Ministry for Primary Industries

Manatū Ahu Matua

Fish bycatch in New Zealand tuna longline fisheries 2006-07 to 2009-10
New Zealand Fisheries Assessment Report 2013/13
L.H. Griggs,
S.J. Baird

ISSN 1179-5352 (online)
ISBN 978-0-478-40548-4 (online)

March 2013

Requests for further copies should be directed to:
Publications Logistics Officer
Ministry for Primary Industries
PO Box 2526
WELLINGTON 6140

Email: brand@mpi.govt.nz
Telephone: 0800008333
Facsimile: 04-894 0300
This publication is also available on the Ministry for Primary Industries websites at: http://www.mpi.govt.nz/news-resources/publications.aspx
http://fs.fish.govt.nz go to Document library/Research reports
© Crown Copyright - Ministry for Primary Industries

EXECUTIVE SUMMARY

Griggs, L.H.; Baird, S.J. (2013). Fish bycatch in New Zealand tuna longline fisheries 2006-07 to 2009-10.

New Zealand Fisheries Assessment Report 2013/13. 73 p.

We used Observer Programme data to assess the species composition of the New Zealand tuna longline fisheries, and to estimate the catch per unit effort (CPUE) and the number of fish caught by observed vessels during the 2006-07 to 2009-10 fishing years. Data were summarised by fishing fleet (foreign charter vessels and New Zealand domestic vessels), and geographical area (north and south). For the main non-target species, we used observer data to estimate the proportions of fish that were alive and dead on recovery, and the proportions that were retained and discarded. The size distribution, sex composition, and maturity composition of blue, porbeagle, and mako sharks and Ray's bream were determined.

The total number of hooks set by longline vessels fishing in the New Zealand Exclusive Economic Zone (EEZ) and adjacent waters has declined from a maximum of 27 million in 1980-81 to less than 4 million in the mid-1990s when foreign licensed vessels ceased fishing in New Zealand. The domestic fishing fleet has been the dominant fleet in the fishery since 1993-94 and the number of hooks set by this fleet increased rapidly in the late 1990s to a peak of almost 10 million in 2001-02. Effort of the domestic fleet has dropped substantially from 2002-03 onwards, and the total effort dropped to 3.7 million hooks set in 2004-05. Fishing effort remained at 3.7 million hooks in 2005-06 and 2006-07 and then dropped to 2.2 million hooks in $2007-08$ but has increased since that time to around 3 million hooks in 2008-09 and 2009-10. Australian flagged vessels began fishing in New Zealand waters for the first time near the end of the 2005-06 fishing year and this continued into the 2006-07 fishing year.

Observer coverage on charter vessels continues to be high averaging 78\% of hooks observed over the past four fishing years. Domestic coverage has increased over the last four fishing years, although was always below 10%.

In 2006-07 to 2009-10, 111074 fish and invertebrates from at least 62 species or species groups were observed. Most species were rarely observed, with only 37 species (or species groups) exceeding 100 observations between 1988-89 and 2009-10. The most commonly observed species over all years were blue shark, albacore tuna, and Ray's bream, these three making up nearly 70% of the catch by numbers. Blue shark and Ray's bream were the most abundant and second most abundant species in each of the four fishing years 2006-07 to 2009-10. Other important non-target species were albacore, lancetfish, bigscale pomfret, dealfish, porbeagle shark, swordfish, moonfish, mako shark, deepwater dogfish, sunfish, and oilfish. The catch composition varied with fleet and area fished.

Fishing effort and observed catches were stratified by fleet (Charter and Domestic) and area (North and South) for estimating CPUE and numbers caught. For most species there were large differences in CPUE between fleets and between areas. CPUE could be reliably determined only for the Charter fleet, and in 2006-07 to 2009-10 there were differences in temporal and spatial fishing patterns compared with previous years. There was a very large increase in CPUE for southern bluefin tuna in the South in the most recent three years. There was a periodic increase in CPUE for Ray's bream, and bigscale pomfret in the mid-2000s. Mako shark CPUE appears to have increased in the most recent years although the data are patchy. Similar trends were observed for butterfly tuna, oilfish, and dealfish. Deepwater dogfish CPUE in the South, while lower than the mid-1990s, remains relatively high. The Australian fleet had high CPUE for bigeye tuna and swordfish for the two years that they fished in New Zealand. Reported and estimated catches are presented and compared.

Length frequency data combined with length-at-maturity information indicated that most blue, porbeagle, and mako sharks caught in New Zealand fishery waters were immature. Greater proportions of mature male blue sharks were found in the North while few were mature in the South. Most female Ray's bream were probably mature in 2006-07 to 2009-10.

In 2006-07 to 2009-10, most blue, mako, porbeagle, and school sharks, deepwater dogfish, moonfish, Ray's bream, bigscale pomfret, escolar, oilfish, and rudderfish were alive when recovered. Most of the albacore, swordfish, butterfly tuna, dealfish and lancetfish were landed dead. Few yellowfin tuna and striped marlin were caught and most were alive. These proportions differed by fleet and area.

Most blue, porbeagle, mako, and school sharks were processed in some way, either being finned or retained for their flesh, but there were significant fleet differences. Most albacore, swordfish, yellowfin tuna, moonfish and Ray's bream were retained. Overall most butterfly tuna were retained, with fleet and year differences. Charter vessels kept most of their butterfly tuna. Over the four year period, most bigscale pomfret were discarded, with large variation from year to year. Charter vessels discarded escolar, oilfish and rudderfish while Domestic vessels retained the majority of these three species. Almost all deepwater dogfish, dealfish, and lancetfish were discarded. All except three striped marlin were returned to the sea.

Few conclusions could be drawn from the CPUE and catch data from the Domestic fleet due to low observer coverage rates that are not spatially and temporally representative of fishing effort, especially in southern New Zealand waters. We recommend that observer coverage of the Domestic fleet be increased and efforts made to ensure that the coverage is representative of the spatial and temporal distribution of the fishing effort in order to better quantify the catch.

1. INTRODUCTION

The New Zealand longline fishery is undertaken by about 42 New Zealand flagged vessels targeting bigeye and southern bluefin tuna as well as swordfish and a small foreign charter fleet (4 vessels) targeting southern bluefin tuna. The Ministry for Primary Industries (formerly Ministry of Fisheries) is responsible for managing all New Zealand fisheries, including target and non-target fish species. To fulfil this responsibility it is necessary to obtain regular estimates of the catch and catch rates of nontarget fish species taken as bycatch during normal fishing operations. Estimates of target and nontarget discard quantities are also required. These quantities provide an estimate of the level of removals from the population.

New Zealand has an obligation to provide estimates of the numbers of non-target fish species taken in the tuna longline fishery as part of its contribution to the Ecological Species Working Group under the Convention for the Conservation of Southern Bluefin Tuna (CCSBT), and to the Western and Central Pacific Fisheries Commission (WCPFC).

New Zealand developed a National Plan of Action (NPOA) on sharks, as part of a the Food and Agriculture Organisation of the United Nations (FAO) initiated Plan of Action for the Conservation and Management of Sharks (IPOA-Sharks), to improve the assessment and management of shark fisheries worldwide. New Zealand's NPOA was approved in 2008 (Anon. 2008), and is currently under review. Information on the shark bycatch from New Zealand tuna longline fisheries is crucial input into this.

Tuna longline fishing is often considered a highly specific, environmentally sound fishing technique compared with other methods (e.g., trawling and pelagic driftnet fishing). However, for some target species, areas, and seasons, bycatch levels can be high (Ayers et al. 2004, Griggs et al. 2007). In the New Zealand Exclusive Economic Zone (EEZ) and adjacent waters more than 70 non-target fish species have been recorded by scientific observers in the bigeye and southern bluefin tuna fisheries, although most species were rarely observed, with only 36 species (or species groups) exceeding 100 observations between 1988-89 and 2004-05 (Griggs et al. 2007). The most commonly observed species over all years (1988-89 and 2005-06) were blue shark (Prionace glauca), albacore tuna (Thunnus alalunga), and Ray's bream (Brama brama), these three making up 75% of the catch by numbers.

Concerns have been raised about the numbers of non-target fish species, especially sharks, swordfish, and marlins, taken as bycatch in the tuna longline fishery. Oceanic sharks are an important bycatch throughout the Pacific Ocean, and the demand for shark fins in Asia has led to an increase in their catch over the last few decades (Bonfil 1994, Hayes 1996, Stevens 2000). Oceanic sharks generally have low reproductive rates, long life spans, and possibly slow growth, and they segregate by size and sex. These features make them vulnerable to overfishing (Fogarty et al. 1989, Compagno 1990, Hoenig \& Gruber 1990). To date, the only assessments of shark bycatch on tuna longlines in temperate South Pacific waters have been in the Australian Fisheries Zone (Stevens 1992, Stevens \& Wayte 1999), and NIWA's previous studies in New Zealand waters (Francis et al. 1999, 2000, 2001, 2004, Ayers et al. 2004, Griggs et al. 2007, 2008). Bailey et al. (1996) reviewed bycatch and discards in Western Pacific tuna fisheries.

Billfish species are commonly caught in longline fisheries targeting tunas. The species caught in tuna longline fisheries vary with area and fishery. Bailey et al. (1996) reported that blue marlin were the most common bycatch species in the western tropical Pacific longline fishery while in Australia shortbilled spearfish predominate. In New Zealand, swordfish are commonly caught, and striped marlin (Kajikia audax) are occasionally taken; other marlins are rarely caught (Francis et al. 2004). Only swordfish can be retained by domestic fishers; the other billfish species, with a few exceptions, must be returned to the water alive or dead. Commercial fishers view the practice of dumping dead marlin as a waste of a valuable resource of no benefit to any fishing sector or to the resource, and they have sought a change in regulations to allow them to retain dead marlin, especially striped marlin which
have high commercial value. Recreational fishers, on the other hand are concerned about any potential impact on the recreational striped marlin fishery from increased domestic tuna longline activity, especially fishing effort which might target striped marlin. Both commercial and recreational sector groups have requested information on the number of marlin caught and on the discard rate before changes to the current regulations are considered.

Under 10% of the domestic tuna longline fishing effort in the New Zealand fishery has been observed, and this is the only independent source of information on the scale of bycatch and discarding in the fishery.

In 2003 a new Tuna Longlining Catch Effort Return (TLCER) form was introduced, and fishers were required to record discarded fish. In October 2004, several tuna and longline-caught bycatch species were introduced into the Quota Management System (QMS), namely southern bluefin tuna, Pacific bluefin tuna, bigeye tuna, swordfish, blue shark, porbeagle shark, mako shark, moonfish, and Ray's bream.

NIWA has reported the results of previous Ministry of Fisheries projects that investigated the bycatch of the New Zealand tuna longline fleet (Francis et al. 1999, 2000, 2004, Ayers et al. 2004, Griggs et al. 2007, 2008). The present study updates and extends those previous analyses for four more years which extend the time series to 22 years.

This report addresses the objective: To estimate the catches, catch rates, and discards of non-target fish in tuna longline fisheries data from the Observer Programme and commercial fishing returns for the 2006-07 to 2009-10 fishing years, and to describe bycatch trends in tuna longline fisheries using data from this project and the results of previous similar projects. It was funded by Ministry of Fisheries project HMS200901.

2. METHODS

2.1 Data sources and data treatment

Tuna longline vessels submit information on their fish catch to the Ministry for Primary Industries (MPI), (formerly Ministry of Fisheries) on Tuna Longline Catch Effort Return (TLCER) forms, with a small amount also reported on Catch Effort Landing Returns (CELRs). These returns underestimate bycatch because much of it is discarded at sea and not recorded (Francis et al. 2000). A new TLCER form was introduced in 2003 with a section for reporting of discards.

More reliable data on the amount of bycatch are available from the MPI Observer Programme, in which observers on board commercial vessels identify and count all of the bycatch during the time they are observing. Observers also record whether fish are alive or dead on recovery, their subsequent fate, and lengths, weights, and sex of individual fish. Observer data can therefore provide a good independent source of information on the scale of bycatch and discarding in the fishery. We used observer data to determine which non-target fish species are caught, and to estimate unstandardised catch per unit effort (CPUE), the total number of fish caught, the proportion of the catch alive and dead on recovery, and the proportion of fish processed and discarded.

New Zealand tuna longline fishery data for the 2006-07 to 2009-10 fishing years were obtained from two sources: commercial fishing records and observer data.

Data recorded by observers on tuna longline vessels were extracted from the centralised observer database (cod). One trip was excluded from analysis because it was primarily for albacore tagging and not representative of normal fishing practice.

Groomed commercial longline data from TLCER and CELR forms were extracted from the database tuna. Further grooming was carried out before analysis as follows.

- Data was checked to ensure that there were no records with missing hook number or very low hook numbers (less than 100).
- Records with no set position (latitude and longitude) were compared with sets on adjacent days for that vessel and assigned to area North or South (see below) as appropriate.

TLCER data corresponding to the albacore tagging trip were excluded. No other sets were deleted from the 2006-07 to 2009-10 dataset, but some positions were corrected. Two records lacking latitude and longitude were assigned area North and one was changed from South to North.

The earlier commercial data and observer data (1989-90 to 2005-06) were those used by Francis et al. (1999, 2000, 2004), Ayers et al. (2004), and Griggs et al. (2007, 2008).

Data were stratified by fishing year, fleet, and area for analysis. Three fleets have routinely fished in New Zealand waters: foreign licensed vessels (mainly Japanese but also some Korean), foreign vessels chartered by New Zealand companies, and New Zealand domestic owner-operated vessels. Foreign licensed vessels have not fished in New Zealand waters since 1995. Foreign licensed and chartered vessels have been grouped together for analysis because they fished similar areas with similar gear (Francis et al. 2004, Ayers et al. 2004, Griggs et al. 2007, 2008), and this grouping is used to present a time series of trends in fishing effort. One large New Zealand domestic vessel fished with this fleet in the same area and with the same methods up until 2004 and was included in this group. Australian charter vessels began fishing in New Zealand and fished only during 2005-06 and 2006-07 and were treated as a separate fleet due to differences in their fishing methods and area fished.

From 2006-07 to 2009-10, there were no foreign licensed vessels. "Charter" refers to the Japanese charter fleet only, and Australian vessels are shown separately as "Australian". New Zealand domestic vessels are referred to as "Domestic". The names "Charter" and "Domestic" are retained for continuity with the historical description of these fleets.

Two geographic areas are used, "North" and "South". The North area is defined as sets that began north of latitude $39.5^{\circ} \mathrm{S}$ on the west coast and north of $43.75^{\circ} \mathrm{S}$ on the east coast, these being the same boundaries as used previously by Ayers et al. (2004). The South area has previously been subdivided into south-west and south-east areas (Ayers et al. 2004), but no sets were made in the south-east area during 2006-07 to 2009-10, so this separation was not made. Sets outside the New Zealand EEZ in the North region were included.

As with previous years (Francis et al. 2004, Ayers et al. 2004, Griggs et al. 2007, 2008), some species were grouped together. "Deepwater dogfish" included those recorded as DWD (species unknown), Owston's dogfish (Centroscymnus owstoni), Portuguese dogfish (Centroscymnus coelolepis), longnose velvet dogfish (Centroselachus crepidater), Plunket's shark (Proscymnodon plunketi), leafscale gulper shark (Centrophorus squamosus), seal shark (Dalatias licha), velvet dogfish (Zameus squamulosus), cookie-cutter shark (Isistius brasiliensis), spiny dogfish (Squalus acanthias), shovelnose dogfish (Deania calcea), Baxters lantern dogfish (Etmopterus granulosus), and white tail dogfish (Scymnodalatias albicauda). Shortnose and longnose lancetfish, Alepisaurus ferox and A. brevirostris, were combined.
Deepwater dogfish and lancetfish were usually cut off the lines and observers often did not have the opportunity to identify them to the species level. Hapuku and bass (Polyprion oxygeneios and P. americanus) were combined as they were often not separated to the species level for reporting.

2.2 Estimation of catch per unit effort and total numbers

CPUE was expressed as the number of fish observed caught per 1000 hooks set. The basic unit of sampling was an individual set; a set i has information on the number of fish caught $\left(c_{i}\right)$ and the
amount of effort expended (u_{i} the number of hooks). All hooks on a set may not be observed. In the calculation of CPUE we used the estimated number of observed hooks; this estimate was derived from the proportion of the haul observed (based on the haul duration and the time recorded as unobserved in the observer events logs) multiplied by the number of hooks set.

For the main catch species, CPUE values (\hat{y}) were calculated for each stratum (fishing year, fleet and area) in 2006-07 to 2009-10 by use of a ratio of means estimator (see Bradford 2002, Ayers et al. 2004):

$$
\hat{y}=\frac{\sum_{i=1}^{n} c_{i} / n}{\sum_{i=1}^{n} u_{i} / n}=\frac{\sum_{i=1}^{n} c_{i}}{\sum_{i=1}^{n} u_{i}}
$$

where n is the number of observed sets.
Ayers et al. (2004) compared the use of two analytical and one bootstrap variance estimators and found that the difference was negligible. These authors reported estimates of variance based on the sample means, which have better statistical properties (Thompson 1992):

$$
\operatorname{vâr}(\hat{y})=\frac{1}{\mu_{u}^{2}}\left(\frac{N-n}{N}\right) \frac{s_{\hat{y}}^{2}}{n}
$$

where $s_{\hat{y}}^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(c_{i}-\hat{y} u_{i}\right)^{2}$
and μ_{u} is the population mean of the effort variable. There has been some indication that the estimator vâr (\hat{y}) is correlated with the mean of the effort variable (\bar{u}). An adjusted estimator,

$$
\operatorname{vãr}(\hat{y})=\left(\frac{\mu_{u}}{\bar{u}}\right)^{2} \operatorname{vâr}(\hat{y})
$$

has been suggested to alleviate this problem (Thompson 1992). This was used in the present study to provide analytical estimates of confidence intervals.

The total number of each species caught in each stratum was estimated by scaling up the CPUE to the total number of hooks set (N): thus, $\hat{T}=N \hat{y}$. These numbers were then summed across strata to give total annual catch estimates. The estimated variance of these totals was given by $\operatorname{vâr}(\hat{T})=N^{2} \operatorname{var}(\hat{y})$.

CPUE values and catch estimates are provided for 2006-07 to 2009-10 and added to the time series for 1988-89 to 2005-06 (Francis et al. 2004, Ayers et al. 2004, Griggs et al. 2007, 2008). Catch numbers estimated from observer data were compared with catch numbers reported by commercial fishers on their TLCERs.

2.3 Status of fish on recovery and subsequent treatment

The status of the fish at time of recovery (i.e., retrieval to the side of the vessel) and the subsequent treatment (i.e., whether processed or discarded), were analysed from observer data for 2006-07 to 2009-10 for each of the main non-target species. Fish status was recorded as alive, dead, killed by crew, or unobserved. Fish recorded as killed by crew were treated as alive on recovery. Fish treatment was recorded as retained, finned, discarded, lost, or unobserved. Retained and finned fish were grouped as fish that were processed in some way, whereas the discarded and lost fish were categorised as not processed.

2.4 Length frequency analysis

Observer length data were extracted for blue, mako, and porbeagle sharks, Ray's bream, and striped marlin, and length frequency distributions were summarised by sex and area.

3. RESULTS

3.1 Fishing effort and observer coverage

The New Zealand tuna longline fishery was dominated by the foreign licensed fleet during the 1980s (Francis et al. 2004). Most effort came from Japanese vessels, but Korean vessels were also involved. The total number of hooks set declined from a maximum of 27 million in 1980-81 to less than 4 million in the mid-1990s when the foreign licensed vessels ceased fishing in New Zealand (Figure 1).

Chartered Japanese vessels fished in New Zealand waters mainly from 1986 onwards and the effort of this group (with the effort by one large New Zealand vessel included) peaked at 2.2 million hooks during 1990-91. During the past 15 years Charter effort has been lower, averaging 1.1 million hooks annually. The Philippine fleet fished under charter arrangements in 2002-03 only, setting almost 1 million hooks. In 2005-06 a fleet of Australian vessels began fishing in New Zealand waters under charter arrangements, contributing 16550 hooks (0.45% of the total set in that year). This effort only occurred at the end of the 2005-06 fishing year, but they continued into the 2006-07 fishing year setting 72160 hooks (1.9% of the total set).

The Domestic fleet has increased its effort since 1991-92 and has been the dominant fleet in the fishery since 1993-94 (Table 1, Figure 1). Domestic effort peaked at almost 10 million hooks set in 2001-02, producing a second peak for the fishery as a whole of almost 11 million total hooks. Domestic and total effort have dropped substantially since then. The introduction of pelagic species into the QMS in October 2004 resulted in a change in fishing practices and a reduction in the number of Domestic boats in the fishery, but Domestic effort had been declining since 2002-03. In 2003-04, 7.4 million hooks were set, 5.9 million of them (80%) by the Domestic fleet, in 2004-05, this dropped further to 3.7 million hooks, of which 3.1 million (84%) were set by the Domestic fleet. In the 200506 fishing year, effort was almost the same as the previous year, with 3.7 million hooks set, of which 3.1 million were set by the Domestic fleet (Table 1).

Total fishing effort remained at 3.7 million hooks in 2006-07, with a lower contribution of 2.3 million hooks set by the domestic fleet. In 2007-08, total effort dropped to an all-time low of 2.2 million hooks, of which 1.7 million hooks were set by the domestic fleet. Effort then increased to around 3 million in 2008-09 and 2009-10, with the domestic fleet contributing 2.3 and 2.5 million hooks respectively (Table 1, Figure 1).

The number of observed trips and sets, observed hooks and reported hooks by fleet and the percentage of reported hooks on CELR forms are shown in Table 1. Use of CELR forms for reporting longline fishing has ceased. The last use of CELR forms on longline vessels was in 2005-06.

Observed hooks as a percentage of those set by the fishery are shown in Table 2, and by fleet and area in Figure 2, for all years. Observer coverage on charter vessels continues to be high, at $45-81 \%$ over the most recent four fishing years. Domestic coverage has increased over the last four fishing years to between 6 and 9%, and appears to be more spatially representative than in previous years.

The percentages of hooks observed per set during 2006-07 to 2009-10 are shown in Table 3. Most Domestic sets were fully observed, but this was not possible on Charter vessels where hauls often exceeded 12 hours and observers needed to take breaks. Most sets on Charter vessels were in the range $80-99 \%$ observed.

Number of reported sets and hooks and the percentages observed are shown for North and South areas by fleet and fishing year in Table 4.

Fishing positions of reported and observed sets in 2006-07 to 2009-10 are shown in Figure 3. In previous years, the Domestic fleet fished mainly in the North and the Foreign and Charter vessels fished predominantly in the South (Ayers et al. 2004, Francis et al. 2004, Griggs et al. 2007, 2008). In 2005-06 and 2006-07 the Australian vessels fished only in the North area, targeting bigeye tuna and swordfish with most sets in the Kermadec Fisheries Management Area (not shown).

This trend continued during 2006-07 for the Domestic vessels and Japanese Charter vessels, and then changed during the next three years, particularly for the Charter vessels. In 2006-07 Japanese vessels fished an extensive range of the West Coast of the South Island (WCSI) and then moved north in July and fished near East Cape. They targeted southern bluefin tuna and fished from March until August (Figure 4), with one vessel making three sets targeting bigeye tuna. In 2007-08, 2008-09, and 200910 fishing was confined to a smaller part of the southern WCSI west of Fiordland (Figure 3) and the fishing season was much shorter than in previous years (Figure 4). Japanese Charter vessels typically spend about 3-3 $1 / 2$ months fishing in New Zealand waters, making the $2006-07$ season (over 4 months) a long one and the others short, especially 2009-10 (1 $1 / 2$ months). In 2008-09, there was some fishing near East Cape, with one vessel making two sets for bigeye tuna and the others continuing to fish for southern bluefin tuna.

Domestic vessels fished all year round, for a variety of target species, including bigeye tuna, southern bluefin tuna, swordfish, Pacific bluefin tuna, albacore, and yellowfin tuna. They fished mainly in the North, with very few sets in the South in 2006-07 and 2007-08, and then increased fishing effort in 2008-09 and 2009-10 in the South in a fairly concentrated area off central WCSI where they targeted southern bluefin tuna (Figure 3).

A comparison of commercial and observed sets, by latitude and longitude, for the past 10 years is shown in Figures 5 and 6. Observer coverage of the Charter fleet represented the spatial distribution of the fishery well in 2006-07 to 2009-10 (Figures 3, 5, and 6). Coverage of the Domestic fleet was better than in previous years, although a bit sparse. There was no coverage of the Domestic effort in the South in 2007-08. Observed sets in the North were concentrated south of East Cape and North Cape in 2006-07, and better distributed in the next three years. Observer coverage of the Charter fleet represented the spatial and temporal distribution of the fishery well but Domestic coverage did not adequately represent effort in many months (Figures 4 and 7).

3.2 Species composition

During 2006-07 to 2009-10, 111074 fish and invertebrates from at least 50 species were observed (Appendix 1). Non-fish bycatch (seabirds, marine mammals, and turtles) were excluded from this analysis. The most commonly observed species since 1988-89 were blue shark, albacore tuna, and Ray's bream, which constituted nearly 70% of the catch by numbers (Appendix 1). Most species were rarely observed, with only 37 species (or species groups) exceeding 100 recorded fish since 1988-89.

Observed catches by fleet and area in 2006-07 to 2009-10 are shown in Table 5. These data provide a useful within-stratum comparison of relative species abundance, but should not be compared among strata because of the different numbers of observed hooks in each stratum.

In the four year period 2006-07 to 2009-10 blue shark was the most abundant species in the observed catches, followed by Ray's bream (Appendix 1). These two species were also the two most abundant species observed in each of the four fishing years (Table 5). The next most abundant species varied from year to year, but over the four year period combined these were southern bluefin tuna, albacore,
lancetfish, bigscale pomfret, dealfish, porbeagle shark, swordfish, moonfish, mako shark, deepwater dogfish, bigeye tuna, sunfish, and oilfish. Observed catches of escolar, butterfly tuna, pelagic stingray, school shark, and rudderfish were next highest, but had in earlier years been in the top 15 most abundant species, and were comparatively less frequent, (Ayers et al. 2004, Francis et al. 2004, Griggs et al. 2007, 2008).

Most (99.3%) of the deepwater dogfish identified to species were Owston's dogfish (Centroscymnus owstoni). There were 177 unidentified fish observed in 2006-07 to 2009-10. Most of these were cut off the line at the side of the vessel or lost and not seen by the observer.

The catch varied with area and fleet. The Charter fishing in the South caught mainly blue shark, Ray's bream and southern bluefin tuna, with smaller amounts of deepwater dogfish, bigscale pomfret, dealfish, and porbeagle shark. The Charter fleet fishing in the North in 2006-07 and 2008-09 caught mainly blue shark and albacore. The Domestic fleet caught mainly blue shark and albacore, followed by lancetfish and swordfish in the North. Domestic vessels observed in the South in 2008-09 and 2009-10 caught mainly blue shark catches, followed by southern bluefin tuna and Ray's bream. The most abundant species caught by the Australian vessels fishing in the far north were swordfish (their main target species), lancetfish, blue shark, bigeye tuna (the other species targeted), and albacore (Table 5).

3.3 Catch per unit effort

CPUE estimates were calculated for each fleet and area stratum in which eight or more sets were observed and at least 2% of the hooks were observed. The number of hooks and sets used in the CPUE calculations are shown in Table 4. CPUE estimates were calculated by species for each fleet and area in 2006-07 to 2009-10 and added to the time series for 1988-89 to 2005-06 (Griggs et al. 2008) and these are shown in Figure 8.

The CPUE results from the Domestic fleet should be interpreted with caution due to the lower observer coverage of this fleet. CPUE estimates for the Charter fleet can be considered reliable from 1992-93 onwards (Griggs et al. 2007).

Charter vessels fished in the North area in two of the four fishing years. In the South area the fishing area differed spatially and temporally from previous years. This makes trends more difficult to determine.

Some trends of the Charter fleet during 2006-07 to 2009-10:

- Some increase in CPUE of blue, mako, and porbeagle sharks in 2006-07 in the North
- CPUE of blue, mako and porbeagle sharks continued to be similar in the South to previous years
- Decrease of CPUE for deepwater dogfish in the South
- There was a huge increase in southern bluefin tuna in the South to the highest level ever observed
- A very high CPUE for bigeye tuna in 2006-07, and swordfish in 2005-06 and 2006-07 for the Australian fleet in the North
- An increase in CPUE of butterfly tuna in the North
- Yellowfin tuna CPUE has remained very low
- Ray's bream and bigscale pomfret reached their highest CPUE in the South in 2006-07, then declined after that
- Some increase for moonfish in 2006-07 in the North, then lower in 2008-09
- Increase in CPUE of oilfish in the North
- Increase in CPUE of dealfish in the South.

Over the full time-series the following trends were apparent:

- After a peak in 1994-95, blue shark CPUE in the North dropped before rising slightly since 2006-07
- CPUE of mako sharks was higher in the North than the South
- Porbeagle CPUE was higher in the South than the North, but porbeagle CPUE has been very low for the past nine years in the South, and there has been a recent increase in the North
- CPUE of school sharks was higher in the South than the North and much higher in the South for deepwater dogfish
- CPUE of southern bluefin tuna was higher in the South than the North in most years since the late 1990s, apart from a reversal in the mid 2000s, then in 2007-08 it increased sharply and reached the highest level yet in 2009-10
- Catch rates of albacore, bigeye tuna, yellowfin tuna, swordfish, moonfish, oilfish, escolar, and lancetfish were greatest in the North
- Yellowfin CPUE has remained very low
- Greatest catch rates of albacore, yellowfin tuna, swordfish, striped marlin, and lancetfish were usually made by the Domestic fleet in the North area
- CPUE of Ray's bream, bigscale pomfret, and dealfish were highest in the South and for the Charter fleet
- CPUE of Ray's bream and bigscale pomfret increased to a peak in 2004-05, and remained high
- Butterfly tuna CPUE has decreased in the South and increased in the North over recent years
- Escolar is mainly caught by charter vessels, with variable CPUE that was high in some years.

3.4 Total numbers of fish caught

The reported and estimated numbers of fish caught in 2006-07 to 2009-10 were added to the time series generated previously for 1988-89 to 2005-06 (Griggs et al. 2008) and these are shown in Figure 9 .

CELR data were not included because either fish number or fish weight is reported, so the data for fish numbers are incomplete. This will cause a negative bias, especially in years when a high proportion of the catch was reported on CELR forms (see Table 1). CELR forms have not been used since 2005-06, so the numbers will not be affected by this during 2006-07 to 2009-10.

Reported catches of blue, mako, and porbeagle sharks increased slowly during 2006-07 to 2009-10, while deepwater dogfish catches decreased.
Southern bluefin tuna catches increased slightly, while albacore catches were relatively low and yellowfin tuna catches have declined consistently through the 2000s. Reported catches of butterfly tuna were below estimated catches for the past six years suggesting that they may be under-reported. Swordfish catches were lower in 2006-07 than in 2005-06, but then increased to a higher catch in 2009-10. Catches of Ray's bream and bigscale pomfret were high in 2006-07, this being a peak for bigscale pomfret, and then catches of both species fell over the next three years. Catches of oilfish, escolar, and rudderfish have been relatively low over the last six years. Reported dealfish catches increased to the highest level yet in 2009-10 but were well below estimated catches during the 1900s. Reported catches of lancetfish were below estimated catches suggesting they were under-reported.

Reported catches of each species caught in 2006-07 to 2009-10 are shown in Appendix 2.

3.5 Length-frequency distributions

Observed length frequency distributions by area and sex of blue, porbeagle, and mako sharks, and Ray's bream are shown in Figures 10-13 for fish measured in 2006-07 to 2009-10. Striped marlin distributions are not presented as only two were measured in the four year time period.

Length frequency distributions of blue sharks showed differences in size composition between North and South areas (Figure 10). There were more female blue sharks (59.5% over the four year period) caught than males, with a higher proportion of females in the South (77.5% over the four years) than the North (40.5%). Based on the length-frequency distributions and approximate mean lengths at maturity of 192.5 cm fork length for males and 180 cm for females (Francis \& Duffy 2005), most blue sharks were immature (91.1% of males and 92.9% of females, overall). Greater proportions of mature male blue sharks were found in the North (12.1% mature in the North and 1.1% in the south), while more similar proportions of mature females were found in the North and South $(4.5 \%$ and 8.4% respectively).

The proportion of porbeagles caught in the South was less than the North, unlike other years, and the fish were smaller than seen previously (Francis et al. 2004, Ayers et al. 2004, Griggs et al. 2007, 2008). In this four year period there is a mode at about $75-100 \mathrm{~cm}$ each year in both sexes and few larger fish (Figure 11), while in previous years there had been a bimodal distribution with a dominant mode between 110-140 cm (Francis et al. 2004, Ayers et al. 2004). This larger mode has been less predominant in the previous five years, 2002-03 to 2005-06 (Griggs et al. 2007, 2008). Based on length-frequencies and mean lengths at maturity of 145 cm FL for males and 175 cm fork length for females (Francis \& Duffy 2005), most porbeagle sharks were immature (86.4% of males and 97.4% of females, overall). Sex ratios between male and female porbeagle sharks were similar.

Few mako sharks were observed in the South. The distributions were roughly bimodal with a wide size range and no discernible difference between males and females (Figure 12). There were more females (60.9% over the four year period) than males. Assuming a mean length at maturity of 182.5 cm FL for males and 280 cm fork length for females (Francis \& Duffy 2005), most mako sharks were immature (85.1\% of males and 100.0% of females, overall).

The distributions of Ray's bream for each year in the North and South regions are shown in Figure 13. Ray's bream are usually kept whole and not sexed, but in 2006-07 and 2009-10 fish were further processed and the fish were sexed, and distributions are shown for 2006-07 and 2009-10 by region and sex. There are differences in the North/South distributions, with South fish being larger, but the distributions for males and females are similar (Figure 10). Female Ray's bream mature at about 43 cm (Francis et al. 2004), and most females were probably mature (78.7% over the four year period).

It is not known whether observers are distinguishing Ray's bream from Southern Ray's bream (Brama australis) and it is possible that there are two species with different distributions.

3.6 Status of fish on recovery and discards

The percentages of the main non-target species recorded alive or dead, by year, fleet, and area, are shown in Table 6. The top 15 most abundant species in 2006-07 to 2009-10 (combined) are included in this table, along with school shark, rudderfish, yellowfin tuna and striped marlin, which have been included in previous bycatch reports (Ayers et al. 2004, Francis et al. 2004, Griggs et al. 2007, 2008).

In 2006-07 to 2009-10, most sharks were landed alive, with the percentage alive highest for blue sharks and deepwater dogfish, and lowest for porbeagle sharks. Percentage alive varied with fleet and area, and tended to be lower in the North than in the South.

Most of the albacore, swordfish and butterfly tuna were landed dead. There were large fleet differences for these three species. Most of those landed by the Charter fleet were landed alive while most of those landed by the Domestic and Australian fleets were dead (Table 6), as seen previously (Griggs et al. 2008). Few yellowfin tuna and striped marlin were caught and most were alive.

Most moonfish, Ray's bream, bigscale pomfret, escolar, oilfish, and rudderfish were alive when recovered, as seen previously (Ayers et al. 2004, Francis et al. 2004, Griggs et al. 2007, 2008). Most
dealfish and lancetfish were recovered dead, with variation between years for both species, and also between fleets for lancetfish, where a greater proportion landed by the Domestic and Australian fleets were dead (Table 6).

The proportions of each species retained and discarded are shown in Table 7. Overall, most blue, mako, porbeagle, and school sharks were processed in some way, while almost all deepwater dogfish were discarded, but there were significant fleet differences. Charter vessels finned most of their blue sharks and porbeagle sharks, and retained most of their mako sharks for further processing. This is similar to previous years (Griggs et al. 2007, 2008) except that fewer porbeagles were retained for their flesh. Domestic vessels discarded more than half of their catch of these three species, while some vessels finned them, and not many were retained for further processing. These patterns have been observed before (Griggs et al. 2007, 2008) and vary from vessel to vessel. Some vessels do not retain or fin any sharks, dead or alive. Most school sharks were retained for their flesh by both fleets but some were finned only. Australian vessels did not catch many sharks and discarded most of them.

Most albacore and swordfish were retained by all fleets. Charter vessels retained most of their butterfly tuna, while the proportion retained by the Domestic fleet varied from year to year. Over the four year period Domestic vessels discarded nearly half of their butterfly tuna. Yellowfin tuna was caught mostly by the Domestic fleet with some caught by Australian vessels, and most were retained. Australian vessels discarded eight striped marlin and Domestic vessels discarded 43. Three Striped marlin caught by the Domestic fleet were retained. These were recorded as caught within the EEZ and no explanations were available regarding retention of these fish.

Most moonfish and Ray's bream were retained by both the Charter and Domestic fleets. Domestic vessels retained more of the non-quota fish bycatch species than Charter vessels did. Bigscale pomfret was mostly discarded by the Charter fleet in 2006-07, mostly retained in 2007-08, and retained in lesser proportions in the next two years. Charter vessels discarded escolar, oilfish, and rudderfish while Domestic vessels retained the majority of these three species.
Dealfish and lancetfish were almost all discarded by Charter and Domestic vessels. Australian vessels did not catch many fish bycatch species, except lancetfish which they discarded, and escolar which they mostly retained.

Sunfish were not included in Tables 6 and 7, but were the 12th most abundant species in 2006-07 to 2009-10. Most (99.2%) were landed alive, and most (98.0%) were discarded by all fleets.

Life status of discarded fish is shown in Table 8. The majority of discarded sharks were alive when recovered and could be Sixth Schedule releases. Overall nearly half of the swordfish, one quarter of the moonfish and most of the Ray's bream discards were dead on recovery, and this varied between fleets. Non-QMS bycatch species are shown in Table 8 as well.

Discarding of some QMS species can be explained by damage, which applies to a few dead sharks only (0.1% blue sharks, 3.7% mako sharks and 5.2% porbeagle sharks), and a higher proportion of swordfish (75.0%), moonfish (100%) and Ray's bream (92.7%).

4. DISCUSSION

Major changes occurred in the New Zealand tuna longline fishery in recent years, including the introduction of a new TLCER form with better reporting of discarded species, introduction of several important target and non-target species into the QMS, and a decline in fishing effort since 2001-02, particularly for the Domestic fleet. A fleet of Australian vessels began fishing in New Zealand waters near the end of the 2005-06 fishing year and continued into the 2006-07 fishing year. Effort was consistent at 3.7 million hooks for three years, from 2004-05 to 2006-07, and then declined. Fishing seasons for the Charter vessels were shorter during 2007-08 to 2009-10, and this appears to reflect earlier high catch rates of southern bluefin tuna and the fleet reaching the fishing quota sooner. Effort
of the Domestic fleet declined in 2007-08 to the lowest level since 1993-94, and increased in the following two years.

The species most commonly observed on tuna longlines in 2006-07 to 2009-10 were blue shark, Ray's bream, and albacore tuna, as in previous years (Francis et al. 1999, 2000, 2004, Ayers et al. 2004, Griggs et al. 2007, 2008). Catch composition varied with area fished and fleet. The Australian fleet targeted bigeye tuna and swordfish and fished subtropical waters in the far north and this is reflected in their different catch composition. The Japanese Charter vessels fished together on the WCSI and the area they fished in was less extensive during 2007-08 to 2009-10 than in previous years. In 2006-07 and 2008-09 Charter vessels fished off the East Cape area at the end of their season.

Differences in CPUE trends in the Charter fleet in both the North and South regions may reflect different spatial representation or varying abundance of species in different areas.

We have not been able to adequately quantify changes in catch made by the Domestic fleet due to low and non-representative observer coverage of this fleet, which contributed most of the effort. However coverage has improved over recent years and appears to be more spatially representative of the fishing effort.

The biggest change in catch rates during 2006-07 to 2009-10 was a big increase for southern bluefin tuna by the Charter fleet fishing in the South. There were high catch rates for other southern species caught by this fleet, including Ray's bream, bigscale pomfret and dealfish. Catch rates were high for bigeye tuna and swordfish caught in the North by the Australian vessels.

Discard practices varied according to fleet and vessel, and may also vary with the presence of an observer on board. It is difficult to determine true practices in discarding of shark quota species in particular. When observers are on board, practices may change, and vessel personnel can sign 'Authority to Discard' forms provided by observers. Some vessels fin or retain sharks according to QMS requirements, while others discard them. Some domestic vessel skippers admit that they do not want to retain or fin any sharks, dead or alive, and that this is widespread throughout the domestic fishery (Observer Programme observers, pers. comm.). Some are opposed to finning. Some fishers also admit that they do not report discards of non-quota species (Observer Programme observers, pers. comm.), another practice claimed to be widespread, so many of the fish bycatch species can be considered to be under-reported.

The proportion of each species recovered alive varied with fleet and area, and tended to be lower in the North than in the South. There were large fleet differences for some species, especially albacore, swordfish and butterfly tuna, where more were landed dead than alive, and the proportion landed alive was much less for the Domestic vessels than the Charter vessels.

Quite a high proportion of QMS sharks (blue, porbeagle and mako sharks) were discarded, while QMS fish species (swordfish, moonfish and Rays bream) were mostly retained. Most sharks are recovered alive and most of the discards of blue, mako and porbeagle sharks could be Sixth Schedule releases, but quite a few of these quota species were discarded dead. Discard of some QMS can be explained by damage, which applies to a few dead sharks only, and the majority of swordfish, moonfish and Ray's bream.

Francis et al. (2004) suggested that it is unlikely that New Zealand's tuna longline fishery is having a serious impact on the stock of blue, mako and porbeagle sharks, and catch levels in recent years are unlikely to have made any changes to this, although adequate assessment of the wider stock has not been carried out. However, under-reporting of sharks (and other non-target species), and low Domestic observer coverage create considerable uncertainty about the true level of fishery removals from these stocks in New Zealand waters.

The goal of the NPOA is 'to ensure the conservation and management of sharks and their long-term sustainable use'. Part of the NPOA's plan of action is to strengthen existing research and monitoring programmes, which includes monitoring stock status and monitoring of wastage. The detailed information that observers record on catches, discards and landed states is critical for determining the impact of fishing on both QMS and non-QMS species. Continued review of observer allocation is important to ensure improvements in observer coverage (Anon 2008).

We recommend that observer coverage of the Domestic fleet be further increased and that efforts are made to ensure that the coverage is representative of the spatial and temporal distribution of the fishing effort and therefore the catch. While 90% of the total effort is made by the domestic fleet, less than 10% of the effort of the domestic fleet is observed, and this should be increased. The biggest shortfall is for the domestic vessels fishing in the north region in FMA1 and FMA2 for bigeye and southern bluefin tuna.

A suggested distribution of observer days is outlined in Appendix 3. This is based on 2005-06 to 2009-10 data with all four years combined. The fishery is divided into West Coast targeting southern bluefin tuna (W STN), East Coast targeting southern bluefin tuna (E STN), West Coast targeting bigeye tuna and/or swordfish (W BIG/SWO), East Coast targeting bigeye tuna and/or swordfish (E BIG/SWO). Other minor target species (albacore, Pacific Bluefin tuna, and yellowfin tuna) are included with BIG/SWO).

5. ACKNOWLEDGEMENTS

We are grateful for the hard work of all of the observers who were involved in the Ministry of Fisheries Observer Programme. Thanks to Malcolm Francis who made helpful comments on the manuscript. This study was funded by the Ministry of Fisheries (now Ministry for Primary Industries) under research project HMS2009/01.

6. REFERENCES

Anon. (2008). New Zealand National Plan of Action for the Conservation and Management of Sharks. Ministry of Fisheries. October 2008. 90 p.
Ayers, D.; Francis, M.P.; Griggs, L.H.; Baird, S.J. (2004). Fish bycatch in New Zealand tuna longline fisheries, 2000-01 and 2001-02. New Zealand Fisheries Assessment Report 2004/46. 47 p.
Bailey, K.; Williams, P.G.; Itano, D. (1996). By-catch and discards in Western Pacific tuna fisheries: a review of SPC data holdings and literature. Oceanic Fisheries Programme Technical Report 34. 171 p.

Bonfil, R. (1994). Overview of world elasmobranch fisheries. FAO Fisheries Technical Paper 341.119 p.
Bradford, E. (2002). Estimation of the variance of mean catch rates and total catches of non-target species in New Zealand fisheries. New Zealand Fisheries Assessment Report 2002/54. 60 p.
Compagno, L.J.V. (1990). Shark exploitation and conservation. NOAA Technical Report NMFS 90: 391414.

Fogarty, M.J.; Casey, J.G.; Kohler, N.E.; Idoine, J.S.; Pratt, H.L. (1989). Reproductive dynamics of elasmobranch populations in response to harvesting. ICES Mini-symposium: Reproductive Variability Paper 9.21 p.
Francis, M.P.; Duffy, C. (2005). Length at maturity in three pelagic sharks (Lamna nasus, Isurus oxyrinchus and Prionace glauca) from New Zealand. Fishery Bulletin 103: 489-500.
Francis, M.P.; Griggs, L.H.; Baird, S.J. (2001). Pelagic shark bycatch in the New Zealand tuna longline fishery. Marine and Freshwater Research 52: 165-178.
Francis, M.P.; Griggs, L.H.; Baird, S.J. (2004). Fish bycatch in New Zealand tuna longline fisheries, 199899 to 1999-2000. New Zealand Fisheries Assessment Report 2004/22. 62 p.

Francis, M.P.; Griggs, L.H.; Baird, S.J.; Murray, T.E.; Dean, H.A. (1999). Fish bycatch in New Zealand tuna longline fisheries. NIWA Technical Report 55.70 p.
Francis, M.P.; Griggs, L.H.; Baird, S.J.; Murray, T.E.; Dean, H.A. (2000). Fish bycatch in New Zealand tuna longline fisheries, 1988-89 to 1997-98. NIWA Technical Report 76. 79 p.
Griggs, L.; Baird, S.; Francis, M. (2007). Fish bycatch in the New Zealand tuna longline fisheries 2002-03 to 2004-05. New Zealand Fisheries Assessment Report 2007/18. 58 p.
Griggs, L.; Baird, S.; Francis, M. (2008). Fish bycatch in the New Zealand tuna longline fisheries 2005-06. New Zealand Fisheries Assessment Report 2008/27. 47 p.
Hayes, E. (1996). New Zealand overview. In: The world trade in sharks: a compendium of TRAFFIC's regional studies, pp. 751-790. TRAFFIC International, Cambridge, United Kingdom.
Hoenig, J.M.; Gruber, S.H. (1990). Life-history patterns in the elasmobranchs: implications for fisheries management. NOAA Technical Report NMFS 90: 1-16.
Stevens, J.D. (1992). Blue and mako shark by-catch in the Japanese longline fishery off South-eastern Australia. Australian Journal of Marine and Freshwater Research 43: 227-236.
Stevens, J.D. (2000). The population status of highly migratory oceanic sharks. In: Hinman, K. Getting ahead of the curve. Conserving the Pacific Ocean's tunas, swordfish, billfishes and sharks. Marine Fisheries Symposium 16, pp. 35-43. National Coalition for Marine Conservation, Leesburg, Virginia.
Stevens, J.D.; Wayte, S.E. (1999). A review of Australia's pelagic shark resources. FRDC Project 98/107. 64 p.
Thompson, S.K. (1992). Sampling. John Wiley \& Sons, Inc., New York. 343 p.

Table 1: Number of tuna longline trips, sets and hooks observed, and number of hooks reported on TLCER and CELR forms by tuna longline vessels fishing in New Zealand. "Foreign and charter" vessels are predominantly Japanese, with some Korean effort in the 1980s, Philippine effort in 200203, Australian fleet in 2005-06 and 2006-07, and the effort of one large domestic vessel that fished with the Japanese charter fleet.

Fishing year	Observed		Observed hooks			Set hooks			
	Trips	Sets	Domestic	Foreign+ charter	Total	Domestic	Foreign+ charter	Total	$\begin{gathered} \% \text { on } \\ \text { CELR } \end{gathered}$
1988-89	5	86	0	234826	234826	11800	9953745	9965545	0.1
1989-90	6	154	0	447239	447239	117562	8553288	8670850	1.3
1990-91	3	150	0	421808	421808	350897	15316845	15667742	2.0
1991-92	8	192	19525	508629	528154	544658	10362346	10907004	1.9
1992-93	17	373	0	1057985	1057985	996293	5970648	6966941	1.8
1993-94	9	246	2418	693262	695680	1798970	1763343	3562313	11.2
1994-95	12	339	65694	815807	881501	3003260	1641585	4644845	15.7
1995-96	5	147	162922	0	162922	3048663	258203	3306866	21.2
1996-97	15	424	79991	882763	962754	2336462	1455906	3792368	6.9
1997-98	15	438	70835	989566	1060401	2943762	1277666	4221428	4.6
1998-99	9	402	35264	1052721	1087985	5394338	1504271	6898609	3.6
1999-00	13	274	38458	659923	698381	7143042	1150085	8293127	2.9
2000-01	23	474	240979	818744	1059723	8907172	943018	9850190	1.3
2001-02	17	398	144716	773443	918159	9973801	984695	10958496	0.3
2002-03	9	610	0	1887816	1887816	8650712	2216292	10867004	0.2
2003-04	16	549	128399	1336066	1464465	5924227	1471454	7395681	0.1
2004-05	14	343	150574	562825	713399	3091477	642074	3733551	0.6
2005-06	16	265	89983	548653	638036	3095479	625160	3720639	<0.1
2006-07	21	446	169592	786327	955919	2292222	1453370	3745592	0.0
2007-08	18	226	141489	254208	395697	1664974	568285	2233259	0.0
2008-09	17	384	147196	657535	804731	2309003	809230	3118233	0.0
2009-10	21	325	179700	387285	571994	2507977	478558	2986535	0.0

Table 2: Percentage of hooks observed.

Fishing Year	Domestic	Foreign+ charter	Total
1988-89	0.0	2.4	2.4
1989-90	0.0	5.2	5.2
1990-91	0.0	2.8	2.7
1991-92	3.6	4.9	4.8
1992-93	0.0	17.7	15.2
1993-94	0.1	39.3	19.5
1994-95	2.2	49.7	19.0
1995-96	5.3	0.0	4.9
1996-97	3.4	60.6	25.4
1997-98	2.4	77.5	25.1
1998-99	0.7	70.0	15.8
1999-00	0.5	57.4	8.4
2000-01	2.7	86.8	10.8
2001-02	1.5	78.5	8.4
2002-03	0.0	85.2	17.4
2003-04	2.2	90.8	19.8
2004-05	4.9	87.7	19.0
2005-06	2.9	87.8	17.1
2006-07	7.4	54.1	25.5
2007-08	8.5	44.7	17.7
2008-09	6.4	81.3	25.8
2009-10	7.2	80.9	19.0
Total	2.5	23.1	12.2

Table 3: Percentage of hooks observed on observed sets in 2006-07 to 2009-10. Values are the numbers of sets in each category.

Fishing Year	\% hooks observed	Number of sets		
		Domestic	Foreign+ charter	Total
2006-07	60-69		1	1
	70-79		10	10
	80-89		79	79
	90-99	3	162	165
	100	160	31	191
	Total	163	283	446
2007-08	60-69		3	3
	70-79		9	9
	80-89		31	31
	90-99		28	28
	100	143	12	155
	Total	143	83	226
2008-09	40-49		1	1
	50-59		4	4
	60-69		11	11
	70-79		67	67
	80-89		84	84
	90-99		64	64
	100	152	1	153
	Total	152	232	384
2009-10	10-19		1	1
	30-39		2	2
	50-59		2	2
	60-69		4	4
	70-79		59	59
	80-89	1	53	54
	90-99	1	18	19
	100	191	5	196
	Total	193	144	337

Table 4: Number of sets and hooks available for estimating CPUE and numbers of fish caught, by fishing year, fleet and area. Hook numbers are in thousands.

		Foreign and Charter fleet				Domestic fleet			
Fishing year	Area	Reported sets	\% sets observed	Reported hooks	\% hooks observed	Reported sets	\% sets observed	Reported hooks	\% hooks observed
1988-89	N	1284	3.7	3701	3.3	12	0.0	12	0.0
1989-90	N	1294	6.0	3752	6.0	265	0.0	117	0.0
1990-91	N	2052	5.9	6032	5.6	447	0.0	319	0.0
1991-92	N	1550	5.4	4500	5.4	691	0.0	540	0.0
1992-93	N	445	28.8	1207	27.5	1117	0.0	944	0.0
1993-94	N	49	65.3	137	63.4	1978	0.0	1649	0.0
1994-95	N	23	56.5	61	44.9	2705	1.8	2210	3.0
1995-96	N	0	-	0	-	3154	2.1	2775	2.3
1996-97	N	48	91.7	136	87.0	2792	3.6	2328	3.4
1997-98	N	123	76.4	328	73.9	3267	2.4	2930	2.4
1998-99	N	53	54.7	167	50.0	5383	0.7	5376	0.7
1999-00	N	46	54.3	134	50.5	6547	0.0	7087	0.0
2000-01	N	31	100.0	83	93.5	7731	2.6	8842	2.7
2001-02	N	4	100.0	12	97.9	8196	1.5	9683	1.5
2002-03	N	27	100.0	80	86.0	7120	0.0	8539	0.0
2003-04	N	16	100.0	52	79.6	4722	2.1	5487	2.2
2004-05	N	42	100.0	138	84.8	2754	4.9	3017	4.7
2005-06	N	18	100.0	50	82.1	2769	2.3	2992	2.6
2006-07	N	82	68.3	274	61.0	2275	7.2	2289	7.4
2007-08	N	0	-	0	-	1675	8.5	1572	9.0
2008-09	N	23	100.0	73	80.5	2233	6.6	2150	6.6
2009-10	N	0	-	0	-	2454	6.7	2307	6.9
1988-89	S	2137	1.8	6253	1.8	0	-	0	-
1989-90	S	1628	4.7	4801	4.6	2	0.0	<1	0.0
1990-91	S	3127	0.9	9285	0.9	23	0.0	31	0.0
1991-92	S	1995	4.6	5862	4.6	7	0.0	5	0.0
1992-93	S	1563	15.7	4763	15.2	29	0.0	53	0.0
1993-94	S	560	37.7	1626	37.3	129	0.0	150	0.0
1994-95	S	540	51.1	1580	49.9	798	0.0	793	0.0
1995-96	S	96	0.0	258	0.0	323	25.1	274	35.9
1996-97	S	457	61.1	1320	57.9	14	0.0	9	0.0
1997-98	S	318	82.7	950	78.7	16	0.0	14	0.0
1998-99	S	436	77.1	1338	72.5	34	0.0	19	0.0
1999-00	S	334	63.8	1016	58.3	60	0.0	56	0.0
2000-01	S	277	87.0	860	86.2	79	0.0	65	0.0
2001-02	S	320	84.7	973	78.3	283	0.0	291	0.0
2002-03	S	348	100.0	1134	92.7	150	0.0	137	0.0
2003-04	S	431	100.0	1420	91.2	410	1.2	448	1.4
2004-05	S	157	100.0	504	88.4	107	7.5	97	7.9
2005-06	S	164	100.6	556	89.9	109	11.0	104	11.2
2006-07	S	321	59.5	1107	53.1	3	0.0	3	0.0
2007-08	S	167	49.7	568	44.7	101	0.0	93	0.0
2008-09	S	216	96.8	736	81.3	160	3.1	159	3.9
2009-10	S	144	100.0	479	80.9	238	7.1	204	10.0

Table 4 (continued): Philippine and Australian fleets.

		Philippine fleet			
Fishing			Area		
	Reported	\% sets	Reported	\% hooks	
year	sets	observed	hooks	observed	
$2002-03$	N	241	96.7	1002	76.6

		Australian fleet			
Fishing			Area		Reported
\% sets	Reported	\% hooks			
observed	hooks	observed			

Table 5: Numbers of the most common species observed during 2006-07 by fleet and area. Species are shown in descending order of total abundance. Also shown are the percentage of these species that were retained, and the percentage of the discarded fish that were dead on landing (n / a, none discarded).

Species	Charter		$\begin{array}{r} \text { Domestic } \\ \text { North } \end{array}$	$\frac{\text { Australia }}{\text { North }}$	Total number	$\begin{aligned} & \% \text { of } \\ & \text { catch } \end{aligned}$	retained	discards \% dead
	North	South						
Blue shark	2734	5541	3999	132	12406	30.8	67.5	5.3
Ray's bream	285	11459	444	12	12200	30.2	96.8	96.7
Albacore tuna	841	609	1882	79	3411	8.5	96.7	86.1
Southern bluefin tuna	398	1133	315	0	1846	4.6	94.0	5.0
Lancetfish	142	29	1352	270	1793	4.4	0.2	69.6
Big scale pomfret	4	1612	3	0	1619	4.0	1.3	18.0
Moonfish	493	123	180	20	816	2.0	93.0	25.0
Swordfish	93	22	355	326	796	2.0	94.7	40.7
Porbeagle shark	241	387	134	0	762	1.9	78.1	16.8
Mako shark	294	30	264	28	616	1.5	66.1	15.2
Dealfish	0	613	0	1	614	1.5	0.5	82.9
Deepwater dogfish	1	603	0	0	604	1.5	0.7	4.9
Bigeye tuna	8	0	414	80	502	1.2	95.4	66.7
Oilfish	348	4	37	1	390	1.0	7.9	9.2
Sunfish	43	32	192	13	280	0.7	3.9	1.5
Hoki	0	247	0	0	247	0.6	87.9	100.0
School shark	5	229	2	0	236	0.6	97.9	0.0
Butterfly tuna	91	34	83	1	209	0.5	71.3	93.1
Escolar	49	1	125	32	207	0.5	65.2	29.7
Pelagic stingray	8	1	126	43	178	0.4	0.0	8.2
Rudderfish	35	67	68	1	171	0.4	29.8	11.2
Thresher shark	21	54	16	4	95	0.2	36.8	13.5
Cubehead	0	42	5	0	47	0.1	12.8	65.9
Yellowfin tuna	0	0	28	18	46	0.1	80.4	0.0
Black barracouta	9	12	2	10	33	0.1	0.0	51.6
Striped marlin	0	0	12	8	20	0.0	10.0	41.2
Flathead pomfret	1	18	1	0	20	0.0	5.0	50.0
Hapuku bass	1	2	15	0	18	0.0	94.4	0.0
Dolphinfish	0	0	10	7	17	0.0	94.1	n/a
Skipjack tuna	0	1	13	2	16	0.0	87.5	100.0
Shark, unspecified	0	1	1	12	14	0.0	0.0	0.0
Pacific bluefin tuna	2	4	7	0	13	0.0	92.3	100.0
Snake mackerel	0	0	1	9	10	0.0	20.0	50.0
Wingfish	0	10	0	0	10	0.0	0.0	70.0
Hake	1	5	0	0	6	0.0	83.3	100.0
Bronze whaler shark	2	0	1	0	3	0.0	66.7	0.0
Kingfish	0	0	3	0	3	0.0	100.0	n / a
Seahorse	0	2	1	0	3	0.0	0.0	0.0
Shortbill spearfish	0	0	1	2	3	0.0	0.0	66.7
Bigeye thresher shark	2	0	0	0	2	0.0	100.0	n/a
Wahoo	0	0	1	1	2	0.0	50.0	n/a
Blue marlin	0	0	0	1	1	0.0	0.0	100.0
Fanfish	1	0	0	0	1	0.0	0.0	0.0
Sixgill shark	0	1	0	0	1	0.0	0.0	0.0
Hammerhead shark	0	0	0	1	1	0.0	100.0	n / a
Unicornfish	0	1	0	0	1	0.0	0.0	0.0

Table 5: (continued). 2006-07 continued.

Species	Charter		Domestic	Australia	Total	\% of	\%	discards
	North	South	North	North	number	catch	retained	\% dead
Oceanic whitetip shark	0	0	0	1	1	0.0	0.0	n / a
Pipefish	0	0	1	0	1	0.0	100.0	n / a
Gemfish	0	0	1	0	1	0.0	100.0	n/a
Stingray	0	0	1	0	1	0.0	0.0	0.0
Unidentified fish	1	2	29	9	41	0.1	4.9	28.6
Total	6154	22931	10125	1124	40334			

Table 5: (continued). 2007-08.

	Charter	Domestic	Total	$\% \text { of }$	\%	discards
Species	South	North	number	catch	retained	\% dead
Blue shark	2747	5656	8403	42.0	69.8	4.8
Rays bream	3975	152	4127	20.6	96.9	90.4
Albacore tuna	170	1771	1941	9.7	96.1	97.6
Southern bluefin tuna	1301	138	1439	7.2	97.3	0.0
Porbeagle shark	49	488	537	2.7	40.6	22.3
Big scale pomfret	534	2	536	2.7	97.0	83.3
Swordfish	3	496	499	2.5	91.6	67.7
Lancetfish	0	464	464	2.3	1.1	49.9
Mako shark	16	305	321	1.6	68.2	7.7
Deepwater dogfish	250	0	250	1.3	0.4	8.1
Sunfish	10	218	228	1.1	3.1	0.5
Dealfish	192	0	192	1.0	0.0	81.9
Bigeye tuna	0	174	174	0.9	92.5	77.8
Pelagic stingray	4	135	139	0.7	1.4	3.7
Moonfish	41	97	138	0.7	100.0	n / a
Butterfly tuna	5	95	100	0.5	58.0	90.2
Escolar	0	86	86	0.4	79.1	57.1
Rudderfish	38	21	59	0.3	45.8	28.0
Dolphinfish	0	45	45	0.2	93.3	n/a
Oilfish	1	38	39	0.2	59.0	61.5
Yellowfin tuna	0	33	33	0.2	90.9	100.0
Flathead pomfret	31	0	31	0.2	3.2	10.0
Thresher shark	12	17	29	0.1	27.6	20.0
Cubehead	11	5	16	0.1	6.3	78.6
Bronze whaler shark	0	11	11	0.1	27.3	0.0
School shark	10	1	11	0.1	100.0	n/a
Galapagos shark	0	8	8	0.0	75.0	50.0
Shark, unspecified	0	8	8	0.0	0.0	0.0
Hoki	7	0	7	0.0	100.0	n / a
Pacific bluefin tuna	1	6	7	0.0	85.7	n / a
Barracouta	5	1	6	0.0	66.7	100.0
Hapuku bass	0	6	6	0.0	100.0	n / a
Skipjack tuna	0	6	6	0.0	100.0	n / a
Striped marlin	0	6	6	0.0	0.0	0.0
Wingfish	6	0	6	0.0	0.0	66.7
Bigeye thresher shark	0	5	5	0.0	0.0	60.0
Kingfish	0	4	4	0.0	50.0	50.0
Scissortail	3	0	3	0.0	0.0	33.3
Blue marlin	0	2	2	0.0	0.0	100.0
Hammerhead shark	0	2	2	0.0	50.0	0.0
Black barracouta	0	1	1	0.0	0.0	100.0
Oceanic whitetip shark	0	1	1	0.0	100.0	n / a
Ocean blue-eye	0	1	1	0.0	100.0	n/a
Sea perch	0	1	1	0.0	100.0	n / a
Shortbill spearfish	0	1	1	0.0	100.0	n/a
Scalloped dealfish	1	0	1	0.0	0.0	0.0
Unidentified fish	0	60	60	0.3	0.0	100.0
Total	9423	10567	19930			

Table 5: (continued). 2008-09.

Species	Charter		Domestic		Total number	$\begin{aligned} & \% \text { of } \\ & \text { catch } \end{aligned}$	$\begin{array}{r} \% \\ \text { retained } \end{array}$	discards \% dead
	North	South	North	South				
Blue shark	1318	4430	3938	111	9797	35.9	73.6	1.3
Rays bream	313	4343	551	34	5241	19.2	98.7	88.1
Southern bluefin tuna	131	2981	242	100	3454	12.6	98.9	4.5
Albacore tuna	474	131	1990	3	2598	9.5	98.2	96.0
Lancetfish	34	1	1226	0	1261	4.6	0.2	85.6
Dealfish	0	608	0	1	609	2.2	0.3	77.8
Porbeagle shark	79	178	254	5	516	1.9	68.9	3.8
Swordfish	37	6	417	1	461	1.7	97.4	0.0
Big scale pomfret	2	444	0	0	446	1.6	61.1	29.7
Deepwater dogfish	0	439	2	0	441	1.6	0.5	10.1
Mako shark	50	35	290	3	378	1.4	68.0	0.9
Bigeye tuna	12	0	361	0	373	1.4	99.2	n/a
Moonfish	73	34	201	0	308	1.1	99.0	50.0
Escolar	33	0	188	0	221	0.8	72.4	18.5
Oilfish	170	0	35	0	205	0.8	15.6	15.5
Sunfish	5	5	186	1	197	0.7	1.0	0.0
Butterfly tuna	32	64	94	0	190	0.7	74.2	83.7
Pelagic stingray	10	0	162	0	172	0.6	0.6	1.2
School shark	0	132	2	2	136	0.5	98.5	0.0
Rudderfish	7	55	20	0	82	0.3	20.7	27.9
Flathead pomfret	0	51	0	0	51	0.2	3.9	28.6
Dolphinfish	0	0	25	0	25	0.1	100.0	n/a
Thresher shark	3	10	8	0	21	0.1	33.3	7.7
Black barracouta	1	11	1	0	13	0.0	0.0	84.6
Skipjack tuna	0	0	12	0	12	0.0	100.0	n/a
Bigeye thresher shark	2	0	8	0	10	0.0	50.0	0.0
Hoki	0	10	0	0	10	0.0	60.0	100.0
Striped marlin	0	0	9	0	9	0.0	0.0	50.0
Pacific bluefin tuna	0	0	9	0	9	0.0	100.0	n / a
Yellowfin tuna	0	0	9	0	9	0.0	100.0	n / a
Hapuku bass	0	0	5	0	5	0.0	100.0	n / a
Barracouta	0	4	0	0	4	0.0	75.0	0.0
Kingfish	1	0	3	0	4	0.0	25.0	0.0
Blue marlin	0	0	2	0	2	0.0	0.0	50.0
Bronze whaler shark	1	0	1	0	2	0.0	50.0	0.0
Cubehead	0	0	2	0	2	0.0	0.0	100.0
Hammerhead shark	0	0	2	0	2	0.0	100.0	n/a
Broadnose seven gill shark	0	2	0	0	2	0.0	50.0	0.0
Fanfish	0	1	0	0	1	0.0	0.0	0.0
Hake	0	1	0	0	1	0.0	0.0	n / a
Pelagic stargazer	0	0	1	0	1	0.0	100.0	n/a
Shark, unspecified	0	1	0	0	1	0.0	0.0	0.0
Slender tuna	0	1	0	0	1	0.0	0.0	0.0
Wingfish	0	1	0	0	1	0.0	0.0	100.0
Unidentified fish	1	1	34	0	36	0.1	5.6	25.0
Total	2789	13980	10290	261	27320			

Table 5: (continued). 2009-10.

Species	Charter	Domestic		Total number	\% of catch	retained	discards \% dead
	South	North	South				
Blue shark	2024	4650	882	7556	32.2	52.1	6.6
Rays bream	3295	326	88	3709	15.8	98.4	73.3
Southern bluefin tuna	3244	211	179	3634	15.5	98.4	9.8
Lancetfish	3	2139	1	2143	9.1	0.0	85.2
Albacore tuna	90	1772	42	1904	8.1	97.3	97.1
Dealfish	882	0	7	889	3.8	0.3	63.3
Swordfish	3	452	2	457	2.0	94.3	47.1
Moonfish	76	339	6	421	1.8	97.1	0.0
Porbeagle shark	72	328	20	420	1.8	51.7	32.0
Mako shark	11	343	7	361	1.5	21.6	16.5
Big scale pomfret	349	4	0	353	1.5	42.6	10.5
Deepwater dogfish	305	0	0	305	1.3	0.3	7.0
Sunfish	7	283	5	295	1.3	0.0	0.4
Bigeye tuna	0	191	0	191	0.8	96.3	n/a
Escolar	0	129	0	129	0.6	89.8	37.5
Butterfly tuna	15	100	3	118	0.5	76.3	80.8
Pelagic stingray	0	96	0	96	0.4	0.0	1.1
Oilfish	2	75	0	77	0.3	85.7	20.0
Rudderfish	39	20	2	61	0.3	38.3	29.4
Flathead pomfret	56	0	0	56	0.2	0.0	14.5
Dolphinfish	0	47	0	47	0.2	76.6	37.5
School shark	34	0	2	36	0.2	100.0	n/a
Striped marlin	0	24	0	24	0.1	4.3	31.6
Thresher shark	7	17	0	24	0.1	25.0	26.7
Cubehead	13	0	1	14	0.1	14.3	100.0
Kingfish	0	10	0	10	0.0	40.0	0.0
Yellowfin tuna	0	9	0	9	0.0	100.0	n / a
Hake	8	0	0	8	0.0	100.0	n / a
Hapuku bass	1	6	0	7	0.0	100.0	n / a
Pacific bluefin tuna	0	5	0	5	0.0	100.0	n/a
Black barracouta	0	4	0	4	0.0	0.0	75.0
Skipjack tuna	0	4	0	4	0.0	100.0	n/a
Shortbill spearfish	0	4	0	4	0.0	0.0	75.0
Gemfish	0	3	0	3	0.0	100.0	n/a
Bigeye thresher shark	0	2	0	2	0.0	0.0	0.0
Snipe eel	2	0	0	2	0.0	50.0	0.0
Slender tuna	2	0	0	2	0.0	0.0	50.0
Wingfish	2	0	0	2	0.0	50.0	0.0
Bronze whaler shark	0	1	0	1	0.0	100.0	n/a
Hammerhead shark	0	1	0	1	0.0	0.0	0.0
Hoki	0	0	1	1	0.0	100.0	n / a
Louvar	0	1	0	1	0.0	100.0	n/a
Marlin, unspecified	0	1	0	1	0.0	0.0	0.0
Scissortail	0	1	0	1	0.0	0.0	100.0
Broadnose seven gill shark	1	0	0	1	0.0	0.0	0.0
Shark, unspecified	0	1	0	1	0.0	0.0	0.0
Unidentified fish	2	30	8	40	0.2	2.6	0.0
Total	10545	11629	1256	23430			

Table 6: Percentage of main non-target species (including discards) that were alive or dead when observed during 2006-07 to 2009-10, by fishing year, fleet and region. Small sample sizes (number observed less than 20) omitted.

1. Sharks

Species	Year	Fleet	Area	\% alive	\% dead	Number
Blue shark	2006-07	Australia	North	95.4	4.6	131
		Charter	North	89.8	10.2	2155
			South	93.4	6.6	5025
		Domestic	North	87.9	12.1	3991
		Total		90.8	9.2	11302
	2007-08	Charter	South	89.2	10.8	2560
		Domestic	North	88.6	11.4	5599
		Total		88.8	11.2	8159
	2008-09	Charter	North	94.5	5.5	1317
			South	95.1	4.9	4313
		Domestic	North	92.0	8.0	3935
			South	94.9	5.1	98
		Total		93.7	6.3	9663
	2009-10	Charter	South	95.6	4.4	2004
		Domestic	North	85.7	14.3	2853
			South	94.0	6.0	882
		Total		90.5	9.5	5739
	Total all			91.1	8.9	34863
Mako shark	2006-07	Australia	North	82.1	17.9	28
		Charter	North	83.0	17.0	276
			South	93.1	6.9	29
		Domestic	North	67.6	32.4	262
		Total		76.6	23.4	595
	2007-08	Domestic	North	63.8	36.2	304
		Total		64.7	35.3	320
	2008-09	Charter	North	88.6	11.4	44
			South	100.0	0.0	31
		Domestic	North	69.6	30.4	289
		Total		74.4	25.6	367
	2009-10	Domestic	North	76.1	23.9	330
		Total		75.9	24.1	348
	Total all strata			73.6	26.4	1630

Table 6 (continued). Sharks (continued)

Species	Year	Fleet	Area	\% alive	\% dead	Number
Porbeagle shark	2006-07	Charter	North	60.5	39.5	223
			South	87.3	12.7	370
		Domestic	North	44.8	55.2	134
		Total		71.3	28.7	727
	2007-08	Charter	South	77.6	22.4	49
		Domestic	North	59.6	40.4	488
		Total		61.3	38.7	537
	2008-09	Charter	North	91.0	9.0	78
			South	85.4	14.6	158
		Domestic	North	57.9	42.1	254
		Total		71.5	28.5	494
	2009-10	Charter	South	82.4	17.6	68
		Domestic	North	40.4	59.6	322
			South	30.0	70.0	20
		Total		46.8	53.2	410
	Total all s			64.2	35.8	2168
School shark	2006-07	Charter	South	77.7	22.3	220
		Total		77.4	22.6	226
	2007-08	Total		90.9	9.1	11
	2008-09	Charter	South	69.6	30.4	112
		Total		69.0	31.0	116
	2009-10	Charter	South	65.5	34.5	29
		Total		64.5	35.5	31
	Total all			74.2	25.8	384
Deepwater dogfish	2006-07	Charter	South	95.1	4.9	556
		Total		95.1	4.9	556
	2007-08	Charter	South	92.0	8.0	249
		Total		92.0	8.0	249
	2008-09	Charter	South	90.2	9.8	437
		Total		89.7	10.3	439
	2009-10	Charter	South	93.0	7.0	301
		Total		93.0	7.0	301
	Total all			92.7	7.3	1545

Table 6 (continued). 2. Tuna and billfish

Species	Year	Fleet	Area	\% alive	\% dead	Number
Albacore	2006-07	Australia	North	21.5	78.5	79
		Charter	North	61.2	38.8	784
			South	77.3	22.7	587
		Domestic	North	28.1	71.9	1880
		Total		44.4	55.6	3330
	2007-08	Charter	South	71.3	28.7	167
		Domestic	North	22.7	77.3	1765
		Total		26.9	73.1	1932
	2008-09	Charter	North	84.6	15.4	410
			South	79.5	20.5	112
		Domestic	North	33.7	66.3	1986
		Total		44.0	56.0	2511
	2009-10	Charter	South	82.1	17.9	78
		Domestic	North	28.8	71.2	1766
			South	42.9	57.1	42
		Total		31.3	68.7	1886
	Total all			38.2	61.8	9659
Butterfly tuna	2006-07	Charter	North	31.4	68.6	86
			South	27.6	72.4	29
		Domestic	North	12.0	88.0	83
		Total		22.6	77.4	199
	2007-08	Domestic	North	6.3	93.7	95
		Total		6.0	94.0	100
	2008-09	Charter	North	75.9	24.1	29
			South	68.6	31.4	51
		Domestic	North	14.9	85.1	94
		Total		40.8	59.2	174
	2009-10	Domestic	North	13.0	87.0	100
		Total		19.1	80.9	115
	Total all			24.5	75.5	588
Yellowfin tuna	2006-07	Domestic	North	75.0	25.0	28
		Total		78.3	21.7	46
	2007-08	Domestic	North	75.8	24.2	33
		Total		75.8	24.2	33
	2008-09	Total		88.9	11.1	9
	2009-10	Total		88.9	11.1	9
	Total all			79.4	20.6	97

Table 6 (continued). Tuna and billfish (continued)

Species	Year	Fleet	Area	\% alive	\% dead	Number
Swordfish	2006-07	Australia	North	42.8	57.2	325
		Charter	North	58.9	41.1	90
			South	61.9	38.1	21
		Domestic	North	27.3	72.7	355
		Total		38.2	61.8	791
	2007-08	Domestic	North	25.1	74.9	495
		Total		25.3	74.7	498
	2008-09	Charter	North	97.0	3.0	33
		Domestic	North	26.0	74.0	416
		Total		31.6	68.4	455
	2009-10	Domestic	North	23.2	76.8	448
		Total		23.7	76.3	452
	Total all s			30.9	69.1	2196
Striped marlin	2006-07	Total		65.0	35.0	20
	2007-08	Total		100.0	0.0	6
	2008-09	Total		50.0	50.0	8
	2009-10	Domestic	North	72.7	27.3	22
		Total		72.7	27.3	22
	Total all s			69.6	30.4	56

Table 6: (continued).
3. Teleosts

Species	Year	Fleet	Area	\% alive	\% dead	Number
Moonfish	2006-07	Australia	North	80.0	20.0	20
		Charter	North	85.2	14.8	472
			South	84.2	15.8	114
		Domestic	North	65.6	34.4	180
		Total		80.4	19.6	786
	2007-08	Charter	South	100.0	0.0	41
		Domestic	North	78.4	21.6	97
		Total		84.8	15.2	138
	2008-09	Charter	North	100.0	0.0	60
			South	100.0	0.0	30
		Domestic	North	72.6	27.4	201
		Total		81.1	18.9	291
	2009-10	Charter	South	98.6	1.4	69
		Domestic	North	71.5	28.5	333
		Total		76.0	24.0	408
	Total all			79.8	20.2	1623
Ray's bream	2006-07	Charter	North	87.0	13.0	215
			South	96.0	4.0	10350
		Domestic	North	65.8	34.2	442
		Total		94.6	5.4	11019
	2007-08	Charter	South	95.7	4.3	3680
		Domestic	North	70.2	29.8	151
		Total		94.6	5.4	3831
	2008-09	Charter	North	90.1	9.9	313
			South	97.9	2.1	4277
		Domestic	North	78.8	21.2	551
			South	94.1	5.9	34
		Total		95.4	4.6	5175
	2009-10	Charter	South	96.3	3.7	3259
		Domestic	North	85.6	14.4	264
			South	92.0	8.0	88
		Total		95.5	4.5	3611
	Total all			94.9	5.1	23636

Table 6 (continued). Teleosts (continued)

Species	Year	Fleet	Area	\% alive	\% dead	Number
Bigscale pomfret	2006-07	Charter	South	82.2	17.8	1537
		Total		82.2	17.8	1544
	2007-08	Charter	South	95.4	4.6	519
		Total		95.0	5.0	521
	2008-09	Charter	South	88.4	11.6	438
		Total		88.2	11.8	440
	2009-10	Charter	South	91.3	8.7	333
		Total		90.5	9.5	337
	Total all strata			86.5	13.5	2842
Escolar	2006-07	Australia	North	59.4	40.6	32
		Charter	North	77.6	22.4	49
		Domestic	North	68.0	32.0	125
		Total		69.1	30.9	207
	2007-08	Domestic	North	60.5	39.5	86
		Total		60.5	39.5	86
	2008-09	Charter	North	97.0	3.0	33
		Domestic	North	80.1	19.9	186
		Total		82.6	17.4	219
	2009-10	Domestic	North	78.0	22.0	127
		Total		78.0	22.0	127
	Total all strata			74.3	25.7	639
Oilfish	2006-07	Charter	North	91.7	8.3	327
		Domestic	North	83.8	16.2	37
		Total		90.8	9.2	369
	2007-08	Domestic	North	65.8	34.2	38
		Total		66.7	33.3	39
	2008-09	Charter	North	85.3	14.7	170
		Domestic	North	80.0	20.0	35
		Total		84.4	15.6	205
	2009-10	Domestic	North	86.3	13.7	73
		Total		86.7	13.3	75
	Total all			87.1	12.9	688

Table 6 (continued). Teleosts (continued)

Species	Year	Fleet	Area	\% alive	\% dead	Number
Rudderfish	2006-07	Charter	North	97.1	2.9	35
			South	85.0	15.0	60
		Domestic	North	61.8	38.2	68
		Total		77.4	22.6	164
	2007-08	Charter	South	83.3	16.7	36
		Domestic	North	75.0	25.0	20
		Total		80.4	19.6	56
	2008-09	Charter	South	72.2	27.8	54
		Domestic	North	90.0	10.0	20
		Total		77.8	22.2	81
	2009-10	Charter	South	73.7	26.3	38
		Domestic	North	80.0	20.0	20
		Total		76.7	23.3	60
	Total all strata			77.8	22.2	361
Dealfish	2006-07	Charter	South	18.7	81.3	461
		Total		18.6	81.4	462
	2007-08	Charter	South	24.9	75.1	177
		Total		24.9	75.1	177
	2008-09	Charter	South	26.1	73.9	605
		Total		26.2	73.8	606
	2009-10	Charter	South	49.4	50.6	874
		Total		49.6	50.4	881
	Total all strata			34.1	65.9	2126
Lancetfish	2006-07	Australia	North	16.7	83.3	270
		Charter	North	59.2	40.8	142
			South	79.3	20.7	29
		Domestic	North	28.8	71.2	1079
		Total		30.5	69.5	1520
	2007-08	Domestic	North	49.6	50.4	450
		Total		49.6	50.4	450
	2008-09	Charter	North	76.5	23.5	34
		Domestic	North	12.9	87.1	1200
		Total		14.7	85.3	1235
	2009-10	Domestic	North	15.1	84.9	2024
		Total		15.2	84.8	2028
	Total all s			22.5	77.5	5233

Table 7: Percentage of main non-target species that were retained, or discarded or lost, when observed during 2006-07 to 2009-10, by fishing year and fleet. Small sample sizes (number observed less than 20) omitted.

1. Sharks

Species	Year	Fleet	\% retained or finned	\% discarded or lost	Number
Blue shark	2006-07	Australia	3.0	97.0	132
		Charter	85.1	14.9	8272
		Domestic	33.2	66.8	3994
		Total	67.5	32.5	12398
	2007-08	Charter	91.8	8.2	2638
		Domestic	59.5	40.5	5650
		Total	69.8	30.2	8288
	2008-09	Charter	87.5	12.5	5723
		Domestic	54.0	46.0	4049
		Total	73.6	26.4	9772
	2009-10	Charter	91.7	8.3	2023
		Domestic	37.6	62.4	5531
		Total	52.1	47.9	7554
	Total all		66.5	33.5	38012
Mako shark	2006-07	Australia	17.9	82.1	28
		Charter	93.8	6.2	323
		Domestic	37.0	63.0	262
		Total	66.1	33.9	613
	2007-08	Domestic	66.6	33.4	305
		Total	68.2	31.8	321
	2008-09	Charter	100.0	0.0	85
		Domestic	58.7	41.3	293
		Total	68.0	32.0	378
	2009-10	Domestic	19.1	80.9	350
		Total	21.6	78.4	361
	Total all		57.3	42.7	1673

Table 7 (continued). Sharks (continued)

Species	Year	Fleet	\% retained or finned	\% discarded or lost	Number
Porbeagle shark	2006-07	Charter	86.6	13.4	628
		Domestic	38.1	61.9	134
		Total	78.1	21.9	762
	2007-08	Charter	89.8	10.2	49
		Domestic	35.7	64.3	488
		Total	40.6	59.4	537
	2008-09	Charter	91.1	8.9	257
		Domestic	46.9	53.1	258
		Total	68.9	31.1	515
	2009-10	Charter	79.2	20.8	72
		Domestic	46.0	54.0	348
		Total	51.7	48.3	420
	Total all		62.0	38.0	2234
School shark	2006-07	Charter	97.9	2.1	233
		Total	97.9	2.1	235
	2007-08	Total	100.0	0.0	11
	2008-09	Charter	99.2	0.8	132
		Total	98.5	1.5	136
	2009-10	Charter	100.0	0.0	34
		Total	100.0	0.0	36
	Total all		98.3	1.7	418
Deepwater dogfish	2006-07	Charter	0.7	99.3	603
		Total	0.7	99.3	603
	2007-08	Charter	0.4	99.6	250
		Total	0.4	99.6	250
	2008-09	Charter	0.2	99.8	436
		Total	0.5	99.5	438
	2009-10	Charter	0.3	99.7	305
		Total	0.3	99.7	305
	Total all		0.5	99.5	1596

Table 7: (continued).
2. Tuna and billfish

Species	Year	Fleet	\% retained	\% discarded or lost	Number
Albacore	2006-07	Australia	92.4	7.6	79
		Charter	97.7	2.3	1448
		Domestic	96.1	3.9	1882
		Total	96.7	3.3	3409
	2007-08	Charter	98.8	1.2	170
		Domestic	95.9	4.1	1769
		Total	96.1	3.9	1939
	2008-09	Charter	99.7	0.3	605
		Domestic	97.8	2.2	1993
		Total	98.2	1.8	2598
	2009-10	Charter	100.0	0.0	89
		Domestic	97.2	2.8	1814
		Total	97.3	2.7	1903
	Total all		97.1	2.9	9849
Butterfly tuna	2006-07	Charter	98.4	1.6	125
		Domestic	31.3	68.7	83
		Total	71.3	28.7	209
	2007-08	Domestic	55.8	44.2	95
		Total	58.0	42.0	100
	2008-09	Charter	99.0	1.0	96
		Domestic	48.9	51.1	94
		Total	74.2	25.8	190
	2009-10	Charter	100.0	0.0	15
		Domestic	72.8	27.2	103
		Total	76.3	23.7	118
	Total all		71.0	29.0	617
Yellowfin tuna	2006-07	Domestic	78.6	21.4	28
		Total	80.4	19.6	46
	2007-08	Domestic	90.9	9.1	33
		Total	90.9	9.1	33
	2008-09	Total	100.0	0.0	9
	2009-10	Total	100.0	0.0	9
	Total all		87.6	12.4	97

Table 7 (continued). Tuna and billfish (continued)

Species	Year	Fleet	\% retained	\% discarded or lost	Number
Swordfish	2006-07	Australia	94.8	5.2	326
		Charter	99.1	0.9	115
		Domestic	93.2	6.8	355
		Total	94.7	5.3	796
	2007-08	Charter	100.0	0.0	3
		Domestic	91.5	8.5	496
		Total	91.6	8.4	499
	2008-09	Charter	100.0	0.0	43
		Domestic	97.1	2.9	418
		Total	97.4	2.6	461
	2009-10	Charter	100.0	0.0	3
		Domestic	94.3	5.7	454
		Total	94.3	5.7	457
	Total all		94.5	5.5	2213
Striped marlin	2006-07	Total	10.0	90.0	20
	2007-08	Total	0.0	100.0	6
	2008-09	Total	0.0	100.0	9
	2009-10	Domestic	4.3	95.7	23
		Total	4.3	95.7	23
	Total all		5.2	94.8	58

Table 7: (continued).
3. Teleosts

Species	Year	Fleet	\% retained	\% discarded or lost	Number
Moonfish	2006-07	Australia	100.0	0.0	20
		Charter	91.6	8.4	616
		Domestic	97.2	2.8	180
		Total	93.0	7.0	816
	2007-08	Charter	100.0	0.0	41
		Domestic	100.0	0.0	96
		Total	100.0	0.0	137
	2008-09	Charter	100.0	0.0	107
		Domestic	98.5	1.5	201
		Total	99.0	1.0	308
	2009-10	Charter	100.0	0.0	76
		Domestic	96.5	3.5	345
		Total	97.1	2.9	421
	Total all s		95.7	4.3	1682
Ray's bream	2006-07	Charter	96.8	3.2	11744
		Domestic	95.7	4.3	442
		Total	96.8	3.2	12198
	2007-08	Charter	96.8	3.2	3714
		Domestic	98.7	1.3	152
		Total	96.9	3.1	3866
	2008-09	Charter	98.7	1.3	4646
		Domestic	98.3	1.7	585
		Total	98.7	1.3	5231
	2009-10	Charter	98.8	1.2	3291
		Domestic	95.3	4.7	361
		Total	98.4	1.6	3652
	Total all s		97.4	2.6	24947

Table 7 (continued). Teleosts (continued)

Species	Year	Fleet	\% retained	\% discarded or lost	Number
Bigscale pomfret	2006-07	Charter	1.2	98.8	1615
		Total	1.3	98.7	1618
	2007-08	Charter	97.0	3.0	529
		Total	97.0	3.0	531
	2008-09	Charter	61.1	38.9	445
		Total	61.1	38.9	445
	2009-10	Charter	42.0	58.0	348
		Total	42.6	57.4	352
	Total all strata		32.5	67.5	2946
Escolar	2006-07	Australia	68.8	31.3	32
		Charter	0.0	100.0	50
		Domestic	90.4	9.6	125
		Total	65.2	34.8	207
	2007-08	Domestic	79.1	20.9	86
		Total	79.1	20.9	86
	2008-09	Charter	0.0	100.0	33
		Domestic	85.1	14.9	188
		Total	72.4	27.6	221
	2009-10	Domestic	89.8	10.2	128
		Total	89.8	10.2	128
	Total all strata		74.5	25.5	642
Oilfish	2006-07	Charter	0.0	100.0	352
		Domestic	83.8	16.2	37
		Total	7.9	92.1	390
	2007-08	Domestic	60.5	39.5	38
		Total	59.0	41.0	39
	2008-09	Charter	0.6	99.4	170
		Domestic	88.6	11.4	35
		Total	15.6	84.4	205
	2009-10	Domestic	88.0	12.0	75
		Total	85.7	14.3	77
	Total all s		21.4	78.6	711

Table 7 (continued). Teleosts (continued)

Species	Year	Fleet	\% retained	\% discarded or lost	Number
Rudderfish	2006-07	Charter	2.0	98.0	102
		Domestic	72.1	27.9	68
		Total	29.8	70.2	171
	2007-08	Charter	42.1	57.9	38
		Domestic	52.4	47.6	21
		Total	45.8	54.2	59
	2008-09	Charter	0.0	100.0	62
		Domestic	85.0	15.0	20
		Total	20.7	79.3	82
	2009-10	Charter	10.5	89.5	38
		Domestic	86.4	13.6	22
		Total	38.3	61.7	60
	Total all		31.7	68.3	372
Dealfish	2006-07	Charter	0.5	99.5	613
		Total	0.5	99.5	614
	2007-08	Charter	0.0	100.0	192
		Total	0.0	100.0	192
	2008-09	Charter	0.3	99.7	608
		Total	0.3	99.7	609
	2009-10	Charter	0.3	99.7	882
		Total	0.3	99.7	889
	Total all		0.3	99.7	2304
Lancetfish	2006-07	Australia	0.4	99.6	270
		Charter	0.6	99.4	171
		Domestic	0.1	99.9	1320
		Total	0.2	99.8	1761
	2007-08	Domestic	1.1	98.9	463
		Total	1.1	98.9	463
	2008-09	Charter	0.0	100.0	35
		Domestic	0.2	99.8	1226
		Total	0.2	99.8	1261
	2009-10	Domestic	0.0	100.0	2137
		Total	0.0	100.0	2140
	Total all		0.2	99.8	5625

Table 8: Percentage of discarded main non-target species that were alive or dead when observed during 2006-07 to 2009-10, by fishing year, fleet and region. Small sample sizes (number observed less than 20) omitted. 1. Sharks

Species	Year	Fleet	\% alive	\% dead	Number
Blue shark	2006-07	Australia	98.1	1.9	104
		Charter	97.9	2.1	516
		Domestic	93.9	6.1	2482
		Total	94.7	5.3	3102
	2007-08	Charter	100.0	0.0	90
		Domestic	94.9	5.1	2036
		Total	95.2	4.8	2126
	2008-09	Charter	99.6	0.4	549
		Domestic	98.4	1.6	1765
		Total	98.7	1.3	2314
	2009-10	Charter	100.0	0.0	88
		Domestic	93.0	7.0	1537
		Total	93.4	6.6	1625
	Total all strata		95.6	4.4	9167
Mako shark	2006-07	Domestic	83.0	17.0	147
		Total	84.8	15.2	171
	2007-08	Domestic	92.3	7.7	91
		Total	92.3	7.7	91
	2008-09	Domestic	99.1	0.9	113
		Total	99.1	0.9	113
	2009-10	Domestic	83.5	16.5	260
		Total	83.5	16.5	260
	Total all strata		87.9	12.1	635
Porbeagle shark	2006-07	Charter	97.1	2.9	70
		Domestic	70.9	29.1	79
		Total	83.2	16.8	149
	2007-08	Domestic	77.3	22.7	309
		Total	77.7	22.3	314
	2008-09	Charter	100.0	0.0	22
		Domestic	95.5	4.5	134
		Total	96.2	3.8	156
	2009-10	Charter	100.0	0.0	15
		Domestic	65.4	34.6	179
		Total	68.0	32.0	194
	Total all s	ta	80.0	20.0	813

Table 8 (continued). Sharks (continued)

Species	Year	Fleet	\% alive	\% dead	Number
School shark	2006-07	Total	100.0	0.0	3
	2007-08	Total	100.0	0.0	1
	Total all strata		100.0	0.0	4
Deepwater dogfish	2006-07	Charter	95.1	4.9	554
		Total	95.1	4.9	554
	2007-08	Charter	91.9	8.1	248
		Total	91.9	8.1	248
	2008-09	Charter	90.1	9.9	435
		Total	89.9	10.1	436
	2009-10	Charter	93.0	7.0	300
		Total	93.0	7.0	300
	Total all strata		92.7	7.3	1538

Table 8 (continued)
2. Tuna and billfish

Species	Year	Fleet	\% alive	\% dead	Number
Albacore	2006-07	Charter	14.3	85.7	21
		Domestic	14.8	85.2	54
		Total	14.7	85.3	75
	2007-08	Domestic	2.5	97.5	40
		Total	2.4	97.6	41
	2008-09	Domestic	4.3	95.7	23
		Total	4.0	96.0	25
	2009-10	Domestic	2.9	97.1	35
		Total	2.9	97.1	35
	Total all strata		8.0	92.0	176
Butterfly tuna	2006-07	Domestic	7.1	92.9	56
		Total	7.0	93.0	57
	2007-08	Domestic	9.8	90.2	41
		Total	9.8	90.2	41
	2008-09	Domestic	16.7	83.3	48
		Total	16.3	83.7	49
	2009-10	Domestic	19.2	80.8	26
		Total	19.2	80.8	26
	Total all strata		12.1	87.9	173
Yellowfin tuna	2006-07	Total	100.0	0.0	5
	2007-08	Total	0.0	100.0	2
	Total all strata		71.4	28.6	7
Swordfish	2006-07	Total	63.2	36.8	19
	2007-08	Domestic	32.3	67.7	31
		Total	32.3	67.7	31
	2008-09	Total	100.0	0.0	7
	2009-10	Total	52.9	47.1	17
	Total all strata		51.4	48.6	74
Striped marlin	2006-07	Total	44.4	55.6	9
	2007-08	Total	100.0	0.0	5
	2008-09	Total	50.0	50.0	8
	2009-10	Total	68.4	31.6	19
	Total all s		63.4	36.6	41

Table 8 (continued)
3. Teleosts

Species	Year	Fleet	\% alive	\% dead	Number
Moonfish	2006-07	Charter	76.7	23.3	43
		Total	75.0	25.0	44
	2008-09	Total	50.0	50.0	2
	2009-10	Total	100.0	0.0	2
	Total all strata		75.0	25.0	48
Ray's bream	2006-07	Charter	3.1	96.9	262
		Total	3.3	96.7	275
	2007-08	Charter	9.8	90.2	92
		Total	9.6	90.4	94
	2008-09	Charter	9.3	90.7	54
		Total	11.9	88.1	59
	2009-10	Charter	29.3	70.7	41
		Total	26.7	73.3	45
	Total all strata		7.8	92.2	473
Bigscale pomfret	2006-07	Charter	82.0	18.0	1517
		Total	82.0	18.0	1518
	2007-08	Charter	16.7	83.3	12
		Total	16.7	83.3	12
	2008-09	Charter	70.3	29.7	172
		Total	70.3	29.7	172
	2009-10	Charter	89.5	10.5	200
		Total	89.5	10.5	200
	Total all strata		81.3	18.7	1902
Escolar	2006-07	Charter	77.6	22.4	49
		Domestic	33.3	66.7	6
		Total	72.7	27.3	55
	2007-08	Total	42.9	57.1	14
	2008-09	Charter	97.0	3.0	33
		Domestic	57.1	42.9	21
		Total	81.5	18.5	54
	2009-10	Total	62.5	37.5	8
	Total all s		72.5	27.5	131

Table 8 (continued). Teleosts (continued)

Species	Year	Fleet	\% alive	\% dead	Number
Oilfish	2006-07	Charter	91.6	8.4	322
		Total	91.0	9.0	324
	2007-08	Total	38.5	61.5	13
	2008-09	Charter	84.2	15.8	158
		Total	84.5	15.5	161
	2009-10	Total	80.0	20.0	5
	Total all s		87.5	12.5	503
Rudderfish	2006-07	Charter	90.8	9.2	87
		Total	89.8	10.2	88
	2007-08	Charter	70.0	30.0	20
		Total	72.0	28.0	25
	2008-09	Charter	72.4	27.6	58
		Total	72.1	27.9	61
	2009-10	Charter	70.6	29.4	34
		Total	70.6	29.4	34
	Total all s		79.3	20.7	208
Dealfish	2006-07	Charter	17.1	82.9	427
		Total	17.1	82.9	427
	2007-08	Charter	18.1	81.9	160
		Total	18.1	81.9	160
	2008-09	Charter	22.1	77.9	552
		Total	22.2	77.8	553
	2009-10	Charter	36.7	63.3	679
		Total	36.7	63.3	683
	Total all s		26.1	73.9	1823
Lancetfish	2006-07	Charter	62.5	37.5	168
		Domestic	29.2	70.8	1060
		Total	33.7	66.3	1228
	2007-08	Domestic	50.1	49.9	439
		Total	50.1	49.9	439
	2008-09	Charter	76.5	23.5	34
		Domestic	12.7	87.3	1192
		Total	14.4	85.6	1226
	2009-10	Domestic	14.8	85.2	1998
		Total	14.8	85.2	2001
	Total all s		22.6	77.4	4894

Figure 1: Number of hooks set by fishing year and fleet from 1979-80 to 2009-10. "Foreign + charter" includes Japanese foreign licensed and charter vessels, Korean foreign licensed vessels, Philippine charter vessels, Australian charter vessels, and one large New Zealand domestic vessel which fished with the charter fleet.

Figure 2: Numbers of hooks set, and percentage of hooks observed, by fleet, area and fishing year. "Foreign + charter" includes Japanese foreign licensed and charter vessels, Korean foreign licensed vessels, Philippine charter vessels, Australian charter vessels, and one large New Zealand domestic vessel which fished with the charter fleet.

Figure 3: Numbers of hooks set (thousand), based on commercial returns (top), and observed (bottom), plotted at start positions for longlines set by chartered vessels (left), and domestic vessels (right) per $0.2^{\circ} \mathbf{x}$ 0.2° cell, in 2006-07.

Figure 3: (continued). 2007-08.

Figure 3: (continued). 2008-09.

Figure 3: (continued). 2009-10.

Figure 4: Monthly distribution of reported sets and the percentage observed in 2006-07 to 2009-10 by fleet and month. The percentage of hooks observed is shown on the right hand axes (white circles).

Figure 5: Comparison of commercial and observed numbers of sets, for domestic vessels (black lines) and chartered Japanese vessels (grey lines), 2000-01 to 2009-10, by start latitude positions, where solid lines represent commercial data and dashed lines represent observed data. The total number of sets by each fleet and the percentage observed is given for each fishing year. Note: there was no observed domestic effort in 2002-03.

Figure 6: Comparison of commercial and observed numbers of sets, for domestic vessels (black lines) and chartered Japanese vessels (grey lines), 2000-01 to 2009-10, by start longitude positions, where solid lines represent commercial data and dashed lines represent observed data. The total number of sets by each fleet and the percentage observed is given for each fishing year. Note: there was no observed domestic effort in 2002-03.

Figure 7: Comparison of commercial and observed numbers of sets, for domestic vessels (black lines) and chartered Japanese vessels (grey lines), 2000-01 to 2009-10, by month (2 is February, 12 is December), where solid lines represent commercial data and dashed lines represent observed data. Note: there was no observed domestic effort in 2002-03. One large domestic vessel was included with the Japanese fleet.

Figure 8: Annual variation in CPUE by fleet and area. Plotted values are the mean estimates with 95% confidence limits. Fishing year 1989 is October 1988 to September 1989. 1. Sharks.

Fishing year

Figure 8: (continued). 2. Tunas.

Figure 8: (continued). 3. Other species.

Figure 8: (continued). 3. Other species.

Figure 9: Observer-based estimates of scaled total numbers of fish caught, with 95% confidence limits, and numbers reported caught on TLCER forms. Fishing year 1989 is October 1988 to September 1989. 1. Sharks.

Figure 9: (continued). 2. Tunas.

Figure 9: (continued). 3. Other species.

Figure 9: (continued). 3. Other species

Figure 10: Length-frequency distributions of blue shark by fishing year, sex, and area.

Figure 11: Length-frequency distributions of porbeagle shark by fishing year, sex, and area. Sample sizes of less than 20 fish not shown.

Figure 12: Length-frequency distributions of mako shark by fishing year, sex, and area. Sample sizes of less than 20 fish not shown.

Figure 13: Length-frequency distributions of Ray's bream by fishing year, sex, and area. Sample sizes of less than 20 fish not shown.

Figure 13: (continued). Length-frequency distributions of Ray's bream by fishing year, and area.

Appendix 1: Numbers of fish reported by observers during 2006-07 to 2009-10, and the total observed catch since 1988-89. Species are ranked in descending order of abundance since 1988-89.

Species	Scientific Name	$\begin{array}{r} 2006-07 \text { to } \\ 2009-10 \end{array}$	Total number
Blue shark	Prionace glauca	38162	182628
Albacore tuna	Thunnus alalunga	9854	101316
Ray's bream	Brama brama	25277	98205
Southern bluefin tuna	Thunnus maccoyii	10373	43291
Porbeagle shark	Lamna nasus	2235	19011
Dealfish	Kajikia trachypterus	2304	17185
Lancetfish	Alepisaurus ferox \& A. brevirostris	5661	14383
Moonfish	Lampris guttatus	1683	9134
Deepwater dogfish	Squaliformes	1600	9112
Swordfish	Xiphias gladius	2213	8286
Big scale pomfret	Taractichthys longipinnis	2954	7818
Oilfish	Ruvettus pretiosus	711	7542
Mako shark	Isurus oxyrinchus	1676	6162
Rudderfish	Centrolophus niger	373	4907
Butterfly tuna	Gasterochisma melampus	617	4469
Escolar	Lepidocybium flavobrunneum	643	4422
Bigeye tuna	Thunnus obesus	1240	4390
School shark	Galeorhinus galeus	419	3620
Yellowfin tuna	Thunnus albacares	97	3342
Sunfish	Mola mola	1000	2755
Pelagic stingray	Pteroplatytrygon violacea	585	2398
Hoki	Macruronus novaezelandiae	265	2021
Thresher shark	Alopias vulpinus	169	1400
Skipjack tuna	Katsuwonus pelamis	38	1151
Dolphinfish	Coryphaena hippurus	134	608
Flathead pomfret	Taractes asper	158	516
Striped marlin	Tetrapturus audax	59	468
Black barracouta	Nesiarchus nasutus	51	386
Barracouta	Thyrsites atun	10	357
Pacific bluefin tuna	Thunnus orientalis	34	222
Shark, unidentified	Selachii	24	213
Cubehead	Cubiceps spp.	79	204
Hapuku and bass	Polyprion oxygeneios \& P. americanus	36	198
Slender tuna	Allothunnus fallai	3	168
Bronze whaler shark	Carcharhinus brachyurus	17	136
Shortbill spearfish	Tetrapturus angustirostris	8	133
Kingfish	Seriola lalandi	21	104
Ray, unidentified	Myliobatiformes	1	90
Frostfish	Lepidopus caudatus	0	77
Wahoo	Acanthocybium solandri	2	72
Fanfish	Pterycombus petersii	2	67
Opah	Lampris immaculatus	0	65
Wingfish	Pteraclis velifera	19	57

Appendix 1: (continued).

Species	Scientific Name	$\begin{array}{r} 2006-07 \text { to } \\ 2009-10 \end{array}$	Total number
Bigeye thresher	Alopias superciliosus	19	55
Snipe eel	Nemichthyidae	2	54
Hake	Merluccius australis	15	49
Gemfish	Rexea solandri	4	22
Blue marlin	Makaira mazara	5	20
Unicornfish	Lophotus capellei	1	19
Hammerhead shark	Sphyrna zygaena	6	19
Oceanic whitetip shark	Carcharhinus longimanus	2	18
Skate	Rajidae	0	11
Pilotfish	Naucrates ductor	0	10
Snake mackerel	Gempylus serpens	10	10
Marlin, unspecified	Isiophoridae	1	9
Bluenose	Hyperoglyphe antarctica	0	9
Barracudina	Magnisudis prionosa	0	8
Galapagos shark	Carcharhinus galapagensis	8	8
Black marlin	Makaira indica	0	7
Barracuda	Sphyraena novaehollandiae	0	7
Ragfish	Icichthys australis	0	7
Pelagic stargazer	Pleuroscopus pseudodorsalis	1	7
Seahorse	Hippocampus spp.	3	7
Broadnose seven gill shark	Notorynchus cepedianus	3	7
Ribaldo	Mora moro	0	6
Remora	Echeneidae	0	6
Sawtooth eel	Serrivomer spp.	0	6
Squid	Cephalopoda	0	5
Scissortail	Psenes pellucidus	4	5
Squaretail	Tetragonus cuvieri	0	4
Scalloped dealfish	Zu elongatus	1	4
Pomfret, unidentified	Bramidae	0	3
Smallscaled brown slickhead	Alepocephalus australis	0	3
Basking shark	Cetorhinus maximus	0	3
Black mackerel	Scombrolabrax heterolepis	0	3
Manta and devil rays	Mobula spp.	0	3
Great white shark	Carcharodon carcharias	0	3
Pufferfish	Sphoeroides pachygaster	0	3
Bigeye scabbard fish	Benthodesmus elongatus	0	2
Blue cod	Parapercis colias	0	2
Carpet shark	Cephaloscyllium isabellum	0	2
Crab	Crustacea	0	2
Octopus	Cephalopoda	0	2
Pelagic butterfish	Schedophilus maculatus	0	2
Amberjack	Seriola rivoliana	0	1
Silky shark	Carcharhinus falciformis	0	1

Appendix 1: (continued).

		$2006-07$ to	Total
Species	Scientific Name	$2009-10$	number
Prickly anglerfish	Himantolophus appelii	0	1
Jack mackerel	Trachurus spp.	0	1
Kahawai	Arripis trutta	0	1
Trevally	Pseudocaranx georgianus	0	1
Large headed slickhead	Rouleina spp.	0	1
Brown stargazer	Xenocephalus armatus	0	1
Manefish	Caristius spp.	0	1
Blue mackerel	Scomber australasicus	0	1
Frigate tuna	Auxis thazard	0	1
Sharpnose seven gill shark	Heptranchias perlo	0	1
Red cod	Pseudophycis bachus	0	1
Snapper	Pagrus auratus	0	1
Sprat	Sprattus spp.	0	1
Tiger shark	Galeocerdo cuvier	0	1
Tasmanian ruffe	Tubbia tasmanica	0	1
White warehou	Seriolella caerulea	0	1
Sixgill shark	Hexanchus griseus	1	1
Pipefish	Syngnathidae	1	1
Ocean blue-eye	Schedophilus velaini	1	1
Sea perch	Helicolenus spp.	1	1
Louvar	Luvaris imperialis	1	1
Unidentified fish		177	4399
Total			
		111	074

Appendix 2: Total reported catches of each species caught in 2006-07 to 2009-10.

	Number of fish			
Species	$2006-07$	$2007-08$	$2008-09$	$2009-10$
Albacore tuna	28184	18678	40047	40075
Bigeye tuna	4424	3047	4739	2953
Bigscale pomfret	2194	1258	542	386
Butterfly tuna	684	278	693	547
Blue shark	44216	40399	43561	51977
Dealfish	918	806	990	2176
Deepwater dogfish	796	603	615	402
Lancetfish	5265	2728	4253	4160
Escolar	1382	1490	1823	1171
Mako shark	2932	2507	3435	3737
Moonfish	3164	1542	2645	3596
Oilfish	768	382	859	455
Porbeagle shark	1284	2211	2230	2885
Ray’s bream	20331	12438	12827	8439
Rudderfish	650	376	414	599
School shark	384	49	168	86
Striped marlin	156	228	239	198
Southern bluefin tuna	4022	4266	6496	8522
Swordfish	6935	6106	7546	10590
Yellowfin tuna	518	763	119	111

Appendix 3: Suggested allocation of observer days by fishery and month. This is based on 2006-07 to 2009-10 data with all four years combined. The fishery is divided into West Coast targeting southern bluefin tuna (W STN), East Coast targeting southern bluefin tuna (E STN), West Coast targeting bigeye tuna and/or swordfish (W BIG/SWO), East Coast targeting bigeye tuna and/or swordfish (E BIG/SWO). Other minor target species (albacore, Pacific Bluefin tuna, and yellowfin tuna) are included with BIG/SWO. Number of days is based on a future allocation of 378 observer days, rounded to nearest whole number.

Days by fishery:

Fishery	\%	Days
E BIG/SWO	58	220
E STN	27	102
W BIG/SWO	10	37
W STN	5	19
Total		378

Days by month:

Month	$\%$	Days
January	6	23
February	8	31
March	12	45
April	11	42
May	11	42
June	12	45
July	15	57
August	10	38
September	4	14
October	2	9
November	4	15
December	4	16

Days by fishery and month:

			Fishery	
Month	E BIG/SWO	E STN	W BIG/SWO	W STN
January	22	-	2	-
February	27	-	3	-
March	40	<1	5	<1
April	35	1	7	<1
May	22	11	5	4
June	5	29	2	8
July	5	45	3	5
August	16	15	5	2
September	10	1	2	-
October	8	-	1	-
November	14	-	<1	-
December	16	-	<1	-

Appendix 3: (continued).

Percentage of days by fishery and month:

	E BIG/SWO	E STN	W BIG/SWO	W STN
January	5.71	-	0.49	-
February	7.16	-	0.92	-
March	10.53	0.01	1.37	0.09
April	9.13	0.26	1.78	0.01
May	5.87	3.01	1.20	1.12
June	1.39	7.75	0.66	2.06
July	1.26	11.78	0.82	1.28
August	4.20	3.86	1.35	0.55
September	2.70	0.32	0.65	-
October	2.18	-	0.26	-
November	3.78	-	0.13	-
December	4.31	-	0.04	-

Days by month and fishery (rounded to nearest 5), based on 378 days:

	E BIG/SWO	E STN	W BIG/SWO	W STN
January	20	-	0	-
February	30	-	5	-
March	40	0	5	0
April	35	0	5	0
May	25	10	5	5
June	5	30	5	10
July	5	45	5	5
August	15	15	5	0
September	10	0	0	-
October	10	-	0	-
November	15	-	0	-
December	15	-	0	-

Percentage within each fishery:

	E BIG/SWO	E STN	W BIG/SWO	W STN
January	9.81	-	5.09	-
February	12.30	-	9.50	-
March	18.09	0.04	14.14	1.72
April	15.68	0.97	18.44	0.21
May	10.08	11.15	12.44	21.89
June	2.39	28.71	6.79	40.34
July	2.16	43.63	8.48	25.11
August	7.22	14.31	13.91	10.73
September	4.64	1.18	6.67	-
October	3.74	-	2.71	-
November	6.49	-	1.36	-
December	7.41	-	0.45	-

