 | 93-97  | 92-178 |        |        |         |
| 1        | 2A   | 93-101 | 92-184 | 94-88  |        |        |        |         |
| 1        | 2D   | 92-183 | 94-87  | 93-100 |        |        |        |         |
| 1        | 2E   | 93-105 | 94-90  | 92-186 |        |        |        |         |
|          | 3A   | 94-85  | 93-220 |        |        |        |        |         |
| 1        | 3B   | 94-82  | 92-188 | 92-189 | 93-92  | 92-187 |        |         |
|          | 3D   | 93-93  |        |        |        |        |        |         |
|          | 4A   | 93-66  | 94-56  | 93-63  | 93-65  | 94-58  | 94-57  |         |
|          | 4B   | 93-67  | 94-59  |        |        |        |        |         |
|          | 4C   | 94-60  | 93-64  |        |        |        |        |         |
|          | 5B   | 94-206 | 94-140 | 94-143 | 93-195 | 93-198 |        |         |
|          | 5C   | 93-199 | 94-144 | 93-196 | 94-202 | 94-141 |        |         |
|          | 5D   | 94-142 | 93-197 |        |        |        |        |         |
| 1        | 11A  | 93-17  | 92-16  | 94-29  |        |        |        |         |
| 1        | 11B  | 93-5   | 94-37  | 92-3   |        |        |        |         |
| 1        | 11C  | 93-12  | 94-38  | 92-14  |        |        |        |         |
| 1        | 12A  | 94-25  | 92-20  | 94-46  | 93-21  |        |        |         |
| 1        | 12B  | 92-23  | 94-22  | 93-23  |        |        |        |         |
| 1        | 12C  | 93-47  | 94-1   | 92-37  |        |        |        |         |
| 1        | 13A  | 92-66  | 94-135 | 93-140 |        |        |        |         |
| 1        | 13B  | 93-159 | 94-158 | 92-54  |        |        |        |         |
| 1        | 13C  | 93-145 | 92-59  | 94-138 |        |        |        |         |
| 1        | 13D  | 92-64  | 93-142 | 94-136 | 94-210 | 94-211 |        |         |
| 1        | 14A  | 94-115 | 93-124 | 92-77  |        |        |        |         |
| 1        | 14B  | 93-136 | 92-69  | 94-127 |        |        |        |         |
| 1        | 14C  | 94-126 | 92-70  | 93-135 |        |        |        |         |
| 1        | 15A  | 92-82  | 94-74  | 93-79  |        |        |        |         |
| 1        | 15B  | 92-83  | 93-77  | 94-73  |        |        |        |         |
| 1        | 15C  | 92-107 | 93-80  | 94-65  |        |        |        |         |
| 1        | 16A  | 92-105 | 93-84  | 94-75  | 93-85  | 94-76  | 92-103 |         |
|          | 16B  | 94-94  | 92-93  |        |        |        |        |         |
| 1        | 16C  | 93-86  | 94-104 | 92-102 |        |        |        |         |
|          | 17A  | 92-115 |        |        |        |        |        |         |
| Not done |      |        |        |        |        |        |        |         |
| in 2010  | 17B  | 92-120 |        |        |        |        |        |         |
| 1        | 17D  | 94-62  | 92-116 | 93-69  |        |        |        |         |

| common     |             |                     |        |                  |                                         |                  |              |                         |
|------------|-------------|---------------------|--------|------------------|-----------------------------------------|------------------|--------------|-------------------------|
| to all 3   |             |                     |        |                  |                                         |                  |              |                         |
| years      | 0.1         |                     |        |                  |                                         |                  | <b>.</b> .   | 1.4                     |
| (=1)       | Site        | 02.1                | 04.25  | 02.0             |                                         |                  | Assi         | gned tows               |
| 1          | 21A<br>21D  | 92-1<br>02-15       | 94-35  | 93-8             |                                         |                  |              |                         |
| l<br>1 not | 21 <b>B</b> | 92-15               | 94-30  | 93-16            |                                         |                  |              |                         |
| I, HOL     |             |                     |        |                  |                                         |                  |              |                         |
| 2010       | 21C         | 92-17               | 93-18  | 94-28            | 93-177                                  |                  |              |                         |
| 2010       | 210<br>21D  | 93-7                | 92-2   | 93-174           | 94-36                                   |                  |              |                         |
| 1          | 21D<br>21E  | 94-43               | 92-4   | 93-175           | 93-3                                    |                  |              |                         |
| 1          | 21E<br>21F  | 93-4                | 94-42  | 92-10            | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |                  |              |                         |
| 1          | 211<br>21G  | 92-12               | 93-13  | 94-39            |                                         |                  |              |                         |
| 1          | 210<br>21H  | 94-40               | 93-176 | 93-14            | 92-13                                   |                  |              |                         |
| 1          | 2111        | 93-2                | 93-6   | 94-45            | 94-44                                   |                  |              |                         |
| 1          | 211<br>22 A | 93-33               | 94-14  | 92-28            | 93-32                                   | 92-27            | 94-13        |                         |
| 1          | 22R         | 92-22               | 94-23  | 93-22            | <i>)</i> 5 52                           | )2 21            | JT 15        |                         |
| 1          | 22D<br>22C  | 93-35               | 94_11  | 92-31            |                                         |                  |              |                         |
| 1          | 22C<br>22D  | 93-46               | 94_2   | 92-36            |                                         |                  |              |                         |
| 1          | 22D<br>22F  | 94-17               | 93_29  | 12 50            |                                         |                  |              |                         |
| 1          | 22L<br>23A  | 93-169              | 94-166 | 92-39            |                                         |                  |              |                         |
| 1          | 23R<br>23R  | 92-40               | 93-168 | 94-165           |                                         |                  |              |                         |
| 1          | 23D<br>23C  | 93-161              | 92-46  | 94-159           |                                         |                  |              |                         |
| 1          | 23C<br>23D  | 94-151              | 93_153 | 92_47            |                                         |                  |              |                         |
| 1          | 23D<br>23E  | 92-55               | 93-160 | 94-156           |                                         |                  |              |                         |
| 1          | 23E<br>23E  | 93 <sub>-</sub> 141 | 92-65  | 94-131           |                                         |                  |              |                         |
| 1          | 231<br>23G  | 0/_152              | 92-05  | 04-101<br>04_100 |                                         |                  |              |                         |
| 1          | 230         | 03_212              | 03_130 | 04-199           | 03_211                                  | 04-121           | 02-72        | 03-131                  |
| 1          | 24A<br>24B  | 93-212              | 02_71  | 03_208           | 93-211<br>04_125                        | 03_207           | 92-72        | <i>yj</i> -1 <i>j</i> 1 |
| 1          | 24D<br>24C  | 0/ 118              | 03 127 | 03 215           | 03 217                                  | 03 216           | 02 73        |                         |
| 1          | 24C<br>24D  | 02 212              | 03 127 | 93-213           | 03 120                                  | 93-210           | 92-75        |                         |
|            | 24D<br>24E  | 03 200              | 02 122 | 03 210           | 93-129                                  | 94-120<br>04 123 | 02 122       |                         |
| 1          | 24E         | 02.80               | 03 76  | 93-210           | 02.88                                   | 94-123<br>03 114 | 93-132       |                         |
| 1          | 25A<br>25D  | 92-09               | 93-70  | 04 72            | 92-00                                   | 95-114           | 94-102       |                         |
| 1          | 25D<br>25C  | 92-04               | 95-70  | 94-72            |                                         |                  |              |                         |
| 1          | 23C<br>26D  | 94-105              | 92-00  | 93-110           | 02.00                                   | 02.99            | 02 100       |                         |
| 1          | 20D<br>26D  | 94-70<br>02 104     | 02 92  | 94-77            | 92-99                                   | 95-00            | 92-100       |                         |
| 1          | 20D<br>26E  | 92-104              | 93-83  | 94-09            |                                         |                  |              |                         |
| 1          | 20F         | 94-08               | 92-108 | 95-74            |                                         |                  |              |                         |
| 1          | 27D<br>27C  | 94-33               | 92-124 | 95-02            |                                         |                  |              |                         |
|            | 27C<br>27E  | 92-120              |        |                  |                                         |                  |              |                         |
| 1          | 2/E<br>21 A | 92-121              | 04.22  | 02.5             |                                         |                  |              |                         |
| 1          | 31A<br>21D  | 93-1                | 94-33  | 92-5             |                                         |                  |              |                         |
| 1          | 31B         | 93-19               | 94-27  | 92-18            |                                         |                  |              |                         |
| 1          | 31C         | 93-9                | 92-6   | 94-32            |                                         |                  |              |                         |
| 1          | 31E         | 93-15               | 92-11  | 94-41            | 00.04                                   | 04.00            |              |                         |
| 1          | 32A         | 93-26               | 93-27  | 94-19            | 92-26                                   | 94-20            |              |                         |
|            | 32B         | 93-43               | 94-3   | 02.20            | 02.20                                   | 04.15            |              |                         |
| 1          | 32C         | 93-30               | 94-16  | 92-29            | 93-28                                   | 94-15            |              |                         |
| 1          | 32D         | 94-12               | 93-34  | 92-32            | 94-175                                  | 00 40            | o 4 <b>-</b> |                         |
| 1          | 32F         | 94-6                | 93-39  | 94-169           | 92-34                                   | 93-40            | 94-7         |                         |

# Site

common to all 3

years (=1)

|   | <b>G</b> ., |                 |                     |                  |        |        | <b>.</b> . | 1.     |
|---|-------------|-----------------|---------------------|------------------|--------|--------|------------|--------|
|   | Site        | 02 41           | 02.25               | 04.4             | 02.42  | 04 171 | Assigne    | d tows |
|   | 32G         | 93-41           | 92-35               | 94-4             | 93-42  | 94-171 | 94-5       |        |
|   | 32H         | 94-8            | 93-57               | 94-9             | 94-176 |        |            |        |
|   | 321<br>32 A | 94-10<br>04 150 | 93-38<br>02 151     | 02 10            |        |        |            |        |
|   | 22D         | 94-150          | 93-131              | 92-48            | 04 167 | 02.20  |            |        |
|   | 22C         | 94-1/8          | 93-178              | 95-170           | 94-107 | 92-38  |            |        |
|   | 220         | 92-41           | 93-107              | 94-104           | 04 162 | 04 192 |            |        |
|   | 22E         | 92-42           | 95-105              | 93-160           | 94-102 | 94-162 |            |        |
|   | 22E         | 92-43           | 94-107              | 93-104           | 94-101 | 95-162 |            |        |
|   | 33F         | 92-43           | 93-103              | 03 152           | 94-105 |        |            |        |
|   | 33U         | 92-51<br>03_155 | 02_52               | 93-15Z<br>04_15A |        |        |            |        |
|   | 331         | 92-53           | 93 <sub>-</sub> 157 | 94-155           |        |        |            |        |
|   | 331         | 93-158          | 94-157              | 92-56            |        |        |            |        |
|   | 33K         | 93-156          | 92-57               | 94-153           |        |        |            |        |
|   | 33L         | 94-145          | 93-147              | 92-60            |        |        |            |        |
|   | 33M         | 93-146          | 92-61               | 94-139           |        |        |            |        |
|   | 33N         | 94-208          | 94-137              | 93-201           | 93-144 | 92-62  |            |        |
| 3 | 3AB         | 93-202          | 94-133              |                  |        |        |            |        |
| 2 | 33AC        | 94-209          | 93-204              | 94-132           | 93-203 |        |            |        |
|   | 34A         | 92-74           | 93-126              | 94-117           |        |        |            |        |
|   | 34B         | 93-125          | 92-75               | 94-116           |        |        |            |        |
|   | 34C         | 94-114          | 93-123              | 92-76            |        |        |            |        |
| í | 35A         | 94-93           | 93-107              | 92-81            |        |        |            |        |
|   | 35B         | 93-117          | 94-105              | 92-85            |        |        |            |        |
|   | 35C         | 92-90           | 94-92               | 93-106           | 92-156 | 94-91  | 93-102     |        |
|   | 35E         | 94-99           | 93-218              | 92-162           | 92-87  | 93-113 | 93-219     |        |
|   | 35F         | 92-151          | 93-81               | 94-70            |        |        |            |        |
|   | 35G         | 93-82           | 94-71               | 92-152           |        |        |            |        |
|   | 35H         | 92-153          | 94-106              | 93-116           |        |        |            |        |
|   | 35I         | 94-98           | 92-161              | 92-157           | 94-107 | 93-111 | 93-112     |        |
|   | 35J         | 93-115          | 94-100              | 92-163           |        |        |            |        |
|   | 36C         | 94-79           | 93-89               | 92-98            |        |        |            |        |
|   | 36D         | 92-109          | 94-67               | 93-72            |        |        |            |        |
|   | 36E         | 93-91           | 94-83               |                  |        |        |            |        |
|   | 37A         | 94-63           | 93-70               | 92-112           |        |        |            |        |
|   | 37C         | 92-117          |                     |                  |        |        |            |        |
|   | 37D         | 92-125          |                     |                  |        |        |            |        |
|   | 41A         | 93-11           | 92-8                | 94-34            |        |        |            |        |
|   | 41B         | 92-19           | 94-26               | 93-20            |        |        |            |        |
|   | 41E         | 94-31           | 93-10               | 92-7             |        |        |            |        |
|   | 42A         | 93-25           | 94-21               | 92-25            |        |        |            |        |
|   | 42B         | 92-24           | 94-24               | 93-24            |        |        |            |        |
|   | 42C         | 94-18           | 93-31               | 92-30            |        |        |            |        |
|   | 43A         | 92-49           | 94-149              | 93-150           |        |        |            |        |
|   | 43B         | 92-63           | 94-134              | 93-143           |        |        |            |        |
|   | 43C         | 92-44           | 93-162              | 94-160           |        |        |            |        |

| Site<br>common<br>to all 3 |      |        |        |        |        |        |                |
|----------------------------|------|--------|--------|--------|--------|--------|----------------|
| years (-1)                 | Site |        |        |        |        |        | A agigned town |
| (-1)                       | 42D  | 02 140 | 02.50  | 04 140 |        |        | Assigned tows  |
| 1                          | 43D  | 93-149 | 92-50  | 94-148 |        |        |                |
| 1                          | 43E  | 94-146 | 92-58  | 93-148 |        |        |                |
|                            | 44A  | 93-137 | 94-128 |        |        |        |                |
| 1                          | 44B  | 92-67  | 94-130 | 93-139 |        |        |                |
| 1                          | 44C  | 93-138 | 94-129 | 92-68  |        |        |                |
| 1                          | 44D  | 93-121 | 94-112 | 92-78  | 94-113 | 93-122 |                |
| 1                          | 44E  | 94-110 | 93-120 | 93-119 | 94-109 | 92-79  |                |
| 1                          | 45A  | 92-92  | 92-155 | 93-110 | 94-97  | 92-158 |                |
| 1                          | 45B  | 92-146 | 94-64  | 93-71  | 92-144 |        |                |
| 1                          | 45D  | 92-171 | 93-109 | 92-169 | 92-175 | 94-111 | 92-165         |
| 1                          | 45F  | 92-168 | 92-80  | 93-108 | 94-108 |        |                |
| 1                          | 46A  | 92-96  | 94-81  | 93-94  |        |        |                |
| 1                          | 46B  | 93-90  | 94-80  | 92-97  |        |        |                |
| 1                          | 46C  | 93-73  | 92-110 | 94-66  |        |        |                |
| 1                          | 47A  | 92-118 | 93-68  | 94-61  |        |        |                |
|                            | 47C  | 92-111 |        |        |        |        |                |
|                            | 47D  | 92-119 |        |        |        |        |                |

## Appendix 3: Station details and catch of orange roughy.

Table 3.1: MEC trawl survey 2010 station details and orange roughy catch. \* indicates station considered unsuitable for biomass estimation.

| Station | Stratum | Date      | Time    | Depth   | Start    | Start     | Distance | Orange |
|---------|---------|-----------|---------|---------|----------|-----------|----------|--------|
| number  |         | (start)   | (start) | (start) | latitude | longitude | (NM)     | roughy |
|         |         |           |         | (m)     | (S)      | (E)       |          | (kg)   |
| 1       | 13      | 19-Mar-10 | 1234    | 621     | 40 45.82 | 176 53.11 | 2.02     | 0      |
| 2       | 13      | 19-Mar-10 | 1427    | 669     | 40 38.61 | 176 57.41 | 2.02     | 3      |
| 3       | 14      | 19-Mar-10 | 2317    | 653     | 40 10.61 | 177 14.76 | 2.02     | 0      |
| 4       | 24      | 20-Mar-10 | 0155    | 993     | 40 10.06 | 177 21.24 | 2.20     | 25     |
| 5       | 24      | 20-Mar-10 | 0426    | 934     | 40 08.76 | 177 23.49 | 2.17     | 23     |
| 6       | 14      | 20-Mar-10 | 0618    | 670     | 40 06.62 | 177 18.72 | 2.02     | 0      |
| 7       | 24      | 20-Mar-10 | 0816    | 813     | 40 04.91 | 177 22.84 | 1.95     | 52     |
| 8       | 24      | 20-Mar-10 | 1007    | 864     | 40 02.76 | 177 28.91 | 1.97     | 23     |
| 9       | 24      | 20-Mar-10 | 1211    | 862     | 40 00.45 | 177 30.12 | 2.00     | 10     |
| *10     | 14      | 20-Mar-10 | 1627    | 775     | 39 49.33 | 177 38.31 | 1.03     | 14     |
| 11      | 34      | 20-Mar-10 | 2002    | 757     | 39 49.18 | 177 38.59 | 1.84     | 4      |
| 12      | 25      | 20-Mar-10 | 2319    | 862     | 39 37.97 | 178 01.28 | 2.01     | 12     |
| *13     | 15      | 21-Mar-10 | 0138    | 644     | 39 34.24 | 178 07.30 | 0.04     | 0      |
| 14      | 15      | 21-Mar-10 | 0252    | 648     | 39 34.38 | 178 07.59 | 1.90     | 0      |
| 15      | 15      | 21-Mar-10 | 0448    | 754     | 39 38.14 | 178 09.14 | 2.01     | 0      |
| 16      | 25      | 21-Mar-10 | 0711    | 846     | 39 43.21 | 178 09.64 | 2.13     | 4      |
| 17      | 35      | 21-Mar-10 | 0936    | 1071    | 39 40.64 | 178 15.10 | 2.05     | 91     |
| 18      | 35      | 21-Mar-10 | 1138    | 1003    | 39 45.71 | 178 10.63 | 2.01     | 11     |
| 19      | 35      | 21-Mar-10 | 1412    | 1058    | 39 44.29 | 178 01.34 | 1.99     | 34     |
| 20      | 35      | 21-Mar-10 | 1636    | 1063    | 39 42.95 | 177 57.81 | 2.00     | 32     |
| 21      | 35      | 21-Mar-10 | 1914    | 1195    | 39 50.86 | 178 01.41 | 1.94     | 21     |
| 22      | 2       | 21-Mar-10 | 2155    | 820     | 40 01.12 | 178 04.00 | 2.02     | 3      |
| 23      | 3       | 22-Mar-10 | 0033    | 788     | 40 00.34 | 178 09.16 | 0.48     | 0      |
| 24      | 3       | 22-Mar-10 | 0200    | 744     | 40 05.43 | 178 11.35 | 2.01     | 0      |
| 25      | 35      | 22-Mar-10 | 0537    | 1141    | 40 03.65 | 177 49.20 | 2.01     | 462    |
| 26      | 44      | 22-Mar-10 | 0757    | 1308    | 40 01.31 | 177 45.23 | 1.95     | 0      |
| 27      | 34      | 22-Mar-10 | 1027    | 1143    | 39 58.34 | 177 35.35 | 2.01     | 9      |
| 28      | 34      | 22-Mar-10 | 1227    | 1118    | 39 53.77 | 177 40.39 | 2.02     | 7      |
| 29      | 44      | 22-Mar-10 | 1443    | 1222    | 39 52.18 | 177 45.33 | 2.00     | 1      |
| 30      | 45      | 22-Mar-10 | 1728    | 1264    | 39 50.26 | 177 51.84 | 2.00     | 1      |
| 31      | 45      | 22-Mar-10 | 1944    | 1310    | 39 54.67 | 177 53.33 | 1.96     | 0      |
| 32      | 35      | 22-Mar-10 | 2215    | 1140    | 39 59.28 | 177 53.18 | 1.97     | 0      |
| 33      | 2       | 23-Mar-10 | 0042    | 1206    | 40 06.46 | 177 57.23 | 2.00     | 2      |
| 34      | 2       | 23-Mar-10 | 0350    | 869     | 40 02.50 | 178 03.13 | 1.72     | 5      |
| 35      | 16      | 23-Mar-10 | 0617    | 605     | 39 59.08 | 178 06.23 | 1.90     | 0      |
| *36     | 45      | 23-Mar-10 | 0840    | 1496    | 39 56.52 | 178 03.27 | 1.95     | 0      |
| 37      | 1       | 23-Mar-10 | 1151    | 735     | 39 56.28 | 178 09.18 | 2.14     | 16     |
| 38      | 1       | 23-Mar-10 | 1341    | 707     | 39 57.52 | 178 09.07 | 1.04     | 3      |
| 39      | 3       | 23-Mar-10 | 1600    | 906     | 39 57.75 | 178 10.90 | 1.97     | 2      |
| *40     | 46      | 23-Mar-10 | 1818    | 1288    | 39 57.80 | 178 16.77 | 0.58     | 4      |
| 41      | 36      | 23-Mar-10 | 2006    | 1029    | 39 56.37 | 178 12.15 | 1.28     | 16     |
| 42      | 1       | 23-Mar-10 | 2150    | 690     | 39 56.26 | 178 10.27 | 1.61     | 2      |
| 43      | 46      | 24-Mar-10 | 0053    | 1310    | 39 50.20 | 178 22.05 | 1.51     | 1      |
| 44      | 36      | 24-Mar-10 | 0334    | 1016    | 39 48.72 | 178 22.98 | 1.02     | 4      |
| 45      | 26      | 24-Mar-10 | 0540    | 830     | 39 47.05 | 178 21.82 | 1.90     | 3      |
| 46      | 16      | 24-Mar-10 | 0817    | 725     | 39 40.19 | 178 23.94 | 2.07     | 0      |

| Station    | Stratum  | Date      | Time    | Depth      | Start    | Start      | Distance    | Orange   |
|------------|----------|-----------|---------|------------|----------|------------|-------------|----------|
| number     |          | (start)   | (start) | (start)    | latitude | longitude  | (NM)        | roughy   |
| 47         | 26       | 24.14 10  | 1007    | (m)        | (8)      | (E)        | <b>2</b> 01 | (kg)     |
| 47         | 26       | 24-Mar-10 | 1027    | 850        | 39 38.77 | 178 20.45  | 2.01        | 27       |
| 48         | 16       | 24-Mar-10 | 1230    | /98        | 39 36.30 | 1/8 21.24  | 2.01        | 0        |
| 49         | 35       | 24-Mar-10 | 1506    | 1063       | 39 36.29 | 1/8 1/.69  | 1.89        | 24       |
| 50<br>*51  | 33<br>25 | 24-Mar-10 | 1/23    | 1043       | 39 37.76 | 1/8 15.64  | 2.01        | 61       |
| *51        | 25       | 24-Mar-10 | 1933    | 994        | 39 38.44 | 1/8 12.61  | 0.33        | 5        |
| 52<br>*52  | 25       | 24-Mar-10 | 2109    | 830        | 39 38.39 | 1/8 12.63  | 1.92        | 4        |
| *53        | 15       | 24-Mar-10 | 2335    | /52        | 39 29.58 | 1/8 15./6  | 1.10        | 0        |
| 54<br>*    | 26       | 25-Mar-10 | 0254    | 856        | 39 26.83 | 1/8 24.85  | 1./1        | 0        |
| * > >      | 36       | 25-Mar-10 | 0525    | 1009       | 39 25.96 | 1/8 23.88  | 0.69        | <u> </u> |
| 56         | 36       | 25-Mar-10 | 0/25    | 1015       | 39 26.00 | 1 /8 23.86 | 1.89        | 18       |
| 5/         | 46       | 25-Mar-10 | 0936    | 1265       | 39 24.90 | 1/8 27.54  | 1.82        | 1        |
| 58         | 45       | 25-Mar-10 | 1210    | 1266       | 39 23.01 | 1/8 21.37  | 1.92        | 1        |
| 39<br>*(0  | 3/       | 25-Mar-10 | 1625    | 1163       | 38 56.12 | 1/8 31.27  | 1.99        | 5        |
| *60        | 17       | 25-Mar-10 | 1854    | 397<br>750 | 38 54.13 | 178 34.25  | 1.07        | 0        |
| 01<br>*(2) | 17       | 25-Mar-10 | 2333    | /50        | 38 49.54 | 1/8 34.34  | 1./3        | 9        |
| *62        | 1/       | 26-Mar-10 | 0122    | 616<br>015 | 38 49.14 | 1 /8 29.96 | 0.48        | 0        |
| *63        | 27       | 26-Mar-10 | 0539    | 815        | 38 26.11 | 1/8 44.30  | 1.49        | 1        |
| 64         | 35       | 26-Mar-10 | 151/    | 998        | 39 23.98 | 1/8 19.00  | 1.60        | 3        |
| 65         | 46       | 26-Mar-10 | 2027    | 1285       | 39 57.18 | 178 16.65  | 1.77        | 22       |
| 66         | 14       | 27-Mar-10 | 0102    | /60        | 39 49.45 | 1// 38.3/  | 0.98        | 33       |
| 6/         | 44       | 27-Mar-10 | 0616    | 148/       | 40 24.86 | 1// 16.25  | 1.52        | 0        |
| 68         | 44       | 27-Mar-10 | 0849    | 1400       | 40 26.94 | 177 18.00  | 2.04        | 0        |
| 69<br>70   | 44       | 27-Mar-10 | 111/    | 1306       | 40 28.17 | 1// 13.6/  | 2.01        | 0        |
| 70         | 23       | 27-Mar-10 | 1537    | 830        | 40 47.71 | 176 56.59  | 1.46        | 24       |
| /1         | 33       | 27-Mar-10 | 1/34    | 1086       | 40 51.31 | 17657.09   | 2.00        | 12       |
| 72         | 33       | 27-Mar-10 | 2051    | 1122       | 40 53.56 | 176 49.25  | 2.06        | 23       |
| 73         | 43       | 27-Mar-10 | 2347    | 1211       | 40 57.11 | 176 48.32  | 1.50        | 3        |
| 74         | 33       | 28-Mar-10 | 0203    | 1053       | 40 59.05 | 176 42.89  | 1.56        | 6        |
| 75         | 13       | 28-Mar-10 | 0355    | //4        | 40 58.87 | 176 38.83  | 2.02        | 6        |
| 76         | 33       | 28-Mar-10 | 0557    | 1092       | 41 02.32 | 176 39.58  | 2.01        | 14       |
| 77         | 2        | 28-Mar-10 | 0811    | 9/3        | 41 03.45 | 176 42.35  | 2.02        | 12       |
| 78         | 5        | 28-Mar-10 | 1031    | 965        | 41 04.50 | 176 41.55  | 2.02        | 107      |
| 79         | 5        | 28-Mar-10 | 1233    | 968        | 41 04.82 | 176 38.81  | 2.00        | 668      |
| 80         | 33       | 28-Mar-10 | 1510    | 1051       | 41 04.44 | 176 33.46  | 1.98        | 589      |
| 81         | 43       | 28-Mar-10 | 1739    | 1215       | 41 08.17 | 176 34.05  | 2.00        | 6        |
| 82         | 33       | 28-Mar-10 | 2055    | 1199       | 41 10.47 | 176 38.59  | 2.01        | 2        |
| 83         | 43       | 28-Mar-10 | 2230    | 1325       | 41 07.67 | 176 46.88  | 1.79        | 1        |
| 84         | 43       | 29-Mar-10 | 0138    | 1473       | 41 12.03 | 177 04.38  | 1.41        | 1        |
| *85        | 33       | 29-Mar-10 | 0425    | 1166       | 41 12.67 | 176 48.96  | 1.95        | 13       |
| *86        | 23       | 29-Mar-10 | 0636    | 920        | 41 13.65 | 176 41.82  | 2.07        | 56       |
| 87         | 23       | 29-Mar-10 | 0946    | 1000       | 41 14.95 | 176 35.90  | 1.82        | 1 640    |
| 88         | 33       | 29-Mar-10 | 1210    | 1145       | 41 14.48 | 176 27.48  | 2.02        | 1        |
| 89         | 33       | 29-Mar-10 | 1416    | 1151       | 41 11.41 | 176 29.27  | 2.01        | 4        |
| 90         | 33       | 29-Mar-10 | 1628    | 1198       | 41 12.47 | 176 24.71  | 2.01        | 1        |
| 91         | 33       | 29-Mar-10 | 1859    | 1028       | 41 16.06 | 176 15.49  | 1.98        | 20       |
| 92         | 13       | 29-Mar-10 | 2054    | 800        | 41 20.16 | 176 12.53  | 1.85        | 8        |
| 93         | 23       | 29-Mar-10 | 2243    | 870        | 41 21.75 | 176 07.82  | 1.57        | 0        |
| 94         | 23       | 30-Mar-10 | 0029    | 928        | 41 21.74 | 176 11.10  | 2.02        | 6        |
| 95         | 33       | 30-Mar-10 | 0222    | 1035       | 41 23.24 | 176 15.05  | 2.01        | 170      |
| 96         | 23       | 30-Mar-10 | 0503    | 980        | 41 21.49 | 176 24.82  | 2.00        | 24       |
| 97         | 43       | 30-Mar-10 | 0740    | 1395       | 41 27.00 | 176 19.17  | 1.96        | 7        |
| 98         | 33       | 30-Mar-10 | 0947    | 1126       | 41 26.00 | 176 09.80  | 2.02        | 140      |
| 99         | 33       | 30-Mar-10 | 1155    | 1042       | 41 27.01 | 176 01.77  | 2.00        | 26       |

| number(start)(start)(start)latitudelongitude(NM)roug1002330-Mar-10140686841 26.90175 58.341.721013330-Mar-101633109441 30.26175 55.552.001022330-Mar-10184698041 32.34175 49.801.721032330-Mar-10212680041 33.58175 40.841.921043331-Mar-100046107141 46.00175 25.422.001051231-Mar-10052463041 30.96174 54.442.001062231-Mar-101155115542 02.05174 39.212.011083231-Mar-101155119342 03.39174 29.362.021103231-Mar-101821111542 03.93174 29.362.021113231-Mar-102242100042 09.77174 30.382.011122231-Mar-10025497042 15.49174 18.212.02113321-Apr-100058109642 08.89174 23.232.02114221-Apr-100553143042 18.49174 24.992.12117321-Apr-100653143042 18.25174 11.372.00116421-Apr-100653143042 18.23174 11.372.00118321-Apr-101119<                                                                                                          | nge                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | gĥy                |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | kg)                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 19                 |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 84                 |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5                  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 22                 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 14                 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 12                 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5                  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2                  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4                  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12                 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2                  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10                 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 17                 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 39                 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4                  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                  |
| 118321-Apr-101119100442 18.23174 11.372.001119421-Apr-101334122642 21.22174 11.712.01120421-Apr-101616129742 23.32174 04.911.601121121-Apr-10182974442 26.46173 59.251.93122221-Apr-10202287242 28.34173 59.142.00123121-Apr-10234071042 36.20173 37.592.02124412-Apr-100222120142 44.99173 50.232.012125312-Apr-100447106042 48.52173 50.282.002*126212-Apr-10074381042 54.83173 46.701.61127112-Apr-10095860042 56.92173 44.881.99                                                                                                                                                                                                                                                                                                                                                                                                        | 127                |
| 119421-Apr-101334122642 21.22174 11.712.01120421-Apr-101616129742 23.32174 04.911.601121121-Apr-10182974442 26.46173 59.251.93122221-Apr-10202287242 28.34173 59.142.00123121-Apr-10234071042 36.20173 37.592.02124412-Apr-100222120142 44.99173 50.232.012125312-Apr-100447106042 48.52173 50.282.002*126212-Apr-10074381042 54.83173 46.701.61127112-Apr-10095860042 56.92173 44.881.99                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 198                |
| 120       42       1-Apr-10       1616       1297       42 23.32       174 04.91       1.60       1         121       12       1-Apr-10       1829       744       42 26.46       173 59.25       1.93         122       22       1-Apr-10       2022       872       42 28.34       173 59.14       2.00         123       12       1-Apr-10       2340       710       42 36.20       173 37.59       2.02         124       41       2-Apr-10       0222       1201       42 44.99       173 50.23       2.01       2         125       31       2-Apr-10       0447       1060       42 48.52       173 50.28       2.00       2         *126       21       2-Apr-10       0743       810       42 54.83       173 46.70       1.61         127       11       2-Apr-10       0958       600       42 56.92       173 44.88       1.99 | 2                  |
| 121       12       1-Apr-10       1829       744       42 26.46       173 59.25       1.93         122       22       1-Apr-10       2022       872       42 28.34       173 59.14       2.00         123       12       1-Apr-10       2340       710       42 36.20       173 37.59       2.02         124       41       2-Apr-10       0222       1201       42 44.99       173 50.23       2.01       2         125       31       2-Apr-10       0447       1060       42 48.52       173 50.28       2.00       2         *126       21       2-Apr-10       0743       810       42 54.83       173 46.70       1.61         127       11       2-Apr-10       0958       600       42 56.92       173 44.88       1.99                                                                                                             | 191                |
| 122       22       1-Apr-10       2022       872       42 28.34       173 59.14       2.00         123       12       1-Apr-10       2340       710       42 36.20       173 37.59       2.02         124       41       2-Apr-10       0222       1201       42 44.99       173 50.23       2.01       2         125       31       2-Apr-10       0447       1060       42 48.52       173 50.28       2.00       2         *126       21       2-Apr-10       0743       810       42 54.83       173 46.70       1.61         127       11       2-Apr-10       0958       600       42 56.92       173 44.88       1.99                                                                                                                                                                                                                | 9                  |
| 123       12       1-Apr-10       2340       710       42 36.20       173 37.59       2.02         124       41       2-Apr-10       0222       1201       42 44.99       173 50.23       2.01       2         125       31       2-Apr-10       0447       1060       42 48.52       173 50.28       2.00       2         *126       21       2-Apr-10       0743       810       42 54.83       173 46.70       1.61         127       11       2-Apr-10       0958       600       42 56.92       173 44.88       1.99                                                                                                                                                                                                                                                                                                                   | 99                 |
| 124       41       2-Apr-10       0222       1201       42 44.99       173 50.23       2.01       2         125       31       2-Apr-10       0447       1060       42 48.52       173 50.28       2.00       2         *126       21       2-Apr-10       0743       810       42 54.83       173 46.70       1.61         127       11       2-Apr-10       0958       600       42 56.92       173 44.88       1.99                                                                                                                                                                                                                                                                                                                                                                                                                      | 10                 |
| 125       31       2-Apr-10       0447       1060       42 48.52       173 50.28       2.00       2         *126       21       2-Apr-10       0743       810       42 54.83       173 46.70       1.61         127       11       2-Apr-10       0958       600       42 56.92       173 44.88       1.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 273                |
| *126 21 2-Apr-10 0743 810 42 54.83 173 46.70 1.61<br>127 11 2-Apr-10 0958 600 42 56.92 173 44.88 1.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 245                |
| 127 11 2-Apr-10 0958 600 42 56.92 173 44.88 1.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 83                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                  |
| 128 21 2-Apr-10 1226 874 43 00.66 173 55.55 1.71 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 173                |
| 129 21 2-Apr-10 1425 940 43 02.02 174 04.13 2.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11                 |
| 130 21 2-Apr-10 1609 875 43 03.43 174 03.40 1.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5                  |
| 131 31 2-Apr-10 1828 1030 43 08.90 173 57.64 2.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 40                 |
| 132 21 2-Apr-10 2040 960 43 13.23 173 58.66 2.01 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 129                |
| 133 21 2-Apr-10 2233 916 43 15.53 173 58.65 2.01 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 244                |
| 134 11 3-Apr-10 0209 697 43 26.39 174 05.51 1.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2                  |
| 135 11 3-Apr-10 0520 690 43 05.74 174 09.16 2.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2                  |
| 136 21 3-Apr-10 0717 920 43 00.70 174 11.45 2.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                  |
| 137 31 3-Apr-10 0919 1061 42 58.27 174 10.24 2.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 65                 |
| 138 41 3-Apr-10 1112 1224 42 55.20 174 11.17 2.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 48                 |
| 139 41 3-Apr-10 1335 1401 42 53.56 174 09.45 2.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25                 |
| 140 31 3-Apr-10 1543 1143 42 55.27 174 16.76 2.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 20                 |
| 141 21 3-Apr-10 1812 853 43 00.18 174 17.43 2.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                  |
| 142 21 3-Apr-10 2017 872 43 01.03 174 15.86 2.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3                  |
| 143 41 3-Apr-10 2248 1232 42 52.19 174 17.30 2.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 24                 |
| 144 41 4-Apr-10 0132 1208 42 56.15 174 07.19 2.01 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 156                |
| 145 31 4-Apr-10 0407 1076 42 58.51 174 06.53 2.00 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 129                |
| 146 41 4-Apr-10 0911 1335 43 03.85 173 50.08 1.85 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 134                |
| *147 21 4-Apr-10 1133 876 42 54.44 173 46.80 1.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 24                 |
| *148 41 4-Apr-10 1413 1239 42 55.74 173 52.36 1.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 16                 |
| 149 23 5-Apr-10 0615 810 41 41.25 175 18.15 1.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 28                 |
| 150 23 5-Apr-10 0935 996 41 44.30 175 25.71 1.81 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 255                |
| 151 23 5-Apr-10 1408 806 41 37.75 175 42.80 2.00 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <i><b>J</b></i> 15 |
| 152 23 5-Apr-10 1852 937 41 24.16 176 06.24 2.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 14                 |

| Station | Stratum | Date      | Time    | Depth   | Start    | Start     | Distance | Orange |
|---------|---------|-----------|---------|---------|----------|-----------|----------|--------|
| number  |         | (start)   | (start) | (start) | latitude | longitude | (NM)     | roughy |
|         |         |           |         | (m)     | (S)      | (E)       |          | (kg)   |
| 153     | 33      | 5-Apr-10  | 2129    | 1065    | 41 20.60 | 176 17.51 | 2.00     | 14     |
| 154     | 33      | 5-Apr-10  | 2335    | 1025    | 41 20.70 | 176 22.97 | 2.00     | 1      |
| 155     | 23      | 6-Apr-10  | 0227    | 949     | 41 19.58 | 176 31.72 | 2.01     | 13     |
| 156     | 23      | 6-Apr-10  | 0423    | 798     | 41 17.81 | 176 30.73 | 1.91     | 4      |
| 157     | 33      | 6-Apr-10  | 0610    | 1050    | 41 14.63 | 176 30.49 | 2.00     | 6      |
| 158     | 23      | 6-Apr-10  | 0925    | 880     | 41 14.06 | 176 39.51 | 2.03     | 1      |
| 159     | 33      | 6-Apr-10  | 1121    | 1200    | 41 12.64 | 176 49.06 | 2.02     | 54     |
| 160     | 33      | 6-Apr-10  | 1354    | 1076    | 41 11.32 | 176 44.30 | 2.00     | 4      |
| 161     | 33      | 6-Apr-10  | 1735    | 1194    | 41 14.83 | 176 19.44 | 2.01     | 0      |
| 162     | 23      | 6-Apr-10  | 2310    | 865     | 41 01.92 | 176 34.81 | 1.77     | 48     |
| 163     | 33      | 7-Apr-10  | 0158    | 1153    | 41 06.49 | 176 35.09 | 2.03     | 33     |
| 164     | 5       | 7-Apr-10  | 0513    | 1000    | 41 04.64 | 176 38.00 | 1.73     | 605    |
| 165     | 5       | 7-Apr-10  | 0717    | 934     | 41 04.19 | 176 39.50 | 2.01     | 1463   |
| 166     | 23      | 7-Apr-10  | 1030    | 920     | 40 56.10 | 176 43.90 | 2.00     | 8      |
| 167     | 23      | 7-Apr-10  | 1328    | 877     | 40 50.07 | 176 52.65 | 2.00     | 4      |
| 168     | 23      | 7-Apr-10  | 1703    | 930     | 40 49.83 | 176 56.15 | 1.98     | 8      |
| 169     | 23      | 7-Apr-10  | 2134    | 875     | 40 38.08 | 177 04.48 | 2.00     | 10     |
| 170     | 45      | 8-Apr-10  | 0757    | 1478    | 39 56.74 | 178 03.42 | 1.96     | 0      |
| 171     | 15      | 8-Apr-10  | 1223    | 758     | 39 27.64 | 178 16.54 | 2.00     | 0      |
| 172     | 47      | 8-Apr-10  | 1833    | 1326    | 38 54.81 | 178 45.02 | 1.52     | 0      |
| 173     | 4       | 8-Apr-10  | 2133    | 690     | 38 47.40 | 178 47.54 | 2.01     | 109    |
| 174     | 4       | 8-Apr-10  | 2339    | 695     | 38 46.81 | 178 48.49 | 2.03     | 7      |
| 175     | 4       | 9-Apr-10  | 0131    | 694     | 38 48.33 | 178 47.82 | 2.01     | 23     |
| 176     | 27      | 9-Apr-10  | 0430    | 986     | 38 39.94 | 178 42.72 | 2.01     | 57     |
| 177     | 37      | 9-Apr-10  | 0655    | 1167    | 38 40.69 | 178 46.45 | 1.76     | 198    |
| 178     | 27      | 9-Apr-10  | 0856    | 952     | 38 45.52 | 178 45.37 | 2.03     | 365    |
| 179     | 47      | 9-Apr-10  | 1147    | 1432    | 38 57.77 | 178 41.44 | 2.01     | 1      |
| 180     | 47      | 9-Apr-10  | 1452    | 1296    | 38 57.16 | 178 32.63 | 1.51     | 2      |
| 181     | 37      | 9-Apr-10  | 1716    | 1000    | 38 51.43 | 178 42.27 | 2.00     | 6      |
| 182     | 27      | 9-Apr-10  | 2106    | 912     | 38 45.55 | 178 34.38 | 2.00     | 31     |
| 183     | 27      | 10-Apr-10 | 0005    | 892     | 38 33.37 | 178 45.16 | 2.01     | 14     |
| *184    | 27      | 10-Apr-10 | 0258    | 889     | 38 28.08 | 178 44.50 | 0.52     | 8      |
| 185     | 27      | 10-Apr-10 | 0511    | 799     | 38 28.82 | 178 46.81 | 2.02     | 19     |
| 186     | 27      | 10-Apr-10 | 0858    | 825     | 38 47.61 | 178 42.61 | 2.01     | 35     |
| 187     | 17      | 10-Apr-10 | 1156    | 726     | 38 50.53 | 178 31.39 | 1.51     | 3      |

# Appendix 4: Timetable

| 18 March           | Mobilisation of <i>Tangaroa</i> . Departed Wellington at 1930 hrs on 18 March.                                                                                                                                                                                                                                                                                                                                   |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 19 March           | First shot on Wairarapa coast abandoned due to an earlier than anticipated start of the seismic survey by <i>MV Reflect Resolution</i> . In order to avoid possible effects that the seismic survey might have on fish catachability, <i>Tangaroa</i> relocated roughly 110 km north, and then worked north completing survey stations in north Wairarapa and south Portland.                                    |
| 20 March           | Worked north, completed survey stations in Madden, and south Portland.                                                                                                                                                                                                                                                                                                                                           |
| 21–24 March        | Worked from shallow to deep across the Madden and Portland strata, including the stations in the Rockgarden hill strata.                                                                                                                                                                                                                                                                                         |
| 25–26 March        | Completed tows in Ritchie and worked north into Tolaga. Repeated net<br>damage was suffered on the Tolaga stations, with net 1 damaged<br>beyond immediate repair on the second Tolaga station. Substantial net<br>damage and repair occurred on two further stations. Five commercial<br>fishing vessels had set longlines across the Tolaga hill and surrounding<br>area, preventing access to eight stations. |
| 27 March           | The longline gear was not clear of the Tolaga stations, and as a result <i>Tangaroa</i> left the Tolaga stratum for Wairarapa, completing remaining stations in the Ritchie and Madden strata on the way. Access to a station near the Rockgarden hills was not possible because of commercial longlines.                                                                                                        |
| 28-30 March        | Completed stations in Wairarapa.                                                                                                                                                                                                                                                                                                                                                                                 |
| 31 March – 1 April | Completed stations in Clarence.                                                                                                                                                                                                                                                                                                                                                                                  |
| 2 April – 3 April  | Completed stations in Kaikoura. The Phase 1 stations were completed late on the 3 <sup>rd</sup> April.                                                                                                                                                                                                                                                                                                           |
| 4 April            | Completed Phase 2 stations in Kaikoura, and then steamed overnight to Wairarapa.                                                                                                                                                                                                                                                                                                                                 |
| 5 April – 8 April  | Completed Phase 2 stations in Wairarapa.                                                                                                                                                                                                                                                                                                                                                                         |
| 8 April            | Steamed north to Tolaga, repeating two tows in the Portland stratum on the way; these were tows that were unsuccessful during phase 1 of the survey. The Tolaga area was found to be free of commercial fishing gear.                                                                                                                                                                                            |
| 9 – 10 April       | Completed stations in Tolaga outstanding from phase 1, and 3 phase 2 stations. The second to last planned tow caught roughly 40 t of alfonsino, and because this could not be processed at sea, <i>Tangaroa</i> steamed to Napier to offload the fish.                                                                                                                                                           |
| 11 April           | Tangaroa left Napier for Wellington at 0830.                                                                                                                                                                                                                                                                                                                                                                     |
| 12 April           | Tangaroa arrived in Wellington, berthing at 0800 hrs.                                                                                                                                                                                                                                                                                                                                                            |

#### Appendix 5: Occurrence and biological measurements for fish species caught

Table 5.1: MEC trawl survey 2010 number of stations where each fish species was caught (Occurrence), the number of tows where each species was sampled, and the number of fish measured for length, weight, sex, and macroscopic maturity stage. Weight, sex, and macroscopic maturity stage samples are a subset of the length samples. Data for all valid stations.; where the tow was invalid orange roughy were sampled for biological statistics, but all other species were measured for catch weight only. Only statistics for species caught in five or more valid stations are shown.

|                          |      |            |             |        | Num    | ber of fis | sh measured |
|--------------------------|------|------------|-------------|--------|--------|------------|-------------|
| Common name              | Code | Occurrence | No. samples | Length | Weight | Sex        | Maturity    |
|                          |      |            |             |        |        |            | stage       |
| Abyssal rattail          | CMU  | 19         | 17          | 76     | 76     | 69         | 20          |
| Abyssal rattail          | CTR  | 25         | 22          | 74     | 74     | 65         | 34          |
| Alfonsino                | BYS  | 12         | 11          | 410    | 153    | 410        | 391         |
| Banded bellowsfish       | BBE  | 17         | 8           | 67     | 42     | 3          | 0           |
| Banded rattail           | CFA  | 18         | 14          | 52     | 50     | 43         | 3           |
| Basketwork eel           | BEE  | 93         | 84          | 359    | 359    | 348        | 176         |
| Baxters lantern dogfish  | ETB  | 120        | 112         | 630    | 616    | 630        | 589         |
| Bigscale slickhead       | SBI  | 90         | 86          | 891    | 856    | 874        | 414         |
| Black cardinalfish       | EPT  | 13         | 13          | 37     | 23     | 29         | 29          |
| Black ghost shark        | HYB  | 29         | 28          | 51     | 51     | 51         | 50          |
| Black javelinfish        | BJA  | 15         | 15          | 16     | 16     | 16         | 7           |
| Black oreo               | BOE  | 5          | 5           | 6      | 6      | 6          | 5           |
| Black slickhead          | BSL  | 11         | 9           | 26     | 23     | 18         | 7           |
| Bollons rattail          | CBO  | 30         | 22          | 373    | 272    | 261        | 110         |
| Brown chimaera           | CHP  | 17         | 17          | 21     | 21     | 21         | 20          |
| Catshark                 | APR  | 51         | 44          | 75     | 75     | 75         | 67          |
| Leafscale gulper shark   | CSQ  | 37         | 36          | 62     | 62     | 62         | 61          |
| Longnosed velvet dogfish | CYP  | 100        | 94          | 381    | 380    | 381        | 336         |
| Cooks rattail            | CCO  | 6          | 2           | 6      | 6      | 0          | 0           |
| Deepwater spiny skate    | DSK  | 9          | 4           | 4      | 4      | 4          | 3           |
| Filamentous rattail      | GAO  | 17         | 16          | 31     | 31     | 21         | 14          |
| Four-rayed rattail       | CSU  | 129        | 115         | 2435   | 1440   | 768        | 283         |
| Frill shark              | FRS  | 6          | 6           | 6      | 6      | 5          | 5           |
| Giant chimaera           | CHG  | 7          | 7           | 8      | 8      | 8          | 5           |
| Giant lepidion           | LPS  | 8          | 8           | 8      | 8      | 8          | 2           |
| Hake                     | HAK  | 29         | 28          | 49     | 49     | 49         | 47          |
| Hoki                     | HOK  | 92         | 86          | 1306   | 837    | 1305       | 1049        |
| Humpback rattail         | CBA  | 19         | 17          | 18     | 18     | 15         | 6           |
| Javelinfish              | JAV  | 56         | 46          | 897    | 717    | 561        | 148         |
| Johnson's cod            | HJO  | 169        | 153         | 2324   | 2119   | 2255       | 1152        |
| Kuronezumia leonis       | NPU  | 9          | 9           | 9      | 9      | 7          | 2           |
| Large headed slickhead   | BAT  | 17         | 15          | 79     | 79     | 62         | 23          |
| Lighthouse fish          | РНО  | 19         | 2           | 3      | 3      | 0          | 0           |
| Ling                     | LIN  | 14         | 13          | 35     | 35     | 35         | 35          |
| Lizardfish               | BFE  | 18         | 10          | 18     | 18     | 16         | 8           |
| Long-nosed chimaera      | LCH  | 98         | 91          | 370    | 358    | 369        | 264         |
| Longnosed skate          | PSK  | 17         | 14          | 17     | 17     | 17         | 4           |
| Lookdown dory            | LDO  | 5          | 5           | 9      | 9      | 9          | 3           |

| Common nameCodeOccurrenceNo. samplesLengthWeightSexMaturiLucifer dogfishETL33291311181311Mahia rattailCMA1512252320Nezumia namatahiNNA3019434334Notable rattailCIN102815874441609Olivers rattailCOL271956322285510Orange roughyORH159158689251016889689Pale ghost sharkGSP978935435435322Pineapple rattailPIN252264644822Pink frogmouthCHX81110Plunkets sharkPLS109161616Pointynose ghost sharkHYP1010202020Prickly deepsea skateBTS2716212121Psychrolutes spp.PSY182222RhibaldoRIB787038038033Ridge scale rattailMCA544825225224226Roughhead rattailCTH37311571291373Roughhead rattailCHY32229797833Sea perchSPE2621104 <t< th=""><th></th><th></th><th></th><th></th><th>Num</th><th>ber of fi</th><th>sh measured</th></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                          |                 |             |        | Num    | ber of fi | sh measured |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-----------------|-------------|--------|--------|-----------|-------------|
| Lucifer dogfishETL33291311181311Mahia rattailCMA1512252320Nezumia namatahiNNA3019434334Notable rattailCIN10281587444160Olivers rattailCOL27195632228555Orange roughyORH15915868925101688968Pale ghost sharkGSP978935435435322Pineapple rattailPIN252264644826Pink frogmouthCHX81110Plunkets sharkPLS109161616Pointynose ghost sharkHYP101020202020Prickly deepsea skateBTS271621212121Psychrolutes spp.PSY1822222RhinochimaeraRCH645814014040RibaldoRIB78703803803333Ridge scale rattailMCA544825225224224Roughhead rattailCTH373115712913743Sea perchSPE2621104959434Sea perchSPE262110495                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Common name              | Code Occurrence | No. samples | Length | Weight | Sex       | Maturity    |
| Lucifer dogfishETL33291311181311Mahia rattailCMA1512252320Nezumia namatahiNNA3019434334Notable rattailCIN102815874441609Olivers rattailCOL27195632228557Orange roughyORH15915868925101688968Pale ghost sharkGSP978935435435329Pineapple rattailPIN252264644829Pink frogmouthCHX81110Plunkets sharkPLS109161616Pointynose ghost sharkHYP1010202020Prickly deepsea skateBTS2716212121Psychrolutes spp.PSY182222RhinochimaeraRCH645814014014044RibaldoRIB78703803803333Ridge scale rattailMCA544825225224220Roughhead rattailCTH373115712913734Roughhead rattailCTH373115712913735Sea perchSPE262110495                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                          |                 |             |        |        |           | stage       |
| Mahia rattailCMA1512252320Nezumia namatahiNNA3019434334Notable rattailCIN102815874441609Olivers rattailCOL2719563222855Orange roughyORH15915868925101688968Pale ghost sharkGSP978935435435322Pineapple rattailPIN25226464482Pink frogmouthCHX81110Plunkets sharkPLS109161616Pointynose ghost sharkHYP1010202020Prickly deepsea skateBTS2716212121Psychrolutes spp.PSY182222RhinochimaeraRCH64581401401404RibaldoRIB78703803803333Ridge scale rattailMCA544825225224220Roughhead rattailCTH373115712913734Sea perchSPE2621104959434Sea perchSPE2621104959435Sea perchSPE2621104959435 </td <td>Lucifer dogfish</td> <td>ETL 33</td> <td>29</td> <td>131</td> <td>118</td> <td>131</td> <td>111</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Lucifer dogfish          | ETL 33          | 29          | 131    | 118    | 131       | 111         |
| Nezumia namatahiNNA $30$ $19$ $43$ $43$ $34$ Notable rattailCIN $102$ $81$ $587$ $444$ $160$ $9$ Olivers rattailCOL $27$ $19$ $563$ $222$ $85$ $5101$ Orange roughyORH $159$ $158$ $6892$ $5101$ $6889$ $68$ Pale ghost sharkGSP $97$ $89$ $354$ $354$ $353$ $29$ Pineapple rattailPIN $25$ $22$ $64$ $64$ $48$ $29$ Pink frogmouthCHX $8$ $1$ $1$ $1$ $0$ Plunkets sharkPLS $10$ $9$ $16$ $16$ $16$ Pointynose ghost sharkHYP $10$ $10$ $20$ $20$ $20$ Prickly deepsea skateBTS $27$ $16$ $21$ $21$ $21$ Psychrolutes spp.PSY $18$ $2$ $2$ $2$ $2$ RhinochimaeraRCH $64$ $58$ $140$ $140$ $440$ RibaldoRIB $78$ $70$ $380$ $380$ $333$ Ridge scale rattailMCA $54$ $48$ $252$ $252$ $242$ $20$ Roughhead rattailCTH $37$ $31$ $157$ $129$ $137$ $37$ Sea perchSPE $26$ $21$ $104$ $95$ $94$ $35$ Sea lenkrkBSH $29$ $28$ $43$ $43$ $43$ $43$ Serrulate rattail <td>∕Iahia rattail</td> <td>CMA 15</td> <td>12</td> <td>25</td> <td>23</td> <td>20</td> <td>1</td>                                                                                                                                                                                                                                                                                                       | ∕Iahia rattail           | CMA 15          | 12          | 25     | 23     | 20        | 1           |
| Notable rattailCIN10281 $587$ 44416091Olivers rattailCOL27195632228551Orange roughyORH15915868925101688968Pale ghost sharkGSP978935435435329Pineapple rattailPIN252264644821Pink frogmouthCHX81110Plunkets sharkPLS109161616Pointynose ghost sharkHYP1010202020Prickly deepsea skateBTS2716212121Psychrolutes spp.PSY182222RhinochimaeraRCH6458140140140RibaldoRIB787038038033Ridge scale rattailMCA544825225224220Roughhead rattailCTH373115712913734Sea perchSPE2621104959434Seal sharkBSH292843434344Serrulate rattailCSE15514421901950167366Shovelnose dogfishSND1171091347112347122Silver roughySRH4330358                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Vezumia namatahi         | NNA 30          | 19          | 43     | 43     | 34        | 18          |
| Olivers rattailCOL27195632228515Orange roughyORH15915868925101688968Pale ghost sharkGSP978935435435322Pineapple rattailPIN25226464482Pink frogmouthCHX81110Plunkets sharkPLS109161616Pointynose ghost sharkHYP1010202020Prickly deepsea skateBTS2716212121Psychrolutes spp.PSY182222RhinochimaeraRCH6458140140140RibaldoRIB787038038033Ridge scale rattailMCA544825225224220Roughhead rattailCTH373115712913734Roughhead rattailCHY322297978334Sea perchSPE2621104959434Sea perchSPE2621104959434Serrulate rattailCSE15514421901950167366Shovelnose dogfishSND117109134711391347123Silver roughySRH4330358262                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Notable rattail          | CIN 102         | 81          | 587    | 444    | 160       | 93          |
| Orange roughyORH159158689251016889687Pale ghost sharkGSP978935435435324Pineapple rattailPIN252264644825Pink frogmouthCHX81110Plunkets sharkPLS109161616Pointynose ghost sharkHYP1010202020Prickly deepsea skateBTS2716212121Psychrolutes spp.PSY182222RhinochimaeraRCH6458140140140RibaldoRIB787038038033Ridge scale rattailMCA544825225224220Roughhead rattailCTH373115712913753Roughhead rattailCHY322297978354Sea perchSPE2621104959454Sea li sharkBSH292843434343Serrulate rattailCSE15514421901950167366Shovelnose dogfishSND117109134711391347125Silver roughySRH433035826223923956                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Olivers rattail          | COL 27          | 19          | 563    | 222    | 85        | 52          |
| Pale ghost sharkGSP978935435435322Pineapple rattailPIN252264644835322Pink frogmouthCHX81110Plunkets sharkPLS109161616Pointynose ghost sharkHYP1010202020Prickly deepsea skateBTS2716212121Psychrolutes spp.PSY182222RhinochimaeraRCH6458140140140RibaldoRIB787038038033Ridge scale rattailMCA5448252252242Roughhead rattailCTH373115712913735Roughhead rattailCHY322297978336Sea perchSPE2621104959435Sea l sharkBSH292843434344Serrulate rattailCSE15514421901950167366Shovelnose dogfishSND117109134711391347122Silver roughySRH433035826223936                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Orange roughy            | ORH 159         | 158         | 6892   | 5101   | 6889      | 6873        |
| Pineapple rattailPIN252264644848Pink frogmouthCHX81110Plunkets sharkPLS109161616Pointynose ghost sharkHYP1010202020Prickly deepsea skateBTS2716212121Psychrolutes spp.PSY182222RhinochimaeraRCH6458140140140RibaldoRIB787038038033Ridge scale rattailMCA5448252252242Roughhead rattailCTH373115712913734Roughhead rattailCHY322297978334Sea perchSPE2621104959434Serulate rattailCSE15514421901950167366Shovelnose dogfishSND117109134711391347123Silver roughySRH433035826223934                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ale ghost shark          | GSP 97          | 89          | 354    | 354    | 353       | 297         |
| Pink frogmouthCHX81110Plunkets sharkPLS109161616Pointynose ghost sharkHYP1010202020Prickly deepsea skateBTS2716212121Psychrolutes spp.PSY182222RhinochimaeraRCH6458140140140RibaldoRIB7870380380333Ridge scale rattailMCA5448252252242Roughhead rattailCTH373115712913734Roughhead rattailCHY322297978334Sea perchSPE2621104959434Serulate rattailCSE15514421901950167360Shovelnose dogfishSND117109134711391347123Silver roughySRH433035826223934                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ineapple rattail         | PIN 25          | 22          | 64     | 64     | 48        | 29          |
| Plunkets sharkPLS10916161616Pointynose ghost sharkHYP101020202020Prickly deepsea skateBTS2716212121Psychrolutes spp.PSY182222RhinochimaeraRCH6458140140140RibaldoRIB7870380380380Ridge scale rattailMCA5448252252242Roughhead rattailCTH373115712913731Roughhead rattailCHY322297978332Sea perchSPE2621104959432Seal sharkBSH292843434343Serrulate rattailCSE15514421901950167360Shovelnose dogfishSND117109134711391347123Silver roughySRH433035826223933                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ink frogmouth            | CHX 8           | 1           | 1      | 1      | 0         | 0           |
| Pointynose ghost sharkHYP101020202020Prickly deepsea skateBTS271621212121Psychrolutes spp.PSY1822222RhinochimaeraRCH645814014014040RibaldoRIB7870380380380330Ridge scale rattailMCA544825225224220Roughhead rattailCTH373115712913731Roughhead rattailCHY322297978330Sea perchSPE2621104959430Searulate rattailCSE15514421901950167366Shovelnose dogfishSND117109134711391347122Silver roughySRH433035826223930                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | lunkets shark            | PLS 10          | 9           | 16     | 16     | 16        | 15          |
| Prickly deepsea skateBTS2716212121Psychrolutes spp.PSY182222RhinochimaeraRCH6458140140140RibaldoRIB787038038038033Ridge scale rattailMCA544825225224220Robust cardinalfishEPR84552Roughhead rattailCTH373115712913731Roughhead rattailCHY322297978332Sea perchSPE2621104959432Seal sharkBSH292843434343Serrulate rattailCSE15514421901950167366Shovelnose dogfishSND117109134711391347122Silver roughySRH433035826223932                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ointynose ghost shark    | HYP 10          | 10          | 20     | 20     | 20        | 20          |
| Psychrolutes spp.PSY1822222RhinochimaeraRCH $64$ $58$ $140$ $140$ $140$ $140$ RibaldoRIB $78$ $70$ $380$ $380$ $380$ $330$ Ridge scale rattailMCA $54$ $48$ $252$ $252$ $242$ $200$ Robust cardinalfishEPR $8$ $4$ $5$ $5$ $2$ Roughhead rattailCTH $37$ $31$ $157$ $129$ $137$ $370$ Roughhead rattailCHY $32$ $22$ $97$ $97$ $83$ $370$ Sea perchSPE $26$ $21$ $104$ $95$ $94$ $370$ Seal sharkBSH $29$ $28$ $43$ $43$ $43$ Serrulate rattailCSE $155$ $144$ $2190$ $1950$ $1673$ $660$ Shovelnose dogfishSND $117$ $109$ $1347$ $1139$ $1347$ $122$ Silver roughySRH $43$ $30$ $358$ $262$ $239$ $370$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Prickly deepsea skate    | BTS 27          | 16          | 21     | 21     | 21        | 15          |
| Rhinochimaera       RCH       64       58       140       140       140       140         Ribaldo       RIB       78       70       380       380       380       33         Ridge scale rattail       MCA       54       48       252       252       242       20         Robust cardinalfish       EPR       8       4       5       5       2       20         Roughhead rattail       CTH       37       31       157       129       137       5         Roughhead rattail       CHY       32       22       97       97       83       7         Sea perch       SPE       26       21       104       95       94       3         Serrulate rattail       CSE       155       144       2190       1950       1673       66         Shovelnose dogfish       SND       117       109       1347       1139       1347       123         Silver roughy       SRH       43       30       358       262       239       23                                                                                                                                                                                                                                                                                                                                         | Psychrolutes spp.        | PSY 18          | 2           | 2      | 2      | 2         | 0           |
| Ribaldo       RIB       78       70       380       380       380       380       380       380       380       380       380       380       380       380       380       380       380       380       380       380       380       380       380       380       380       380       380       380       380       380       380       380       380       380       380       380       380       380       380       380       380       380       380       380       380       380       380       380       380       380       380       380       380       380       380       380       380       380       380       380       380       380       380       380       380       380       380       380       380       380       380       380       380       380       380       380       380       380       380       380       380       380       380       380       380       380       380       380       380       380       380       380       380       380       380       380       380       380       380       380       380       380       380       380 <th< td=""><td>Rhinochimaera</td><td>RCH 64</td><td>58</td><td>140</td><td>140</td><td>140</td><td>45</td></th<>                                                         | Rhinochimaera            | RCH 64          | 58          | 140    | 140    | 140       | 45          |
| Ridge scale rattail       MCA       54       48       252       252       242       24         Robust cardinalfish       EPR       8       4       5       5       2       2         Roughhead rattail       CTH       37       31       157       129       137       3         Roughhead rattail       CHY       32       22       97       97       83       3         Sea perch       SPE       26       21       104       95       94       3         Seal shark       BSH       29       28       43       43       43       43         Serrulate rattail       CSE       155       144       2190       1950       1673       66         Shovelnose dogfish       SND       117       109       1347       1139       1347       122         Silver roughy       SRH       43       30       358       262       239       24                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ribaldo                  | RIB 78          | 70          | 380    | 380    | 380       | 336         |
| Robust cardinalfish       EPR       8       4       5       5       2         Roughhead rattail       CTH       37       31       157       129       137       37         Roughhead rattail       CHY       32       22       97       97       83       37         Sea perch       SPE       26       21       104       95       94       37         Seal shark       BSH       29       28       43       43       43       43         Serrulate rattail       CSE       155       144       2190       1950       1673       66         Shovelnose dogfish       SND       117       109       1347       1139       1347       122         Silver roughy       SRH       43       30       358       262       239       24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ridge scale rattail      | MCA 54          | 48          | 252    | 252    | 242       | 207         |
| Roughhead rattail       CTH       37       31       157       129       137       129       137       129       137       129       137       129       137       129       137       129       137       129       137       129       137       129       137       129       137       129       137       137       137       137       137       137       137       137       137       137       137       137       137       137       137       137       137       137       137       137       137       137       137       137       137       137       137       137       137       137       137       137       137       137       137       137       137       137       137       137       137       137       137       137       137       137       137       137       137       137       137       137       137       137       137       137       137       137       137       137       137       137       137       137       137       137       137       137       137       137       137       137       137       137       137       137       137       137                                                                                                                                                                | Robust cardinalfish      | EPR 8           | 4           | 5      | 5      | 2         | 2           |
| Roughhead rattail       CHY       32       22       97       97       83       98         Sea perch       SPE       26       21       104       95       94       32         Seal shark       BSH       29       28       43       43       43       43         Serrulate rattail       CSE       155       144       2190       1950       1673       66         Shovelnose dogfish       SND       117       109       1347       1139       1347       122         Silver roughy       SRH       43       30       358       262       239       24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Roughhead rattail        | СТН 37          | 31          | 157    | 129    | 137       | 58          |
| Sea perch         SPE         26         21         104         95         94         26           Seal shark         BSH         29         28         43         43         43         43         43         43         43         43         43         43         43         43         43         43         43         43         43         43         43         43         43         43         43         43         43         54         56         56         144         2190         1950         1673         66         56         56         1347         1139         1347         122         51         56         144         2190         1950         1673         66         56         56         56         56         56         56         56         56         56         56         56         56         56         56         56         56         56         56         56         56         56         56         56         56         56         56         56         56         56         56         56         56         56         56         56         56         56         56         56         56         56 <td>Roughhead rattail</td> <td>CHY 32</td> <td>22</td> <td>97</td> <td>97</td> <td>83</td> <td>77</td> | Roughhead rattail        | CHY 32          | 22          | 97     | 97     | 83        | 77          |
| Seal shark         BSH         29         28         43         43         43         43         43         43         43         43         43         43         43         43         43         43         43         43         43         43         43         43         43         43         43         43         43         43         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66                                                                                                                  | Sea perch                | SPE 26          | 21          | 104    | 95     | 94        | 33          |
| Serrulate rattail         CSE         155         144         2190         1950         1673         66           Shovelnose dogfish         SND         117         109         1347         1139         1347         123           Silver roughy         SRH         43         30         358         262         239         23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Seal shark               | BSH 29          | 28          | 43     | 43     | 43        | 41          |
| Shovelnose dogfish         SND         117         109         1347         1139         1347         123           Silver roughy         SRH         43         30         358         262         239         23           Slighthead (unidentified)         SILK         5         2         28         28         29         23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Serrulate rattail        | CSE 155         | 144         | 2190   | 1950   | 1673      | 666         |
| Silver roughy SRH 43 30 358 262 239 2<br>Slighbard (unidentified) SLK 5 2 28 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Shovelnose dogfish       | SND 117         | 109         | 1347   | 1139   | 1347      | 1235        |
| Slight and (unidentified) SLV 5 2 20 20 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Silver roughy            | SRH 43          | 30          | 358    | 262    | 239       | 26          |
| Shickneau (unidentified) SLK 5 2 38 38 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Slickhead (unidentified) | SLK 5           | 2           | 38     | 38     | 0         | 0           |
| Small headed cod SMC 38 28 99 99 99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Small headed cod         | SMC 38          | 28          | 99     | 99     | 99        | 39          |
| Smallscale slickhead SSM 90 84 2274 1652 2180 7.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Smallscale slickhead     | SSM 90          | 84          | 2274   | 1652   | 2180      | 730         |
| Smooth deepsea skate BTA 12 8 11 11 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Smooth deepsea skate     | BTA 12          | 8           | 11     | 11     | 11        | 4           |
| Smooth oreo SSO 55 53 979 644 979 89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Smooth oreo              | SSO 55          | 53          | 979    | 644    | 979       | 893         |
| Smoothskin dogfish CYO 81 77 185 185 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Smoothskin dogfish       | CYO 81          | 77          | 185    | 185    | 185       | 179         |
| Southern Ray's bream SRB 8 7 12 12 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Southern Ray's bream     | SRB 8           | 7           | 12     | 12     | 12        | 4           |
| Spiky oreo SOR 85 78 1495 1067 1472 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Spiky oreo               | SOR 85          | 78          | 1495   | 1067   | 1472      | 1317        |
| Spineback SBK 13 10 18 18 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Spineback                | SBK 13          | 10          | 18     | 18     | 16        | 12          |
| Spinyfin SFN 9 9 10 10 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Spinyfin                 | SFN 9           | 9           | 10     | 10     | 10        | 4           |
| Supanose rattail CFX 5 4 17 17 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Supanose rattail         | CFX 5           | 4           | 17     | 17     | 14        | 11          |
| Talismania longifilis TAL 5 5 5 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Talismania longifilis    | TAL 5           | 5           | 5      | 5      | 5         | 1           |
| Trachyscorpia capensis TRS 31 28 37 37 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Frachvscorpia capensis   | TRS 31          | 28          | 37     | 37     | 34        | 11          |
| Unicorn rattail WHR 56 50 480 415 458 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Jnicorn rattail          | WHR 56          | 50          | 480    | 415    | 458       | 219         |
| Upturned snout rattail CJX 8 8 12 12 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Jpturned snout rattail   | CJX 8           | 8           | 12     | 12     | 11        | 7           |
| Velvet rattail TRX 11 10 10 10 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Velvet rattail           | TRX 11          | 10          | 10     | 10     | 8         | 4           |
| Violet cod VCO 10 8 14 14 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Violet cod               | VCO 10          | 8           | 14     | 14     | 10        | 3           |
| Warty oreo WOE 60 57 598 564 591 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Warty oreo               | WOE 60          | 57          | 598    | 564    | 591       | 584         |
| White rattail         WHX         129         116         1293         1233         1240         76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | White rattail            | WHX 129         | 116         | 1293   | 1233   | 1240      | 701         |

#### Appendix 6: SurvCalc parameter files

### Parameter file for all-relevant-tows version.###

# calculate biomass and LFs
# SurvCalc -B -f ORH. -F txt -x stn.catch.txt > ORH.out.txt
# needs neptune2 to run

@trips tan1003

@species tan1003 codes ORH

@preferences tan1003 distance\_towed recorded\_distance recorded\_speed\*time from\_lat\_long width\_swept constant\_doorspread catch\_weight recorded

@constant\_doorspread tan1003 value 25

@output\_tables sub\_biomass\_by\_stratum T biomass\_by\_species T biomass\_by\_species\_stratum T LFs\_by\_stratum T LFs\_by\_station T Number\_measured T LF\_totals T

@output\_precision quantity density biomass LF\_number c.v. gain type dec\_place dec\_place sig\_fig dec\_place dec\_place precision 0 0 8 1 0

@input\_from\_database
database Empress
database\_name trawl
@where
t\_station gear\_perf < 3 #all tows are research</pre>

@sub\_populations ORHsexes all allLmin 0 32Lmax 32 100labels Juvenile Adult

@LF\_scaling numbers\_in\_population

@lw\_coeff tan1003\_ORH a 0.0525 b 2.866 ### Parameter files for version where Phase tows are 10% of Phase 1 tows ###

# calculate biomass and LFs
#reduced Phase 2 to 10% = 14 tows (str 23 11)(27 3)
# SurvCalc -B -f ORH10pcP2. -F txt -x stn.catch.txt > ORH10pcP2.out.txt
#
# needs neptune2 to run

# file is same as above except for the @where clause @where t\_station gear\_perf < 3 and (categories !="P2" or station\_no match "152|166|93|156|151|168|150|155|100|162|169|182|183|186")

| ŗ           |        |
|-------------|--------|
| đ           |        |
| , an        |        |
| En          |        |
| rati        |        |
| v st        |        |
| ą           |        |
| ghy         |        |
| ino         |        |
| Je r        |        |
| anç         |        |
| ۲<br>ور     |        |
| ē           |        |
| ys:         |        |
| ILVE        |        |
| l su        |        |
| aw          |        |
| ÷<br>C      |        |
| Ш           |        |
| 5           |        |
| 1 20        |        |
| anc         |        |
| <u>-</u> 94 | ë.     |
| 92-         | anc    |
| 19          | pur    |
| the         | abı    |
| шo          | otal   |
| e fr        | ,t     |
| anc         | ghy    |
| ndå         | rou    |
| abu         | ge     |
| eq          | ran    |
| nat         | o<br>u |
| stir        | tha    |
| к.<br>Ш     | Jer    |
| ix '        | oth    |
| end         | ies    |
| v p p       | bec    |

| 2                                                       |
|---------------------------------------------------------|
| <b>e</b>                                                |
| a                                                       |
| ġ                                                       |
| Ξ                                                       |
| Z                                                       |
| a                                                       |
| -                                                       |
| H                                                       |
| 0                                                       |
| 2                                                       |
| e                                                       |
| t;                                                      |
| Ъ                                                       |
| I                                                       |
| 9                                                       |
| S                                                       |
| 2                                                       |
| Ŧ                                                       |
| I                                                       |
| a                                                       |
|                                                         |
| je le                                                   |
| E.                                                      |
| -                                                       |
| al                                                      |
| 50                                                      |
| ĩ                                                       |
| <b>.</b>                                                |
| Ë                                                       |
| ā                                                       |
| e                                                       |
| a                                                       |
| 77                                                      |
| ă                                                       |
| g                                                       |
| Ē                                                       |
| 9                                                       |
| s                                                       |
| Ä                                                       |
| 0                                                       |
| 1                                                       |
| Б                                                       |
| ы                                                       |
| ě                                                       |
| TT I                                                    |
| Ξ                                                       |
| _                                                       |
| D                                                       |
| , nu                                                    |
| v., nu                                                  |
| c.v., nu                                                |
| l c.v., nu                                              |
| nd c.v., nu                                             |
| and c.v., nu                                            |
| s and c.v., nu                                          |
| ces and c.v., nu                                        |
| nces and c.v., nu                                       |
| lances and c.v., nu                                     |
| ndances and c.v., nu                                    |
| undances and c.v., nu                                   |
| bundances and c.v., nu                                  |
| abundances and c.v., nu                                 |
| <sup>14</sup> abundances and c.v., nu                   |
| -94 abundances and c.v., nu                             |
| 2–94 abundances and c.v., nu                            |
| 92–94 abundances and c.v., nu                           |
| 1992–94 abundances and c.v., nu                         |
| 1 1992–94 abundances and c.v., nu                       |
| ed 1992–94 abundances and c.v., nu                      |
| ited 1992–94 abundances and c.v., nu                    |
| ilated 1992–94 abundances and c.v., nu                  |
| culated 1992–94 abundances and c.v., nu                 |
| Iculated 1992–94 abundances and c.v., nu                |
| calculated 1992–94 abundances and c.v., nu              |
| e-calculated 1992–94 abundances and c.v., nu            |
| Re-calculated 1992–94 abundances and c.v., nu           |
| : Re-calculated 1992–94 abundances and c.v., nu         |
| 1: Re-calculated 1992–94 abundances and c.v., nu        |
| 7.1: Re-calculated 1992–94 abundances and c.v., nu      |
| e 7.1: Re-calculated 1992–94 abundances and c.v., nu    |
| ble 7.1: Re-calculated 1992–94 abundances and c.v., nu  |
| able 7.1: Re-calculated 1992–94 abundances and c.v., nu |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         |                   |    |         | 1992 |                   |                    |         | 1993 | I                 |          |         | 1994 |                   |    |         | 2010 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------------|----|---------|------|-------------------|--------------------|---------|------|-------------------|----------|---------|------|-------------------|----|---------|------|
| Stratun         (km <sup>2</sup> )         N         (1)         (%)         (km <sup>3</sup> )         N         (1)         (1)         (1) <th< th=""><th></th><th>Area</th><th></th><th>Biomass</th><th>C.v.</th><th>Area</th><th></th><th>Biomass</th><th>C.v.</th><th>Area</th><th></th><th>Biomass</th><th>C.v.</th><th>Area</th><th></th><th>Biomass</th><th>C.v.</th></th<> |         | Area              |    | Biomass | C.v. | Area              |                    | Biomass | C.v. | Area              |          | Biomass | C.v. | Area              |    | Biomass | C.v. |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Stratum | $(\mathrm{km}^2)$ | Z  | (t)     | (%)  | $(\mathrm{km}^2)$ | Z                  | (t)     | (%)  | $(\mathrm{km}^2)$ | Z        | (t)     | (%)  | $(\mathrm{km}^2)$ | Z  | (t)     | (%)  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1       | 28                | 5  | 45      | 56   | 28                | ω                  | 17      | 46   | 28                | ŝ        | 14      | 86   | 28                | ω  | 7       | 51   |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7       | 50                | 7  | 653     | 89   | 50                | 5                  | 43      | 94   | 50                | 4        | 13      | LL   | 50                | ε  | 7       | 34   |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | б       | 100               | 4  | 23      | 56   | 100               | ε                  | 69      | 89   | 100               | 0        | 7       | 39   | 100               | С  | -       | 100  |
| 5         50         5         111         54         50         5         113         56         50         5         31           11         1103         3         665         98         1103         3         163         55         1103         3         163         55         1103         3         1103         3         164         48         55         1103         3         1103         3         164         48         88         103         3         134         74         555         103         3         1         103         3         110         78         392         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4       |                   |    |         |      | 30                | 5                  | 59      | 84   | 30                | 5        | 5       | 37   | 30                | m  | 15      | 69   |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5       |                   |    |         |      | 50                | 5                  | 111     | 54   | 50                | 6        | 648     | 56   | 50                | 5  | 318     | 44   |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 11      | 1 103             | С  | 665     | 98   | 1 103             | ς                  | 76      | 98   | 1 103             | ε        | 163     | 55   | 1 103             | С  | 16      | 50   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 12      | 552               | С  | 975     | 96   | 552               | ς                  | 134     | 74   | 552               | 4        | 84      | 48   | 552               | С  | 37      | 50   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 13      | 640               | 4  | 90      | 98   | 640               | 4                  | 585     | 69   | 640               | 8        | 831     | 62   | 640               | 4  | 29      | 44   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 14      | 366               | б  | 74      | 100  | 366               | ω                  | 30      | 31   | 366               | Э        | 314     | 97   | 366               | ω  | 88      | 100  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 15      | 392               | С  | 119     | 78   | 392               | ω                  | 30      | 51   | 392               | ŝ        | 66      | 81   | 392               | б  | 0       | 0    |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 16      | 211               | б  | 0       | 0    | 167               | ω                  | 4       | 84   | 167               | 4        | 4       | 100  | 167               | ω  | 0       | 100  |
| 21       517       8       4400       71       517       14       3584       73       517       10       744       62       517       8       41         22       685       5       571       40       71       517       14       685       5       511       1358       550       572       44       685       5       22         23       550       6       464       45       550       8       610       36       550       11       1358       28       550       20       97         24       432       3       593       52       432       20       888       36       432       8       560       16       432       5       20       97         25       499       4       255       70       499       4       114       19       499       3       355       3       355       3       355       3       355       3       355       3       3       3       355       3       3       355       3       3       3       3       3       3       3       3       3       3       3       3       3       3<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 17      | 481               | б  | 13      | 100  | 481               | <sup>\$2</sup>     | 137     | 95   | 481               | <u>گ</u> | 0       | 0    | 481               | ы  | 38      | 46   |
| 22         685         5         571         40         685         6         872         44         685         5         24         685         5         21         1338         28         550         29         77         24         685         5         21         1338         28         550         20         97           24         432         3         593         52         432         20         888         36         432         8         560         16         432         5         12         97         97         97         97         20         97         21         20         888         36         432         8         560         16         432         5         12         12         33         499         4         255         70         499         4         114         19         499         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 21      | 517               | 8  | 4400    | 71   | 517               | 14                 | 3 584   | 73   | 517               | 10       | 744     | 62   | 517               | 8  | 415     | 48   |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 22      | 685               | 5  | 571     | 40   | 685               | 9                  | 819     | 42   | 685               | 9        | 572     | 4    | 685               | 5  | 240     | 54   |
| $ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 23      | 550               | 9  | 464     | 45   | 550               | 8                  | 610     | 36   | 550               | 11       | 1 358   | 28   | 550               | 20 | 971     | 60   |
| $ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 24      | 432               | ω  | 593     | 52   | 432               | 20                 | 888     | 36   | 432               | ×        | 560     | 16   | 432               | S  | 121     | 28   |
| 26         400         6         121         40         355         4         359         50         355         4         156         43         355         3         355         3         355         3         355         3         355         3         355         3         355         3         355         3         355         3         355         3         355         3         355         3         355         3         355         3         355         4         156         43         355         441         5         441         5         441         5         441         5         441         5         441         5         441         5         441         5         441         5         441         5         441         5         441         5         441         5         441         5         441         5         57         1575         35         2454         24         1575         37         2870         36         1575         22         92           33         1575         18         37         410         13         605         37         2470         36         1575                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 25      | 499               | 4  | 123     | 33   | 499               | 4                  | 255     | 70   | 499               | 4        | 114     | 19   | 499               | ε  | 35      | 42   |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 26      | 400               | 9  | 121     | 40   | 355               | 4                  | 359     | 50   | 355               | 4        | 156     | 43   | 355               | ω  | 38      | 85   |
| $31$ $441$ $5$ $169$ $26$ $441$ $4$ $294$ $9$ $441$ $4$ $212$ $65$ $441$ $5$ $47$ $32$ $755$ $6$ $6023$ $78$ $755$ $13$ $685$ $21$ $755$ $23$ $1484$ $35$ $755$ $8$ $37$ $33$ $1575$ $14$ $1625$ $57$ $1575$ $35$ $2454$ $24$ $1575$ $37$ $2870$ $36$ $1575$ $22$ $92$ $34$ $412$ $3$ $188$ $37$ $412$ $4$ $469$ $41$ $412$ $3$ $128$ $53$ $412$ $3$ $2$ $35$ $450$ $13$ $813$ $55$ $450$ $13$ $605$ $37$ $450$ $11$ $269$ $51$ $450$ $10$ $36$ $36$ $401$ $3$ $59$ $45$ $357$ $3$ $106$ $79$ $357$ $3$ $7$ $36$ $401$ $3$ $59$ $420$ $8^2$ $14$ $95$ $420$ $8^2$ $56$ $95$ $420$ $3$ $37$ $420$ $8^2$ $14$ $95$ $420$ $8^2$ $56$ $95$ $420$ $3$ $3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 27      | 448               | 4  | 37      | 79   | 448               | \$ <mark>\$</mark> | 69      | 95   | 448               | °2       | 113     | 95   | 448               | 9  | 415     | 64   |
| 32 $755$ $6$ $6023$ $78$ $755$ $13$ $685$ $21$ $755$ $23$ $1484$ $35$ $755$ $8$ $37$ $33$ $1575$ $14$ $1625$ $57$ $1575$ $35$ $2454$ $24$ $1575$ $37$ $2870$ $36$ $1575$ $22$ $94$ $34$ $412$ $3$ $188$ $37$ $412$ $4$ $469$ $41$ $412$ $3$ $112$ $36$ $1575$ $22$ $94$ $35$ $450$ $13$ $605$ $37$ $450$ $11$ $269$ $51$ $450$ $10$ $35$ $412$ $35$ $412$ $35$ $40$ $35$ $412$ $35$ $412$ $35$ $412$ $35$ $420$ $357$ $3$ $410$ $357$ $3$ $420$ $35$ $420$ $35$ $420$ $35$ $420$ $35$ $357$ $3$ $357$ $3$ $420$ $35$ $357$ $3$ $357$ $3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 31      | 441               | S  | 169     | 26   | 441               | 4                  | 294     | 6    | 441               | 4        | 212     | 65   | 441               | S  | 475     | 41   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 32      | 755               | 9  | 6 023   | 78   | 755               | 13                 | 685     | 21   | 755               | 23       | 1  484  | 35   | 755               | 8  | 375     | 57   |
| 34 $412$ $3$ $88$ $37$ $412$ $4$ $469$ $41$ $412$ $3$ $128$ $53$ $412$ $3$ $2$ $35$ $450$ $13$ $813$ $55$ $450$ $13$ $605$ $37$ $450$ $11$ $269$ $51$ $450$ $10$ $35$ $36$ $401$ $3$ $59$ $45$ $357$ $3$ $106$ $79$ $357$ $3$ $(0$ $35$ $357$ $3$ $(0$ $35$ $357$ $3$ $(0)$ $35$ $357$ $3$ $(0)$ $35$ $357$ $3$ $(0)$ $35$ $357$ $3$ $(0)$ $35$ $357$ $3$ $(0)$ $35$ $357$ $3$ $(0)$ $35$ $357$ $3$ $(0)$ $35$ $40$ $10$ $35$ $40$ $357$ $3$ $40$ $357$ $3$ $40$ $357$ $3$ $35$ $357$ $3$ $35$ $357$ $3$ $357$ $357$ $3$ <td< td=""><td>33</td><td>1 575</td><td>14</td><td>1 625</td><td>57</td><td>1 575</td><td>35</td><td>2 454</td><td>24</td><td>1 575</td><td>37</td><td>2870</td><td>36</td><td>1 575</td><td>22</td><td>944</td><td>49</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 33      | 1 575             | 14 | 1 625   | 57   | 1 575             | 35                 | 2 454   | 24   | 1 575             | 37       | 2870    | 36   | 1 575             | 22 | 944     | 49   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 34      | 412               | ε  | 188     | 37   | 412               | 4                  | 469     | 41   | 412               | ε        | 128     | 53   | 412               | ε  | 29      | 22   |
| $36$ $401$ $3$ $59$ $45$ $357$ $3$ $106$ $79$ $357$ $3$ $59$ $25$ $357$ $3$ $(37)$ $420$ $4$ $120$ $39$ $420$ $^82$ $14$ $95$ $420$ $^82$ $56$ $95$ $420$ $3$ $35$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 35      | 450               | 13 | 813     | 55   | 450               | 13                 | 605     | 37   | 450               | 11       | 269     | 51   | 450               | 10 | 358     | 59   |
| $37$ 420 4 120 39 420 $^{8}$ 2 14 95 420 $^{8}$ 2 56 95 420 3 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 36      | 401               | ω  | 59      | 45   | 357               | ε                  | 106     | 79   | 357               | ε        | 59      | 25   | 357               | Э  | 69      | 27   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 37      | 420               | 4  | 120     | 39   | 420               | <u>گ</u>           | 14      | 95   | 420               | <u>گ</u> | 56      | 95   | 420               | ω  | 358     | 93   |

|                       |                   |           |             | 1992       |                   |         |             | 1993     |                   |          |         | 1994 |                   |     |         | 2010 |
|-----------------------|-------------------|-----------|-------------|------------|-------------------|---------|-------------|----------|-------------------|----------|---------|------|-------------------|-----|---------|------|
|                       | Area              |           | Biomass     | C.v.       | Area              |         | Biomass     | C.v.     | Area              |          | Biomass | C.v. | Area              |     | Biomass | C.v. |
| Stratum               | $(\mathrm{km}^2)$ | Z         | (£)         | (%)        | $(\mathrm{km}^2)$ | Z       | (t)         | (%)      | $(\mathrm{km}^2)$ | Z        | (t)     | (%)  | $(\mathrm{km}^2)$ | Z   | (t)     | (%)  |
| 41                    | 619               | З         | 561         | 88         | 619               | 9       | 615         | 45       | 619               | ε        | 337     | 67   | 619               | 9   | 744     | 36   |
| 42                    | 969               | ŝ         | 351         | 36         | 696               | 4       | 328         | 53       | 969               | ε        | 545     | 53   | 969               | С   | 604     | 66   |
| 43                    | 1 388             | 5         | 235         | 85         | 1 388             | 5       | 96          | 33       | 1 388             | S        | 181     | 49   | 1 388             | 5   | 58      | 29   |
| 44                    | 974               | 4         | 786         | 94         | 974               | ٢       | 37          | 50       | 974               | Г        | 87      | 39   | 974               | 5   | 2       | 100  |
| 45                    | 707               | 28        | 164         | 25         | 695               | 4       | 63          | 28       | 695               | 4        | 39      | 33   | 695               | 4   | 17      | 80   |
| 46                    | 376               | ŝ         | 57          | 14         | 344               | С       | 31          | 78       | 344               | ε        | 26      | 53   | 344               | С   | 13      | 99   |
| 47                    | 807               | ŝ         | 11          | 100        | 807               | \$<br>2 | 31          | 95       | 807               | <u>گ</u> | 0       | 0    | 807               | б   | 10      | 59   |
| Totals                | 17 473            | 171       | 20 128      |            | 17 377            | 205     | 13 728      |          | 17 377            | 205      | 12 092  |      | 17 378            | 171 | 6 837   |      |
| True N                |                   | 171       |             |            |                   | 201     |             |          |                   | 201      |         |      |                   | 171 |         |      |
| <sup>§</sup> One tow, | but doublec       | l up to n | nake SurvCa | lc work; c | atch altere       | d so me | an is uncha | unged ar | id the c.v. i     | s 95%.   |         |      |                   |     |         |      |

| Table 7.2:10% allocat | Re-calculat<br>tion of Phas | ted 19.<br>se 2 to | 92–94 abund<br>ws. | lances an | d c.v., nur       | nber o  | f tows (N) | and are, | a using th        | e firs         | t-tow-at-a-s | ite metl | hod and 1         | the 201 | 0 abundanc | e at |
|-----------------------|-----------------------------|--------------------|--------------------|-----------|-------------------|---------|------------|----------|-------------------|----------------|--------------|----------|-------------------|---------|------------|------|
|                       |                             |                    |                    | 1992      |                   |         |            | 1993     |                   |                |              | 1994     |                   |         |            | 2010 |
|                       | Area                        |                    | Biomass            | C.v.      | Area              |         | Biomass    | C.v.     | Area              |                | Biomass      | C.v.     | Area              |         | Biomass    | C.v. |
| Stratum               | $(\mathrm{km}^2)$           | Z                  | (t)                | (%)       | $(\mathrm{km}^2)$ | Z       | (t)        | (%)      | $(\mathrm{km}^2)$ | Z              | (t)          | (%)      | $(\mathrm{km}^2)$ | Z       | (t)        | (%)  |
| 1                     | 28                          | ε                  | 69                 | 55        | 28                | ŝ       | 17         | 46       | 28                | ε              | 14           | 86       | 552               | С       | 37         | 50   |
| 2                     | 50                          | Г                  | 653                | 89        | 50                | 5       | 43         | 94       | 50                | 4              | 13           | LL       | 28                | Э       | 2          | 51   |
| 3                     | 100                         | 0                  | 7                  | 13        | 100               | С       | 69         | 89       | 100               | 2              | L            | 39       | 50                | С       | 2          | 34   |
| 4                     | Ι                           | Ι                  | Ι                  | Ι         | 30                | ε       | 93         | 88       | 30                | Э              | 5            | 62       | 100               | С       | 1          | 100  |
| 5                     | Ι                           | Ι                  | I                  | Ι         | 50                | e       | 58         | 67       | 50                | S              | 825          | 62       | 30                | С       | 15         | 68   |
| 11                    | 1 103                       | Э                  | 665                | 98        | 1 103             | ε       | 97         | 98       | 1 103             | Э              | 163          | 55       | 50                | ε       | 141        | 78   |
| 12                    | 552                         | Э                  | 975                | 96        | 552               | Э       | 134        | 74       | 552               | Э              | 104          | 47       | 1 103             | Э       | 16         | 50   |
| 13                    | 640                         | 4                  | 90                 | 98        | 640               | 4       | 585        | 69       | 640               | 9              | $1 \ 010$    | 68       | 640               | 4       | 29         | 44   |
| 14                    | 366                         | Э                  | 74                 | 100       | 366               | Э       | 30         | 31       | 366               | Э              | 314          | 76       | 366               | Э       | 88         | 100  |
| 15                    | 392                         | Э                  | 119                | 78        | 392               | Э       | 30         | 51       | 392               | Э              | 66           | 81       | 392               | Э       | 0          | 0    |
| 16                    | 211                         | 7                  | 0                  | 0         | 167               | 0       | 9          | 100      | 167               | Э              | 9            | 100      | 167               | С       | 0          | 100  |
| 17                    | 481                         | С                  | 13                 | 100       | 481               | °5<br>8 | 137        | 95       | 481               | <sup>%</sup> 2 | 0            | 0        | 481               | 0       | 38         | 46   |
| 21                    | 517                         | 8                  | 4 400              | 71        | 517               | 6       | 5 188      | LL       | 517               | 6              | 825          | 62       | 517               | 8       | 415        | 48   |
| 22                    | 685                         | 4                  | 671                | 40        | 685               | 5       | 674        | 56       | 685               | S              | 679          | 41       | 685               | 5       | 240        | 54   |
| 23                    | 550                         | 9                  | 464                | 45        | 550               | 8       | 610        | 36       | 550               | 6              | 1 432        | 31       | 550               | 18      | 1 064      | 09   |
| 24                    | 432                         | ε                  | 593                | 52        | 432               | 5       | 544        | 23       | 432               | S              | 430          | 12       | 432               | 5       | 121        | 28   |
| 25                    | 499                         | ε                  | 127                | 45        | 499               | ŝ       | 292        | 85       | 499               | ε              | 104          | 25       | 499               | ŝ       | 35         | 42   |
| 26                    | 400                         | S                  | 89                 | 50        | 355               | ŝ       | 459        | 45       | 355               | ς              | 178          | 50       | 355               | с       | 38         | 85   |
| 27                    | 448                         | 4                  | 37                 | 62        | 448               | °58     | 69         | 95       | 448               | <u>گ</u>       | 113          | 95       | 448               | 9       | 415        | 64   |
| 31                    | 441                         | 5                  | 169                | 26        | 441               | 4       | 294        | 6        | 441               | 4              | 212          | 65       | 441               | 4       | 440        | 56   |
| 32                    | 755                         | 9                  | 6 023              | 78        | 755               | 6       | 721        | 20       | 755               | 12             | 1 199        | 39       | 755               | 8       | 375        | 57   |
| 33                    | 1 575                       | 14                 | 1 625              | 57        | 1 575             | 29      | 2 259      | 28       | 1 575             | 30             | 3 265        | 39       | 1 575             | 16      | 1 236      | 51   |
| 34                    | 412                         | Э                  | 188                | 37        | 412               | 4       | 469        | 41       | 412               | e              | 128          | 53       | 412               | ς       | 29         | 22   |
| 35                    | 450                         | 5                  | 1 476              | 78        | 450               | 6       | 788        | 39       | 450               | 6              | 320          | 51       | 450               | 6       | 396        | 59   |
| 36                    | 401                         | Э                  | 59                 | 45        | 357               | ŝ       | 106        | 62       | 357               | e              | 59           | 25       | 357               | ς       | 69         | 27   |
| 37                    | 420                         | 4                  | 120                | 39        | 420               | 28      | 14         | 95       | 420               | %2             | 56           | 95       | 420               | ŝ       | 358        | 93   |
| 41                    | 619                         | ε                  | 561                | 88        | 619               | 5       | 730        | 42       | 619               | ς              | 337          | 67       | 619               | ς       | 767        | 69   |
| 42                    | 969                         | Э                  | 351                | 36        | 969               | 4       | 328        | 53       | 969               | б              | 545          | 53       | 969               | ŝ       | 604        | 66   |

| 2010 | C.v.    | (%)               | 29        | 100 | 80  | 99  | 59             |        |        |                         |
|------|---------|-------------------|-----------|-----|-----|-----|----------------|--------|--------|-------------------------|
|      | Biomass | (t)               | 58        | 0   | 17  | 13  | 10             | 7 071  |        |                         |
|      |         | Z                 | 5         | 5   | 4   | ς   | ω              | 156    | 156    |                         |
|      | Area    | $(\text{km}^2)$   | 1 388     | 974 | 695 | 344 | 807            | 17 378 |        |                         |
| 1994 | C.v.    | (%)               | 49        | 52  | 33  | 53  | 0              | 15     |        |                         |
|      | Biomass | (t)               | 181       | 91  | 39  | 26  | 0              | 12 779 |        |                         |
|      |         | Z                 | 5         | 5   | 4   | С   | °2             | 164    | 160    | s 95%.                  |
|      | Area    | $(\text{km}^2)$   | 1 388     | 974 | 695 | 344 | 807            | 17 377 |        | d the c.v. i            |
| 1993 | C.v.    | (%)               | 33        | 69  | 28  | 78  | 95             | 28     |        | inged an                |
|      | Biomass | (t)               | 96        | 38  | 63  | 31  | 31             | 15 103 |        | an is uncha             |
|      |         | Z                 | 5         | 5   | 4   | С   | <sup>8</sup> 2 | 160    | 156    | d so me                 |
|      | Area    | $(\mathrm{km}^2)$ | 1 388     | 974 | 695 | 344 | 807            | 17 377 |        | atch altered            |
| 1992 | C.v.    | (%)               | 85        | 94  | 42  | 14  | 100            | 29     |        | c work; c               |
|      | Biomass | (t)               | 235       | 786 | 132 | 57  | 11             | 20 839 |        | ike SurvCalo            |
|      |         | Z                 | 5         | 4   | 10  | С   | б              | 137    | 137    | up to ma                |
|      | Area    | $(\mathrm{km}^2)$ | $1 \ 388$ | 974 | 707 | 376 | 807            | 17 473 |        | but doubled             |
|      |         | Stratum           | 43        | 44  | 45  | 46  | 47             | Totals | True N | <sup>§</sup> One tow, l |

Table 7.3: For species other than orange roughy, abundances (Abd, t) and c.v. (%) from the 1992–94 and 2010 surveys using all relevant tows. Also shown is the mean abundance over the 1992–94 surveys, the ratio of the change between the mean 1992–94 abundance to that from 2010, and the t-test of the mean 1992–94 abundance to 2010 (coded yellow for significant at the 5% level).

|        |                             | •       |           | )      |           |              |          |           |          |        | Com       | <u>pined</u> |        |
|--------|-----------------------------|---------|-----------|--------|-----------|--------------|----------|-----------|----------|--------|-----------|--------------|--------|
| Specie | S                           |         | 2010      |        | 1992      |              | 1993     |           | 1994     | Ratio  | 01        | 12-94        | t-test |
|        | Common nome                 | P P P   | ţ         | рЧV    | ;         | A hd         | ţ        | рчv       | ţ        | A2010/ | 4 P.4     | ;            |        |
| Code   |                             |         | . د.<br>م | ADU    | . د<br>ر. | ADU<br>- 100 | . د<br>ر | ADU       | . د<br>۲ | A92-94 | ADU       | . د<br>ر     |        |
| BYS    | Alfonsino                   | 182 267 | 100       | 0      | 0         | 7 120        | 91       | 6         | 58       | 7 670  | 2 376     | 91           | 1.0    |
| BEE    | Basketwork eel              | 698     | 11        | 470    | 16        | 1 120        | 14       | 755       | 12       | 89     | 782       | 8            | -0.8   |
| ETB    | Baxters lantern dogfish     | 752     | 15        | 535    | 19        | 2 543        | 53       | 1 022     | 15       | 55     | 1366      | 33           | -1.3   |
| CBO    | Bollons rattail             | 1 256   | 43        | 713    | 34        | 1 191        | 33       | 995       | 30       | 130    | 996       | 19           | 0.5    |
| APR    | Catshark                    | 76      | 20        | 63     | 26        | 61           | 29       | 99        | 22       | 120    | 63        | 15           | 0.7    |
| CSQ    | Centrophorus squamosus      | 499     | 24        | 312    | 23        | 534          | 36       | 291       | 25       | 132    | 379       | 19           | 0.8    |
| СҮР    | Centroscymnus crepidater    | 410     | 11        | 1 698  | 13        | 2 874        | 63       | $1 \ 018$ | 41       | 22     | 1863      | 33           | -2.3   |
| EPT    | Deepsea cardinalfish        | 328     | 89        | 2 683  | 94        | 95           | 28       | 200       | 41       | 33     | 992       | 85           | -0.7   |
| CSU    | Four-rayed rattail          | 406     | 19        | 238    | 17        | 347          | 14       | 265       | 15       | 143    | 283       | 6            | 1.5    |
| НОК    | Hoki                        | 5 465   | 30        | 7 664  | 37        | 6 822        | 38       | 5340      | 15       | 83     | 6609      | 20           | -0.5   |
| JAV    | Javelin fish                | 2 272   | 22        | 553    | 22        | 1 165        | 34       | 1 434     | 16       | 216    | $1 \ 050$ | 15           | 2.3    |
| OlH    | Johnson's cod               | 1 465   | 17        | 388    | 13        | 604          | 10       | 561       | 12       | 283    | 518       | 7            | 3.8    |
| LCH    | Long-nosed chimaera         | 418     | 19        | 261    | 16        | 340          | 14       | 367       | 19       | 130    | 322       | 10           | 1.1    |
| ETL    | Lucifer dogfish             | 38      | 20        | 10     | 34        | 17           | 37       | 17        | 25       | 263    | 15        | 19           | 2.9    |
| NNA    | Nezumia namatahi            | 11      | 20        | 1      | 58        | 1            | 33       | ω         | 43       | 689    | 0         | 29           | 4.1    |
| CIN    | Notable rattail             | 96      | 38        | 15     | 56        | 30           | 20       | 24        | 11       | 414    | 23        | 15           | 2.0    |
| GSP    | Pale ghost shark            | 660     | 8         | 472    | 23        | 784          | 24       | 994       | 32       | 88     | 750       | 17           | -0.6   |
| RIB    | Ribaldo                     | 972     | 13        | 763    | 13        | 901          | 20       | 758       | 12       | 120    | 808       | 6            | 1.1    |
| MCA    | Ridge scaled rattail        | 313     | 13        | 422    | 56        | 283          | 11       | 217       | 12       | 102    | 307       | 26           | 0.1    |
| CTH    | Roughhead rattail           | 147     | 24        | 0      | 0         | 0            | 0        | 0         | 0        |        | 0         |              |        |
| CSE    | Serrulate rattail           | 558     | 15        | 275    | 14        | 356          | 8        | 313       | 11       | 177    | 314       | 9            | 2.8    |
|        |                             |         |           |        |           |              |          |           |          |        | 12        |              |        |
| SND    | Shovelnose spiny dogfish    | 12 023  | 21        | 9 845  | 17        | 13 426       | 17       | 14 905    | 22       | 94     | 725       | 11           | -0.2   |
| SRH    | Silver roughy               | 147     | 46        | LL     | 51        | 67           | 29       | 54        | 48       | 222    | 99        | 26           | 1.2    |
| SSM    | Slickhead bigscaled brown   | 6 223   | 10        | 5  108 | 15        | 9 079        | 14       | 4 234     | 11       | 101    | 6  140    | 8            | 0.1    |
| SBI    | Slickhead smallscaled brown | 826     | 6         | 591    | 12        | 787          | 18       | 638       | 18       | 123    | 672       | 10           | 1.5    |
| SMC    | Small-headed cod            | 30      | 24        | 11     | 30        | 28           | 26       | 22        | 28       | 146    | 20        | 17           | 1.2    |

|         |                        |       |      |       |      |       |      |       |      |        | Com   | pined |        |
|---------|------------------------|-------|------|-------|------|-------|------|-------|------|--------|-------|-------|--------|
| Species |                        |       | 2010 |       | 1992 |       | 1993 |       | 1994 | Ratio  | 5     | 2-94  | t-test |
| *       |                        |       |      |       |      |       |      |       |      | A2010/ |       |       |        |
| Code    | Common name            | Abd   | C.v. | Abd   | C.v. | Abd   | C.v. | Abd   | C.v. | A92-94 | Abd   | C.v.  |        |
| CYO     | Smooth skin dogfish    | 691   | 15   | 457   | 17   | 553   | 22   | 588   | 21   | 130    | 533   | 12    | 1.3    |
| SSO     | Smooth oreo            | 7 304 | 58   | 5 822 | 44   | 2 276 | 37   | 2 047 | 30   | 216    | 3 382 | 27    | 0.9    |
| SOR     | Spiky oreo             | 2 946 | 36   | 1 520 | 42   | 2 609 | 53   | 2 009 | 41   | 144    | 2 046 | 28    | 0.7    |
| TRS     | Trachyscorpia capensis | 23    | 27   | 10    | 46   | 15    | 29   | ς     | 51   | 250    | 6     | 23    | 2.1    |
| WHR     | Unicorn rattail        | 593   | 23   | 7     | 67   | 33    | 61   | 95    | 27   | 1 324  | 45    | 24    | 4.0    |
| WOE     | Warty oreo             | 536   | 36   | 780   | 57   | 343   | 40   | 160   | 45   | 125    | 428   | 37    | 0.4    |
| WHX     | White rattail          | 2 304 | 12   | 1 539 | 10   | 1 812 | 12   | 1 659 | 11   | 138    | 1 670 | 9     | 2.2    |
| RCH     | Widenosed chimaera     | 439   | 16   | 298   | 18   | 431   | 18   | 319   | 15   | 126    | 349   | 10    | 1.1    |