New Zealand Fisheries Assessment Report 2007/5 March 2007 ISSN 1175-1584

Trawl survey of hoki and middle depth species on the Chatham Rise, January 2006 (TAN0601)

D. W. Stevens R. L. O'Driscoll

Trawl survey of hoki and middle depth species on the Chatham Rise, January 2006 (TAN0601)

D. W. Stevens R. L. O'Driscoll

NIWA Private Bag 14901 Wellington

Published by Ministry of Fisheries Wellington 2007

ISSN 1175-1584

© Ministry of Fisheries 2007

Citation:

Stevens, D.W.; O'Driscoll, R.L. (2007).

Trawl survey of hoki and middle depth species on the Chatham Rise,
January 2006 (TAN0601).

New Zealand Fisheries Assessment Report 2007/5. 73 p.

EXECUTIVE SUMMARY

Stevens, D.W.; O'Driscoll, R.L. (2007). Trawl survey of hoki and middle depth species on the Chatham Rise, January 2006 (TAN0601).

New Zealand Fisheries Assessment Report 2007/5. 73 p.

The fifteenth trawl survey in a time series to estimate the relative biomass of hoki and other middle depth species on the Chatham Rise was carried out between 27 December 2005 and 23 January 2006. Using a random stratified sampling design, 96 phase 1 bottom trawl stations were successfully completed in core depths of 200–800 m. No phase 2 bottom trawl stations were completed due to mechanical problems. The estimate of relative biomass of all hoki was 99 208 t, an increase of 15% from January 2005, and the highest estimate since 1999. This increase was driven by reasonable recruitment of 1+ year old (25 877 t), and 2+ year old (33 586 t) hoki. The biomass estimate for recruited hoki (3+ years and older) increased from 21 200 t in 2005 to 39 745 in 2006, due to inclusion of the above average 2002 year class.

The biomass of hake in core strata increased by 32% to 1384 t, but remains at historically low levels. The biomass of ling was 9301 t, which was slightly higher than in January 2005, but the timeseries for ling shows no overall trend.

Coefficients of variation (c.v.s) achieved were 10.6% for total hoki, 19.3% for hake, and 7.4% for ling. The c.v. for age 2+ hoki was 18.8%, which was below the target c.v. of 20%.

Age frequency distributions of hake showed relatively high numbers of 3 and 4 year olds, possibly indicating two years of reasonable recruitment. Ling age frequencies indicate moderate recruitment during the late 1990s.

Acoustic data were also collected during the trawl survey. There was a weak, but non-significant, correlation between acoustic density estimates and trawl catch rates.

1. INTRODUCTION

In January 2006, the fifteenth in a time series of annual random trawl surveys to estimate relative abundance indices for hoki and a range of other middle depth species on the Chatham Rise was completed. This and all previous surveys in the series were carried out from the research vessel *Tangaroa* and form the most comprehensive time series of species abundance in water depths of 200 to 800 m in New Zealand's 200—mile Exclusive Economic Zone. The surveys follow a random stratified design, with stratification by depth, longitude, and latitude across the Chatham Rise to ensure full coverage of the area.

Previous surveys in this time series have been documented by Horn (1994a, 1994b), Schofield & Horn (1994), Schofield & Livingston (1995, 1996, 1997), Bagley & Hurst (1998), Bagley & Livingston (2000), Stevens et al. (2001, 2002), Stevens & Livingston (2003), Livingston et al. (2004), Livingston & Stevens (2005), and Stevens & O'Driscoll (2006). Trends in biomass and changes in catch and age distribution of 31 species from surveys 1992–2001 were reviewed by Livingston et al. (2002). Hoki dominated the catches in every survey, and formed 53 to 66% of the total biomass from 1992 to 1997. By 2001, however, the proportion of hoki decreased to 29% as the biomass estimate dropped steadily from about 160 000 t in 1997 to 60 300 t in 2001 (Livingston et al. 2002). Hake, another priority species in this research programme, also showed a decline in biomass within the time series, while ling biomass was relatively stable, showing no trend (Livingston et al. 2002).

The 2006 survey results presented here continue the Chatham Rise trawl survey series as part of a long-term research programme to estimate the abundance of hoki and other middle depth species for stock assessment. The survey covers the principle juvenile stocks of hoki, believed to derive from both western and eastern spawning stocks. It also surveys older hoki that form part of the eastern stock spawning in Cook Strait and off the east coast South Island. Although older hoki also occur over deepwater and in association with seamounts such as the Andes complex east of the Chatham Rise (Livingston et al. 2004), the survey is treated as representative of the eastern adult stock. As well as abundance, the survey provided fishery independent data on the population size structure of these species, and their catch distribution across the Chatham Rise. Otoliths from a range of Quota Management System (QMS) species were collected for ageing and use in stock assessments.

Acoustic data have been recorded during trawls and while steaming between stations on all trawl surveys on the Chatham Rise since 1995, except 2004. Data from previous surveys were analysed to describe mark types (Cordue et al. 1998, Bull 2000, O'Driscoll 2001a, Livingston et al. 2004, Stevens & O'Driscoll 2006), to provide estimates of the ratio of acoustic vulnerability to trawl catchability for hoki and other species (O'Driscoll 2002, 2003), and to estimate biomass of mesopelagic fish (McClatchie & Dunford 2003, McClatchie et al. 2005). Acoustic data also provide qualitative information on the amount of backscatter that is not available to the bottom trawl, either through being off the bottom, or over areas of foul ground.

Other work carried out concurrently with the trawl survey included collection of unidentified organisms collected in the trawl, collection of stomach samples from a range of fish species, collection of prey species from beam and midwater trawls at night, and tagging of chemically marked giant stargazers (see Section 1.1).

1.1 Project objectives

The trawl survey was carried out under contract to the Ministry of Fisheries (project HOK2005/02). The specific objectives for the project were as follows:

1. To continue the time series of relative abundance indices of recruited hoki (eastern stock) and other middle depth species on the Chatham Rise using trawl surveys and to determine the

relative year class strengths of juvenile hoki (1, 2, and 3 year olds), with target c.v. of 20% for the number of 2 year olds.

- 2. To determine the population proportions at age for hoki on the Chatham Rise using otolith samples from the trawl survey.
- 3. To collect acoustic and related data during the trawl survey.
- 4. To collect and preserve specimens of unidentified organisms taken during the trawl survey.

As with the 2005 survey, two additional objectives were added to the 2006 survey under Ministry of Fisheries projects ZBD2004/02 and STA2004/03.

The first of these projects aims to study trophic relationships between key species on the Chatham Rise (ZBD2004/02). The overall objective of this work is:

1. To characterise trophic relationships among abundant fish species of the Chatham Rise in a format that will inform ecosystem-based fisheries management and contribute directly to the creation of a trophic ecosystem model.

The second of these projects (STA2004/03) aims to validate presumed annual otolith growth zones of giant stargazer (*Kathetostoma giganteum*) by tagging and releasing chemically marked individuals. The overall objective of this work is:

1. To validate growth zones in stargazer (*Kathetostoma giganteum*) otoliths.

2. METHODS

2.1 Survey area and design

As in previous years, the survey followed a two-phase random design (after Francis 1984). The main survey area, 200–800 m depths (Figure 1) was divided into the same 26 strata used in 2003, 2004, and 2005 (Livingston, et al. 2004, Livingston & Stevens 2005, Stevens & O'Driscoll 2006). Station allocation for phase 1 was determined from simulations based on catch rates from the last three Chatham Rise trawl surveys (2003–05), using the 'allocate' optimisation programme (after Bull et al. 2000) to achieve the Ministry of Fisheries target c.v. of 20% for 2 year old hoki. A total of 96 stations was originally planned for phase 1, with up to 21 phase 2 stations to be allocated at sea to improve c.v.s for hoki and hake, and to increase the number of hake sampled.

2.2 Vessel and gear specifications

Tangaroa is a purpose-built research stern trawler of 70 m overall length, a beam of 14 m, 3000 kW (4000 hp) of power, and a gross tonnage of 2282 t.

The bottom trawl was the same as that used on previous surveys of middle depth species by *Tangaroa*. The net is an eight-seam hoki bottom trawl with 100 m sweeps, 50 m bridles, 12 m backstrops, 58.8 m groundrope, 45 m headline, and 60 mm codend mesh (see Hurst & Bagley (1994), for net plan and rigging details). The trawl doors were Super Vee type with an area of 6.1 m². Measurements of doorspread (from a Scanmar 400 system) and headline height (from a Furuno net monitor) were recorded every 5 minutes during each tow and average values calculated.

Some additional trawling was carried out using a midwater mesopelagic trawl and a beam trawl outside the normal trawl survey hours (i.e., at night) to collect information on prey species. The mesopelagic trawl had a headline height of 18.5 m and a codend mesh size of 10 mm. The beam trawl had a headline height of 0.6 m and a codend liner mesh size of 10 mm.

2.3 Trawling procedure

Trawling followed the standardised procedures described by Hurst et al. (1992). Station positions were selected randomly before the voyage using the Random Stations Generation Program (Version 1.6) developed at NIWA, Wellington. A minimum distance between stations of 3 n. miles was used. If a station was found to be on foul ground, a search was made for suitable ground within 3 n. miles of the station position. If no suitable ground could be found, the station was abandoned and another random position was substituted. Tows were carried out during daylight hours (as defined by Hurst et al. 1992), with all trawling between 0449 h and 1902 h NZST, except for 8 mesopelagic tows and 7 beam trawl bottom tows which were carried out at night to provide key prey species for the trophic study. These night tows were not used for biomass estimation.

At each station the trawl was towed for 3 n. miles at a speed over the ground of 3.5 knots. If foul ground was encountered, or the tow hauled early due to reducing daylight, the tow was included as valid only if at least 2 n. miles had been covered. If time ran short at the end of the day and it was not possible to reach the last station, the vessel headed towards the next station and the trawl gear was shot in time to ensure completion of the tow by sunset, as long as 50% of the steaming distance to the next station was covered.

Towing speed and gear configuration were maintained as constant as possible during the survey, following the guidelines given by Hurst et al. (1992). The average speed over the ground was calculated from readings taken every 5 min during the tow.

2.4 Acoustic data collection

Acoustic data were collected during trawling and while steaming between trawl stations (both day and night) using a custom-built *CREST* system (Coombs et al. 2003) with hull-mounted Simrad single-beam 12 kHz and 38 kHz transducers. *CREST* is a computer-based 'software echo-sounder' which supports multiple channels. The transmitter was a switching type with a nominal power output of 2 kW rms. Transmitted pulse length was 1 ms with 3 s between transmits. The *CREST* receiver has a broadband, wide dynamic range pre-amplifier and serial analog-to-digital converters (ADCs), which feed a digital signal processor (DSP56002). Data from the ADCs were complex demodulated, filtered, and a 20 log *R* time-varied gain was applied, with the complex data stored for later processing. The 38 kHz transducer has been calibrated following standard procedures (Foote et al. 1987). The 12 kHz transducer was not calibrated. Data collected on 12 kHz were used only to make visual comparisons with 38 kHz data and were not analysed quantitatively.

2.5 Hydrology

Temperature and salinity data were collected using a calibrated Seabird SM-37 Microcat CTD datalogger mounted on the headline of the trawl. Data were collected at 5 s intervals throughout the trawl, providing vertical profiles. Surface values were read off the vertical profile at the beginning of each tow at a depth of about 5 m, which corresponded to the depth of the hull temperature sensor used in previous surveys. Bottom values were about 7.0 m above the sea-bed (i.e., the height of the headline).

2.6 Catch and biological sampling

At each station all items in the catch were sorted into species and weighed on Seaway motion-compensating electronic scales accurate to about 0.3 kg. Where possible, fish, squid, and crustaceans were identified to species and other benthic fauna to species or family. Unidentified organisms were collected and frozen at sea. Specimens and digital photographs are being stored at NIWA for subsequent identification.

An approximately random sample of up to 200 individuals of each commercial, and some common non-commercial species from every successful tow was measured and sex determined. More detailed biological data were also collected on a subset of species and included fish weight, sex, gonad stage, and gonad weight. Otoliths were taken from hake, hoki, and ling for age determination. Additional data on liver condition were also collected from a subsample of 20 hoki by recording gutted and liver weights.

Sampling of fish stomachs during the survey was based upon the protocol described by Livingston (2004). Stomach sampling targeted the 25 most abundant species caught on the survey. Biological data describing length, weight, sex, and on occasions, maturity status, were collected for each specimen, and then the stomachs were carefully removed, individually labelled, and frozen. Stomach contents will be analysed in the NIWA laboratory as part of project ZBD2004/02.

2.7 Estimation of biomass and length frequencies

Doorspread biomass was estimated by the swept area method of Francis (1981, 1989) using the formulae in Vignaux (1994). Biomass and coefficient of variation (c.v.) were calculated by stratum for 1+, 2+, and 3++ (a plus group of hoki aged 3 years or more) age classes of hoki, and for 10 other key species: hake, ling, dark ghost shark, pale ghost shark, giant stargazer, lookdown dory, sea perch, silver warehou, spiny dogfish, and white warehou. These species were selected because they are commercially important, and the trawl survey samples the main part of their depth distribution. Other species such as black oreo are also commercial and relatively abundant on these surveys, but their depth distribution extends well beyond that sampled by the survey and the data are not representative of the full population.

The catchability coefficient (an estimate of the proportion of fish in the path of the net which is caught) is the product of vulnerability, vertical availability, and areal availability. These factors were set at 1 for the analysis, the assumptions being that fish were randomly distributed over the bottom, that no fish were present above the height of the headline, and that all fish within the path of the trawl doors were caught.

Scaled length frequencies were calculated for the major species with the Trawlsurvey Analysis Program, version 3.2 (Vignaux 1994), using length-weight data from this survey.

Data from all biomass stations (categories match phase 1, P1 - no phase 2 stations were conducted on this survey, see 3.1 below) and where the gear performance was satisfactory (codes 1 or 2) were included for estimating biomass and calculating length frequencies.

2.8 Estimation of numbers at age

Hoki, hake, and ling otoliths were prepared and aged using validated ageing methods (hoki, Horn & Sullivan (1996) as modified by Cordue et al. (2000); hake, Horn (1997); ling, Horn (1993)).

Subsamples of 750 hoki otoliths and 640 ling otoliths were selected from those collected during the trawl survey. Subsamples were obtained by randomly selecting otoliths from 1 cm length bins covering

the bulk of the catch and then systematically selecting additional otoliths to ensure the tails of the length distributions were represented. The numbers aged approximated the sample size necessary to produce mean weighted c.v.s of less than 20% for hoki and 30% for ling across all age classes. All hake otoliths were read.

Numbers at age were calculated from observed length frequencies and age-length keys using customised NIWA catch-at-age software (Bull & Dunn 2002). For hoki, this software also applied the "consistency scoring" method of Francis (2001), which uses otolith ring radii measurents to improve the consistency of age estimation.

2.9 Acoustic data analysis

All acoustic recordings made during the trawl survey were visually examined. Marks were classified into eight categories based on the relative depth of the mark in the water column, mark orientation (surface-or bottom-referenced), mark structure (layers, schools, or single targets), and the relative strength of the mark on 38 kHz and 12 kHz. Descriptive statistics were produced on the frequency of occurrence of different marks. Brief descriptions of the eight marks types are given below. Example echograms may be found in Cordue et al. (1998), Bull (2000), and O'Driscoll (2001a, 2001b).

1. Surface layers

These occurred within the upper 100 m of the water column and tended to be stronger on 12 kHz than on 38 kHz.

2. Pelagic layers

Surface-referenced midwater layers which were typically continuous for more than 1 km and much stronger on 12 kHz than on 38 kHz. This category is equivalent to 'Type A' marks of Bull (2000).

3. Pelagic schools

Well-defined schools in midwater which appear as crescents on 12 kHz. Equivalent to 'bullet' marks of Cordue et al. (1998) and Bull (2000).

4. Pelagic clouds

Surface-referenced midwater marks which were more diffuse and dispersed than pelagic layers, typically over 100 m thick with no clear boundaries.

5. Bottom layers

Bottom-referenced layers which were continuous for more than 1 km and were generally stronger on 38 kHz than on 12 kHz. Equivalent to 'Type B' marks of Bull (2000) and 'Type 1' marks of Cordue et al. (1998).

6. Bottom clouds

Bottom-referenced marks which were more diffuse and dispersed than bottom layers with no clear upper boundary.

7. Bottom schools

Distinct schools close to the bottom. These appear as crescents on 12 kHz and are equivalent to 'Type C' marks of Bull (2000).

8. Single targets

Inverted U-shaped single targets visible on 38 kHz close to the bottom.

As part of the qualitative description, the quality of acoustic data recordings was subjectively classified as 'good', 'marginal', or 'poor' (see appendix 2 of O'Driscoll & Bagley (2004) for examples). Only good or marginal quality recordings were considered suitable for quantitative analysis.

A quantitative analysis was also carried out to compare acoustic backscatter from bottom-referenced marks with daytime trawl catch rates. Acoustic data collected on 38-kHz during each tow were integrated using custom Echo Sounder Package (ESP2) software (McNeill 2001) to calculate the mean acoustic backscatter per km². Two values of acoustic backscatter were calculated for each trawl. The first estimate was based an integration height of 10 m above the acoustic bottom, which was similar to the measured headline height of the trawl (average 7.0 m). The second acoustic estimate integrated all backscatter from the bottom up to the maximum height of the bottom referenced mark or 100 m, but excluded all other mark types. Raw acoustic density estimates (backscatter per km²) were then compared with trawl catch rates (kg per km²). No attempt was made to scale acoustic estimates by target strength, corrected for differences in catchability, or carry out species decomposition (O'Driscoll 2002, 2003).

3. RESULTS

3.1 2005 survey coverage

The trawl survey was successfully completed. A total of 96 successful phase 1 biomass tows were carried out (Table 1, Figure 2). Due to winch problems, *Tangaroa* had to return to port for repairs slose to the end of the survey. Although *Tangaroa* later resumed trawling and completed the phase 1 stations, no phase 2 tows were completed. A further 6 random bottom trawl stations were excluded from the biomass calculations: 3 tows which came fast, one in which the net was ripped, one hauled early due to rough bottom, and one which was too deep for the survey area. An additional 8 fine meshed mesopelagic tows and 7 beam tows were carried out at night were time permitted to provide specimens of key prey species for the trophic study (ZBD2004/02).

Station density ranged from 1:288 km² in stratum 17 (200–400 m, Veryan Bank) to 1:3722 km² in stratum 4 (600–800 m, south Chatham Rise). Mean station density was 1:1530 km².

3.2 Gear performance

Gear configuration for valid biomass tows was relatively constant over the 200–800 m depth range. Mean doorspread measurements by 200 m depth intervals ranged from 112.5 to 119.1 m and mean headline height ranged from 6.8 to 7.0 m, and were all within the optimal range (Hurst et al. 1992) (Table 3).

The dates of the trawl survey were within the time frame covered in previous years (Table 2). Doorspread and headline readings were recorded for all 96 valid biomass stations (Table 3).

3.3 Hydrology

Surface and bottom temperatures were recorded throughout the survey from the Seabird CTD. The surface temperatures (Figure 3, top panel) ranged from 12.5 to 17.1 °C. Bottom temperatures, ranged from 5.8 to 10.7 °C (Figure 3, bottom panel).

As in previous years, higher surface temperatures were associated with subtropical water to the north. Lower temperatures were associated with sub-antarctic water to the south. Higher bottom

temperatures were generally associated with shallower depths to the north of the Chatham Islands and to the east of the Mernoo Bank.

3.4 Catch composition

Two hundred and five species or species groups were recorded from the 96 valid biomass tows. The total catch was 110 t, of which 45.1 t (41.0%) was hoki, 7.7 t (7.0%) was javelinfish, 6.3 t (5.7%) was dark ghost shark, 4.7 t (4.3%) was black oreo, 4.2 t (3.8%) was ling, and 4.1 t (3.7%) was big eye rattail (Table 4).

Of the 205 species or species groups identified, there were 95 teleosts, 25 elasmobranches, 1 agnathan (blind eel), 21 crustaceans, and 9 cephalopods, the remainder consisting of assorted benthic and pelagic invertebrates. A full list of species caught, and the number of stations at which they occurred, is given in Appendix 2. A number of benthic invertebrates are awaiting formal identification.

3.5 Biomass estimates

Relative biomass was estimated for 48 species (Table 4). The c.v.s achieved for hoki, hake, and ling were 10.6%, 19.3%, and 7.4% respectively. The c.v. for 2+ hoki (2003 year class) was 18.8%, below the target c.v. of 20%. High c.v.s (over 30%) generally occurred when species were not well sampled by the gear. For example, alfonsino and silver warehou are not demersal and exhibit strong schooling behaviour. Others, such as smooth oreo and red cod, have high c.v.s as they are mainly distributed outside the survey depth range.

The combined biomass for the top 31 species in the core strata that are tracked from year to year was higher than in 2005 but similar to that in 2004 (Figure 4, top panel). Although at historically low levels, hoki biomass was 17% higher than in 2005. As in previous years, hoki was still the most abundant species caught (Table 4), and formed a similar proportion of the total biomass to last year (Figure 4, lower panel). Black oreo, dark ghost shark, ling, lookdown dory, silver warehou, spiky oreo, alfonsino, sea perch, spiny dogfish, pale ghost shark, white warehou, arrow squid, smooth oreo, and giant stargazer were the next most abundant QMS species after hoki, each with an estimated biomass over 2000 t. The most abundant commercial non-QMS species was shovelnose dogfish with a biomass of 2815 t. A substantial biomass of non-commercial species, primarily javelinfish and bigeye rattails was also estimated (Table 4).

The relative hoki biomass, estimated at 99 208 t, was 15% higher than that of 2005 (Table 5). This increase was driven by average 1+ (2004 year class) and 2+ cohorts (2003 year class). The biomass of fish aged 3 years and over (3++) increased from 21 200 t in 2005 to 33 586, due to recruitment of the above average 2002 year class, but remains at historically low levels (Table 6). The hake biomass estimate was about 30% higher than that of 2005. Ling biomass was up slightly from 2005.

The relative biomass of lookdown dory and sea perch increased from 2005, while the biomass of dark ghost sharks and silver warehou was about the same, and the biomass of giant stargazer, silver warehou, spiny dogfish and pale ghost sharks decreased (Figure 5).

3.6 Catch distribution

Hoki

In the 2006 survey, hoki were caught at 93 of the 96 biomass stations, but the highest catch rates were mainly in shallow strata (200–400 m) along the crest of the Chatham Rise, reflecting the abundance of

juvenile (1+ and 2+) hoki (Figures 6a and 6b). One year old hoki (2004 year class) were relatively abundant and largely confined to the Mernoo, Reserve, and Veryan Banks (strata 18, 19, 20, and 17) on the western side of the survey area. Two year old hoki (2003 year class) were abundant across much of the rise in 200-400 m depth, and sometimes to 600 m depth. The older 3++ fish were distributed throughout much of the survey area, but were often associated with juvenile hoki in the 200-600 m strata, probably reflecting the distribution of the above average 2002 year class (Figure 6c). The highest individual 2006 catch rate of hoki occurred in stratum 11D, to the northeast of the Chatham Islands and consisted mainly of 2+ and 3+ hoki.

Hake

In 2006, catch rates of hake were higher than in 2005, and similar to those in 2004. The highest catch rates were in stratum 7, east of the Mernoo Bank, and in the hake spawning area in strata 10B and 11A (Figure 7). The highest individual catch rate of hake was in stratum 7 and appears to have been associated with juvenile hoki. Few hake were taken from the top of the rise at depths of 200–400 m and from the south side of the survey area. The decline in hake catch rates over the time series is seen in Figure 7.

Ling

As in previous years, catches of ling were evenly distributed throughout most strata in the survey area (Figure 8). The largest catch was taken on the Veryan Bank (stratum 17). Ling distribution has been reasonably consistent, and catch rates have remained relatively stable over the time series.

Other species

As with previous surveys, sea perch and lookdown dory were widely distributed throughout the survey area, but were more abundant in 200–600 m depths on the west and eastern halves of the survey area respectively. Spiny dogfish were also widely distributed, although larger catches were taken from the southern rise in 200–600 m depths. Dark ghost shark where mainly caught in 200–400 m depths with the largest catch again taken in stratum 17 on Veryan Bank. Pale ghost shark were mainly captured in deeper water at 400–800 m depth. Giant stargazer were more abundant around the Mernoo, Veryan, and Reserve banks, and to the west of the Chatham Islands in 200-400 m depths. Silver warehou and white warehou were patchily distributed and predominantly taken at depths of 200–600 m (Figure 9, Tables 7 and 8).

3.7 Biological data

3.7.1 Species sampled

The number of species and the number of samples for which length and length-weight data were collected are given in Table 9.

3.7.2 Length frequencies and age distributions

Length-weight relationships used in the Trawlsurvey Analysis Program to scale length frequencies and calculate biomass and catch rates of 1+, 2+ and 3++ hoki, are given in Table 10.

Hoki

The 1+ (less than 49 cm), 2+ (49–63 cm), and 3+ (63-73 cm) age classes of hoki dominated scaled length frequencies and age frequencies in the 2006 survey (Figures 10 and 11), and confirm the observation of good 1+ and 2+ age classes in 2005. As with previous years, there were very few larger adults over 4 years of age present in the survey area in 2006.

Hake

Hake scaled length frequencies and calculated numbers at age (Figures 12 and 13) show a pulse of small fish from 45 to about 65 cm of age 3+ and 4+. This confirms the observation of a good 3+ age-class in 2005, however, the reasonable numbers of 3+ in 2006 were not observed as 2+ fish in 2005. This may be due to reduced availability of 2+ hake in the survey area. Few hake longer than 70 cm and older than age 5 were caught in 2006.

Ling

Ling scaled length frequencies and calculated numbers at age comprise mainly medium-sized individuals of 4–11 years old, which corresponds to a period of strong recruitment during the 1990s (Figures 14 and 15). The time series is a poor indicator of 1+ and 2+ age class strength for ling, perhaps because of reduced selectivity or availability in the survey area.

Other species

Length frequency distributions for other species are shown in Figure 16. Clear modes are apparent in the size distributions of white and silver warehou, which probably correspond to yearly cohorts. Length frequencies of lookdown dory, giant stargazer, spiny dogfish, and dark ghost shark indicate that females grow larger than males. It is unclear if modal peaks correspond to individual year classes in the length frequencies of these species (Figure 16).

3.7.3 Reproductive status

Gonad stages of hake, hoki, ling, sea perch, and small numbers of other species are summarised in Table 11. Almost all hoki (97%) were either resting or immature. About 28% of male ling were ripe, but few females were showing signs of reproductive activity this year. Due to reasonable recruitment in 2001 and possibly 2002, about 40% of hake were immature. Another 27% of hake were resting, and about 20% of females had gonads that were ripening. A reasonable number (26%) of female lookdown dory were ripe (Table 11). Adults of most other species were resting.

3.7.4 Sex ratios

The overall sex ratio for hoki (1.02 females to every 1 male) were almost even (see Figure 10) Female hake were more abundant than males (1.27:1) (Figure 12), while male ling were more abundant than females (0.78 females: 1 male) (see Figure 14). As with previous years, the catch of spiny dogfish was dominated by females (3.63:1), and there were more female than male giant stargazers (1.80:1) caught. Sex ratios were about even for most other species (see Figure 16).

3.7.5 Additional objectives

Trophic study (project ZBD2004/02)

The aims of the trophic study were successfully met, with 6961 fish stomachs collected from 25 key species and a few large trophic predators (see Table 9). Fifteen night tows were carried out: 8 fine meshed mesopelagic tows and 7 beam tows to provide specimens of key prey species for the trophic study.

Giant stargazer age validation (project STA2004/03)

The aims of the giant stargazer age validation study were successfully met, with 165 giant stargazers tagged and released. No tagged stargazers were recaptured from those tagged on last years survey.

3.8 Acoustic results

3.8.1 Description of acoustic mark types

A total of 214 acoustic data files (110 'trawl' files and 104 'steam' files) were recorded during the trawl survey. Good weather conditions for much of the voyage meant that quality of acoustic recordings was generally good (72% of all echograms) or marginal (17%). Only 8% of the trawl files were considered too poor to be analysed quantitatively. The frequency of occurrence of each of the eight mark categories is given in Table 12. Often several types of mark were present in the same echogram. Data were sub-divided into three depth ranges (200–400 m, 400–600 m, 600–1000 m) based on the maximum depth observed during the acoustic file.

Pelagic layers were the most common daytime mark type, occurring in 95% of day steam files and 88% of trawl files (Table 13). Midwater trawling on previous Chatham Rise surveys suggests that pelagic layers contain mesopelagic fish species, such as pearlsides (*Maurolicus australis*) and myctophids (McClatchie & Dunford 2003). These mesopelagic species vertically migrate, rising in the water column and dispersing during the night, turning into pelagic clouds and surface layers. Surface layers were observed in 94% of night recordings and most day echograms. Pelagic schools were observed in 47% of day steam files, 40% of trawl files, and 15% of night files (Table 13). Cordue et al. (1998) suggested that pelagic schools or 'bullets' were associated with Ray's bream, but it is likely that the schools are aggregations of mesopelagic fish, on which Ray's bream feed.

Eight night trawls were carried out using a fine-meshed midwater trawl during the 2006 survey to provide information on key prey species as part of the trophic feeding study (MFish project ZBD2004/02). Five of these trawls sampled surface layers from 0–160 m depth (tows 12, 45, 76, 77, 107). These tows caught mainly myctophids (83% of total catch), with small quantities of pearlsides (3%), squid (3%), crustaceans (3%), salps (2%), and other demersal and pelagic fish (6%). This was broadly similar to the catch composition from surface layers in 2005, when 10 trawls caught 59% myctophids, 26% salps, 7% crustaceans, and 3% squid (Stevens & O'Driscoll 2006). Three midwater trawls in 2006 sampled deeper pelagic clouds from 200–680 m depth (tows 43, 44, and 106). These deeper tows also caught myctophids (42% of total catch), but there was a higher proportion of demersal fish (30%), squid (20%), and crustaceans (6%) than in tows on shallower surface layers. Catch rates in all mesopelagic trawls in 2006 were low, with a maximum catch of 16.6 kg in tow 77.

Bottom layers were observed in 87% of day steam files, 67% of day trawl files, and 45% of night files (Table 13). Like pelagic layers, bottom layers tended to disperse at night, to form bottom clouds. Bottom layers and clouds were usually associated with a mix of demersal fish species, but probably also contain mesopelagic species when these occur close to the bottom (O'Driscoll 2003). There was

often mixing of bottom layers and pelagic layers, particularly when the seabed rose or fell. Bottom-referenced schools were present in 16% of daytime (trawl and steam) recordings, and were most abundant in 200–400 m water depth (see Table 12). Bottom schools and layers 10–70 m off the bottom were sometimes associated with large catches of 1+ and 2+ hoki (e.g., Figure 17a), but also with other species such as barracouta and alfonsino (Stevens & O'Driscoll 2006). Single target echoes close to the bottom were observed in most files, regardless of depth or time of day (see Table 12). Single targets usually occurred in the same echogram as other mark types, making identification of the species responsible for the single target echoes difficult, but probably consist of low densities of demersal fish.

Table 13 compares the percentage occurrence of marks on the Chatham Rise in 2006 with that from two previous surveys in 2003 and 2005. Daytime marks on the Chatham Rise in 2006 were generally similar to those observed in previous surveys, although there were a lower proportion of bottom schools in 2006. Daytime mark types such as pelagic schools, pelagic layers and bottom layers were more frequently recorded during night recordings in 2005 and 2006 than in 2003 (Table 13). This was probably because some night steams started relatively early in the evening during the last two surveys (before 18:00 NZST), before marks dispersed and ascended.

3.8.2 Comparison of acoustics with bottom trawl catches

Acoustic data from 88 trawl files were integrated and compared with trawl catch rates. Data from the other 22 trawl recordings were not included in the analysis because the acoustic data were too noisy (8 files), they were carried out at night (8 files), or because the trawl was not considered suitable for biomass estimation (6 files). Average acoustic backscatter from the bottom 10 m and trawl catch rates (for all species combined) in 2006 were similar to 2001–05 (Table 14). There was a very weak positive correlation between acoustic backscatter and trawl catch rates in 2006 (Figure 18), which was not statistically significant (p = 0.14). In previous Chatham Rise surveys from 2001–05, rank correlations between trawl catch rates and acoustic density estimates (from the entire bottom-referenced layer) ranged from 0.18 (in 2003) to 0.46 (in 2001).

The weak correlation between acoustic backscatter and trawl catch rates (Figure 18) arises because large catches are sometimes made when there are only weak marks observed acoustically, and conversely, relatively little is caught in some trawls where dense marks are present. The two echograms in Figure 17 correspond to trawls at similar depths in adjacent strata with very similar catches of small hoki and other species. However, there is 30 times more acoustic backscatter within 10 m of the bottom, and 70 times more backscatter in the bottom 100 m, in tow 81 (Figure 17b) compared to tow 79 (Figure 17a). O'Driscoll (2003) suggested that bottom-referenced layers on the Chatham Rise (such as those shown in Figure 17b) may also contain a high proportion of mesopelagic 'feed' species, which contribute to the acoustic backscatter, but which are not sampled by the bottom trawl. This, combined with the diverse composition of demersal species present, means that it is unlikely that acoustics will provide an alternative biomass estimate for hoki on the Chatham Rise in the short term.

4. CONCLUSIONS

The 2006 survey successfully extended the January Chatham Rise time series into its fifteenth year and provided abundance indices for hoki, hake, and ling. The survey c.v. of 18.8% achieved for 2+ hoki was well within the target precision level of 20%. The estimated total biomass of hoki was 15% higher than in the previous survey, due to reasonable recruitment of 1+ and 2+ year old hoki into the survey area. The estimated biomass of recruited hoki (3+ years and older) increased by 87% from 2005 (21 200 t to 39 745 t), due to inclusion of the reasonable 2002 year class, but continues to remain at low levels compared to the 1990s. The biomass of hake in core strata increased by 32% to 1384 t, due to a good

showing of 3+ (2002 year class) and 4+ (2001 year class) year old hake, but the overall biomass estimate remains at historically low levels. The biomass of ling was similar to previous surveys and the trawl time-series has showed no overall trend.

5. ACKNOWLEDGMENTS

We thank the scientific staff and the Master, officers, and crew of *Tangaroa* who contributed to the success of this voyage. Thanks also to our internal reviewer, Neil Bagley, for providing constructive comments on this manuscript, and to the scientific staff involved with the preparation, reading, and calculation of catch at age data for hoki, hake, and ling otoliths from this survey. This work was carried out by NIWA under contract to the Ministry of Fisheries (Project HOK2005/02).

6. REFERENCES

- Annala, J.H.; Wood, B.A.; Hadfield, J.D.; Banks, D.A. (1990). Age, growth, mortality and yield-per-recruit estimates of tarakihi from the east coast of the South Island during 1987. MAF Fisheries Greta Point Internal Report No. 138. 23 p. (Unpublished report held in NIWA library, Wellington.)
- Bagley, N.W.; Hurst, R.J. (1998). Trawl survey of hoki and middle depth species on the Chatham Rise, January 1998 (TAN9801). NIWA Technical Report 44. 54 p.
- Bagley, N.W.; Livingston, M.E. (2000). Trawl survey of hoki and middle depth species on the Chatham Rise, January 1999 (TAN9901). NIWA Technical Report 81. 52 p.
- Beentjes, M.P. (1992). Assessment of red cod based on recent trawl survey and catch sampling data. New Zealand Fisheries Assessment Research Document 92/16. 41 p. (Unpublished report held in NIWA library, Wellington.)
- Bull, B. (2000). An acoustic study of the vertical distribution of hoki on the Chatham Rise. *New Zealand Fisheries Assessment Report 2000/5*. 59 p.
- Bull, B.; Bagley, N.W.; Hurst, R.J. (2000). Proposed survey design for the Southern Plateau trawl survey of hoki, hake and ling in November-December 2000. Final Research Report to the Ministry of Fisheries for Project MDT1999/01 Objective 1. 31 p. (Unpublished report held by Ministry of Fisheries, Wellington.)
- Bull, B.; Dunn, A. (2002). Catch-at-age user manual v1.06.2002/09/12. NIWA Internal Report 114. 23 p. (Unpublished report held in NIWA library, Wellington.)
- Coombs, R.F.; Macaulay, G.J.; Knol, W.; Porritt, G. (2003). Configurations and calibrations of 38 kHz fishery acoustic survey systems, 1991–2000. New Zealand Fisheries Assessment Report 2003/49. 24 p.
- Cordue, P.L.; Ballara, S.L.; Horn, P.L. (2000). Hoki ageing: recommendation of which data to routinely record for hoki otoliths. Final Research Report to the Ministry of Fisheries for Project MOF1999/01 (Hoki ageing). 24 p. (Unpublished report held by Ministry of Fisheries, Wellington.)
- Cordue, P.L.; Macaulay, G.J.; Ballara, S.L. (1998). The potential of acoustics for estimating juvenile hoki abundance by age on the Chatham Rise. Final Research Report for Ministry of Fisheries Research Project HOK9702 Objective 3. 35 p. (Unpublished report held by Ministry of Fisheries, Wellington.)
- Foote, K.G.; Knudsen, H.P.; Vestnes, G.; MacLennan, D.N.; Simmonds, E.J. (1987). Calibration of acoustic instruments for fish density estimation: a practical guide. *ICES Cooperative Research Report 144*. 68 p.
- Francis, R.I.C.C. (1981) Stratified random trawl surveys of deep-water demersal fish stocks around New Zealand. *Fisheries Research Division Occasional Publication 32*. 28 p.
- Francis, R.I.C.C. (1984) An adaptive strategy for stratified random trawl surveys. *New Zealand Journal of Marine and Freshwater Research 18*: 59–71.
- Francis, R.I.C.C. (1989). A standard approach to biomass estimation from bottom trawl surveys. New Zealand Fisheries Assessment Research Document 89/3. 3 p. (Unpublished report held in NIWA library, Wellington.)

- Francis, R.I.C.C. (2001). Improving the consistency of hoki age estimation. New Zealand Fisheries Assessment Report 2001/12. 18 p.
- Hatanaka, H.; Uozumi, Y.; Fukai, J.; Aizawa, M.; Hurst, R.J. (1989). Japan-New Zealand trawl survey of southern New Zealand, October-November 1983. *New Zealand Fisheries Technical Report 9*. 52 p.
- Horn, P.L. (1988). Age and growth of bluenose, *Hyperoglyphe antarctica* (Pisces: Stromateoidei) from the lower east coast, North Island, New Zealand. *New Zealand Journal of Marine and Freshwater Research* 22: 369–378.
- Horn, P.L. (1993). Growth, age structure, and productivity of ling, *Genypterus blacodes* (Ophidiidae), in New Zealand waters. *New Zealand Journal of Marine and Freshwater Research 27*: 385–397.
- Horn, P.L. (1994a). Trawl survey of hoki and middle depth species on the Chatham Rise, December 1991-January 1992 (TAN9106). *New Zealand Fisheries Data Report No. 43*. 38 p.
- Horn, P.L. (1994b). Trawl survey of hoki and middle depth species on the Chatham Rise, December 1992-January 1993 (TAN9212). *New Zealand Fisheries Data Report No. 44*. 43 p.
- Horn, P.L. (1997). An ageing methodology, growth parameters and estimates of mortality for hake (*Merluccius australis*) from around the South Island, New Zealand. *Marine and Freshwater Research* 48: 201–209.
- Horn, P.L.; Sullivan, K.J. (1996). Validated aging methodology using otoliths, and growth parameters for hoki (*Macruronus novaezeelandiae*) in New Zealand waters. *New Zealand Journal of Marine & Freshwater Research 30*: 161–174.
- Hurst, R.J.; Bagley, N.; Chatterton, T.; Hanchet, S.; Schofield, K.; Vignaux, M. (1992). Standardisation of hoki/middle depth time series trawl surveys. MAF Fisheries Greta Point Internal Report No. 194. 89 p. (Unpublished report held in NIWA library, Wellington.)
- Hurst, R.J.; Bagley, N.W. (1994). Trawl survey of middle depth and inshore bottom species off Southland, February-March 1993 (TAN9301). New Zealand Fisheries Data Report No. 52. 58 p.
- Johnston, A.D. (1983). The southern Cook Strait groper fishery. Fisheries Technical Report No. 159. 33 p.
- Livingston, M. (2004) A sampling programme to construct and quantify food-webs in two key areas supporting important fish and invertebrate species in New Zealand. *Final Research Report for Ministry of Fisheries Project ENV2002-07, Objective 1*.
- Livingston, M.E.; Bull, B.; Stevens, D.W.; Bagley, N.W. (2002). A review of hoki and middle depth trawl surveys of the Chatham Rise, January 1992–2001. *NIWA Technical Report 113*. 146 p.
- Livingston, M.E.; Stevens, D.W. (2005). Trawl survey of hoki and middle depth species on the Chatham Rise, January 2004 (TAN0401). *New Zealand Fisheries Assessment Report 2005/21*. 62 p.
- Livingston, M.E.; Stevens, D.; O'Driscoll, R.L.; Francis, R.I.C.C. (2004). Trawl survey of hoki and middle depth species on the Chatham Rise, January 2003 (TAN0301). *New Zealand Fisheries Assessment Report 2004/16*. 71 p.
- McClatchie, S.; Dunford, A. (2003). Estimated biomass of vertically migrating mesopelagic fish off New Zealand. *Deep Sea Research I 50*: 1263–1281.
- McClatchie, S.; Pinkerton, M.; Livingston, M.E. (2005). Relating the distribution of a semi-demersal fish, *Macruronus novaezelandiae*, to their pelagic food supply. *Deep Sea Research Part I 52*: 1489–1501.
- McNeill, E. (2001). ESP2 phase 4 user documentation. NIWA Internal Report 105. 31 p. (Unpublished report held in NIWA library, Wellington.)
- Manning, M.J.; Marriott, P.M.; Taylor, P.R. (Accepted). The length and age composition of the commercial catch of blue mackerel (Scomber australasicus) in EMA 1 during the 2003–04 fishing year. Manuscript accepted for publication as a New Zealand Fisheries Assessment. 41 p.
- O'Driscoll, R.L. (2001a). Analysis of acoustic data collected on the Chatham Rise trawl survey, January 2001 (TAN0101). Final Research Report for Ministry of Fisheries Research Project HOK2000/02 Objective 3. 26 p. (Unpublished report held by Ministry of Fisheries, Wellington.)
- O'Driscoll, R.L. (2001b). Classification of acoustic mark types observed during the 2000 Sub-Antarctic trawl survey (TAN0012). Final Research Report for Ministry of Fisheries Research Project MDT2000/01 Objective 3. 28 p. (Unpublished report held by Ministry of Fisheries, Wellington.)

- O'Driscoll, R.L. (2002). Estimates of acoustic:trawl vulnerability ratios from the Chatham Rise and Sub-Antarctic. Final Research Report for Ministry of Fisheries Research Projects HOK 2001/02 Objective 3 and MDT2001/01 Objective 4. 46 p. (Unpublished report held by Ministry of Fisheries, Wellington.)
- O'Driscoll, R.L. (2003). Determining species composition in mixed species marks: an example from the New Zealand hoki (*Macruronus novaezelandiae*) fishery. *ICES Journal of Marine Science 60*: 609–616.
- O'Driscoll, R.L.; Bagley, N.W. (2004). Trawl survey of middle depth species in the Southland and Sub-Antarctic areas, November–December 2003 (TAN0317). New Zealand Fisheries Assessment Report 2004/49. 58 p.
- Schofield, K.A.; Horn, P.L. (1994). Trawl survey of hoki and middle depth species on the Chatham Rise, January 1994 (TAN9401). *New Zealand Fisheries Data Report No. 53*. 54 p.
- Schofield, K.A.; Livingston, M.E. (1995). Trawl survey of hoki and middle depth species on the Chatham Rise, January 1995 (TAN9501). *New Zealand Fisheries Data Report No. 59*. 53 p.
- Schofield, K.A.; Livingston, M.E. (1996). Trawl survey of hoki and middle depth species on the Chatham Rise, January 1996 (TAN9601). *New Zealand Fisheries Data Report No. 71*. 50 p.
- Schofield, K.A.; Livingston, M.E. (1997). Trawl survey of hoki and middle depth species on the Chatham Rise, January 1997 (TAN9701). NIWA Technical Report 6. 51 p.
- Stevens, D.W.; Livingston, M.E.; Bagley, N.W. (2001). Trawl survey of hoki and middle depth species on the Chatham Rise, January 2000 (TAN0001). *NIWA Technical Report 104*. 55 p.
- Stevens, D.W.; Livingston, M.E.; Bagley, N.W. (2002). Trawl survey of hoki and middle depth species on the Chatham Rise, January 2001 (TAN0101). *NIWA Technical Report 116*. 61 p.
- Stevens, D.W.; Livingston, M.E. (2003). Trawl survey of hoki and middle depth species on the Chatham Rise, January 2002 (TAN0201). *New Zealand Fisheries Assessment Report 2003/19*. 57 p.
- Stevens, D.W.; O'Driscoll, R.L. (2006): Trawl survey of hoki and middle-depth species on the Chatham Rise, January 2005 (TAN0501) *New Zealand Fisheries Assessment Report 2006/13*. 73 p.
- Stevenson, M.L.; Beentjes, M.P. (1999). Inshore trawl survey of the Canterbury Bight and Pegasus Bay, December 1998–January 1999 (KAH9809). *NIWA Technical Report 63*. 66 p.
- Sullivan, K.J.; Mace, P.M.; Smith, N.W.McL., Griffiths, M.H.; Todd, P.R.; Livingston, M.E.; Harley, S.J., Key, J.M.; Connell, A.M. (2005). Report from the Fishery Assessment Plenary, May 2005: stock assessments and yield estimates. 792 p. (Unpublished report held in NIWA library, Wellington.)
- Tracey, D.M.; George, K.; Gilbert, D.J. (2000). Estimation of age, growth, and mortality parameters of black cardinalfish (*Epigonus telescopus*) in QMA2 (east coast North Island. *New Zealand Fisheries Assessment Report 2000/27*. 15 p.
- Vignaux, M. (1994). Documentation of Trawlsurvey Analysis Program. MAF Fisheries Greta Point Internal Report No. 225. 44 p. (Unpublished report held in NIWA library, Wellington.)

Table 1: The number of completed valid biomass stations by stratum during Phases 1 of the 2006 survey (Note: No Phase 2 stations were completed during the survey)

Stratum number	Depth range (m)	Location	Area (km²)	Phase 1 stations	Phase 2 stations	Total stations	Station density (1: km²)
1	600-800	NW Chatham Rise	2 439	3		3	1: 813
2A	600800	NW Chatham Rise	3 253	3		3	1: 1 084
2B	600-800	NE Chatham Rise	8 503	5		5	1: 1 701
3	200-400	Matheson Bank	3 499	3		3	1: 1 166
4	600-800	SE Chatham Rise	11 315	3		3	1: 3 772
5	200-400	SE Chatham Rise	4 078	3		3	1: 1 359
6	600-800	SW Chatham Rise	8 266	3		3	1: 2 755
7	400-600	NW Chatham Rise	5 233	7		7	1: 748
8A	400600	NW Chatham Rise	3 286	3		3	1: 1 095
8B	400600	NW Chatham Rise	5 722	3		3	1: 1 907
9	200-400	NE Chatham Rise	5 136	3		3	1: 1 712
10A	400600	NE Chatham Rise	2 958	3		3	1: 986
10B	400600	NE Chatham Rise	3 363	3		3	1: 1 121
11A	400-600	NE Chatham Rise	2 966	5		5	1: 593
11B	400-600	NE Chatham Rise	2 072	3		3	1: 691
11C	400-600	NE Chatham Rise	3 342	3		3	1: 1 114
11D	400-600	NE Chatham Rise	3 368	3		3	1: 1 123
12	400600	SE Chatham Rise	6 578	3		3	1: 2 193
13	400600	SE Chatham Rise	6 681	3		3	1: 2 227
14	400600	SW Chatham Rise	5 928	3		3	1: 1 976
15	400-600	SW Chatham Rise	5 842	3		3	1: 1 947
16	400-600	SW Chatham Rise	11 522	6		6	1: 1 920
17	200-400	Veryan Bank	865	3		3	1: 288
18	200-400	Mernoo Bank	4 687	5		5	1: 937
19	200-400	Reserve Bank	9 012	6		6	1: 1 502
20	200–400	Reserve Bank	9 584	5		5	1: 1 917
Total			146 855	96	0	96	1: 1 530

Table 2: Survey dates and number of valid 200-800 m depth biomass stations in surveys of the Chatham Rise, January 1992-2006

Trip_code	Start date	End date	No. of valid biomass stations
TAN9106	28 Dec 1991	1 Feb 1992	184
TAN9212	30 Dec 1992	6 Feb 1993	194
TAN9401	2 Jan 1994	31 Jan 1994	165
TAN9501	4 Jan 1995	27 Jan 1995	122
TAN9601	27 Dec 1995	14 Jan 1996	89
TAN9701	2 Jan 1997	24 Jan 1997	103
TAN9801	3 Jan 1998	21 Jan 1998	91
TAN9901	3 Jan 1999	26 Jan 1999	100
TAN0001	27 Dec 1999	22 Jan 2000	128
TAN0101	28 Dec 2000	25 Jan 2001	119
TAN0201	5 Jan 2002	25 Jan 2002	107
TAN0301	29 Dec 2002	21 Jan 2003	115
TAN0401	27 Dec 2003	23 Jan 2004	110
TAN0501	27 Dec 2004	23 Jan 2005	106
TAN0601	27 Dec 2005	23 Jan 2006	96

Table 3: Tow and gear parameters by depth range for valid biomass stations. Values shown are sample size (n), and for each parameter the mean, standard deviation (s.d.), and range

	n	Mean (m)	s.d.	Range
Tow parameters				_
Tow length (n. miles)	96	2.9	0.20	2.0-3.1
Tow speed (knots)	95	3.5	0.05	3.0-3.6
Gear parameters				
200–400 m				
Headline height	28	7.0	0.22	6.6-7.4
Doorspread	28	112.5	6.9	95.3-124.2
400–600 m				
Headline height	51	6.8	0.12	6.6-7.1
Doorspread	51	119.1	4.35	105.8-128.8
600–800 m				
Headline height	17	6.9	0.12	6.6-7.0
Doorspread	17	117.1	3.29	110.3-122.1
All stations 200-800 m				
Headline height	96	6.9	0.17	6.6-7.4
Doorspread	96	116.8	5.81	95.3-128.8

Table 4: Catch (kg) and total biomass (t) estimates (also by sex) with coefficient of variation (c.v.), of QMS species, other commercial species, and major non-commercial species for valid biomass stations in 200–800 m depths. Total biomass includes unsexed fish. (-, no data.) Note: A number of giant stargazers were tagged and released and therefore were not sexed

Common name	Code	Catch	Biomas	ss males	Biomass	females	Total	biomass
		kg	t	% c.v.	t	% c.v.	t	% c.v.
QMS species								
Hoki	HOK	45 068	45 137	11.8	53 950	9.9	99 208	10.6
Black oreo	BOE	4 720	12 409	35.1	10 200	27.6	22 625	31.3
Dark ghost shark	GSH	6 293	4 649	12.3	6 850	12.3	11 502	11.9
Ling	LIN	4 202	4 800	9.9	4 485	7.9	9 301	7.4
Lookdown dory	LDO	3 139	2 526	8.8	5 252	10.2	7 818	8.4
Silver warehou	SWA	2 850	3 827	53.3	3 877	46.6	7 704	48.1
Spiky oreo	SOR	2 784	4 058	33.8	3 517	30.5	7 576	32.1
Alfonsino	BYS	3 955	3 823	88.6	2 480	87.5	6 439	86.4
Sea perch	SPE	2 464	2 972	9.9	2 617	11.0	5 752	10.0
Spiny dogfish	SPD	2 613	969	15.6	4 667	14.4	5 650	14.1
Pale ghost shark	GSP	1 264	1 434	11.9	1 788	11.1	3 237	10.5
White warehou	WWA	1 523	1 464	34.4	1 462	25.4	2 929	29.4
Arrow squid	NOS	1 901	1 103	26.9	1 534	30.9	2 678	28.6
Smooth oreo	SSO	455	1 131	44.6	877	47.5	2 010	45.6
Giant stargazer	STA	960	152	25.3	639	26.8	2 007	19.5
Smooth skate	SSK	730	598	37.3	840	31.0	1 521	28.7
Hake	HAK	851	445	24.8	939	20.8	1 384	19.3
Barracouta	BAR	197	339	80.1	123	57.3	462	72.0
Red cod	RCO	194	202	57.2	127	34.3	337	46.0
School shark	SCH	144	242	47.9	45	71.2	304	40.8
Ribaldo	RIB	144	91	15.9	223	24.3	313	16.9
Southern Ray's bream	SRB	172	160	30.4	196	27.5	411	26.9
Bluenose	BNS	116	78	39.5	123	59.6	201	47.2
Slender mackerel	JMM	44	40	79.4	23	91.3	76	70.7
Tarakihi	TAR	24	43	53.9	29	69.0	72	55.5
Lemon sole	LSO	27	26	32.9	31	18.8	58	21.0
Rough skate	RSK	18	32	70.9	24	100	56	55.8
Trumpeter	TRU	17	31	77.1	12	100	43	82.1
Scampi	SCI	17	19	30.2	12	20.4	37	21.0
Deepsea cardinalfish	EPT	19	15	51.2	11	60.7	28	40.9
Hapuku	HAP	14	-		24	41.1	24	41.1
Frostfish	FRO	5	8	66.5	5	100	13	65.1
Rubyfish	RBY	5	5	80.0	3	79.9	8	80.0
Jack mackerel	JMD	5	6	100	2	100	8	100
Blue mackerel	EMA	3	5	100	2	100	7	100

(continued on p. 21)

Table 4 (continued)

Common name	Code	Catch	Bioma	ss males	Biomass	females	Total	<u>biomass</u>
		kg	t	% c.v.	t	% c.v.	t	% c.v.
Commercial non-QMS	species (v	where biomass	> 30 t)					
Shovelnose dogfish	SND	1 329	1 268	16.5	1 543	18.7	2 815	14.4
Redbait	RBT	44	69	55.9	33	55.5	102	55.1
Southern blue whiting	SBW	164	43	99.1	32	87.3	75	94.0
Northern spiny dogfish	NSD	16	40	70.9	0		44	64.1
Non-commercial specie	s (where	hiomass > 800 t	1)					
Javelinfish	JAV	7 702	-	_	_	_	20 380	19.6
Big-eye rattail	CBO	4 114	-	_	_	_	10 326	9.5
Oliver's rattail	COL	654	-	_	_	_	2 056	30.8
Baxter's dogfish	ETB	380	-	-	-	_	1 608	49.4
Oblique-banded ratt.	CAS	1237	-	-	_	-	1 489	13.0
Orange perch	OPE	618	-	_	-	_	1 425	56.6
Banded bellowsfish	BBE	636	_	-	-	-	1 264	13.4
Silver dory	SDO	413	-	-	-	-	1 104	51.7
Longnose chimaera	LCH	302	-	-	-	-	946	18.4
Total (above)		104 546	_	_	_	_	245 433	_
Grand total (all species)		109 977	-	-	-	-	-	_

Table 5: Estimated biomass (t) with coefficient of variation below (%) of hoki, hake, and ling sampled by annual trawl surveys of the Chatham Rise, January 1992-2006. stns, stations (-, no data; c.v., coefficient of variation.)

			Cor	re strata 20	0–800 m			800-	-1000 m
Year	Survey	No. stns	Hoki	Hake	Ling	No. stns	Hoki	Hake	Ling
1992	TAN9106	184	120 190	4 180	8 930	0	_	-	-
	c.v.		7.7	14.9	5.8				
1993	TAN9212	194	185 570	2 950	9 360	0	-	_	-
	c.v.		10.3	17.2	7.9				
1994	TAN9401	165	145 633	3 353	10 129	0	-	-	-
	c.v.		9.8	9.6	6.5				
1995	TAN9501	122	120 441	3 303	7 363	0	-	-	-
	c.v.		7.6	22.7	7.9				
1996	TAN9601	89	152 813	2 457	8 424	0	-	-	-
	c.v.		9.8	13.3	8.2				
1997	TAN9701	103	157 974	2 811	8 543	0	-	-	-
	c.v.		8.4	16.7	9.8				
1998	TAN9801	91	86 678	2 873	7 313	0	-	-	-
	c.v.		10.9	18.4	8.3				
1999	TAN9901	100	109 336	2 302	10 309	0	-	-	-
	c.v.		11.6	11.8	16.1				
2000	TAN0001	128	72 151	2 152	8 348	4	411	62	18
	c.v.		12.3	9.2	7.8		56	64	100
2001	TAN0101	119	60 330	1 589	9 352	0	-	-	-
	c.v.		9.7	12.7	7.5				
2002	TAN0201	107	74 351	1 567	9 442	3	1 955	338	0
	c.v.		11.4	15.3	7.8		39	23	
2003	TAN0301	115	52 531	888	7 261	0	-	-	-
	c.v.		11.6	15.5	9.9				
2004	TAN0401	110	52 687	1 547	8 248	0	-	-	-
	c.v.		12.6	17.1	7.0				
2005	TAN0501	106	84 594	1 048	8 929	0	-	-	-
	c.v.		11.5	18.0	9.4				
2006	TAN0601	96	99 208	1 384	9 301	0	-	-	-
	c.v.		10.6	19.3	7.4				

Table 6: Relative biomass estimates (t in thousands) of hoki, 200–800 m depths, Chatham Rise trawl surveys January 1992–2006 (c.v. coefficient of variation; 3++ all hoki aged 3 years and older; (see Appendix 3 for length ranges of age classes.)

			1+ hoki			2+ hoki	3	++ hoki	ki <u>Total hoki</u>	
Survey	1+ year class	t	% c.v	2+ year class	t	% c.v	t	% c.v	t	% c.v
1992	1990	2.8	(27.9)	1989	1.2	(18.1)	116.1	(7.8)	120.2	(9.7)
1993	1991	32.9	(33.4)	1990	2.6	(25.1)	150.1	(8.9)	185.6	(10.3)
1994	1992	14.6	(20.0)	1991	44.7	(18.0)	86.2	(9.0)	145.6	(9.8)
1995	1993	6.6	(13.0)	1992	44.9	(11.0)	69.0	(9.0)	120.4	(7.6)
1996	1994	27.6	(24.0)	1993	15.0	(13.0)	106.6	(10.0)	152.8	(9.8)
1997	1995	3.2	(40.0)	1994	62.7	(12.0)	92.1	(8.0)	158.0	(8.4)
1998	1996	4.5	(33.0)	1995	6.9	(18.0)	75.6	(11.0)	86.7	(10.9)
1999	1997	25.6	(30.4)	1996	16.5	(18.9)	67.0	(9.9)	109.3	(11.6)
2000	1998	14.4	(32.4)	1997	28.2	(20.7)	29.5	(9.3)	71.7	(12.3)
2001	1999	0.4	(74.6)	1998	24.2	(17.8)	35.7	(9.2)	60.3	(9.7)
2002	2000	22.4	(25.9)	1999	1.2	(21.2)	50.7	(12.3)	74.4	(11.4)
2003	2001	0.5	(46.0)	2000	27.2	(15.1)	20.4	(9.3)	52.6	(8.7)
2004	2002	14.4	(32.5)	2001	5.5	(20.4)	32.8	(12.9)	52.7	(12.6)
2005	2003	17.5	(23.4)	2002	45.8	(16.3)	21.2	(11.4)	84.6	(11.5)
2006	2004	25.9	(21.5)	2003	33.6	(18.8)	39.7	(10.3)	99.2	(10.6)

Table 7: Estimated biomass (t) and coefficient of variation (% c.v.) of hoki, hake, ling, and 8 other key species by stratum (See Table 3 for species common names.) (-, not calculated.)

code	HAK	c.v.	40	78	52	52	1	09	100	<i>L</i> 9	34	100	•	36	65	61		20	100	100	23	100		24	ı	49	100	50	,	61
Species code		t t	24	70	167	25	0	12	16	237	84	4	0	38	217	146	0	40	19	16	39	27	0	69	0	∞	3	125		1 384
l	$\overline{\text{STA}}$	c.v.	61	12	0	09	ı	70	•	78	100	100	99	٠	100	62	100	54	100	20	89		74	30	32	28	17	63	(19
		+	28	4	0	41	0	270	0	75	13	7	236	0	11	10	_	34	24	52	10	0	33	213	70	177	225	438	1	2 007
	WWA	c.v.	•	•	1	20	100	84	•	66	•	100	1	100	100	81	•		26	100	63	78	20	11	52	<i>L</i> 9	9	46	(29
	>	+	0	0	0	229	11	73	0	575	0	15	0	13	4	79	0	0	394	7	54	73	34	343	9	74	38	806		2 929
	GSP	c.v.	30	24	18	100	58	•	40	41	99	41	٠	37	34	53	48	30	59	9	20	11	27	22	•	٠	<i>L</i> 9	78	;	10
		+	44	11	84	2	205	0	503	181	39	204	0	65	103	92	25	46	15	308	309	273	210	334	0	0	13	117		3 237
	<u>SPD</u>	c.v.	ı	•	•	58	100	20	•	52	64	98	46	68	64	26	•	17	ı	75	92	<i>L</i> 9	99	34	21	17	2	15		4
		t	0	0	0	487	∞	346	0	163	109	403	126	57	71	152	0	20	0	39	838	358	246	205	156	435	558	872		2 650
	SPE	c.v.	100	44	16	44	75	40	•	99	42	24	100	47	39	33	37	38	18	70	22	6	73	47	62	20	28	18		10
		+	∞	46	108	340	77	63	0	171	180	507	9	110	70	53	76	25	81	92	213	224	313	145	9	392	1 185	1 311		5 752
	SWA	c.v.	ı	•	•	39	ı	82	100	83	100	100	26	62	53	63	•	ı	100	51	59	94	66	65	40	30	53	99		84
		+	0	0	0	49	0	39	<i>L</i> 9	24	9	4	2 115	∞	11	4	0	0	57	52	494	126	3 054	34	82	205	882	390		7 704
		c.v.	63	59	13	39	83	50	1	22	28	23	. 9/	26	39	18	19	23	49	36	24	10	41	16	33	33	46	26		` ∞
		+	31	27	104	338	235	732	0	139	87	743	77	126	165	218	32	62	158	540	833	717	389	969	14	141	235	949		7 818
		c.v.	58	06	18	51	51	41	71	19	45	11	50	41	36	26	38	27	18	12	33	10	20	13	64	69	57	34		7
		+	77	137	236	318	557	193	137	738	336	432	131	197	61	127	56	168	175	200	812	438	579	372	131	250	259	916		9 301
	II	۸.		1		&:		3		98	71	98	0.0	0	13	4		7	23	2	0	0	00	_	33	0	7.	21		12 9
	CSH	t c.v.	0																											
						1 16		1 23		∞	∞	34	94	17	37	28		ς.	e	4	48	2	30		74	9/	2 03	2 334		11 502
	HOK	c.v.	34	61	24	23	49	26	89	61	41	09	61	27	13	41	48	12	49	48	24	11	47	35	59	33	43	25		=
		+	116	777	1 367	3 604	2 138	1 725	629	4 700	2 266	4 790	294	924	942	1 336	435	528	8 777	2 353	3 208	5 065	7 687	11 494	1 069	5 590	9 613	17 731		99 208
		Stratum	_	2a	2b	3	4	5	9	7	8a	8 p	6	10a	106	11a	11b	11c	11d	12	13	14	15	16	17	18	19	70		Total

Table 8: Catch rate (kg.km⁻²) and standard deviations (s.d.) of hoki, hake, ling, and 8 other species by stratum (See Table 3 for species common names.) (-, not calculated.)

code	s.d.	7	59	23	9	ı	3	3	81	15	_	٠	∞	72	<i>L</i> 9	1	10	10	4	7	∞	ı	4	•	7	0.7	15
SO 1	kg.km ⁻²	10	21	20	7	0	3	7	45	26	0.7	0	13	65	49	0	12	9	7	9	4	0	9	0	7	0.3	13
	s.d.	12	3		12		80	,	30	7	0.7	45	1	2	4	-	10	13	7	7	•	7	14	44	49	Ξ	65
- 1 1	kg.km ⁻²	12	14	0	12	0	99	0	14	4	0.4	46	0	3	ю	9.0	10	7	∞	7	0	9	19	81	38	25	46
	s.d.	,	,		57	7	26		287	,	4	ı	∞	7	48	,	,	96	7	6	17	2	99	9	24	7	86
I≨I	kg.km ⁻²	0	0	0	65	6.0	18			0	ю	0	4	_	27												
١	s.d. kg	6	10	4	ĸ	18	,	43	37	13	25		14	18	30	10	7	5	2	40	6	17	15		1	7	21
				10		18	0														46					_	
	kg.km ⁻²																										
	s.d.	,		•	139	_	30	1	43	37	104	20	30	23	30	'	7	•	∞	142	70	41	15	99	36	∞	30
	kg.km ⁻²	0	0	0	139	0.7	85	0	31	33	70	25	19	21	51	0	9	0	9	125	09	42	18	180	93	62	91
SPE	s.d.	9	11	S	73	6	11	•	48	40	38	7	30	14	13	∞	5	7	17	12	9	89	14	∞	94	90	26
	kg.km ⁻²	3	14	13	26	7	15	0	33	55	68	_	37	21	18	13	∞	24	14	32	38	54	13	7	84	132	137
	s.d. 1		ı	•	10	ı	14	14	10	3	_	591	3	3	7		ı	29	7	75	35	395	2	99	30	126	09
	km²	0	0	0	14	0																					
.	kg.																										
	s.d	_			99	33	15			1	5	2	1	33	æ			4	5	S	2	4	2		7	2	S
-	kg.km ⁻²	13	18	12	96	21	180	0	27	26	130	15	43	49	74	15	18	47	82	125	121	<i>L</i> 9	9	16	30	26	66
TIN T	s.d.	32	99	=	80	43	34	20	71	80	15	22	47	Ξ	25	∞	23	16	15	71	13	35	39	167	82	40	72
	kg.km ⁻²	32	42	28	91	49	47	17	141	102	75	25	99	18	43	12	50	52	9/	122	74	66	119	152	53	29	96
GSH	s.d.	•	•	•	274	•	<i>L</i> 9	ı	36	22	91	160	66	155	117	1	28	14	10	126	7	68	1	780	110	151	115
-	kg.km ⁻²	0	0	0	332	0	304	0	16	27	61	183	57	111	96	0	17	10	9	73	4	51	0	856	163	226	244
	s.d.	28	251	88	409	162	189	26	1443	491	871	09	148	65	411	175	32	2204	296	198	159	1067	098	1269	882	1134	1017
	kg.km²²																										1 850
Stratum	<u>, w</u>				3																						

Table 9: Total numbers of fish, squid, and scampi measured for length frequency distributions and biological samples from all stations. The number of stomachs collected is also provided

	Number	Number	Number	Number of	Number of
Species	measured Males	measured Females	measured Total*	biological samples	stomachs collected
Alfonsino	276	176	552	324	90
Arrow squid	595	718	1 370	1 055	143
Banded bellowsfish	2	54	1 890	1 437	130
Barracouta	76	23	99	69	50
Baxter's dogfish	159	97	256		
Bigeye rattail	1 046	946	2 604	2 481	434
Black oreo	419	321	741		
Bluenose	14	16	30	3	
Blue mackerel	2	1	3	3	
Dark ghost shark	1 531	1 837	3 370	1525	367
Deepsea cardinalfish	50	7	68	30	
Frill shark	0	1	1	1	
Frostfish	3	1	4	4	4
Giant stargazer	57	86	322	322	97
Hake	127	136	265	265	234
Hapuku	0	3	3	3	1
Hoki	7 102	8 801	15 969	2 196	716
Jack mackerel (T. declivis)	5	2	7		
Javelin fish	35	262	5 144	4 780	524
Leafscale gulper shark	4	15	19	16	16
Lemon sole	35	33	68		
Ling	999	881	1 882	1 765	946
Longnose velvet dogfish	112	177	291	91	58
Long-nosed chimaera	135	114	251	249	180
Lookdown dory	1 502	1 619	3 158	2 634	219
Lucifer dogfish	38	34	80		
Northern spiny dogfish	4	0	4		
Oblique banded rattail	57	698	1 465	1 420	228
Oilfish	0	1	1	1	
Oliver's rattail	168	320	1 870	1 714	250
Orange perch	175	170	355	235	97
Orange roughy	38	23	84		
Pale ghost shark	330	370	704	656	267
Plunket's shark	4	9	13	10	10
Red cod	135	78	214	152	70
Redbait	66	39	105		
Ribaldo	44	47	91	63	1
Rough skate	2	1	3	1	
Ruby fish	3	2	5	5	
Scampi	70	57	135	135	
School shark	7	2	10	10	10
Sea perch	1 203	1 270	2 696	2 108	221
Seal shark	5	28	33	33	24
Shovelnose dogfish	437	381	822	485	398
Silverside	0	0	30		
Silver warehou	588	523	1 111	770	267
Slender mackerel (T. s. murphyi)	21	12	33		
Smoothskin dogfish	7	10	17	16	15
Smooth oreo	223	167	391	237	
Smooth skate	20	19	40	40	40

Table 9 (continued)

Southern blue whiting	34	28	62		
Southern Ray's bream (B. australis)	52	59	114	111	104
Spiky oreo	642	556	1 202	68	
Spiny dogfish	327	1 140	1 469	1 187	636
Tarakihi	11	7	18	10	
Trumpeter	3	1	4	1	
White warehou	335	344	682	390	114
Wide-nosed chimaera	1	0	1		
Total			52 233	29 131	6 961

^{*} Total sometimes exceeds sum of male and female fish due to the presence of some fish that are recorded unsexed.

Table 10: Length-weight regression parameters* used to scale length frequencies

Species	a (intercept)	b (slope)	r²	n	Length range (cm)	Data source
Alfonsino	0.013557	3.154521	0.98	182	17-47	TAN0601
Dark ghost shark	0.003144	3.156958	0.97	862	32-71	TAN0601
Giant stargazer	0.008933	3.150787	0.98	285	8-80	TAN0601
Hake	0.002212	3.265915	0.99	262	38-133	TAN0601
Hoki	0.004478	2.904336	0.99	2 076	34-110	TAN0601
Ling	0.001389	3.269408	0.99	1 751	33-150	TAN0601
Lookdown dory	0.025097	2.951996	0.98	1 288	12-57	TAN0601
Orange perch	0.010848	3.216931	0.95	162	16-37	TAN0601
Pale ghost shark	0.006604	2.964592	0.97	549	30–89	TAN0601
Sea perch	0.011792	3.089367	0.98	1 198	13-48	TAN0601
Shovelnose dogfish	0.001964	3.134533	0.99	437	31–115	TAN0601
Silver warehou	0.017241	3.018155	0.99	585	22-57	TAN0601
Spiny dogfish	0.001269	3.277916	0.96	935	54-129	TAN0601
White warehou	0.040664	2.832498	0.98	350	17–59	TAN0601
Lemon sole	0.006492	3.170475	0.92	125	24–39	TAN9106-TAN0201
Slender mackerel	0.441049	2.022669	0.66	83	42–55	TAN9106-TAN0201
Scampi	0.819172	2.746626	0.88	1 032	2.7–7.2	TAN9106-TAN0301
Black oreo	0.011389	3.189330	0.86	1 215	18–37	TAN9106-TAN0601
Ray's bream and	0.025761	2.900390	0.95	901	26–56	TAN9106-TAN0601
southern Ray's bream						
Ribaldo	0.003294	3.312948	0.98	1 207	21–78	TAN9106-TAN0601
Smooth oreo	0.037581	2.865858	0.94	604	16–57	TAN9106-TAN0601
Smooth skate	0.022837	2.961627	0.99	525	29–158	TAN9106-TAN0601
Arrow squid	0.0290	3.00	-	-	-	Sullivan et al. (2005)
Barracouta	0.017103	2.676995	0.93	148	47–83	TAN0501
Blue mackerel	0.000003	3.4058	0.99	1 410	-	Manning et al.
Bluenose	0.00963	3.173	-	-	-	Horn (1988)
Deepsea cardinalfish	0.0269	2.870105	0.96	213	33–75	Tracey et al. (2000)
Frostfish	0.000369	3.178669	1	1 203	11–176	All records on database
Jack mackerel	0.016500	2.93000	-	200	15–53	Database, COR9001
Hapuku	0.014230	2.998	-	1 644	50–130	Johnston (1983)
Northern spiny dogfish	0.002275	3.165802	0.97	242	36–94	All records on database
Redbait	0.004212	3.320061	1	190	12-40	All records on database
Red cod	0.0092	3.003	0.98	923	13–72	Beentjes (1992)
Rubyfish	0.012656	3.091618	0.99	355	15–53	All records on database
Rough skate	0.033966	2.876666	-	336	14–70	Stevenson & Beentjes (1999)
School shark	0.00702	2.91	_	804	30–166	Seabrook-Davison, unp.
Southern blue	0.003	3.2	_	444	19–55	Hatanaka et al. (1989)
whiting	-	-				. (/
Spiky oreo	0.025360	2.964571	0.97	420	18-43	TAN0101
Tarakihi	0.02	2.98	-	_	-	Annala et al. (1990)
Trumpeter	0.012672	3.053848	0.97	21	31-77	All records on database

^{*} W = aL^b where W is weight (g) and L is length (cm); r^2 is the correlation coefficient, n is the number of samples.

Table 11: Numbers of fish measured at each reproductive stage*

		Reproductive stage							
Common name	Sex	1	2	3	4	5	6	7	Total
Alfonsino	Male	0	0	0	0	0	0	0	0
	Female	1	1	0	0	0	0	0	2
Bigeye rattail	Male	4	33	0	0	0	0	0	37
	Female	1	10	0	0	0	0	0	11
Giant stargazer	Male	1	24	0	0	0	0	0	25
	Female	2	16	7	0	0	0	0	25
Hake	Male	60	21	8	6	22	7	3	127
	Female	47	49	28	0	0	2	9	135
Hapuku	Male	0	0	0	0	0	0	0	0
	Female	1	0	0	0	0	0	0	1
Hoki	Male	477	293	4	0	0	6	2	782
	Female	457	780	0	0	0	0	47	1284
Javelinfish	Male	0	0	0	0	0	0	0	0
	Female	0	7	3	0	0	0	0	10
Ling	Male	397	200	70	256	4	2	0	929
	Female	355	464	2	3	0	0	0	824
Lookdown dory	Male	3	5	16	11	0	0	0	35
	Female	5	43	17	0	0	0	0	65
Orange perch	Male	0	0	0	0	0	0	0	0
	Female	0	0	1	0	0	0	0	1
Red cod	Male	0	3	2	1	0	5	13	24
	Female	2	5	0	0	0	0	3	10
Ribaldo	Male	0	2	0	0	0	0	0	2
	Female	0	3	0	0	0	0	0	3
Sea perch	Male	2	1	5	0	0	0	0	8
	Female	2	12	0	0	0	0	0	14
Silver warehou	Male	2	5	0	0	0	0	1	8
	Female	0	5	2	0	0	0	1	8
White warehou	Male	4	0	0	0	0	0	0	4
	Female	2	0	0	0	0	0	0	2

^{*}Stage: 1, immature; 2, resting; 3, ripening; 4, ripe; 5, running ripe; 6, partially spent; 7, spent. (after Hurst *et al.*, 1992).

Table 12: Percentage occurrence of eight acoustic mark types (see text for definitions) by depth range during the 2006 Chatham Rise trawl survey. Several mark types were usually present in the same echogram. n is the number of acoustic files examined.

Bottom marks	Single target	72	50	61	63	62	<i>L</i> 9	100	93	79
	School	41	9	0	25	12	19	25	7	0
	Clond	22	40	20	38	31	48	100	73	93
	Layer	65	71	<i>L</i> 9	75	98	100	25	27	71
Pelagic	Clond	44	35		99					
	Layer	88	96	<i>L</i> 9	81	100	95	75	47	43
	School	16	52	20	13	50	<i>L</i> 9	25	13	14
	Surface Layer	34	69	72	50	81	98	75	100	93
	u	32	52	18	16	42	21	4	15	14
				600-1000	200-400	400-600	600-1000	200-400	400-600	600–1000
	Acoustic file	Day trawl			Day steam			Night (steam	& trawl)	

Table 13: Percentage occurrence of mark types during the 2006 Chatham Rise trawl survey compared to results from previous surveys of the Chatham Rise in 2003 (from Livingston et al. 2004) and 2005 (from Stevens & O'Driscoll 2006).

	Layer Cloud			47					57	30
Pelagic marks	Layer Cloud		93 31				97 49		53 77	18 93
	School	40	37	41	47	45	55	15	33	14
	Surface Layer	59	57	64	92	71	80	94	100	100
				123	79	78	99	33	30	44
	Survey	2006	2005	2003	2006	2005	2003	2006	2005	2003
	Acoustic file	Day trawl			Day steam	•		Night (steam	& trawl)	

Table 14: Average trawl catch (excluding benthic organisms) and acoustic backscatter from bottom-referenced marks during tows where acoustic data quality was suitable for echo integration on the Chatham Rise in 2001–06. All tows were conducted during daylight. Data for 2001–03 are from Livingston et al (2004) and for 2005 from Stevens & O'Driscoll (2006).

Survey	Number of	Average trawl	Average acoustic backscatter (m ² kr	
	recordings	catch (kg km ⁻²)	Bottom 10 m	Entire layer
2001 (TAN0101)	115	1 447	2.499	26.06
2002 (TAN0201)	105	1 844	4.006	20.13
2003 (TAN0301)	117	1 507	3.208	27.41
2005 (TAN0501)	86	1 783	2.776	15.64
2006 (TAN0601)	88	1 782	3.236	19.46

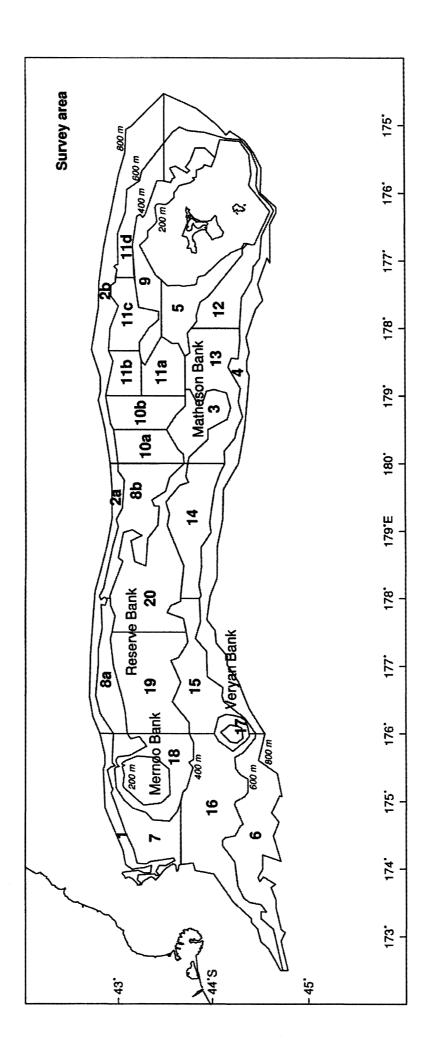
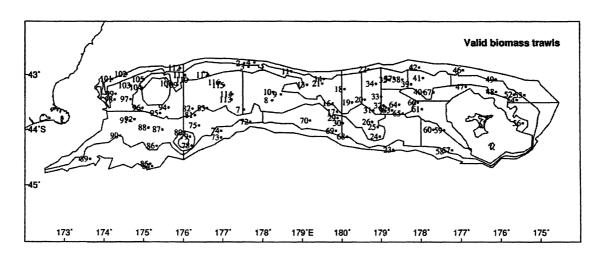
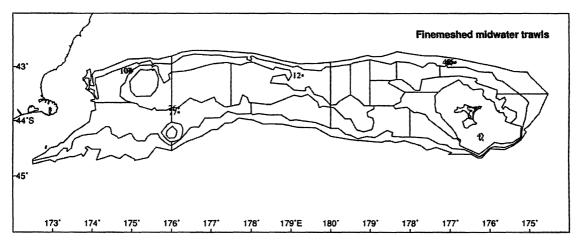




Figure 1: Trawl survey area showing stratum boundaries for TAN0601

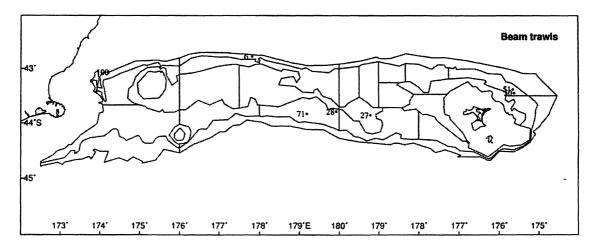


Figure 2: Trawl survey area showing positions of valid biomass stations (n = 96), fine meshed midwater trawl stations (n = 7), and beam trawl stations (n = 8) for TAN0601

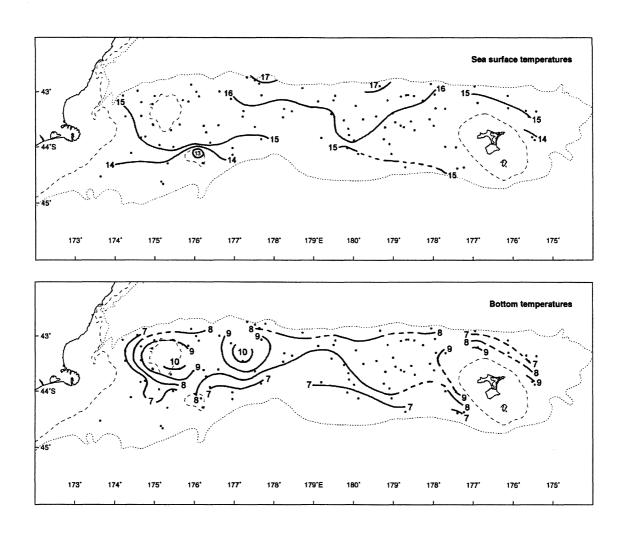
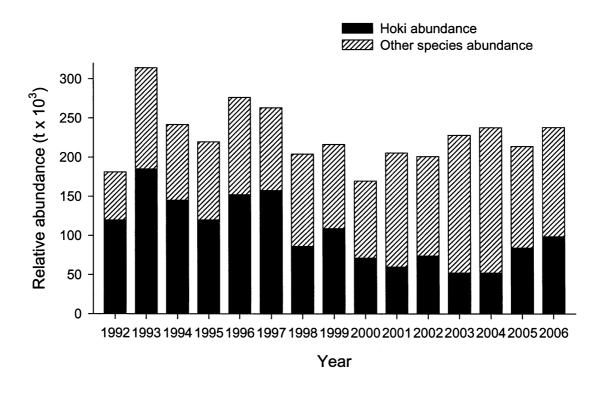



Figure 3: Positions of sea surface and bottom temperature recordings and approximate location of isotherms (°C) interpolated by eye. The temperatures shown are from the calibrated Seabird CTD recordings made during each tow

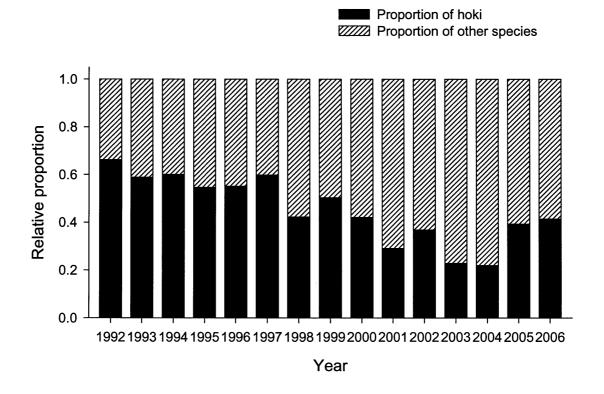


Figure 4: Relative biomass (top panel) and relative proportions of hoki and 30 other key species (lower panel) from trawl surveys of the Chatham Rise, January 1992–2006

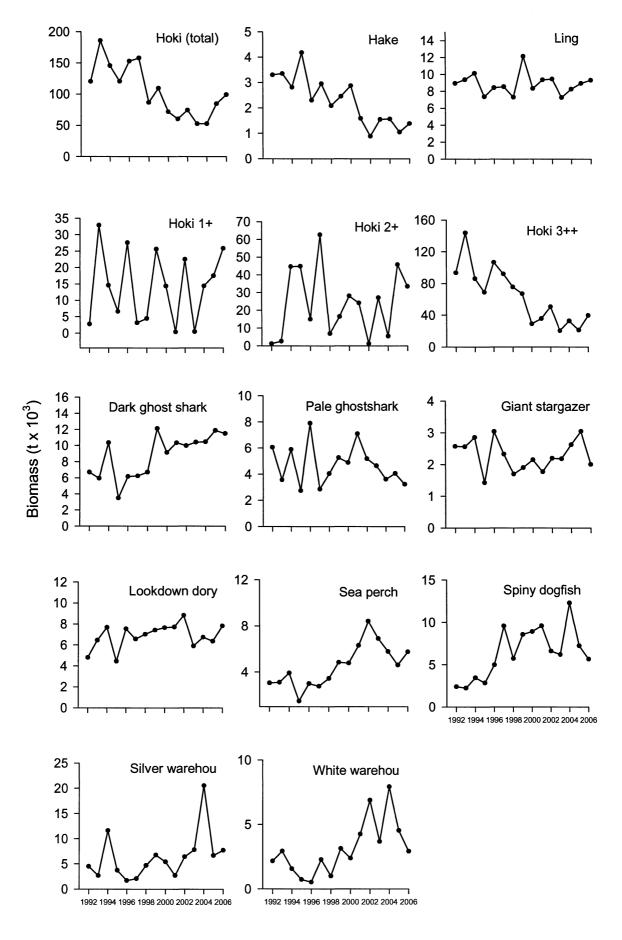


Figure 5: Relative biomass estimates (t \times 10³) of important species sampled by annual trawl surveys of the Chatham Rise, January 1992–2006

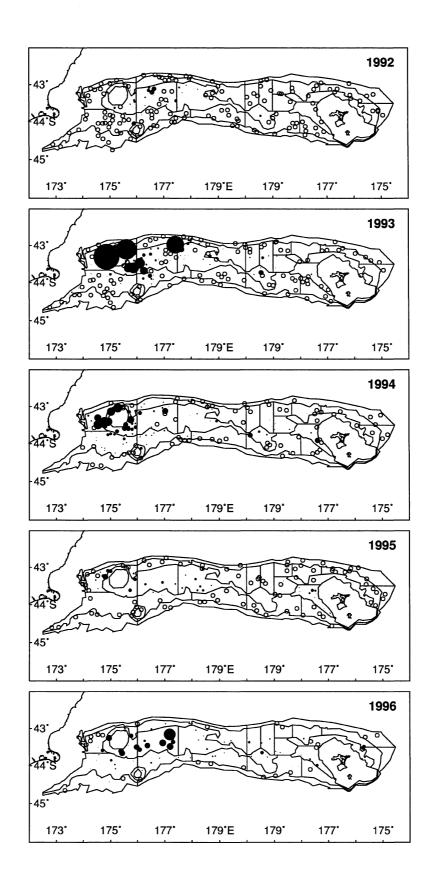


Figure 6a: Hoki 1+ catch distribution 1992–2006. Filled circle area is proportional to catch rate (kg.km⁻²). Open circles are zero catch. Maximum catch rate in series is 30 850 kg.km⁻²

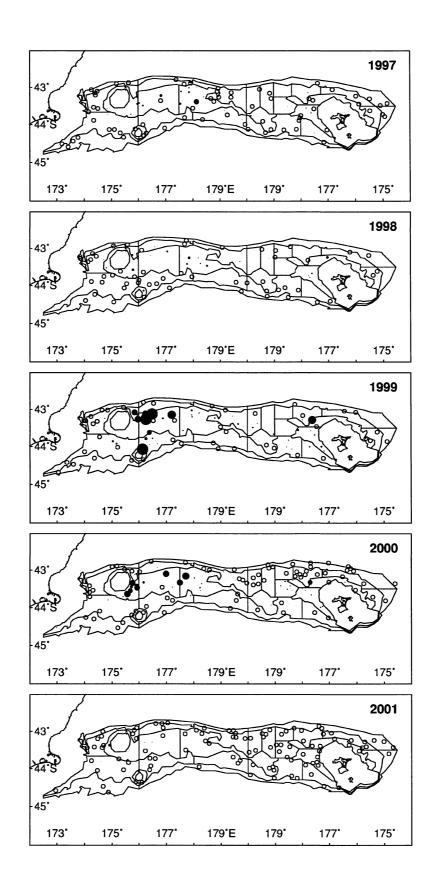


Figure 6a (continued)

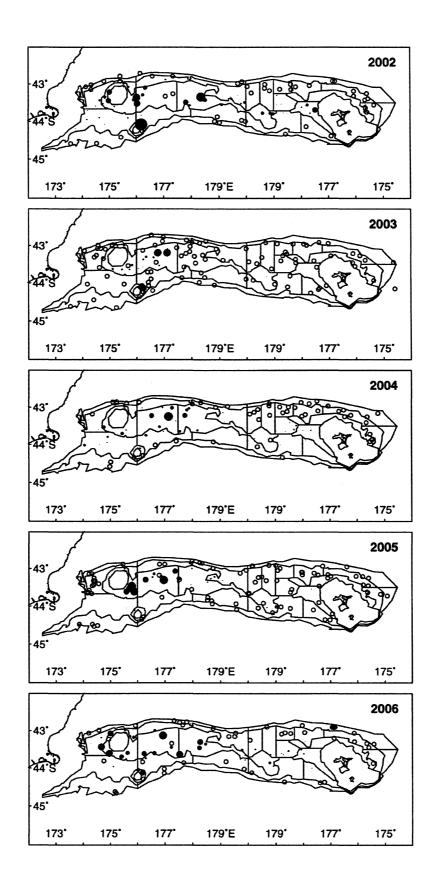


Figure 6a (continued)

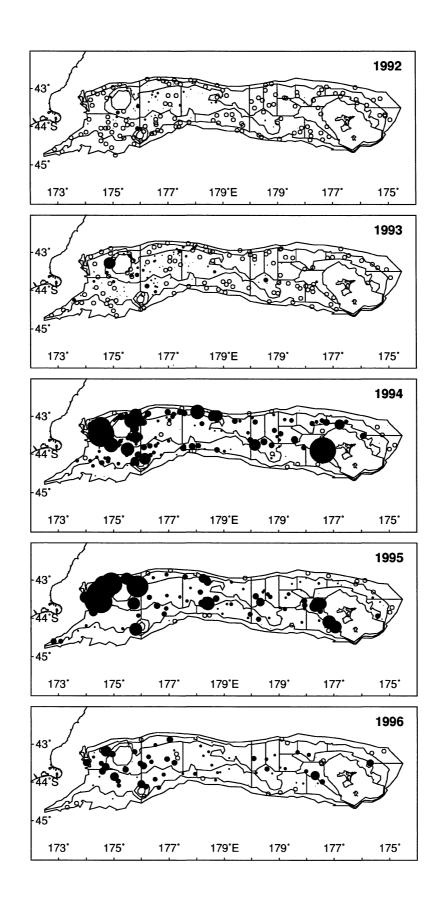


Figure 6b: Hoki 2+ catch distribution 1992–2006. Filled circle area is proportional to catch rate (kg.km⁻²). Open circles are zero catch. Maximum catch rate in series is 6 791 kg.km⁻²

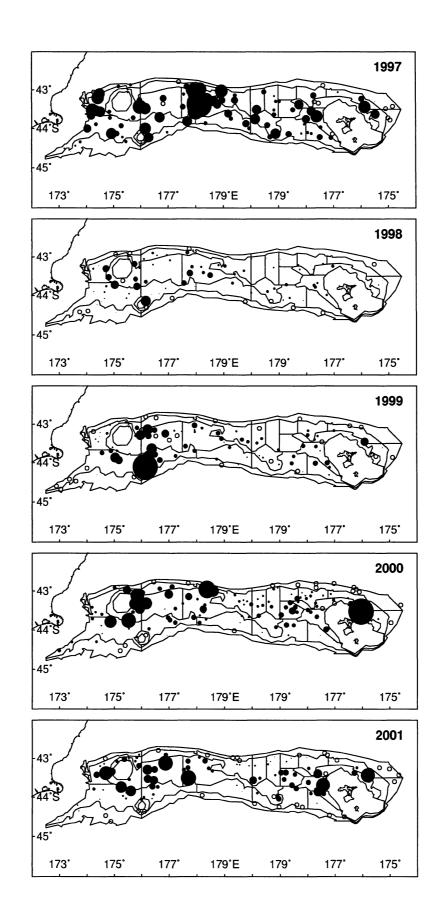


Figure 6b (continued)

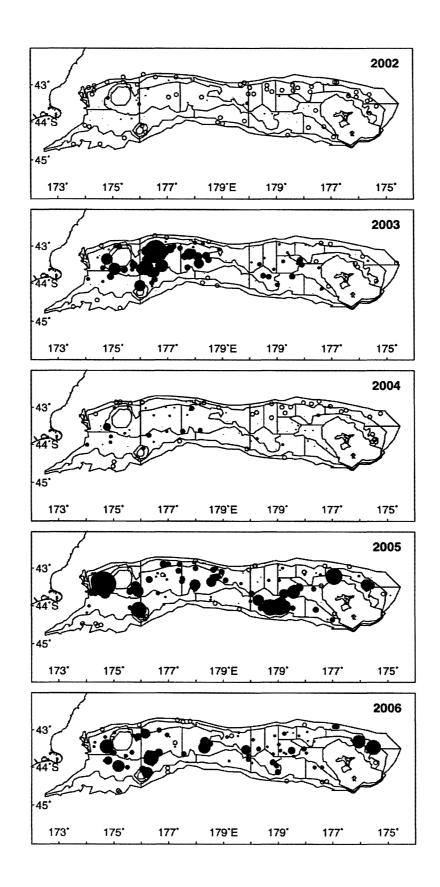


Figure 6b (continued)

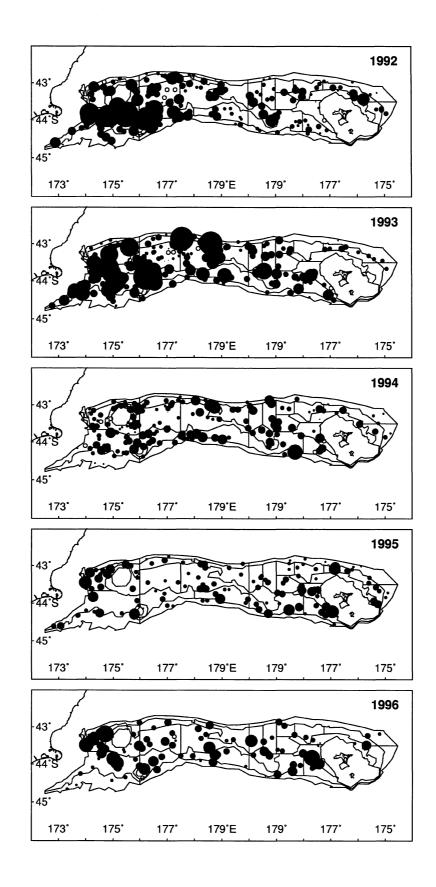


Figure 6c: Hoki 3++ catch distribution. 1992–2006. Filled circle area is proportional to catch rate (kg.km⁻²). Open circles are zero catch. Maximum catch rate in series is 11 177 kg.km⁻²

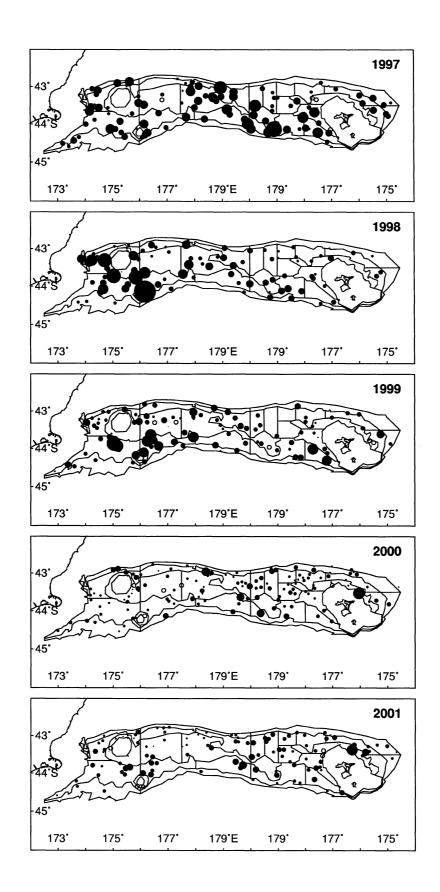


Figure 6c (continued)

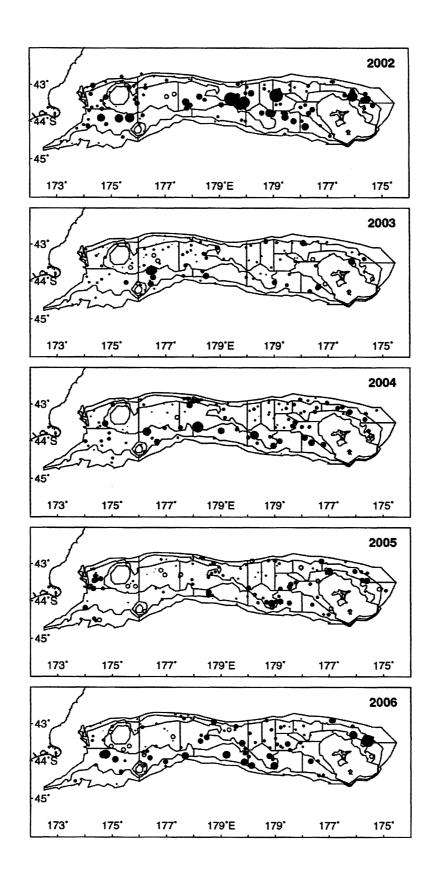


Figure 6c (continued)

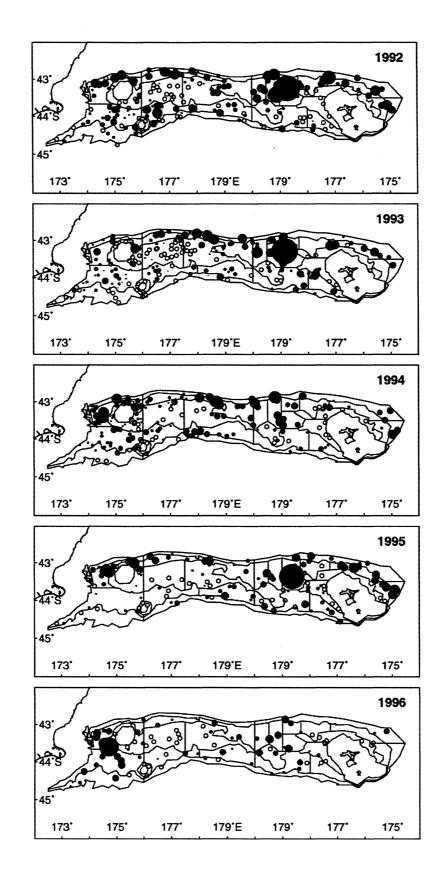


Figure 7: Hake catch distribution 1992–2006. Filled circle area is proportional to catch rate (kg.km⁻²). Open circles are zero catch. Maximum catch rate in series is 620 kg.km⁻²

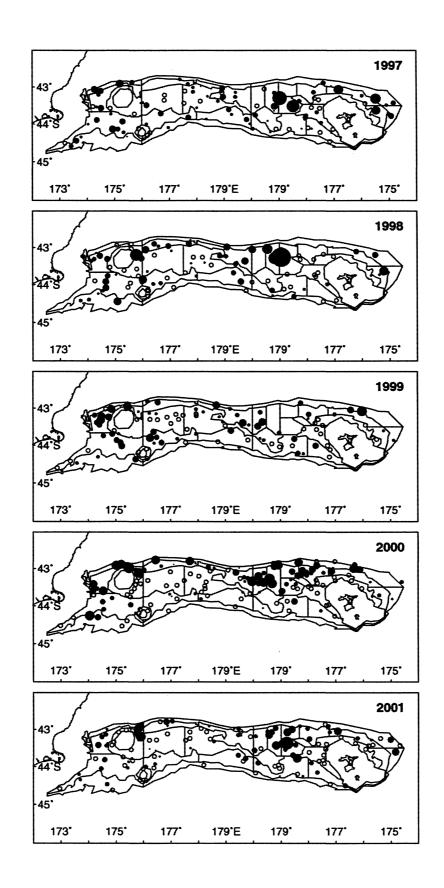


Figure 7 (continued)

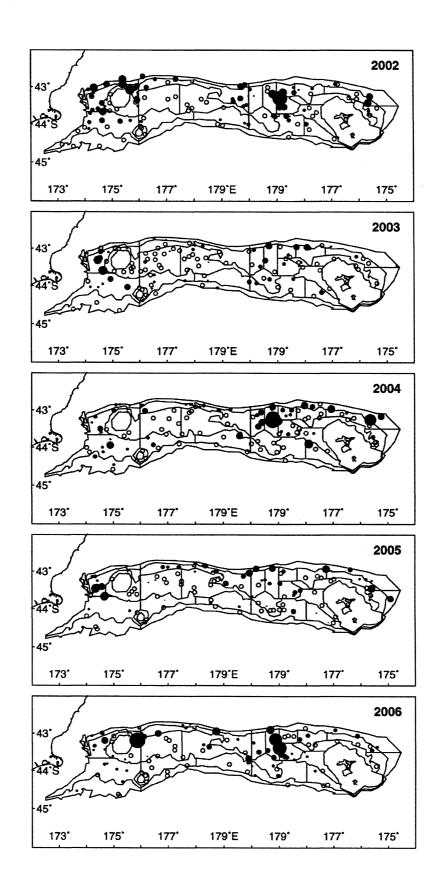


Figure 7 (continued)

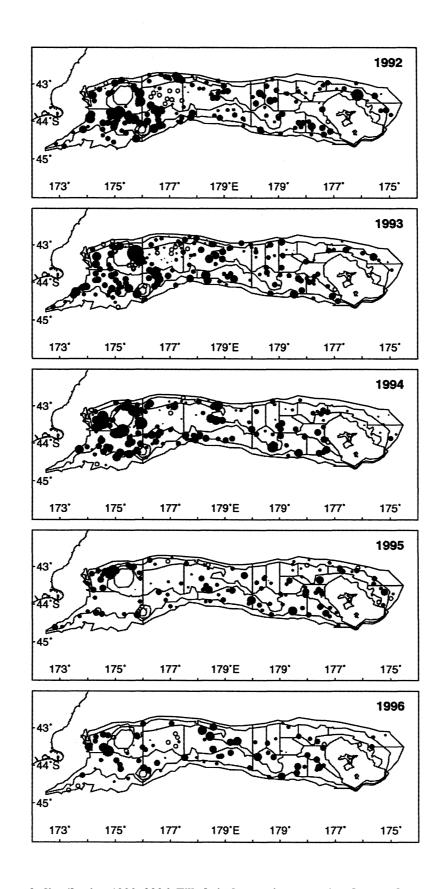


Figure 8: Ling catch distribution 1992–2006. Filled circle area is proportional to catch rate (kg.km⁻²). Open circles are zero catch. Maximum catch rate in series is 1786 kg.km⁻²

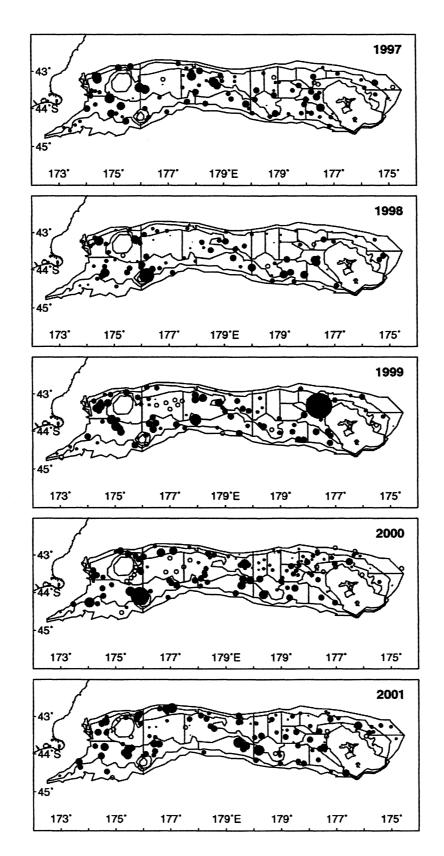


Figure 8 (continued)

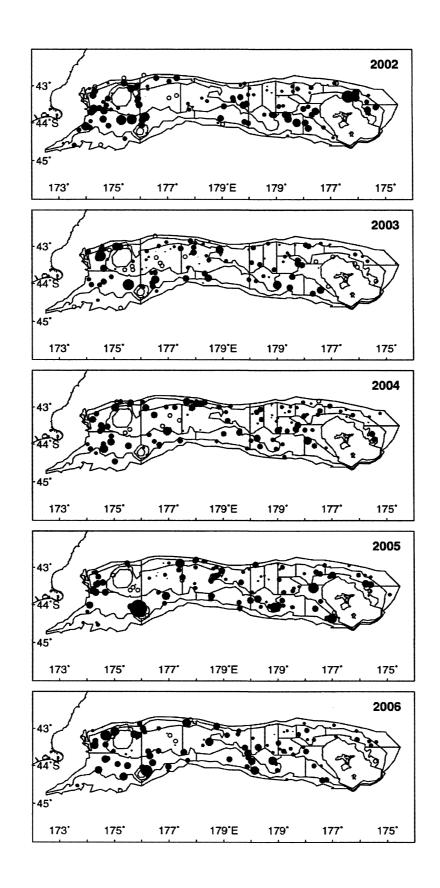


Figure 8 (continued)

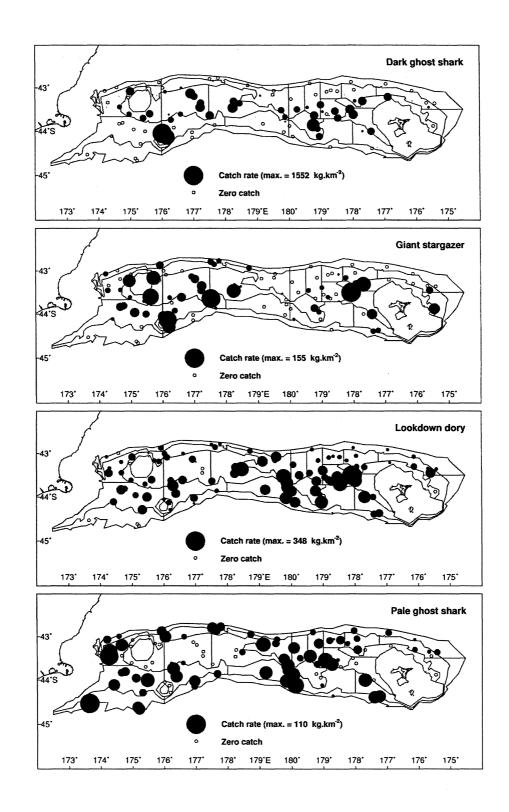


Figure 9: Catch rates (kg.km⁻²) of selected commercial species in 2006. Filled circle area is proportional to catch rate. Open circles are zero catch. (max., maximum catch rate)

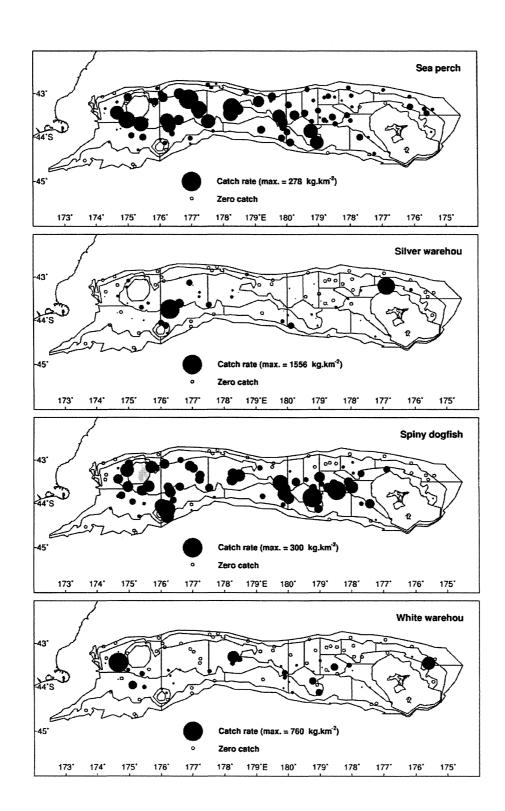


Figure 9 (continued)

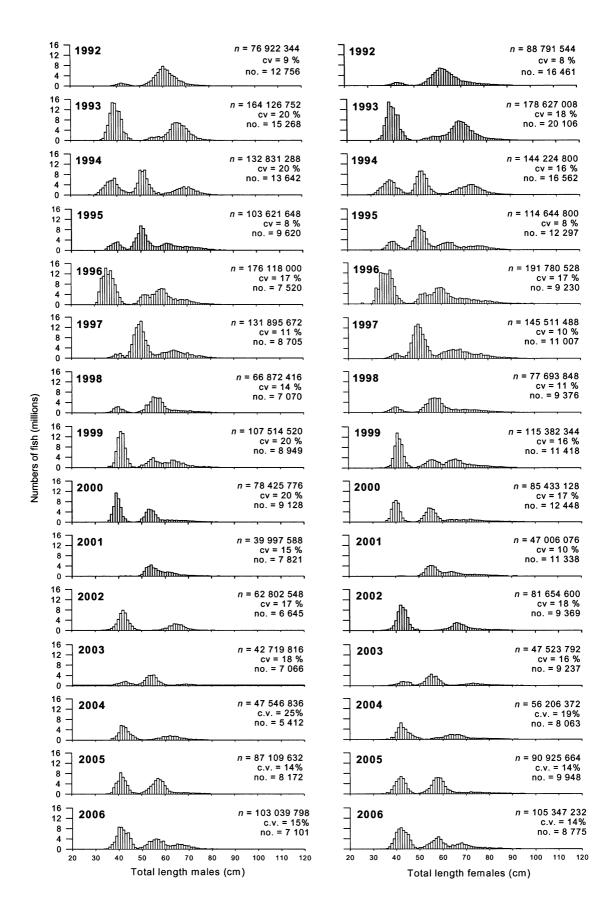


Figure 10: Estimated length frequency distributions of the male and female hoki population from *Tangaroa* surveys of the Chatham Rise, January 1992–2006. (c.v., coefficient of variation; *n*, estimated population number of male hoki (left panel) and female hoki (right panel); no., numbers of fish measured.)

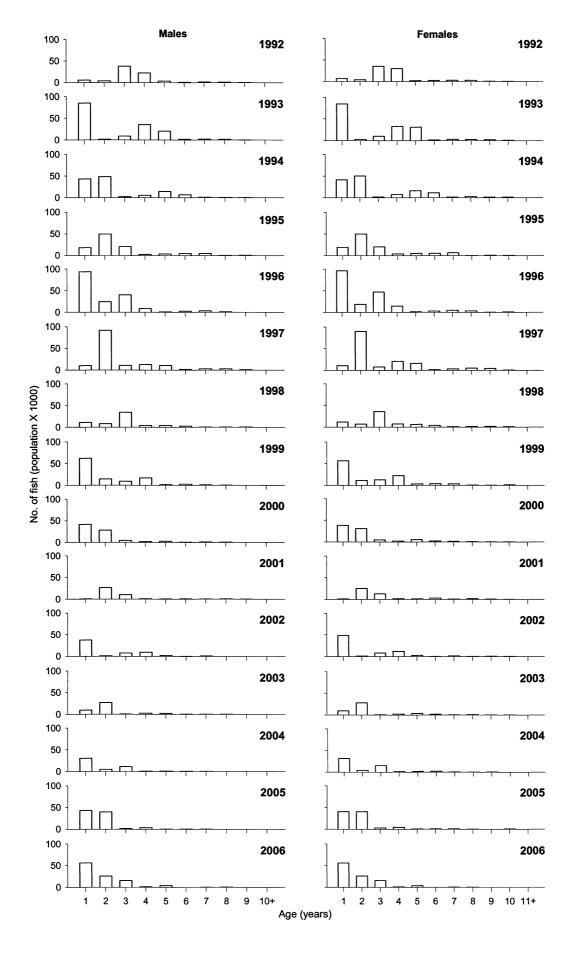


Figure 11: Estimated population numbers at age of hoki from *Tangaroa* surveys of the Chatham Rise, January, 1992–2006. (+, indicates plus group of combined ages.)

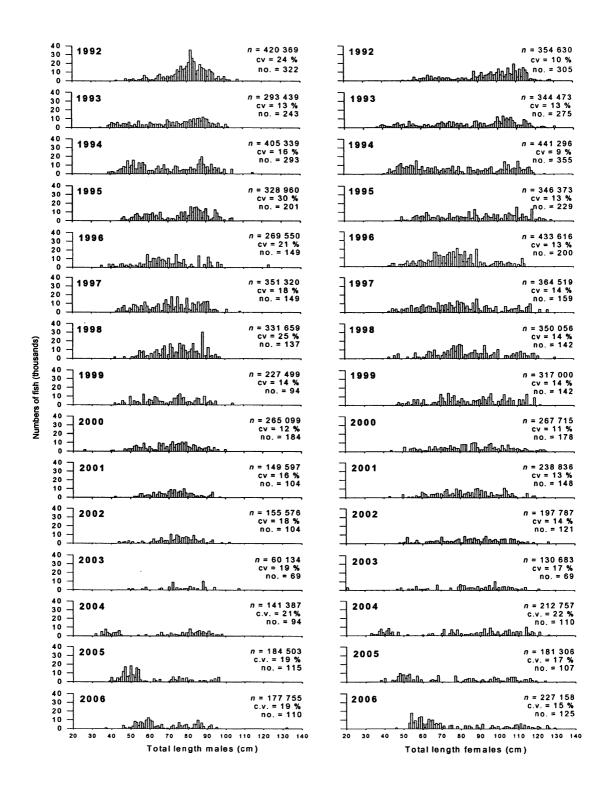


Figure 12: Estimated length frequency distributions of the male and female hake population from *Tangaroa* surveys of the Chatham Rise, January 1992–2006. (c.v., coefficient of variation; *n*, estimated population number of hake; no., numbers of fish measured.)

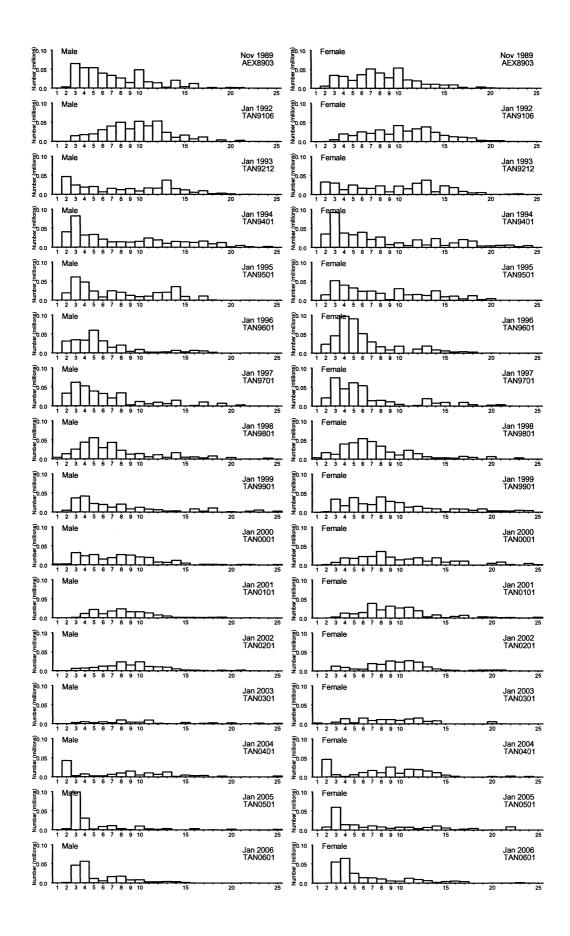


Figure 13: Estimated proportion at age of male and female hake from *Tangaroa* surveys of the Chatham Rise, January, 1992–2006

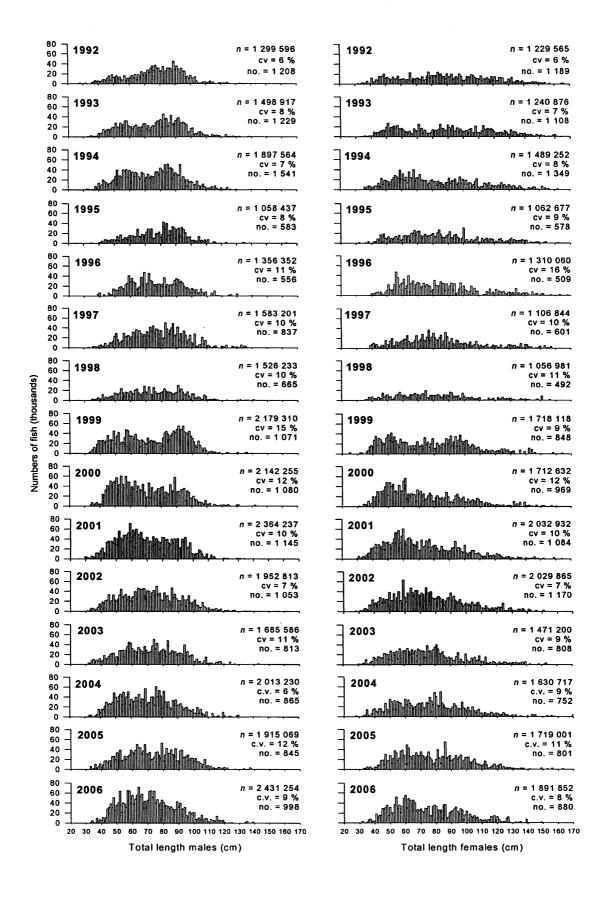


Figure 14: Estimated length frequency distributions of the ling population from *Tangaroa* surveys of the Chatham Rise, January 1992–2006. (c.v., coefficient of variation; *n*, estimated population number of ling; no., numbers of fish measured.)

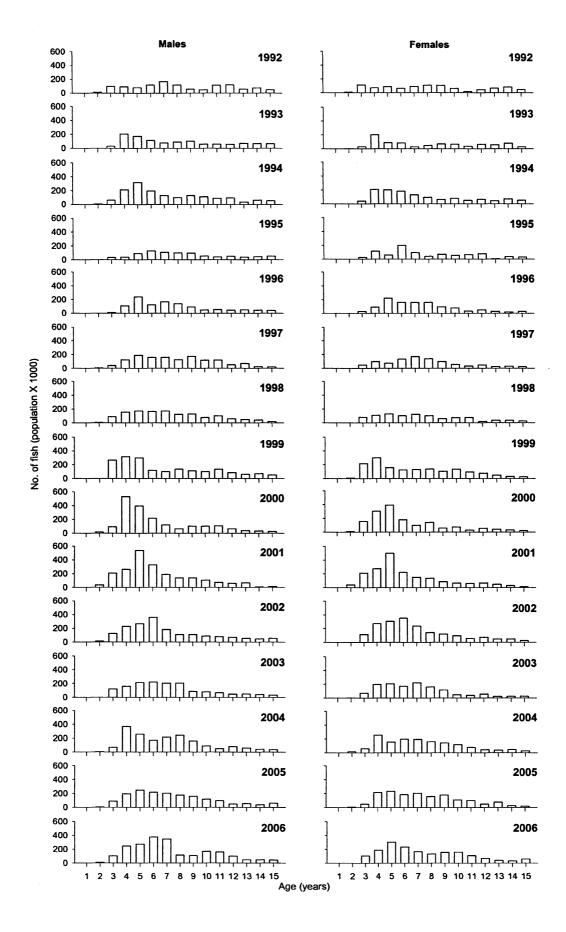


Figure 15: Estimated population numbers at age of male and female ling (age 1–15 years) from *Tangaroa* surveys of the Chatham Rise, January, 1992–2006. (Note: the age class of 15 years is not a plus group.)

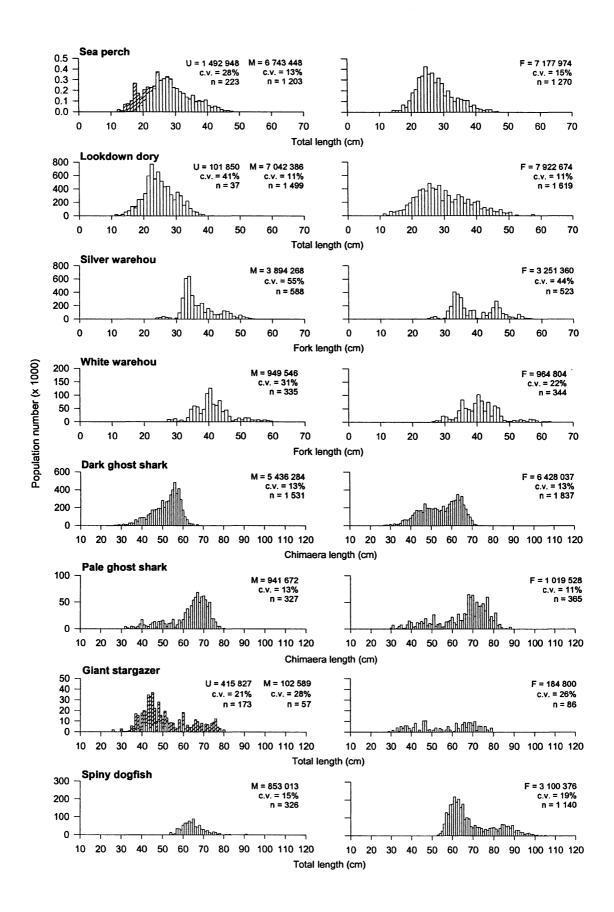


Figure 16: Length frequencies of selected commercial species on the Chatham Rise 2006, scaled to population size by sex (M, estimated male population; F, estimated female population; U, estimated unsexed population (hatched bars); c.v. coefficient of variation of the estimated numbers of fish; n, number of fish measured.) Note: unsexed fish are not shown for most species.

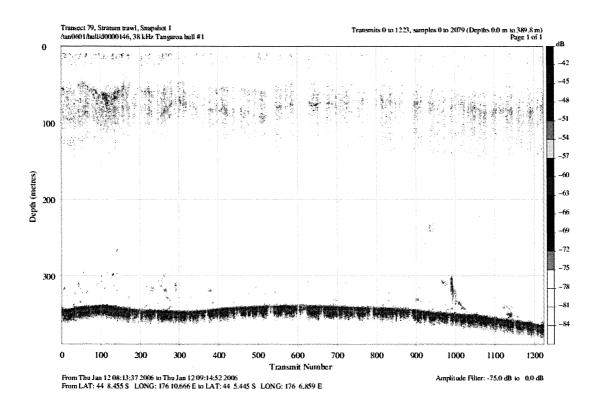


Figure 17a: Acoustic echogram collected during tow 79 in stratum 17 showing weak bottom schools. The associated tow caught 1656 kg of small hoki. The horizontal scale (1230 pings) is equivalent to about 6.6 km at the tow speed of 3.5 knots.

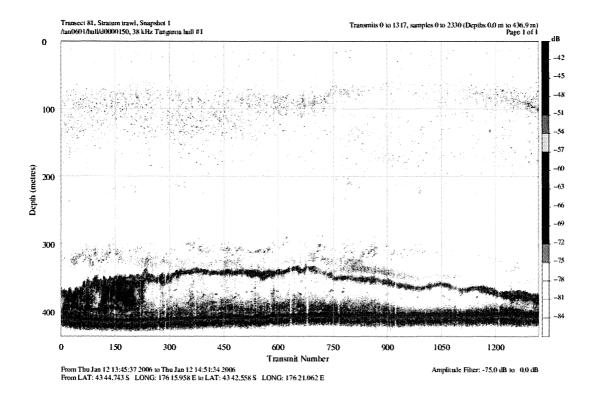
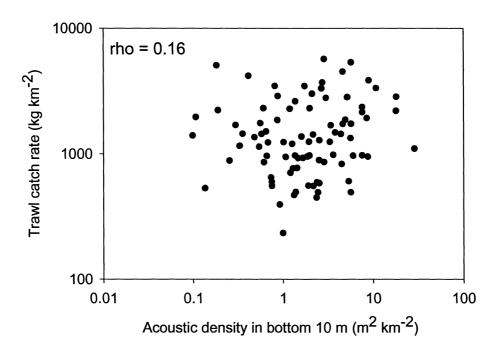



Figure 17b: Acoustic echogram collected during tow 81 in stratum 15 showing bottom layers. The associated tow had a similar catch of small hoki (1646 kg) to tow 79 shown in Figure 17a.

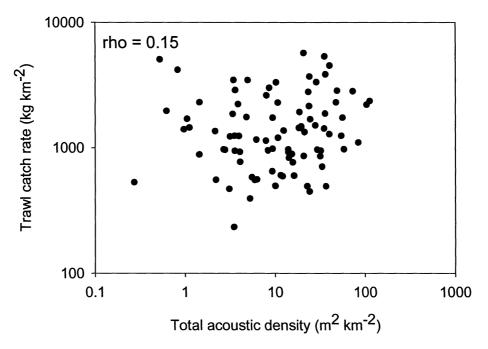


Figure 18: Relationship between total trawl catch rate (all species combined) and acoustic backscatter recorded during the trawl on the Chatham Rise in 2006. Rho values are Spearman's rank correlation coefficients.

Appendix 1: Individual station data for all stations conducted during the survey (TAN0601). P1, phase 1 trawl survey biomass stations; Beam, research beam trawls; MWT, fine meshed midwater trawls; NV, non-valid biomass stations; Strat., Stratum number. Note: No P2, phase 2 trawl survey biomass stations were conducted.

		_				Start tow	_		Depth	Dist			Catch
Stn.	Type	Strat.	Date	Time	Latitude	Longitude			m	towed			kg
				NZST	°'S	0 1	E/W	min.	max.	n. mile	hoki	hake	ling
1	NV		28-Dec-05			177 19.63	E	861	867	3	1000		0.0
2	P1	2A		740		177 31.97	Е	681	707	3.01	126.0	6.3	8.2
3	P1	8A	28-Dec-05	957		177 38.48	Е	500	506	2.99	220.4	8.4	194.6
4 5*	P1	2A	28-Dec-05	1236		177 47.56	E	742	743	3.01	64.3	3.2	0.0
5* -	P1	20	28-Dec-05	1619	43 03.96	177 41.82	E	317	324	1.72			
6 7	Beam P1	20	28-Dec-05 29-Dec-05	2018 456	42 46.43 43 38.20	177 49.30 177 31.63	E E	722 309	725 322	0.27 2.4	2447.5	0.0	114.3
8	P1	20	29-Dec-05	854	43 27.87	177 31.03	E	333	352	3	2800.2	0.0	31.5
9	P1	20	29-Dec-05	1116	43 21.35	178 14.23	E	382	390	2.98	1219.5	23.7	179.6
10	P1	20	29-Dec-05	1403	43 18.75	178 27.01	E	324	340	2.57	2407.3	8.6	10.5
11	P1		29-Dec-05		42 56.11	178 43.72	E	642	643	3	526.7	54.8	118.0
12	MWT	211	30-Dec-05	2	43 09.62	179 17.96	E	98	160	0.81	320.7	24.0	110.0
13	P1	8B	30-Dec-05	457		179 07.37	E	420	426	2.99	251.6	0.0	72.5
14	P1	8B	30-Dec-05	758	43 04.44	179 33.05	E	491	496	2.99	421.4	2.0	62.4
15*	P1	20	30-Dec-05	1139	43 24.35	179 27.17	E	385	396	2.92	.21.1	2.0	02
16	P1	8B	30-Dec-05		43 31.14	179 46.04		402	412	2.55	1838.5	0.0	91.3
17	P1	20	30-Dec-05	1806	43 40.25	179 52.78		397	400	2.33	376.0	32.8	142.1
18	P1	10A	31-Dec-05	506		179 55.95	W	497	499	3	323.5	9.7	29.4
19	P1		31-Dec-05	748	43 30.06	179 44.68		422	427	3	454.7	21.7	119.2
20	P1	10B	31-Dec-05	1029	43 26.85	179 25.23	W	442	453	2.96	211.6	19.2	24.2
21	P1	10A	31-Dec-05	1358	43 09.36	179 30.61	Е	519	525	3.01	158.7	6.7	50.8
22	P1	2B	31-Dec-05	1706	42 53.80	179 19.50	W	619	621	3	241.4	57.9	8.9
23	P1	4	1-Jan-06	510	44 21.70	178 41.76	W	732	742	3.02	85.6	0.0	22.6
24	P1	3	1-Jan-06	829	44 07.29	179 02.29	W	342	364	3	1337.9	12.6	52.3
25	P1	3	1-Jan-06	1101	43 56.83	179 05.41	W	361	382	2.96	566.4	0.0	38.1
26	P1	3	1-Jan-06	1732	43 51.38	179 14.07	W	287	311	3	1185.6	9.2	182.6
27	Beam		1-Jan-06	1954	43 51.50	179 13.01	W	294	296	0.38			
28	Beam		2-Jan-06	250	43 47.51	179 55.58	E	403	404	0.26			
29	P1	14	2-Jan-06	458	43 47.02	179 53.52	E	405	407	2.99	718.0	13.5	70.2
30	P1	13	2-Jan-06	659	43 52.69	179 58.75	W	421	437	3	348.8	3.2	133.1
31	P1	10B	2-Jan-06	1246	43 38.60	179 11.97	W	406	416	2.93	340.6	26.5	24.9
32	P1	11A	3-Jan-06			178 56.46		455	455	3.01	389.8	35.9	24.6
33	P1	11A	3-Jan-06			179 00.14		432	441	3	289.4		75.1
34	P1	10B	3-Jan-06			179 08.16		514	519	2.93	288.3		5.1
35	P1	11B	3-Jan-06			178 47.94		504	512	3	409.1	0.0	10.3
36*	P1	11B	3-Jan-06			178 36.83		526	549	1.25			
37	P1	11B	3-Jan-06			178 40.21	W	517	548	3	137.0	0.0	21.4
38	P1	11B	4-Jan-06	521		178 28.13		522	524	2.99	83.5	0.0	5.3
39	P1	11C	4-Jan-06			178 14.90		470	488	3	161.2	18.8	57.8
40	P1	11C	4-Jan-06			177 55.83		437	438	3.02	124.4	0.0	24.2
41	P1	11C	4-Jan-06			177 57.01		501	518	3	188.2	16.8	68.5
42	P1	2B	4-Jan-06			178 02.61	W	619	635	2.99	45.9	0.0	25.8
43	MWT		5-Jan-06	7	42 54.45	176 55.62	W	644	680	0.55			

						Start tow	,		Depth	Dist.			Catch
Stn.	Type	Strat.	Date	Time	Latitude	Longitude			m	towed			kg
				NZST	° ' S	0 1	E/W	min.	max.	n. mile	hoki	hake	ling
44	MWT		5 Ion 06	214	12 55 25	176 50 55	117	220	245	1 17			
44 45	MWT MWT		5-Jan-06 5-Jan-06			176 52.55 176 51.26		230 75	245 83	1.17 0.98			
46	P1	2B	5-Jan-06	513		176 56.73		716	719	3.01	150.4	12.8	33.2
47	P1	9	5-Jan-06			176 52.67		330	352	3.01	51.1	0.0	35.1
48	P1	11D	5-Jan-06			176 07.00		447	449	3	2848.0	0.0	70.0
49	P1	2B	5-Jan-06			176 07.58		607	607	3	253.8	20.6	36.4
50	Beam	20	6-Jan-06	133		175 37.16		475	478	0.34	255.6	20.0	JU. 4
51	Beam		6-Jan-06	303		175 37.10		517	517	0.34			
52	P1	11D	6-Jan-06	452		175 39.94		536	545	3.01	290.8	0.0	39.2
53	P1	2B	6-Jan-06	734		175 24.56		649	659	3.01	112.6	6.8	34.4
54	P1	11D	6-Jan-06	1020		175 24.90		459	499	3.02	4679.3	17.2	46.6
55 *	P1	9	6-Jan-06			175 30.82		318	343	1.15	4019.3	17.2	40.0
56	P1	9	6-Jan-06	1722		175 27.03		249	292	2.59	0.0	0.0	0.0
57	P1	12	7-Jan-06			177 13.60		536	540	2.39	145.4	0.0	74.3
58	P1	12	7-Jan-06	810		177 13.00		581	588	3	231.2	0.0	91.9
59	P1	5	7-Jan-06			177 25.43		358	365	2.99	380.1	0.0	23.5
60	P1	12	7-Jan-06	1428		177 41.55		419	438	2.99	696.4	7.4	61.7
61	P1	5	7-Jan-06			177 58.65		373	377	1.99	258.9	5.9	86.1
62	P1	11A	8-Jan-06	449		177 38.03		449	452	3.01	231.4	22.2	60.2
63	P1	11A	8-Jan-06	639		178 43.66		448	452	3.01	171.1	15.5	14.7
64	P1	11A	8-Jan-06	857		178 43.80		410	432	3	171.1	4.7	39.2
65	P1	13	8-Jan-06	1128		178 27.41			410	2.98	384.3		39.2 46.0
66	P1	5	8-Jan-06		43 41.93	178 27.41		403 371	382			6.6	
67	P1	9	8-Jan-06			177 41.35		342	346	3	630.3 120.5	2.7	32.6
68	P1					177 41.33		502				0.0	41.2
69	P1	13 14	10-Jan-06 10-Jan-06	827		179 52.33			536	3	707.6	7.7	185.5
	P1			1104	43 50.01			495	510	2.94	816.6	0.0	62.8
70 71		14	10-Jan-06 10-Jan-06	1725		179 11.85 179 11.34		471	489 486	3 0.46	1028.5	0.0	88.6
71	Beam P1	15	10-Jan-06 11-Jan-06	506		179 11.34		479 588	597		940.1	0.0	59.1
73	P1		11-Jan-06 11-Jan-06			176 57.33			698	3	849.1 105.9	0.0	
73 74	P1	4 4	11-Jan-06					690		2.00		0.0	26.1
7 4 75	P1					176 57.47		603	606	2.99	375.4	0.0	99.0
		15	11-Jan-06 12-Jan-06			176 23.28		513	515	3.02	561.5	0.0	119.7
76 77	MWT					176 10.59		130	145	0.61			
7 <i>7</i>	MWT P1	17	12-Jan-06			176 10.68		32	45	1.32	5 9.0	0.0	20.6
79	P1	17 17	12-Jan-06 12-Jan-06	521		176 12.26 176 09.73		231	348 354	2.98	58.9	0.0	20.6
	P1							341		2.99	2580.0		340.3
80		17	12-Jan-06			176 01.40		345	372	2.01	1070.3	0.0	94.8
81	P1	15	12-Jan-06			176 17.47		403	411	3.01	2537.0		118.7
82	P1	19	12-Jan-06			176 13.85		367	367		1338.6	1.8	81.9
83	P1	19	12-Jan-06			176 35.95		371	388		1592.1	0.0	78.2
84	P1	6	13-Jan-06			175 12.34		782	796	3.01	10.7	0.0	0.0
85	P1	6	13-Jan-06			175 09.54		749 571	756 500	3	43.2	0.0	10.5
86 87	P1	16	13-Jan-06	1138		175 19.32		571	590	2.01	352.6		163.1
87	P1	16	13-Jan-06			175 28.22		479	489	3.01	335.2		121.7
88	P1	16	13-Jan-06			175 06.85		460	461	3	2099.4	6.8	89.1
89	P1	6	14-Jan-06	514	44 31.66	173 38.49	E	717	730	3	192.4	5.8	39.0

						Start tow			Depth	Dist.			Catch
Stn.	Type	Strat.	Date	Time	Latitude	Longitude	_		m	towed			kg
			2001	NZST	°'S	0 ,	E/W	min.	max.	n. mile	hoki	hake	ling
90	P1	16	14-Jan-06	1042	44 06.52	174 24.32	E	576	578	3.03	211.1	0.0	142.2
91	P1	16	14-Jan-06	1345	43 50.04	174 38.97	E	506	514	3.06	984.4	9.5	140.6
92	P1	16	14-Jan-06	1535	43 48.74	174 45.73	E	480	485	3	2002.7	4.3	57.9
93*	P1	18	14-Jan-06	1816	43 35.57	174 57.09	E	351	356	0.94			
94	P1	18	15-Jan-06	504	43 35.79	175 37.48	E	268	278	3	903.9	0.0	9.8
95	P1	18	15-Jan-06	709	43 41.93	175 24.65	E	332	357	3	1031.8	3.2	12.3
96	P1	18	15-Jan-06	1047	43 36.35	174 57.83	E	347	363	3	2354.5	5.0	48.6
97	P1	7	15-Jan-06	1326	43 26.52	174 39.76	E	401	436	2.99	4097.1	5.4	91.6
98	P1	7	15-Jan-06	1608	43 27.01	174 15.60	E	556	561	3.02	204.2	4.3	154.6
99	P1	7	15-Jan-06	1820	43 20.69	174 17.39	E	582	587	3	186.8	13.1	82.4
100	Beam		16-Jan-06	355	43 04.21	174 13.09	E	744	745	0.2			
101	P1	1	16-Jan-06	538	43 04.32	174 11.95	E	741	747	3	74.9	5.9	27.7
102	P1	1	16-Jan-06	827	42 59.10	174 34.14	E	784	799	3	19.0	17.4	1.9
103	P1	7	16-Jan-06	1130	43 11.56	174 39.68	E	486	492	2.98	211.9	42.2	288.0
104	P1	18	16-Jan-06	1424	43 13.73	174 56.67	E	216	256	2.11	0.0	0.0	0.0
105	P1	18	16-Jan-06	1631	43 04.79	174 59.86	E	356	383	3.02	1673.0	0.0	195.6
106	MWT		16-Jan-06	1932	43 04.84	175 00.62	E	205	267				
107	MWT		16-Jan-06	2050	43 04.40	174 59.82	E	45	53				
108	P1	7	17-Jan-06	516	43 09.42	175 42.44	E	426	431	3	398.5	22.1	151.3
109	P1	7	17-Jan-06	701	43 10.82	175 50.78	E	417	453	3	1026.7	225.3	118.5
110	P1	8A	17-Jan-06	918	43 05.23	176 06.58	E	437	439	2.99	1200.4	30.7	63.0
111	P1	7	17-Jan-06	1136	43 00.08	176 02.68	E	504	513	2.99	161.1	4.9	100.9
112	P1	1	17-Jan-06	1357	42 52.23	175 55.07	E	637	647	2.98	48.7	5.7	65.3
113	P1	19	22-Jan-06	535	43 27.03	177 12.94	E	246	256	3.01	450.9	0.0	7.1
114	P1	19	22-Jan-06	734	43 21.17	177 14.22	E	219	234	3	0.0	0.0	0.0
115	P1	19	22-Jan-06	951	43 11.30	177 01.78	E	247	273	3.03	65.2	0.0	0.0
116	P1	19	22-Jan-06	1140	43 07.92	176 55.32	E	299	317	3.02	2953.3	0.0	5.4
117	P1	8A	22-Jan-06	1423	42 59.80	176 37.61	E	412	420	3.01	647.7	37.7	49.5

^{*} Foul trawl stations

Appendix 2: Scientific and common names of species caught from valid biomass tows (TAN0601). The occurrence (Occ.) of each species (number of tows caught) in the 96 valid biomass tows is also shown. (Note that codes are continually updated on the database following this and other surveys.)

Scientific name	common name	species	Occ.
Porifera Callyspongiidae	unspecified sponges	ONG	18
Callyspongia cf. ramosa	airy finger sponge	CRM	1
Geodiidae Geodinella vestigifera	ostrich egg sponge	GVE	1
Rossellidae	05111011		-
Acanthascus (Rhabdocalyptus) sp.	floppy trumpet sponge	GLS	15
Cnidaria			
Coral (Hydrozoan + Anthozoan corals)	unspecified corals	COU	3
Hydrozoa	hydroid	HDR	1
Scyphozoa	jellyfish	JFI	3
Anthozoa			
Scleractinia (stony corals) Caryophyllidae			
Desmophyllum dianthus	crested cup coral	DDI	4
Goniocorella dumosa	bushy hard coral	GDU	6
	,		
Dendrophylliiae		EDO	
Enallopsammia rostrata	deepwater branching coral	ERO	1
Flabellidae	flabellum cup corals	COF	2
Flabellum spp. Stylasteridae	nabenum cup corais	COF	2
Errina spp.	red hydrocorals	ERR	1
Pennatulacea (sea pens)	unspecified seapens	SPN	5
Actinaria (sea anemones)	unspecified sea anemones	ANT	4
Actiniidae (deepsea anemones)	•		
Bolocera spp.		BOC	4
Actinostolidae (smooth deepsea anemones)		ACS	12
Hormathiidae (warty deepsea anemones)		HMT	16
Liponematidae (deepsea anemones)			
Liponema spp.		LIP	1
Tunicata			
Thaliacea (salps)	unspecified salps	SAL	10
Pyrosoma atlanticum		PYR	1
Mollusca			
Gastropoda (gastropods)	unspecified gastropods	GAS	7
Cymatiidae			
Fusitriton magellanicus		FMA	33
Turbinellidae Coluzea mariae		CMD	1
Volutidae	unenceified volutes	CMR VOL	1
Provocator mirabilis	unspecified volutes golden volute	GVO	1 3
Bivalvia (bivalves)	gorden volute	340	3
Limidae			
Acesta maui	giant file shell	AMA	1

Scientific name	common name	species	Occ.
Cephalopoda			
Sepiodea (cuttlefishes)			
Sepiolidae	unspecified sepiolids	SEQ	1
Teuthoidea (squids)	•		
Onychoteuthidae			
Moroteuthis ingens	warty squid	MIQ	31
Histioteuthidae			
Histioteuthis spp.	violet squid	VSQ	4
Ommastrephidae			
Nototodarus sloanii	arrow squid	NOS	66
Todarodes filippovae	Antarctic flying squid	TSQ	33
Cranchiidae	unspecified cranchiid squids	CHQ	1
Octopoda (octopods)	unspecified octopod	OCP	1
Enteroctopus zealandicus	yellow octopus	EZE	4
Graneledone spp.	deepwater octopus	DWO	4
Countries			
Crustacea Dendrobranchiata/Placeyamata (prayms)	unenceified proving	NAT	3
Dendrobranchiata/Pleocyemata (prawns) Dendrobranchiata	unspecified prawns	INAI	3
Aristeidae			
Aristaeopsis edwardsiana	scarlet prawn	PED	1
Penaeidae	scarici prawn	I LD	1
Funchalia spp.		FUN	2
Solenoceridae		1011	2
Haliporoides sibogae	jack-knife prawn	HSI	2
Pleocyemata	Juon mino pravin	1101	-
Caridea			
Campylonotidae			
Camplyonotus rathbonae	sabre prawn	CAM	5
Pandalidae	1		
Plesionika martia	golden prawn	PLM	1
Pasiphaeidae			
Pasiphaea spp.	deepwater prawns	PAS	3
Nematocarcinidae			
Lipkius holthuisi	omega prawn	LHO	10
Astacidea			
Nephropidae (clawed lobsters)			
Metanephrops challengeri	scampi	SCI	41
Palinura			
Polychelidae			
Polycheles suhmi	deepsea blind lobster	PSU	4
Crab (Anomuran + Brachyuran crabs)	unspecified crabs	CRB	8
Anomura			
Galatheidae (squat lobsters)			
Munida gracilis		MNI	2
Lithodidae (king crabs)			
Lithodes murrayi	Murray's king crab	LMU	1
Paralomis zelandica	prickly king crab	PZE	2
Paguroidea (unspecified pagurid & parapa	agurid hermit crabs)	PAG	9
Paguridae			
Diacanthurus rubricatus	hermit crab	DIR	1

Scientific name	common name	species	Occ.
Parapaguridae			
Sympagurus dimorphus	hermit crab	SDM	8
Brachyura			
Atelecyclidae			
Trichopeltarion fantasticum	frilled crab		8
Goneplacidae			
Carcinoplax victoriensis	two-spined crab	CVI	6
Homolidae			
Dagnaudus petterdi	antlered crab	DAP	11
Majidae (spider crabs)			
Leptomithrax australis	giant masking crab	SSC	8
Teratomaia richardsoni	spiny masking crab	SMK	2
Echinodermata			
Asteroidea (starfish)	unspecified asteroids	ASR	7
Asteriidae	F		
Cosmasterias dyscrita	cat's-foot star	CDY	11
Astropectinidae			
Dipsachaster magnificus	magnificent sea-star	DMG	14
Plutonaster knoxi	abyssal star	PLT	25
Psilaster acuminatus	geometric star	PSI	49
Sclerasterias mollis	cross fish	SMO	3
Benthopectinidae			
Benthopecten pikei	five-spined star	BPI	3
Brisingida	armless stars	BRG	1
Goniasteridae			
Ceramaster patagonicus patagonicus	pentagon star	CPA	3
Hippasteria phrygiana	trojan star	HTR	3
Lithosoma novaezelandiae	rock star	LNV	4
Mediaster sladeni	Sladen's star	MSL	11
Odontasteridae			
Odontaster benhami	pentagonal tooth-star	ODT	2
Solasteridae			
Crossaster multispinus	sun-star	CJA	23
Solaster torulatus	chubby sun-star	SOT	3
Zoroasteridae		=	••
Zoroaster spp.	rat-tail star	ZOR	30
Holothuroidea (sea cucumbers)	unspecified holothurians	HTH	32
Ophiuroidea (basket and brittle stars)	1 1 201	DIIE	1
Bathypectinura heros	deepsea brittle star	BHE	1
Euryalina (basket stars)			
Gorgonocephalidae Astrothorax waitei	W/-:4-214	A 337 A	2
	Waite's snake star	AWA GOR	2 13
Gorgonocephalus sp.	Gorgon's head basket stars	GOK	13
Echinoidea (sea urchins) Regularia			
Cidaridae (cidarid urchins)			
Goniocidaris parasol	parasol urchin	GPA	2
Goniociauris parasoi G. umbraculum	umbrella urchin	GOU	5
Echinothuriidae (Tam-o-shanter urchins)	amorona aronin	TAM	31
Deminionalitation (1 and 0 shallor dicinis)		1 7 1141	31

Echinidae Gracilechinus multidentatus Dermechinus horridus Dermechinus multispinus Paramaretia peloria Spatangus multispinus Puple-heart urchin SPT Dermnopleuridae Pseudechinus flemingi Fleming's urchin PFL Agnatha (jawless fishes) Eptatretus cirrhatus hagfish HAG Chondrichthyes (cartilagenous fishes) Chlamydoselachidae: frill shark Chlamydoselachius arguineus Frill shark Chlamydoselachus arguineus Frill shark Convitorius crepidater Longineos evlevet dogfish CYP 11 Convitorius crepidater Longineos evlevet dogfish CYP 11 Convitorius argueus Shovelnose dogfish SND 40 Elmopterus baxteri Baxter's dogfish ETIL 49 Seymorhinus licha Salater's dogfish ETIL 49 Seymorhinus licha Salater's dogfish SPD 65 Seyliorihinidae: cat sharks Apristurus spp. Cosphaloscopyllum isabellum carpet shark Apristurus galeus School shark SCH 8 Torpedinidae: electric rays Tropedo fairchildi clectric ray Trakidae: shide electric rays Tropedo fairchildi clectric ray Trakidae: shidilae electric rays Tropedo fairchildi clectric ray Trakidae: shidilae electric rays Tropedo fairchildi clectric ray Trakidae: shidilae Dipharus innominatus Smooth skate SSK 3 Notor	Scientific name	common name	species	Occ.	
Gracilechinus multidentatus deepsea urchin GRM 9 Dermechinus horridus deepsea urchin DHO 2 Spatangidas (heart urchins) Faramaretia peloria Microsoft mouse PMU 2 Spatangus multispinus pupple-heart urchin SPT 6 Termnopleuridae Femorlouridae Femorlouridae PFL 1 Agnatha (jawless fishes) Eptatretus cirrhatus hagfish HAG 1 Chondrichthyes (cartilagenous fishes) Chlamydoselachius anguineus frill shark FRS 1 Chamydoselachius anguineus frill shark FRS 1 Squalidae: dogfishes Centrosycomus crepidater Condition of the control	Echinidae				
Dermechinus horridus Dermechinus horridus		deepsea kina	GRM	9	
Spatangidae (heart urchins) Paramaretia peloria Microsoft mouse PMU 2 Spatangus multispinus purple-heart urchin SPT 6 Temnopleuridae Pseudechinus flemingi Fleming's urchin PFL 1 Agnatha (jawless fishes) Eptatretus cirrhatus hagfish HAG 1 Chondrichthyes (cartilagenous fishes) Chlamydoselachidae: frill shark Chlamydoselachidae i frill shark Chlamydoselachus anguineus frill shark FRS 1 Squalidae: dogfishes Centrophorus squamosus leafscale gulper shark CSQ 11 Centroscymnus crepidater longnose velvet dogfish CYP 11 C. owstoni smooth skin dogfish CYO 5 C. plunketi Plunket's shark PLS 9 Deania calcea shovelnose dogfish SND 40 Etmopterus baxteri Baxter's dogfish ETB 16 E. lucifer Lucifer dogfish ETB 19 Scymnorhinus licha seal shark BSH 19 Squalus acanthias spiny dogfish SPD 65 S. mitsukurii northern spiny dogfish NSD 3 Oxynotidae: rough sharks Oxynotus bruniensis Oxynotus bruniensis Oxynotus bruniensis Apristurus spp. catshark APR 6 Cephaloscyllium isabellum carpet shark CAR 11 Triakidae: sat sharks Apristurus gavsoni New Zealand catshark DCS 1 Triakidae: smoothhounds Galeorhinus galeus school shark CAR 3 Tripholmate: electric rays Torpedo fairchildi electric ray ERA 4 Narkidae: blind electric rays Torpedo fairchildi smoothhounds Galeorhinus galeus oval electric ray TTA 3 Rajidae: skates Dipturus innominatus Smooth skate SK 29 D. nasutus nootheniatus FND bluntnose deepsea skates Dipturus innominatus Dipturus innominatus Smooth skate RSK 3 Notoraja spp. bluntnose deepsea skates BTH 20 Chimaeridae: chimaeras, ghostsharks Hydrologus novaezealandiae ghost shark GSP 67 Rhinochimaeridae: longnosed chimaeras Harriotu raleighana long-fosed chimaera LCH 44		-			
Paramaretia peloria Microsoft mouse PMU 2 2 2 2 2 2 2 2 2		uvvpsvu urviim	2110	_	
Spatangus multispinus Pseudechinus flemingi Pseudechinus flemingi Fleming's urchin PFL Agnatha (jawless fishes) Eptatretus cirrhatus hagfish HAG Chondrichthyes (cartilagenous fishes) Chlamydoselachidae: frill shark Chlamydoselachus anguineus FRS Centrophorus squamosus Leafscale gulper shark CYO 5 Cplunketi Plunket's shark PLS 9 Deania calcea shovelnose dogfish CYO 5 C. plunketi Plunket's shark PLS 9 Deania calcea shovelnose dogfish SND 40 Etmopterus baxteri Baxter's dogfish ETI 49 Scymorthinus licha seal shark BSH 19 Squalus acanthias spiny dogfish SPD 65 S. misukurii northern spiny dogfish NSD 3 Oxynotidae: rough sharks Oxynotidae: rough sharks Oxynotidae: rough sharks Apristurus spp. Cethaloscyllium isabellum carpet shark Apristurus spp. Cethaloscyllium isabellum carpet shark CAR 1 Bythaelurus dawsoni New Zealand catshark DCS 1 Triakidae: smoothhounds Galeorhinus galeus school shark CAR 1 Bythaelurus dawsoni New Zealand catshark CAR 1 Bythaelurus dawsoni New Zealand catshark SCH 8 Torpedo fairchild clectric ray Tra 3 Rajidae: skates Dipharus innominatus smooth skate SSK 29 D. nasutus rough skate RSK 3 Notoraja spp. bluntnose deepsea skates BTH 20 Chimaeridae: chimaeras, ghostshark GSP 67 Rhinochimaeridae: longnosed chimaeras Harriotus raleighana long-nosed chimaera LCH 4 44 4		Microsoft mouse	PMU	2	
Temnopleuridae Pseudechinus flemingi Fleming's urchin Fles Fleming's urchin Fleming's urchin Fleming's urchin Fleming's urchin Flex of Sex 11 Takinace indicated chimaeras Fleming's urchin Flex of Sex 12 Flex					
Pseudechinus flemingi Fleming's urchin PFL 1		Position and the second		_	
Chondrichthyes (cartilagenous fishes) Chlamydoselachidae: frill shark FRS 1		Fleming's urchin	PFL	1	
Chondrichthyes (cartilagenous fishes) Chlamydoselachidae: frill shark Chlamydoselachidae: Centrophorus squamosus leafscale gulper shark CSQ 11 Centroscymnus crepidater longnose velvet dogfish CYP 11 Cowstoni smooth skin dogfish CYP 15 C. plunketi Plunket's shark PLS 9 Deania calcea shovelnose dogfish SND 40 Etmopterus baxteri Baxter's dogfish ETB 16 E. lucifer Lucifer dogfish ETL 49 Scymnorhinus licha seal shark BSH 19 Squalus acanthias spiny dogfish SPD 65 S. mitsukurii northern spiny dogfish NSD 3 Oxynotidae: rough sharks Oxynotus bruniensis prickly dogfish PDG 6 Scyliorhinidae: cat sharks Apristurus spp. catshark Apristurus spp. catshark Apristurus spp. catshark CAR 1 Bythaelurus dawsoni New Zealand catshark DCS 1 Triakidae: smoothhounds Galeorhinus galeus School shark Caphaloscyllium isabellum carpet shark CAR 1 Bythaelurus dawsoni New Zealand catshark DCS 1 Triakidae: smoothhounds Galeorhinus galeus School shark SCH 8 Torpedio fairchildi electric ray Tropedo fairchildi electric ray Typhlonarke tarakea Torpedo fairchildi shates Dipturus innominatus Typhlonarke tarakea Typhlonarke tarakea Typhlonarke tarakea Typhlonarke tarakea Dipturus innominatus Smooth skate SSK 29 D. nasutus Tough skate SSK 29 D. nasutus Tough skate SSK 30 Notoraja spp. bluntnose deepsea skates BTH 20 Chimaeridae: chimaeras, ghostsharks Hydrolagus novaezealandiae H. bemisi Hydrolagus novaezealandiae H. bemisi Hydrolagus novaezealandiae Harriotta raleighana long-nosed chimaeras LCH 44	Agnatha (jawless fishes)				
Chlamydoselachusa anguineus Squalidae: dogfishes Centrophorus squamosus Centroscymnus crepidater Constoni Controscymnus crepidater Plunket's shark PLS Denaia calcea shovelnose dogfish ETB 16 E. Iucifer Lucifer dogfish ETL 49 Scymnorhinus licha seal shark Squalus acanthias spiny dogfish SPD 65 S. mitsukurii northern spiny dogfish NSD 3 Oxynotidae: rough sharks Oxynotidae: rough sharks Apristurus spp. catshark Apristurus spp. catshark APR 6 Cephaloscyllium isabellum carpet shark CAR 1 Bythaelurus dawsoni New Zealand catshark CAR 1 Bythaelurus dawsoni New Zealand catshark CAR 1 Triakidae: smoothhounds Galeorhinus galeus school shark SCH 8 Torpedinidae: electric rays Torpedo fairchildi electric ray ERA 4 Narkidae: blind electric rays Torpedo fairchildi electric ray TTA 3 Rajidae: skates Dipturus innominatus smooth skate SSK 29 D. nasutus Notoraja spp. bluntnose deepsea skates BTH 20 Chimaeridae: chimaeras, ghostsharks Hydrolagus novaezealandiae pale ghost shark GSH 52 H. bemisi Harriotta raleighana long-nosed chimaera LCH 44	Eptatretus cirrhatus	hagfish	HAG	1	
Squalidae: dogfishes Centrophorus squamosus Centrophorus squamosus Centroscymnus crepidater longnose velvet dogfish CYP 11 C. owstoni smooth skin dogfish CYO 5 C. plunketi Plunket's shark PLS 9 Deania calcea shovelnose dogfish ETB 16 E. lucifer Lucifer Lucifer dogfish Squalus acanthias squalus acanthias spiny dogfish SpD 65 S. mitsukurii northern spiny dogfish NSD 30 Oxynotidae: rough sharks Oxynotus bruniensis PDG 65 Scyliorhinidae: cat sharks Apristurus spp. Cephaloscyllium isabellum Bythaelurus dawsoni Triakidae: smoothhounds Galeorhinus galeus Torpedinidae: electric rays Torpedo fairchildi Narkidae: blind electric rays Torpedo fairchildi Narkidae: blind electric rays D. nasutus Donasutus Notoraja spp. bluntnose deepsea skates BTH 20 Chimaeridae: chimaeras, ghostsharks Hydrolagus novaezealandiae ghost shark GSH GSP 66 67 Rhinochimaeridae: longnosed chimaeras Harriotta raleighana long-nosed chimaera LCH 44 11 12 11 12 11 12 11 12 11 12 11	Chlamydoselachidae: frill shark				
Centrophorus squamosusleafscale gulper sharkCSQ11Centroscymnus crepidaterlongnose velvet dogfishCYP11C. owstonismooth skin dogfishCYO5C. plunketiPlunket's sharkPLS9Deania calceashovelnose dogfishSND40Etmopterus baxteriBaxter's dogfishETB16E. luciferLucifer dogfishETL49Scymnorhinus lichaseal sharkBSH19Squalus acanthiasspiny dogfishSPD65S. mitsukuriinorthern spiny dogfishNSD3Oxynotidae: rough sharksOxynotus bruniensisprickly dogfishPDG6Scyliorhinidae: cat sharksAPR66Apristurus spp.catsharkAPR6Cephaloscyllium isabellumcarpet sharkCAR1Bythaelurus dawsoniNew Zealand catsharkDCS1Triakidae: smoothhoundsGaleorhinus galeusschool sharkSCH8Torpedinidae: electric raysTorpedinidae: electric raysTTA3Torpedo fairchildielectric rayERA4Narkidae: blind electric raysTTA3Tiphlonarke tarakeaoval electric rayTTA3Rajidae: skatesDipturus innominatussmooth skateSSK29D. nasutusrough skateRSK3Notoraja spp.bluntnose deepsea skatesBTH20Chimaeridae: chimaeras, ghostsharksHyd		frill shark	FRS	1	
Centroscymnus crepidaterlongnose velvet dogfishCYP11C. owstonismooth skin dogfishCYO5C. plunketiPlunket's sharkPLS9Deania calceashovelnose dogfishSND40Emopterus baxteriBaxter's dogfishETB16E. luciferLucifer dogfishETL49Scymnorhinus lichaseal sharkBSH19Squalus acanthiasspiny dogfishSPD65S. mitsukuriinorthern spiny dogfishNSD3Oxynotidae: rough sharksoxynotidae: rough sharksPDG6Oxynotus bruniensisprickly dogfishPDG6Scyliorhinidae: cat sharksAPR66Apristurus spp.catsharkAPR6Cephaloscyllium isabellumcarpet sharkCAR1Bythaelurus dawsoniNew Zealand catsharkDCS1Triakidae: smoothhoundsGaleorhinus galeusschool sharkSCH8Torpedinidae: electric raysTorpedinidae: electric raysERA4Narkidae: blind electric raysTTA3Typhlonarke tarakeaoval electric rayTTA3Rajidae: skatesDipturus innominatussmooth skateSSK29D. nasutusrough skateRSK3Notoraja spp.bluntnose deepsea skatesBTH20Chimaeridae: chimaeras, ghostsharksHydrolagus novaezealandiaeghost sharkGSP67Rhinochimaeridae: longnose	•				
C. owstonismooth skin dogfishCYO5C. plunketiPlunket's sharkPLS9Deania calceashovelnose dogfishSND40Etmopterus baxteriBaxter's dogfishETB16E. luciferLucifer dogfishETL49Scymnorhinus lichaseal sharkBSH19Squalus acanthiasspiny dogfishSPD65S. mitsukuriinorthern spiny dogfishNSD3Oxynotidae: rough sharksOxynotidae: rough sharksPDG6Oxynotus bruniensisprickly dogfishPDG6Scyliorhinidae: cat sharksAPR66Cephaloscyllium isabellumcarpet sharkCAR1Bythaelurus dawsoniNew Zealand catsharkDCS1Triakidae: smoothhoundsSchool sharkSCH8Galeorhinus galeusschool sharkSCH8Torpedinidae: electric raysSCH8Torpedo fairchildielectric rayERA4Narkidae: blind electric raysTTA3Rajidae: skatesDipturus innominatussmooth skateSSK29D. nasutusrough skateRSK3Notoraja spp.bluntnose deepsea skatesBTH20Chimaeridae: chimaeras, ghostsharksHydrolagus novaezealandiaeghost sharkGSP67Rhinochimaeridae: longnosed chimaerasHarriotta raleighanalong-nosed chimaerasLCH44	Centrophorus squamosus		_	11	
C. plunketiPlunket's sharkPLS9Deania calceashovelnose dogfishSND40Etmopterus baxteriBaxter's dogfishETB16E. luciferLucifer dogfishETL49Scymnorhinus lichaseal sharkBSH19Squalus acanthiasspiny dogfishSPD65S. mitsukuriinorthern spiny dogfishNSD3Oxynotidae: rough sharksOxynotus bruniensisprickly dogfishPDG6Scyliorhinidae: cat sharksPDG6Apristurus spp.catsharkAPR6Cephaloscyllium isabellumcarpet sharkCAR1Bythaelurus dawsoniNew Zealand catsharkDCS1Triakidae: smoothhoundsCaleorhinus galeusschool sharkSCH8Torpedinidae: electric raysschool sharkSCH8Torpedinidae: electric raysERA4Narkidae: blind electric raysTTA3Rajidae: skatesTyphonarke tarakeaoval electric rayTTA3Dipturus innominatussmooth skateSSK29D. nasutusrough skateRSK3Notoraja spp.bluntnose deepsea skatesBTH20Chimaeridae: chimaeras, ghostsharksHydrolagus novaezealandiaeghost sharkGSH52H. bemisipale ghost sharkGSP67Rhinochimaeridae: longnosed chimaerasLCH44			CYP		
Deania calceashovelnose dogfishSND40Etmopterus baxteriBaxter's dogfishETB16E. luciferLucifer dogfishETL49Scymnorhinus lichaseal sharkBSH19Squalus acanthiasspiny dogfishSPD65S. mitsukuriinorthern spiny dogfishNSD3Oxynotidae: rough sharksOxynotus bruniensisprickly dogfishPDG6Scyliorhinidae: cat sharksAPR66Apristurus spp.catsharkAPR6Cephaloscyllium isabellumcarpet sharkCAR1Bythaelurus dawsoniNew Zealand catsharkDCS1Triakidae: smoothhoundsSchool sharkSCH8Galeorhinus galeusschool sharkSCH8Torpedinidae: electric raysERA4Narkidae: blind electric raysTrapedo fairchildielectric rayERA4Narkidae: blind electric raysoval electric rayTTA3Rajidae: skatesSK29D. nasutusrough skateSSK29D. nasutusrough skateRSK3Notoraja spp.bluntnose deepsea skatesBTH20Chimaeridae: chimaeras, ghostsharksHydrolagus novaezealandiaeghost sharkGSH52H. bemisipale ghost sharkGSP67Rhinochimaeridae: longnosed chimaerasLCH44		<u> </u>			
Etmopterus baxteriBaxter's dogfishETB16E. luciferLucifer dogfishETL49Scymnorhinus lichaseal sharkBSH19Squalus acanthiasspiny dogfishSPD65S. mitsukuriinorthern spiny dogfishNSD3Oxynotidae: rough sharksOxynotus bruniensisprickly dogfishPDG6Scyliorhinidae: cat sharksApristurus spp.catsharkAPR6Cephaloscyllium isabellumcarpet sharkCAR1Bythaelurus dawsoniNew Zealand catsharkDCS1Triakidae: smoothhoundsGaleorhinus galeusschool sharkSCH8Torpedo fairchildielectric rayERA4Narkidae: blind electric raysTyphlonarke tarakeaoval electric rayTTA3Rajidae: skatesDipturus innominatussmooth skateSSK29D. nasutusrough skateRSK3Notoraja spp.bluntnose deepsea skatesBTH20Chimaeridae: chimaeras, ghostsharksHydrolagus novaezealandiaeghost sharkGSH52H. bemisipale ghost sharkGSH52 <td>C. plunketi</td> <td></td> <td>PLS</td> <td></td>	C. plunketi		PLS		
E. luciferLucifer dogfishETL49Scymnorhinus lichaseal sharkBSH19Squalus acanthiasspiny dogfishSPD65S. mitsukuriinorthern spiny dogfishNSD3Oxynotidae: rough sharksOxynotidae: rough sharksOxynotus bruniensisprickly dogfishPDG6Scyliorhinidae: cat sharksApristurus spp.CatsharkAPR6Cephaloscyllium isabellumcarpet sharkCAR1Bythaelurus dawsoniNew Zealand catsharkDCS1Triakidae: smoothhoundsGaleorhinus galeusschool sharkSCH8Torpedinidae: electric raysTorpedo fairchildielectric rayERA4Nakidae: blind electric raysTyphlonarke tarakeaoval electric rayTTA3Rajidae: skatesDipturus innominatussmooth skateSSK29D. nasutusrough skateRSK3Notoraja spp.Chimaeridae: chimaeras, ghostsharksHydrolagus novaezealandiaeghost sharkGSHGSH52H. bemisipale ghost sharkGSP65P67Rhinochimaeridae: longnosed chimaeras </td <td>Deania calcea</td> <td>shovelnose dogfish</td> <td>SND</td> <td>40</td>	Deania calcea	shovelnose dogfish	SND	40	
Scymnorhinus lichaseal sharkBSH19Squalus acanthiasspiny dogfishSPD65S. mitsukuriinorthern spiny dogfishNSD3Oxynotidae: rough sharksOxynotus bruniensisprickly dogfishPDG6Scyliorhinidae: cat sharksApristurus spp.catsharkAPR6Cephaloscyllium isabellumcatsharkAPR6Cephaloscyllium isabellumcatsharkCAR1Bythaelurus dawsoniNew Zealand catsharkDCS1Triakidae: smoothhoundsGaleorhinus galeusschool sharkSCH8Torpedinidae: electric raysERA4Narkidae: blind electric raysERA4Narkidae: blind electric raysTTA3Rajidae: skatesDipturus innominatussmooth skateSSK29D. nasutusrough skateRSK3Notoraja spp.bluntnose deepsea skatesBTH20Chimaeridae: chimaeras, ghostsharksHybrolagus novaezealandiaeghost sharkGSH52H. bemisipale ghost sharkGSH52Humaeridae: clongnosed chimaerasHumaeridae: l	Etmopterus baxteri	_	ETB	16	
Squalus acanthiasspiny dogfishSPD65S. mitsukuriinorthern spiny dogfishNSD3Oxynotidae: rough sharksOxynotus bruniensisprickly dogfishPDG6Seyliorhinidae: cat sharksApristurus spp.catsharkAPR6Cephaloscyllium isabellumcarpet sharkAPR6Cephaloscyllium isabellumcarpet sharkCAR1Bythaelurus dawsoniNew Zealand catsharkDCS1Triakidae: smoothhoundsSCH8Galeorhinus galeusschool sharkSCH8Torpedinidae: electric raysERA4Narkidae: electric raysTyphlonarke tarakeaoval electric rayERA4Narkidae: blind electric raysTTA3Rajidae: skatesDipturus innominatussmooth skateSSK29D. nasutusrough skateRSK3Notoraja spp.bluntnose deepsea skatesBTH20Chimaeridae: chimaeras, ghostsharksGSH52Hydrolagus novaezealandiaeghost sharkGSH52H. bemisi <td rowspan<="" td=""><td>•</td><td>Lucifer dogfish</td><td></td><td>49</td></td>	<td>•</td> <td>Lucifer dogfish</td> <td></td> <td>49</td>	•	Lucifer dogfish		49
S. mitsukurii northern spiny dogfish NSD 3 Oxynotidae: rough sharks Oxynotus bruniensis prickly dogfish PDG 6 Scyliorhinidae: cat sharks Apristurus spp. catshark APR 6 Cephaloscyllium isabellum carpet shark CAR 1 Bythaelurus dawsoni New Zealand catshark DCS 1 Triakidae: smoothhounds Galeorhinus galeus school shark SCH 8 Torpedinidae: electric rays Torpedo fairchildi electric rays Typhlonarke tarakea oval electric ray TTA 3 Rajidae: skates Dipturus innominatus smooth skate SSK 29 D. nasutus rough skate RSK 3 Notoraja spp. bluntnose deepsea skates BTH 20 Chimaeridae: chimaeras, ghostsharks Hydrolagus novaezealandiae ghost shark GSP 67 Rhinochimaeridae: longnosed chimaeras Harriotta raleighana long-nosed chimaera LCH 44	•				
Oxynotidae: rough sharks Oxynotus bruniensis prickly dogfish PDG 6 Scyliorhinidae: cat sharks Apristurus spp. catshark Apristurus spp. catshark CAR 1 Bythaelurus dawsoni New Zealand catshark DCS 1 Triakidae: smoothhounds Galeorhinus galeus school shark SCH 8 Torpedinidae: electric rays Torpedo fairchildi electric ray ERA Narkidae: blind electric rays Typhlonarke tarakea oval electric ray TTA 3 Rajidae: skates Dipturus innominatus smooth skate SSK 29 D. nasutus Notoraja spp. bluntnose deepsea skates BTH 20 Chimaeridae: chimaeras, ghostsharks Hydrolagus novaezealandiae Harriotta raleighana long-nosed chimaera LCH 44	Squalus acanthias				
Oxynotus bruniensisprickly dogfishPDG6Scyliorhinidae: cat sharks		northern spiny dogfish	NSD	3	
Scyliorhinidae: cat sharks Apristurus spp. catshark APR 6 Cephaloscyllium isabellum carpet shark CAR 1 Bythaelurus dawsoni New Zealand catshark DCS 1 Triakidae: smoothhounds Galeorhinus galeus school shark SCH 8 Torpedinidae: electric rays Torpedo fairchildi electric ray ERA 4 Narkidae: blind electric rays Typhlonarke tarakea oval electric ray TTA 3 Rajidae: skates Dipturus innominatus smooth skate SSK 29 D. nasutus rough skate RSK 3 Notoraja spp. bluntnose deepsea skates BTH 20 Chimaeridae: chimaeras, ghostsharks Hydrolagus novaezealandiae ghost shark GSP 67 Rhinochimaeridae: longnosed chimaeras Harriotta raleighana long-nosed chimaera LCH 44					
Apristurus spp.catsharkAPR6Cephaloscyllium isabellumcarpet sharkCAR1Bythaelurus dawsoniNew Zealand catsharkDCS1Triakidae: smoothhoundsGaleorhinus galeusSchool sharkSCH8Torpedinidae: electric raysERA4Narkidae: blind electric raysERA4Narkidae: blind electric raysTTA3Typhlonarke tarakeaoval electric rayTTA3Rajidae: skatesDipturus innominatussmooth skateSSK29D. nasutusrough skateRSK3Notoraja spp.bluntnose deepsea skatesBTH20Chimaeridae: chimaeras, ghostsharksHydrolagus novaezealandiaeghost sharkGSH52H. bemisipale ghost sharkGSP67Rhinochimaeridae: longnosed chimaerasHarriotta raleighanalong-nosed chimaeraLCH44	•	prickly dogfish	PDG	6	
Cephaloscyllium isabellumcarpet sharkCAR1Bythaelurus dawsoniNew Zealand catsharkDCS1Triakidae: smoothhoundsSchool sharkSCH8Galeorhinus galeusSchool sharkSCH8Torpedinidae: electric raysERA4Narkidae: blind electric raysTyphlonarke tarakeaOval electric rayTTA3Rajidae: skatesDipturus innominatusSmooth skateSSK29D. nasutusrough skateRSK3Notoraja spp.bluntnose deepsea skatesBTH20Chimaeridae: chimaeras, ghostsharksHydrolagus novaezealandiaeghost sharkGSH52H. bemisipale ghost sharkGSP67Rhinochimaeridae: longnosed chimaerasHarriotta raleighanalong-nosed chimaeraLCH44	Scyliorhinidae: cat sharks				
Bythaelurus dawsoniNew Zealand catsharkDCS1Triakidae: smoothhoundsschool sharkSCH8Galeorhinus galeusschool sharkSCH8Torpedinidae: electric raysERA4Narkidae: blind electric raysERA4Narkidae: blind electric raysTTA3Rajidae: skatesTTA3Dipturus innominatussmooth skateSSK29D. nasutusrough skateRSK3Notoraja spp.bluntnose deepsea skatesBTH20Chimaeridae: chimaeras, ghostsharksHydrolagus novaezealandiaeghost sharkGSH52H. bemisipale ghost sharkGSP67Rhinochimaeridae: longnosed chimaerasHarriotta raleighanaLCH44				6	
Triakidae: smoothhounds Galeorhinus galeus School shark SCH 8 Torpedinidae: electric rays Torpedo fairchildi electric ray ERA Narkidae: blind electric rays Typhlonarke tarakea oval electric ray TTA 3 Rajidae: skates Dipturus innominatus smooth skate SSK 29 D. nasutus rough skate RSK 3 Notoraja spp. bluntnose deepsea skates BTH 20 Chimaeridae: chimaeras, ghostsharks Hydrolagus novaezealandiae Hydrolagus novaezealandiae Bensii Bark GSH 52 Rhinochimaeridae: longnosed chimaeras Harriotta raleighana long-nosed chimaera LCH 44		•		1	
Galeorhinus galeusschool sharkSCH8Torpedinidae: electric rayselectric rayERA4Narkidae: blind electric raysTTA3Typhlonarke tarakeaoval electric rayTTA3Rajidae: skatesSSK29Dipturus innominatussmooth skateSSK29D. nasutusrough skateRSK3Notoraja spp.bluntnose deepsea skatesBTH20Chimaeridae: chimaeras, ghostsharksHydrolagus novaezealandiaeghost sharkGSH52H. bemisipale ghost sharkGSP67Rhinochimaeridae: longnosed chimaerasHarriotta raleighanalong-nosed chimaeraLCH44	•	New Zealand catshark	DCS	1	
Torpedo fairchildi electric rays Torpedo fairchildi electric rays Typhlonarke tarakea oval electric ray TTA 3 Rajidae: skates Dipturus innominatus smooth skate SSK 29 D. nasutus rough skate RSK 3 Notoraja spp. bluntnose deepsea skates BTH 20 Chimaeridae: chimaeras, ghostsharks Hydrolagus novaezealandiae ghost shark GSP 67 Rhinochimaeridae: longnosed chimaeras Harriotta raleighana long-nosed chimaera LCH 44	Triakidae: smoothhounds				
Torpedo fairchildielectric rayERA4Narkidae: blind electric raysTyphlonarke tarakeaoval electric rayTTA3Rajidae: skatesTTA3Dipturus innominatussmooth skateSSK29D. nasutusrough skateRSK3Notoraja spp.bluntnose deepsea skatesBTH20Chimaeridae: chimaeras, ghostsharksHydrolagus novaezealandiaeghost sharkGSH52H. bemisipale ghost sharkGSP67Rhinochimaeridae: longnosed chimaerasHarriotta raleighanalong-nosed chimaeraLCH44		school shark	SCH	8	
Narkidae: blind electric rays Typhlonarke tarakea oval electric ray TTA 3 Rajidae: skates Dipturus innominatus smooth skate SSK 29 D. nasutus rough skate RSK 3 Notoraja spp. bluntnose deepsea skates BTH 20 Chimaeridae: chimaeras, ghostsharks Hydrolagus novaezealandiae ghost shark GSH 52 H. bemisi pale ghost shark GSP 67 Rhinochimaeridae: longnosed chimaeras Harriotta raleighana long-nosed chimaera LCH 44					
Typhlonarke tarakeaoval electric rayTTA3Rajidae: skatesSK29Dipturus innominatussmooth skateSSK29D. nasutusrough skateRSK3Notoraja spp.bluntnose deepsea skatesBTH20Chimaeridae: chimaeras, ghostsharksHydrolagus novaezealandiaeghost sharkGSH52H. bemisipale ghost sharkGSP67Rhinochimaeridae: longnosed chimaerasHarriotta raleighanalong-nosed chimaeraLCH44	_ ·	electric ray	ERA	4	
Rajidae: skates Dipturus innominatus smooth skate SSK 29 D. nasutus rough skate RSK 3 Notoraja spp. bluntnose deepsea skates BTH 20 Chimaeridae: chimaeras, ghostsharks Hydrolagus novaezealandiae ghost shark GSH 52 H. bemisi pale ghost shark GSP 67 Rhinochimaeridae: longnosed chimaeras Harriotta raleighana long-nosed chimaera LCH 44					
Dipturus innominatussmooth skateSSK29D. nasutusrough skateRSK3Notoraja spp.bluntnose deepsea skatesBTH20Chimaeridae: chimaeras, ghostsharksHydrolagus novaezealandiaeghost sharkGSH52H. bemisipale ghost sharkGSP67Rhinochimaeridae: longnosed chimaerasHarriotta raleighanalong-nosed chimaeraLCH44	* =	oval electric ray	TTA	3	
D. nasutusrough skateRSK3Notoraja spp.bluntnose deepsea skatesBTH20Chimaeridae: chimaeras, ghostsharksHydrolagus novaezealandiaeghost sharkGSH52H. bemisipale ghost sharkGSP67Rhinochimaeridae: longnosed chimaerasHarriotta raleighanalong-nosed chimaeraLCH44	•				
Notoraja spp. bluntnose deepsea skates BTH 20 Chimaeridae: chimaeras, ghostsharks Hydrolagus novaezealandiae ghost shark GSH 52 H. bemisi pale ghost shark GSP 67 Rhinochimaeridae: longnosed chimaeras Harriotta raleighana long-nosed chimaera LCH 44					
Chimaeridae: chimaeras, ghostsharks Hydrolagus novaezealandiae ghost shark GSH 52 H. bemisi pale ghost shark GSP 67 Rhinochimaeridae: longnosed chimaeras Harriotta raleighana long-nosed chimaera LCH 44		_			
Hydrolagus novaezealandiaeghost sharkGSH52H. bemisipale ghost sharkGSP67Rhinochimaeridae: longnosed chimaerasHarriotta raleighanalong-nosed chimaeraLCH44	* **	bluntnose deepsea skates	BTH	20	
H. bemisipale ghost sharkGSP67Rhinochimaeridae: longnosed chimaeraslong-nosed chimaeraLCH44					
Rhinochimaeridae: longnosed chimaeras **Harriotta raleighana** long-nosed chimaera** LCH** 44**		_			
Harriotta raleighana long-nosed chimaera LCH 44		pale ghost shark	GSP	67	
Rhinochimaera pacifica widenosed chimaera RCH 2		=			
The state of the s	Rhinochimaera pacifica	widenosed chimaera	RCH	2	

Scientific name	common name	species	Occ.
Osteichthyes (bony fishes)			
Notocanthidae: spiny eels			
Notacanthus sexspinis	spineback	SBK	32
Synaphobranchidae: cutthroat eels	•		
Diastobranchus capensis	basketwork eel	BEE	2
Congridae: conger eels			
Bassanago bulbiceps	swollenhead conger	SCO	35
B. hirsutus	hairy conger	НСО	18
Argentinidae: silversides	, <u></u>		
Argentina elongata	silverside	SSI	55
Alepocephalidae: slickheads			
Alepocephalus australis	smallscaled brown slickhead	SSM	1
Xenodermichthys spp.	black slickhead	BSL	3
Gonostomatidae: lightfishes			
Diplophos spp.		DIP	1
Sternoptychidae: hatchetfishes	unspecified hatchetfish	HAT	1
Argyropelecus gigas	giant hatchetfish	AGI	1
Photichthyidae: lighthouse fishes			
Photichthys argenteus	lighthouse fish	PHO	10
Chauliodontidae: viperfishes			
Chauliodus sloani	viper fish	CHA	1
Malacosteidae: loosejaws	unspecified loosejaw	MAL	2
Paralepididae: barracudinas	unspecified barracudina	PAL	1
Myctophidae: lanternfishes	unspecified lanternfish	LAN	7
Lampanyctus spp.	•	LPA	1
Moridae: morid cods			
Antimora rostrata	violet cod	VCO	1
Halargyreus johnsonii	Johnson's cod	НЈО	6
Lepidion microcephalus	small-headed cod	SMC	1
Mora moro	ribaldo	RIB	24
Notophycis marginata	dwarf cod	DCO	3
Pseudophycis bachus	red cod	RCO	25
Tripterophycis gilchristi	grenadier cod	GRC	2
Gadidae: true cods	_		
Micromesistius australis	southern blue whiting	SBW	3
Merlucciidae: hakes			
Macruronus novaezelandiae	hoki	HOK	93
Merluccius australis	hake	HAK	56
Macrouridae: rattails, grenadiers			
Caelorinchus aspercephalus	oblique banded rattail	CAS	59
C. biclinozonalis	two saddle rattail	CBI	10
C. bollonsi	bigeye rattail	CBO	82
C. fasciatus	banded rattail	CFA	26
C. innotabilis	notable rattail	CIN	10
C. matamua	Mahia rattail	CMA	5
C. oliverianus	Oliver's rattail	COL	59
C. parvifasciatus	small banded rattail	CCX	17
Coryphaenoides dossenus	humpback rattail	CBA	2
C. serrulatus	serrulate rattail	CSE	9
C. subserrulatus	four-rayed rattail	CSU	7

Scientific name	common name	species	Occ.
Lepidorhynchus denticulatus	javelinfish	JAV	89
Lucigadus nigromaculata	blackspot rattail	VNI	31
Macrourus carinatus	ridge scaled rattail	MCA	3
Trachyrincus aphyodes	white rattail	WHX	5
Ophidiidae: cuskeels			
Genypterus blacodes	ling	LIN	90
Ceratiidae: seadevils	6		
Cryptopsaras couesi	seadevil	SDE	2
Trachipteridae: dealfishes			
Trachipterus trachypterus	dealfish	DEA	1
Regalecidae: oarfish	····		
Agrostichthys parkeri	ribbonfish	AGR	1
Trachichthyidae: roughies			
Hoplostethus mediterraneus	silver roughy	SRH	33
Paratrachichthys trailli	common roughy	RHY	3
Berycidae: alfonsinos	2 7		
Beryx splendens	alfonsino	BYS	36
Zeidae: dories			
Capromimus abbreviatus	capro dory	CDO	17
Cyttus novaezealandiae	silver dory	SDO	19
C. traversi	lookdown dory	LDO	88
Zenopsis nebulosus	mirror dory	MDO	1
Oreosomatidae: oreos	•		
Allocyttus niger	black oreo	BOE	10
Neocyttus rhomboidalis	spiky oreo	SOR	18
Pseudocyttus maculatus	smooth oreo	SSO	8
Macrorhamphosidae: snipefishes			
Centriscops humerosus	banded bellowsfish	BBE	62
Notopogon lilliei	crested bellowsfish	CBE	4
Scorpaenidae: scorpionfishes			
Helicolenus spp.	sea perch	SPE	85
Congiopodidae: pigfishes			
Alertichthys blacki	alert pigfish	API	10
Congiopodus coriaceus	deepsea pigfish	DSP	1
Congiopodus leucopaecilus	pigfish	PIG	1
Triglidae: gurnards			
Lepidotrigla brachyoptera	scaly gurnard	SCG	6
Hoplichthyidae: ghostflatheads			
Hoplichthys haswelli	deepsea flathead	FHD	44
Psychrolutidae: toadfishes			
Ambophthalmos angustus	pale toadfish	TOP	24
Cottunculus nudus	bonyskull toadfish	COT	1
Neophrynichthys latus	dark toadfish	TOD	1
Psychrolutes microporos	blobfish	PSY	1
Percichthyidae: temperate basses		•	
Polyprion oxygeneios	hapuku	HAP	3
Serranidae: sea perches			
Lepidoperca aurantia	orange perch	OPE	12
Apogonidae: cardinalfishes			
Epigonus lenimen	bigeye cardinalfish	EPL	14
E. robustus	robust cardinalfish	EPR	5
E. telescopus	deepsea cardinalfish	EPT	12

Scientific name	common name	species	Occ.
Carangidae: jacks, trevallies, kingfishes			
Trachurus declivis	jack mackerel	JMD	1
T. symmetricus murphyi	slender mackerel	JMM	5
Bramidae: pomfrets			
Brama australis	southern Ray's bream	SRB	32
Xenobrama microlepis	bronze bream	BBR	3
Emmelichthyidae: bonnetmouths, rovers			
Emmelichthys nitidus	redbait	RBT	7
Plagiogeneion rubiginosum	ruby fish	RBY	2
Cheilodactylidae: tarakihi, morwongs	•		
Nemadactylus macropterus	tarakihi	TAR	4
Latrididae: moki, trumpeters			
Latris lineata	trumpeter	TRU	2
Uranoscopidae: armourhead stargazers	_		
Kathetostoma giganteum	giant stargazer	STA	41
Gemplylidae: snake mackerels			
Ruvettus pretiosus	oilfish	OFH	1
Thyrsites atun	barracouta	BAR	6
Trichiuridae: cutlassfishes			
Lepidopus caudatus	frostfish	FRO	2
Scombridae: mackerels, tunas			
Scomber australasicus	blue mackerel	EMA	1
Centrolophidae: raftfishes, medusafishes			
Centrolophus niger	rudderfish	RUD	17
Hyperoglyphe antarctica	bluenose	BNS	8
Schedophilus sp.		SUS	2
Seriolella caerulea	white warehou	WWA	41
S. punctata	silver warehou	SWA	52
Tubbia tasmanica		TUB	1
Nomeidae: eyebrowfishes, driftfishes			
Cubiceps spp.	cubehead	CUB	2
Bothidae: lefteyed flounders			
Arnoglossus scapha	witch	WIT	9
Neoachiropsetta milfordi	finless flounder	MAN	2
Peluronectidae: righteyed flounders			
Azygopus pinnifasciatus	spotted flounder	SDF	2
Pelotretis flavilatus	lemon sole	LSO	10

Appendix 3: Length ranges (cm) used to identify 1+, 2+ and 3++ hoki age classes to estimate relative biomasses given in Table 6

				Age group
Survey	0+	1+	2+	3++
Jan 1992	_	< 50	50 – 65	≥65
Jan 1993	_	< 50	50 - 65	≥65
Jan 1994	_	< 46	46 - 59	≥59
Jan 1995	_	< 46	46 - 59	≥59
Jan 1996		< 46	46 - 55	≥55
Jan 1997	_	< 44	44 - 56	≥56
Jan 1998	,	< 47	47 - 56	≥53
Jan 1999	_	< 47	47 - 57	≥57
Jan 2000	_	< 47	47 - 61	≥61
Jan 2001	_	< 49	49 - 60	≥60
Jan 2002	_	< 52	52 - 60	≥60
Jan 2003	_	< 49	49 - 62	≥62
Jan 2004	_	< 51	51 - 61	≥61
Jan 2005	_	< 48	48 - 65	≥65
Jan 2006	_	< 49	49 - 63	≥63