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EXECUTIVE SUMMARY

Willis, T.J.; Fu, D.; Hanchet, S.M. (2007). Correlates of southern blue whiting year class strength on
the Campbell Island Rise, 1977-2002.

New Zealand Fisheries Assessment Report 2007/40. 26 p.

The relationship between the year class strength (YCS) of southern blue whiting and potential
environmental predictors was examined using three different analytical approaches. Predictors included
the same variables considered by Hanchet & Renwick (1999), plus wind and atmospheric pressure
observations from the Campbell Island meteorological station. The analysis consisted of 1) multiple
regression, using cross-validation to reduce overfitting and spurious correlation; 2) Tree-based regression,
using ‘out of the bag’ sampling; and 3) discriminant analysis with cross-validation.

Estimates of YCS for the fishing years 1977-2002 were obtained from the 2006 stock assessment and the
suite of 26 predictors applied from three seasons: winter, spring, and summer. Regression analyses
indicated that sea surface temperature (SST) did not explain any significant variability in YCS, although
this analysis may have lacked power, based as it was on a truncated time series (dictated by the
availability of SST data). Linear regression identified two variables as potential predictors: winter PC1 (a
large high pressure system centred over the Campbell Plateau) and spring HNW (high to northwest,
resulting in strong SW winds over the subantarctic region). Both variables were negatively correlated with
YCS, suggesting that better recruitment arises from rough winters with a high degree of mixing, followed
by relatively calm spring conditions.

Both multiple linear regression and random forest regression provided predictions of YCS that provided a
good fit to observed data in average years, but underestimated very strong year classes and overestimated
very weak year classes. Discriminant analysis done on YCS classes (weak, medium, and strong) provided
a group of eight predictors, the strongest of which were the same two variables identified by regression.

Overall, the models provided good correlation of climate variables and YCS, but had poor predictive
power outside the medium range of YCS. This is likely to be because processes affecting recruitment
operate at spatial scales smaller than those of our predictor variables. As the southern blue whiting stock
depends on occasional very strong year classes to support continuance of the fishery, it may be more
important (from a precautionary management perspective) to detect consecutive years of weak
recruitment. To achieve this, a longer time series of data is required, which ideally should be coupled with
information on predator and prey dynamics during the larval and juvenile stages.

Reference:

Hanchet, S.M.; Renwick, J.A. (1999). Prediction of year class strength in southern blue whiting
(Micromesistius australis) in New Zealand waters. New Zealand Fisheries Assessment Research
Document 99/51. 24 p. (Unpublished report held in NIWA library, Wellington.)



1. INTRODUCTION

This report addresses objective 3 of Ministry of Fisheries project SBW2004-01: To investigate the
prediction of year class strength from environmental variables. It aims to extend and update earlier work
by Hanchet & Renwick (1999), which identified potentially useful predictors of relative year class
strength (YCS) based on large-scale climatic conditions. Although many initially encouraging climate-
recruitment relationships have been subsequently invalidated by extended time-series of data (Mertz &
Myers 1995, Francis et al. 2006), the search for valid predictors is a useful one because of the advance
warning of weak year classes that allows management action to be taken. This is especially true for stocks
whose fishery is based on only one or a few strong year classes, as is the case with southern blue whiting
(Hanchet et al. 2006), since a failure to react to several successive years of weak recruitment may result in
stock collapse. Extending time-series of data and applying appropriate analyses may still provide useful
predictions of recruitment (Tyler 1992).

Three previous studies have sought predictors of year class strength in southern blue whiting. Shpak &
Kuchina (1983) examined the effect of microcirculation and temperature on the number of spawners and
the resulting egg densities on the Bounty Platform between 1973 and 1976. They postulated that average
temperatures and anticyclonic (stable) water circulation patterns were the most favourable for
reproduction. Hanchet (1993) found that YCS in the Campbell Island stock between 1982 and 1992 was
positively correlated with the September sea surface temperatures (SST) in the year they were spawned.
Hanchet & Renwick (1999) found that three of a large number of environmental variables explained 86%
of the variation in YCS on the Campbell Island Rise. The results suggested there was a strong negative
correlation between YCS and anticyclonic atmospheric conditions (i.e., that windier, rougher conditions
gave rise to stronger YCS).

This study extends the time series of data used by Hanchet & Renwick (1999) using the same predictors,
based on updated estimates of YCS from Hanchet et al. (2006). The analysis is extended by inclusion of
SST by season as a further group of predictors. A secondary analysis included direct measurements of
local climatic data (wind speed, maximum wind gust, and air pressure) from Campbell Island weather
station as a group, used as a proxy estimator for the likelihood of rough local sea conditions.

2. ENVIRONMENTAL DATA

The full environmental dataset consisted of 31 explanatory variables which are listed in Table 1. These
were presented and outlined in some detail by Hanchet & Renwick (1999) and so they are not further
discussed here. Following Hanchet & Renwick (1999), we chose to examine environmental factors over
the nine month period July to March, covering the period immediately before spawning until the end of
the first summer. This period was divided into three seasons; winter (July—September), spring (October—
December), and summer (January—March).

The SST data contain the average monthly sea surface temperature recorded by PF (Pathfinder) and NSA.
The PF series extend from January 1985 to December 1999 and the NSA series from January 1993 to
March 2006, with an 84 months overlapping period between January 1993 and December 1999 (Figure 1).
The NSA data contain a large amount of missing values mainly in the first few years and therefore it was
decided to use the PF series up to the end of 1999 and the NSA series from the beginning of 2000. PF data
are believed to have often been contaminated by cloud and as a result they appear to be systematically
colder than the NSA. Adjustment based on the ratios of the average temperatures of NSA series to those of
PF series for each of the four seasons between January 1993 and December 1999 were applied to the PF
series to mitigate the bias caused by the cloud algorithm (Figure 2). The final series included the



calibrated PF series from 1985 to 1999 and the NSA series from 2000 to 2002, with derived seasonal
variables for winter, spring and summer.

3. METHODS

3.1 Summary of analyses

The relationship between year class strength of southern blue whiting and the environmental (seasonal)
variables was explored using several statistical tools. Firstly the Pearson correlation coefficient between
each individual variable and year class strength was briefly examined. Secondly a multiple linear
regression was performed with the estimates of year class strength being treated as a continuous variable.
The predictive performance of the model was assessed through the full cross-validation procedure (Francis
2006). The third approach was to use the multiple discriminant analysis, for which the estimates of year
class strength were treated qualitatively and the cross-validation was also carried out. The two analyses
mainly updated those from the last study (Hanchet et al. 1999) with updated estimates of the year class
strengths and the addition of SST variables as potential predictors. Finally analyses using random forest
(Breiman 2001) were carried out, firstly based on tree regression (Breiman et al. 1984) and then based on
tree classification. The quality of model prediction was scored by mean square error (MSE) for regression
and generalisation error for classification, generated internally through a cross-validation like mechanism.

The multiple linear regression analysis was firstly carried out for the entire recruitment data (1977-2002),
then the shorter time series (1985-2002) for which the SST variables were included as candidate
predictors, and also for the series (1977-1992) analysed in the last study. The random forest regression
and classification were both carried out for the entire recruitment data series. A final multiple regression
analysis was added that omitted SST (so that the entire 1977-2002 time series of YCS estimates could be
used), but included Campbell Island meteorological station measurements of local wind speed, maximum
gust, and atmospheric pressure. This last analysis treated some of the predictors as functional groups (e.g.,
synoptic patterns resulting in westerly winds over the Campbell Plateau), such that they entered or left the
stepwise regression model together.

3.2 Multiple linear regression

The model assumed that year class strengths follow a lognormal distribution (Francis 1993) and therefore
used log-transformed estimates of year class strength. Due to the high dimensionality and the possible
collinearity (a condition where the model’s predictors are highly inter-correlated) of the candidate
predictors a stepwise regression procedure was carried out to identify variables that explained most of the
variation in year class strength and to remove redundant variables that essentially carry the same
information. The stopping rule employed in the stepwise regression used a partial F test (Heiberger et al.
2004) at a significance level of 0.01. Note that there appears to be no consensus as to the choice of
stopping rules and different methods could sometimes lead to different sets of predictors (Francis et al.
2005). The R? based on the selected predictors was calculated. Because of the large number of predictors,
a spurious relationship between the predictands and predictors could be established by chance resulting in
large values of R% The full cross-validation, as explained by Francis (2006), involves predicting each of
the year class strengths using a regression equation determined by the rest of data. (For each case, the
predictors were reselected using stepwise regression.) The cross-validation calculates the Percent of
Variance Explained (PVE, Francis (2006)) statistics as below:
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where yi is the ith year class strength, ): and )i are the predicted value and the mean of the year class

strengths respectively after the ith case was removed. Francis (2006) observed large PVEs (up to 80%)
through cross-validation from models fitted to simulated recruitment data sets where recruitment-
environmental relationship exists and small PVEs (up to -200%) from data sets where year class strengths
were just random numbers. However, the study also showed that low PVEs were associated with large
variability, especially for data which contain a relatively small amount of recruitment data and a large
number of explanatory variables.

3.3 Random forest

Random forests are an ensemble of unpruned trees (Breiman 2001), with each tree grown by the node-
splitting classification (for categorical variable) and regression (for continuous variable) trees method
(Breiman et al. 1984). The data used to generate each tree are a random sample (without replacement) of
all the cases. Further randomisation is introduced at each node of the tree by using a random subset of
predictors for obtaining the split at the node. For a regression analysis, the predicted value is obtained by
averaging the outputs of passing the set of predictors down every tree. For a classification analysis, the
predicted category is the most frequently occurring of the classes as determined by the individual trees
(majority votes).

The estimates of year class strength were converted into weak (under 0.4), medium (0.4-1) and strong
(over 1) year classes. The model performance was assessed by generalisation error for classification and
MSE for regression (Breiman 2001). The data cases left out for each tree (out of bag samples) are run
through the tree and the error rate (or mean square error for regression) of the prediction is computed. The
error rates for the trees in the forest are then averaged to give the overall generalisation error rate.

The candidate predictors are ranked by their importance. For each tree the variables for out of bag samples
are randomly permuted and the prediction accuracy is recomputed. The average lowering of prediction
accuracy across all cases gives the importance of a variable. In this analysis, initial runs were carried out
to rank the importance of the variables and only relatively important variables were used for further
classification or regression.

3.4 Discriminant analyses

Stepwise discriminant analysis was used as an alternative method to select the variables that contribute
most to differentiating weak, medium, and strong year class strengths. These were defined in the same
way as for Random Forest classification. The dataset conmsisted of 26 years (1977-2002) and 72
explanatory variables: all those listed in Table 1 except for SST, but including the 3 meteorological
observations (daily averages of mean wind speed, maximum wind gust, and atmospheric pressure) from
Campbell Island. Since there were so many predictor variables relative to the number of observations, the
probability of entry of predictors was initially set at 0.01, and the analysis then repeated with entry
probability set at 0.10. In both cases the probability of a variable exiting from the model at each step was
setat 0.15.



Variables identified by the stepwise analysis were subjected to linear discriminant analysis with cross—
validation to determine the predictive power of the model, and to a canonical discriminant analysis to
determine which of the variables were most strongly correlated with weak, medium or strong year classes.

4. RESULTS
4.1 Correlation

The correlations between the estimates of year class strength and the environmental variables are
presented in Table 2. Variables from winter and spring show that most of the significant correlations, and
no variables, were significant with the same sign over more than one season. For the entire recruitment
data the two highest correlations were with winter PC 1 (-0.551), which is an anticyclonic air pressure
system situated over the Campbell Plateau, and spring HNW (-54.2), which refers to the “high to
northwest” weather type resulting in a strong westerly flow over the Campbell Island area. For the shorter
times series (1985-2002), the two highest correlations were with winter T (64.7), which refers to the
“broad trough over New Zealand” weather type, and winter PC 1 (-61.9). None of the SST variables were
significantly correlated with the estimates of year class strength.

4.2 Multiple linear regression

The results of the analyses are summarised in Tables 3-5, and the fits are shown in Figures 3—8. Variable
winter PC 1 and spring HNW were selected into the model fitted to the recruitment data from 1977 to
2002 and from 1977 to 1992. Only variable winter T entered the model for the 1985-2002 time series and
none of the SST variables were significant. Both Winter PC 1 and spring HNW had a negative effect on
year class strength. Winter T had a positive relationship with year class strength from 1985 to 2002. The
observed vs. fitted values for each of the models described above explained 56%, 85%, and 42% of
variations in year class strength respectively. However, the percent variation explained by the cross-
validation models was substantially lower. The predicted values of the model fitted to the entire
recruitment data tracked the trend of the early (before 1982) and later (after 1996) year class strength and
those from 1986 to 1990, with a PVE of -14%. The model fitted to the data from 1977 to 1992 has a PVE
of 47% and predicted well for most cases. The model fitted to the 1985-2002 time series predicted poorly
with a PVE of -50%.

4.3 Random Forest

4.3.1 Regression

Based on the variable importance given by the initial run of the Random Forest regression (Figure 9),
spring HNW, summer TSW, spring PC 2, winter PC 1, winter CI tav, winter R, and summer TNW (each
of them lead to a change of MSE by more than 1% through permutation) were used as potential predictors
for a second run, which produced fitted values fairly close to the observed estimates of year class strength
(Figure 10). A more reliable measure of the model’s predictive power is to examine the predicted values
based on the out of bag samples using only trees for which the samples were excluded from their
construction process. The result showed that the model captured the trend of year class strength from
1977 to 1990 and from to 1996 to 2002 (Figure 11). The predicted values fluctuated more moderately in
early years compared to the observed values. The variance explained derived from the MSE based on the



out of bag samples was 33%, suggesting improvement of predictive power over the null model which
simply predicts year class strength using the mean of the series.

4.3.2 Classification

The Random Forest classified each of the data cases using spring HNW, winter T, winter R, summer CI
tav, winter PC 1, spring PC 2, and spring NE as potential predictors according to the ranking of variable
importance from an initial run (Figure 12). Overall generalisation error rate based on out of bag samples
was estimated to be 38%. The rate broken down by class showed 8 out 10 strong, 6 out of 8 median year
classes were correctly classified, but 6 out of 8 weak year classes were misclassified (Table 6).
Multidimensional scaling (Cox & Cox 1994) was then performed to extract the scaling coordinates of each
case based on their proximity as measured by Random Forest (the proximity of cases i and j increased by
1 if they land on the same terminal node of a tree as the forest grows). The scaling coordinates (Figure 13)
showed that the model was able to discriminate between strong and median year classes but not the weak,
as the coordinates of the strong and median year classes were clearly apart but were mixed with those of
the weak year classes.

4.4 Grouped multiple linear regression

A second form of stepwise multiple regression was performed using the entire dataset, but grouping the
variables so that they entered or were removed from the model together. The suite of 12 synoptic flow-
patterns (Kidson 1984) was reduced to three groups reflecting predominantly westerly, northerly, or
easterly flows. Campbell Island wind and pressure data were added as a group, and SST was omitted.
Only two variables were retained in the model (Table 7): winter PC1, and the direct observations from
Campbell Island in spring. These two variables provide a model (Figure 14) with similar fit to that
achieved by the earlier regression models. As in previous analyses, PC1 was negatively correlated with
YCS (Figure 15). Spring wind speed was also negatively correlated with YCS, and spring barometric
pressure was positively correlated with YCS (Figure 15).

4.5 Discriminant analyses

With entry probability set at 0.01 for the stepwise discriminant analysis, no variables met the criteria for
entry into the model. Setting a less stringent entry criterion of (.10, 8 of the 72 possible predictors were
selected (Table 8). Using these variables, a linear discriminant analysis with cross-validation successfully
placed 7 of 8 weak year classes, 5 of 8§ medium classes, and 8 of 9 strong year classes into their correct
groups (Table 9). Overall misclassification error was thus less than 20%.

A canonical discriminant analysis seeks to find the vector (canonical axis) in multivariate space that best
separates a priori defined groups. Using the same eight variables, the first canonical axis clearly separated
strong year classes from the weaker years, with the exception of 2002, which was placed with the weak
years (Figure 16). This is the same “strong” year that was misclassified as weak by the linear discriminant
analysis (Table 9). The second canonical axis separated weak from medium year classes (Figure 16).
Calculating correlations of the original variables with the axes (Table 10) allows inference of the variables
responsible for the separation of groups. This identified spring HNW and winter PC1 as being strongly
correlated with weak and medium YCS (ie., negatively correlated with Can 1), thus agreeing with the
results of the regression analyses. No variable was robustly positively correlated with “strong” years. The
second canonical axis clearly separated weak from medium year classes. The only variable strongly (over



0.3) correlated with this axis was winter HSE (high southeast of Cook Strait). Its positive correlation
indicated that it is associated with weak YCS.

5. DISCUSSION

The results of these analyses reinforce the main result of Hanchet & Renwick (1999), that stronger YCS in
southern blue whiting is associated with predominantly rough and unstable winter conditions across the
Campbell Plateau. The variable spring HNW and winter PC 1 were picked out by most models as being
most likely to explain the variation in year class strength. PC1 characterises a large anticyclone across the
area, and was negatively correlated with YCS. This may indicate that mixing of the water column during
the early spawning period has important effects on spawning success. Spring HNW is a synoptic pattern
that places an anticyclone off the northwest coast of the North Island, resulting in a strong west to
southwest flow over the Campbell region (Kidson 1994). HNW was also negatively correlated with YCS,
implying that recruitment is more successful if rough winter conditions are followed by relatively calm
and stable spring conditions. This is backed up by the second regression analysis that retained PC1 as an
important predictor, but replaced Spring HNW with the spring wind speed, gust, and barometric pressure
observations from Campbell Island. YCS was negatively correlated with spring wind speed and weakly
positively correlated with barometric pressure. Winter T was the only variable entering the model fitted to
the data from 1985-2002, but failed to predict most of year class strength. SST did not explain any
significant variation in YCS.

Discriminant analyses also highlighted winter PC1 and spring HNW as important separators of stronger
from weaker year classes, but also separated weak and medium YCS using winter HSE — like PCl1, a
synoptic pattern that should result in relatively low windspeeds and settled weather. A biological
explanation for this result is that rough winter conditions reduce the probability of predation on freshly
spawned eggs, whereas calm summer conditions facilitate feeding for newly hatched larvae.

Sea surface temperature (SST) had no predictive value in these models, despite being of importance in
assessments of other species (e.g., Francis 1993). In the current analysis, however, SST data were
available for less than 20 years, and therefore may have been undervalued in the regressions because of
low statistical power.

In situations where model over-fitting and spurious correlations are possible due to the few predictants and
many potential predictors, the performance of the model should be evaluated by its predictive accuracy on
“fresh data” that the model is unfamiliar with. This was achieved through cross-validation in the multiple
linear regression and linear discriminate analyses, and as a built-in process in the Random Forest.

Among various models, Random Forest regression seems to have produced better correlation than
multiple linear regressions on the entire recruitment data and has captured the trend of year class strength
for years. The multiple linear regression models fitted to the three sets of time series (1977-2002,
1985-2002 and 1977-1992) gave distinct PVE (-14%, -50%, and 47%) and this was consistent with the

study of Francis (2006) that PVE were variable when the potential predictors far outnumbered the
predictants.

Although matches between fitted and observed values of YCS were achieved at intermediate YCSs
(between -1 and 1 on the log scale), all the prediction methods were unsuccessful in predicting very strong
(1991) or very weak (1982, 1989) year class strengths. This is probably because the predictors available
describe patterns over larger spatial scales than that at which the biological processes affecting relative
YCS operate. Although it is possible to achieve reasonable model fits to historical data and thus describe



general patterns, especially when the number of predictors is large and tend to covary, correlative
approaches will always struggle to accurately predict the particular. It is arguable that for management
purposes, in a precautionary context, it is more important to detect a succession of weak year classes that
increase the risk of stock collapse than to detect strong recruitment episodes that allow an increase in
catch. It is likely that the predictors used here do affect southern blue whiting YCS, but operate indirectly
or interact on smaller scales in ways that are difficult to measure. Potential solutions are to either continue
to increase the time series of data available for analysis, or seek to obtain data at spatial scales likely to
reflect biological influences on recruitment and survivorship. Useful (but currently unavailable)
information might include detailed data on mixing or stratification of the water column, distributions and
relative availability of major prey species through early development, or the ways in which conditions
affect the distribution of predators.
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V.adv5
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Campbell gust
Campbell pressure
SST

Table 1: List of environmental variables used in the analysis.

Campbell Island average air temperature

Gridded SST from point nearest Campbetl Island

Observed SST from Perseverance Harbour (Campbell Island)
“Trough in southwest flow” weather type (monthly frequency)
“Broad trough over New Zealand” weather type (monthly frequency)
“Southwest flow” weather type (monthly frequency)

“Northeast flow” weather type (monthly frequency)

“Ridge across South Island” weather type (monthly frequency)
“High west of South Island” weather type (monthly frequency)
“High east of North Island” weather type (monthly frequency)
“Westerly flow” weather type (monthly frequency)

“High to northwest” weather type (monthly frequency)
“Northwest flow ahead of trough” weather type (monthly frequency)
“High southeast of Cook Strait” weather type (monthly frequency)
“High over New Zealand” weather type (monthly frequency)
Campbell-area 1000hPa height principal component 1 (*high”)
Campbell-area 1000hPa principal component 2 (“westerly”)
Campbell-area 1000hPa principal component 3 (“northerly”)
1000-500hPa mean depth at Campbell

Mean surface vorticity at Campbell

Mean lower-troposphere temperature advection at Campbell
Mean mid-tropospheric vorticity advection at Campbell

Auckland - Christchurch pressure difference

Christchurch - Campbell pressure difference

Hobart - Chathams pressure difference

Hokitika - Chathams pressure difference

Southern Oscillation index

Daily average wind speed measured at the Campbell Island met. Station

Maximum daily wind gust velocity at Campbell Island
Daily average atmospheric pressure at Campbell Island
Sea surface temperature
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Table 2: Pearson's correlation coefficients of seasonal variables with logYCS for the period 1977 to 2002 (left)
and 1985 to 2002 (right, including SST variables); bolded figures are significant.

1977-2002 1985-2002

win spr sum win spr sum

Cl.tav -0.412 0.186  0.153 Cl.tav 0431  0.125 0.006
PC.1 -0.551 0.099  0.245 PC.1 -0.619 -0.018 0.109
PC.2 -0.166  -0.415 -0.364 PC.2 -0.234  -0.321 -0.334
PC3 -0.068 0.268 -0.162 PC3 -0.096 0210 -0.226
SOI 0.221 0.194  0.178 SOI 0.102 -0.122  -0.094
TSW -0.125 0.172  0.443 TSW -0.059  0.267 0.278
T 0.431 0.101  -0.056 T 0.647 -0.029 0.180
Sw 0.310 -0.012 -0.008 SW 0.143  0.124 0.170
NE 0.067 0.175  0.289 NE 0.064 0.121  -0.008
R -0.180 0.265  0.186 R -0.297  0.175 0.040
HW -0.389 0.256  0.069 HW -0.409  0.122 0.095
HE -0.302 0.031 -0.091 HE -0.577 -0.037  -0.069
W 0314 -0.411 -0.114 w 0.338 -0.194 0.161
HNW -0.005  -0.542 -0.220 HNW -0.082  -0.340  -0.209
TNW 0.135 0.035  0.009 TNW 0.223  0.018 -0.045
HSE -0.370 0.121 -0.153 HSE -0.290 -0.084  -0.190
H -0.228  -0.199 -0.304 H -0.199  -0.229  -0.230
Z1 0.431 -0.292 -0.373 Z1 0.530 -0.102 -0.141
Z2 0.129  -0.351 -0.302 Z2 0.017 -0.242 -0.196
M1 0.055 0.000 0.117 M1 0.094  0.240 0.286
M2 0.200 -0.068 -0.100 M2 0.180 0.151 0.210
SST -0.251 0.010 0.164
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Table 3: Results of multiple regression analysis fitted to recruitment data from 1977 to 2002; PVE is the
percent of variance explained from cross-validation.

Regression

R2 PVE Independent ~ Regression  Standard
variable coefficient error

0.5575 -0.1399 (Intercept) 0.8049 0.3802
PC.1.win -0.0023 0.0006
HNW.spr -0.1965 0.0541

Analysis of Variance

DF Sum Sq Mean Sq F value Pr(>F)
PC.1.win 1 6.9606 6.9606 15.8040  0.0006
HNW.spr 1 5.7998 5.7998 13.1690  0.0014
Residuals 23 10.1298 0.4404
Total 25 22.8902

Table 4: Results of multiple regression analysis fitted to recruitment data from 1985 to 2002; PVE is the
percent of variance explained from cross-validation.

Regression
R2 PVE Independent  Regression  Standard
variable coefficient error
0.419 -0.4983 (Intercept) -1.08883 0.30797
T.win 0.07191 0.02117
Analysis of Variance
DF Sum Sq Mean Sq  F value Pr(>F)
T.win 1 4.9994 4.9994 11.5380  0.0037
Residuals 16 6.9328 0.4333
Total 17 11.9322

Table 5: Results of multiple regression analysis fitted to recruitment data from 1977 to 1992; PVE is the
percent of variance explained from cross-validation.

Regression
R? PVE Independent  Regression  Standard
variable coefficient error
0.851 0.4741 (Intercept) 1.2426 0.4113
PC.1.win -0.0030 0.0006
HNW. spr -0.3051 0.0596
Analysis of Variance
DF Sum Sq Mean Sq Fvalue  Pr(>F)
PC.1.win 1 10.3508 10.3508  48.1070  0.0000
HNW.spr 1 5.6306 5.6306 26.1650  0.0002
Residuals 13 2.7971 0.2152
Total 15 18.7785
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Table 6 : The number of year class strengths classified by Random Forest classification into each year class
category based on out of bag samples; values bolded represent the number correctly classified

To
Classification
From weak median strong Total error
weak 3 3 2 8 0.625
median 2 6 0 8 0.25
strong 2 1 7 10 0.3

Table 7: Results of multiple regression analysis fitted to recruitment data from 1977 to 2002 using grouped

predictors.

Regression
R2

0.61

Group 1
Group 2

Analysis of Variance

Table 8: Variables selected by the stepwise discriminant analysis (with entry probability set at 0.1), their
partial correlations, F values and associated P values for the test to enter or exit the model.

Independent
variable
(Intercept)
PC.1.win
Speed.spr
Pressure.spr
Gust.spr

Group 1
Group 2
Residuals
Total

Regression
coefficient
-103.99
-0.0028
-0.3188
0.1059
0.0882
DF
1
3
21
25

Standard
error
51.82
0.0006
0.0927
0.0507
0.0461

Sum Sq
6.963
7.077
8.852

22.892

Mean Sq
6.963
7.077
0.421

Variable Partial R? F p
sprHNW 0319 5.39 0.012
winPC1 0.300 472 0.020
winHSE 0.236 3.24 0.059
winM1 0317 4.63 0.022
sprw 0.265 3.43 0.053
winNE 0.247 2.95 0.078
sumHE 0.322 4.03 0.037
winZ2 0.328 3.91 0.041

15

F value
10.49
5.6

Pr(>F)
0.0002
0.0056



Table 9: Cross validation summary from a linear discriminant analysis using the 8 predictor variables
selected by stepwise discriminant analysis (sprHNW, winPC1, winHSE, winM1, sprW, winNE, sumHE,
winZ2). Bold values represent the number correctly classified.

To

Classification

From weak median strong Total error
weak 7 1 0 8 0.125
median 2 5 1 8 0.375
strong 1 0 9 10 0.100

Overall
error: 0.192

Table 10: Correlations of the individual variables with the canonical axes from the discriminant analysis
(Figure 16). Negative correlations with Can 1 indicate variable associated with years of weak or medium YCS,

whereas positive correlations indicate strong YCS.

Variable Can 1 Can?2
sprHNW -0.629 -0.006
winPCl1 -0.525 -0.196
winHSE -0.235 0.325
sprw -0.225 0.159
sumHE -0.138 -0.232
winZ2 0.064 -0.200
winM1 0.072 0.213
winNE 0.093 -0.253
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Figure 2: Time series of the average monthly sea surface temperature recorded from PF and NSA. The PF
series are a

between January 1993 and December 1999 to those of PF series.



Y
w O ! -
5] A Fitted °
" ane
> ’I '\ Obsened
\
P j
\
!
: \ {
-1 | + ll e |I
[ \ B \
1 ] n ¥ !
' \ \ N}
I [ v !
1 [ 1
1 \ ,' \\I
y gt o i
- v

T T 1T 1

1 T T 1 1T 1T 1T 1T 1T T T 1T 7 T 1T 17 T 1T 177
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 00 01 02

Fishing year

Figure 3 : Observed and fitted year class strength from 1977 to 2002; observed values (log) were based on the
results of the population model; fitted values were based on multiple linear regression.
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Figure 4: Observed and predicted year class strength from 1977 to 2002; observed values (log) based on the
results of the population model; predicted values were based on the full cross-validation of multiple linear

regression.

18



YCS
o
L

L Fitted °

1

-2

i
!

¥
T 1 I

T 1T 1777

1T 1T 17T

T 1 T T T T T 1 T 171
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 00 01 02

T
Fishing year

Figure 5: Observed and fitted year class strength from 1985 to 2002; observed values (log) were based on the
results of the population model; fitted values were based on multiple linear regression.
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Figure 6: Observed and predicted year class strength from 1985 to 2002; observed values (log) were based on
the results of the population model; predicted values were based on the full cross-validation of multiple linear
regression.
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Figure 7: Observed and fitted year class strength from 1977 to 1992; observed values (log) were based on the
results of the population model; fitted values were based on multiple linear regression.
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Figure 8: Observed and predicted year class strength from 1977 to 1992; observed values (log) based on the
results of the population model; predicted values were based on the full cross-validation of multiple linear
regression.
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Figure 9 : Variable importance as measured by a Random Forest regression. To measure the importance of a
predictor variable, the MSE is computed on the out-of-bag samples for each tree, and then the same computed
after permuting a variable; the differences are averaged to give the importance of the variable,
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Figure 10: Observed and fitted year class strength from 1977 to 2002; observed values (log) were based on the
results of the population model; fitted values were based on Random Forest regression.

21



2
1
@ 0 Predicted ©
> +
-1
2
L T 1T T 1T T 1T 17T T T T T T 7 T 1T 7171 T
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 00 01 02
Fishing year

Figure 11: Observed and predicted year class strength from 1977 to 2002; observed values (log) were based on
the results of the population model; predicted values were based on out of bag samples from Random Forest
regression.
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Figure 12: Variable importance as measured by a Random Forest classification. To measure the importance
of a predictor variable, the margin of each case (defined as the proportion of votes for its true class minus the
maximum of the proportion of votes for each of the other classes) is computed. The average lowering of
margin across all cases gives the importance of a variable
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Figure
13: Scaling coordinates based on proximity of year class strengths as measured by Random Forest. The
proximity of any two cases is measured by the number of times they land in the same terminal node in the
forest. The scaling coordinates were obtained through multidimensional scaling. “w”, ”m” and “s” represent
weak, median and strong year classes respectively.
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Figure 14: Observed and fitted year class strength from 1977 to 2002; observed values (log) were based on the
results of the population model; fitted values were based on a multiple linear regression with two predictors:
winter PC1, and Campbell Island meteorological station data (wind speed, maximum wind gust strength, and
barometric pressure. The three measurements were grouped and form one term in the regression model).
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Figure 15: Univariate plots log, year class strength versus significant factors identified by stepwise regression.
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Figure 16: Plot of the first two axes from a canonical discriminant analysis attempting to separate weak (w),
medium (m), and strong (s) year classes using 8 environmental variables. % is the canonical correlation for the

axis.
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