New Zealand Fisheries Assessment Report 2008/38 July 2008 ISSN 1175-1584

Inshore trawl survey of Canterbury Bight and Pegasus Bay, May–June 2007 (KAH0705)

M. P. Beentjes M. L. Stevenson

Inshore trawl survey of Canterbury Bight and Pegasus Bay, May–June 2007 (KAH0705)

M. P. Beentjes¹ M. L. Stevenson²

> ¹NIWA P O Box 6404 Dunedin

²NIWA P O Box 893 Nelson

New Zealand Fisheries Assessment Report 2008/38 July 2008 Published by Ministry of Fisheries Wellington 2008

ISSN 1175-1584

© Ministry of Fisheries 2008

Beentjes, M.P.; Stevenson, M.L. (2008). Inshore trawl survey of Canterbury Bight and Pegasus Bay, May–June 2007 (KAH0705). New Zealand Fisheries Assessment Report 2008/38. 95 p.

This series continues the informal New Zealand Fisheries Assessment Research Document series which ceased at the end of 1999.

EXECUTIVE SUMMARY

Beentjes, M.P. ; Stevenson, M.L. (2008). Inshore trawl survey of Canterbury Bight and Pegasus Bay, May–June 2007 (KAH0705). *New Zealand Fisheries Assessment Report 2008/38*. 95 p.

We report the findings of the 2007 east coast South Island (ECSI) bottom trawl survey in May–June 2007 using R.V. *Kaharoa* (KAH0705) in 30–400 m. This survey represents a reinstatement of the discontinued winter time series of five surveys from 1991 to 1994 and 1996. An additional survey was also carried out in 10–30 m to improve sampling of various species.

The main survey in 30–400 m was a two-phase design optimised for the target species dark ghost shark, giant stargazer, red cod, sea perch, spiny dogfish, and tarakihi. A total of 94 successful stations was completed from 17 strata using a 60 mm codend. Biomass estimates, catch distribution, population length frequencies, and reproductive condition for the major species are described. Coefficients of variation (c.v.) for target species biomass estimates were within the specified target range for dark ghost shark, red cod, giant stargazer, and tarakihi, and within 1% for sea perch. For spiny dogfish the c.v. was 27%, slightly above the target of 20%.

Biomass estimates for dark ghost shark, giant stargazer, and spiny dogfish were the highest of the six surveys. Red cod biomass was the lowest of all surveys, sea perch in the mid range, and tarakihi in the upper range. The geographic distributions of all target species over the six surveys varied in terms of the areas of high density, but overall these species were consistently well represented over the entire survey area within their preferred depth range.

Pre-recruit biomass was a significant component of total biomass for dark ghost shark, tarakihi, and red cod for at least two of the surveys.

Dorsal spines were collected for spiny dogfish (423) and dark ghost shark (418), and otoliths for red cod (428), tarakihi (241), sea perch (259), and giant stargazer (420).

Seven hundred and fifty two individual elasmobranchs from four species were tagged, weighed, measured, and released. This included 356 rough skate, 186 smooth skate, 171 school shark, and 39 rig. In addition, 344 giant stargazer were tagged, weighed, measured, injected with OTC, and released.

The size distributions of all target species are smaller than those from the Chatham Rise and Southland/Sub-Antarctic surveys and in some cases the west coast South Island, suggesting that this area may be an important nursery ground for many species of juvenile sharks and finfish.

This survey also collected qualitative data on the presence of macro-invertebrates from catches.

In the supplementary survey in 10–30 m, 11 stations were successfully completed from 4 strata using a 28 mm codend. A nominal three stations per strata were allocated with no phase two stations. Coefficients of variation for biomass estimates were acceptable for only red cod, rough skate, and spiny dogfish. The survey may also be useful for red gurnard and elephantfish in future, but may require the allocation of more stations to improve precision of biomass estimates.

1. INTRODUCTION

We report the findings of the 2007 east coast South Island (ECSI) bottom trawl survey in May–June 2007 using R.V. *Kaharoa* (KAH0705) in 30–400 m. This survey represents a reinstatement of the discontinued winter time series of five surveys from 1991 to 1994 and 1996 (Beentjes & Wass 1994, Beentjes 1995a, 1995b, 1998a, 1998b). This time series was reviewed by Beentjes & Stevenson (2000). An additional survey was also carried out in 10–30 m.

1.1 Background to east coast South Island inshore trawl surveys

The ECSI winter trawl survey time series was discontinued after the 1996 survey and replaced by a summer time series (five surveys from 1996 to 2000) (Beentjes & Stevenson 2001). There were a number of reasons for this, including high coefficients of variation for the target species red cod and other key species, the codend mesh size (60 mm) was considered too large to adequately sample pre-recruit juvenile fish, and the minimum depth range of the winter surveys (30 m) was too deep to adequately sample red gurnard, and elephantfish. The summer trawl surveys used a finer codend mesh (28 mm) to sample pre-recruit red cod and the minimum depth range was reduced to 10 m to include the distribution of red gurnard and elephantfish. The summer time series was reviewed by Beentjes & Stevenson (2001).

Francis et al. (2001) analysed biomass data from 17 series of New Zealand random bottom trawl surveys including the winter and summer ECSI time series. The summer ECSI survey series exhibited the most variation in catchability out of all the series, with extreme values in three out of four years, whereas catchability in the winter series showed some variability, but no extremes. The summer time series was discontinued after 2000 because of the extreme fluctuations in catchability between surveys. The Inshore Fisheries Working Group decided the biomass estimates for the target species were not providing reliable abundance indices, some of which were incorporated in the 'Decision Rules' for AMP species such as giant stargazer (STA 3), elephantfish (ELE 3), and red gurnard (GUR 3) (Ministry of Fisheries Science Group (comps.) 2006). With the discontinuation of both the winter and summer surveys there was no means of effectively monitoring many of the commercial ECSI inshore fish stocks. Since 1996, several new species have been introduced into the QMS (e.g., skates, dark ghost shark, sea perch, and spiny dogfish). ECSI surveys also provided a useful comparison with Chatham Rise and sub-Antarctic middle depth trawl surveys because many of the species found on the ECSI tend to be smaller than elsewhere, indicating that this may be an important nursery ground (Beentjes et al. 2004).

A workshop, held in May 2005 to discuss ways of monitoring inshore species, concluded that reinstating the winter survey time series would be the best way to monitor long-term trends in abundance of RCO 3, SPE 3, STA 3, and sub-adult TAR 3. Simulations showed the power to detect changes in biomass between 1996 and 2006 increased with increasing number of future surveys and decreasing c.v.s. (Francis & Horn 2005), and would have 63 to 100% power to detect a change in relative biomass. Francis & Horn (2005) also reviewed information on life histories and movement patterns of key target species and concluded that a maximum depth of 400 m is suitable, but that the minimum depth of 30 m should be reduced to 10 m to improve sampling of various species.

1.2 Elasmobranch tagging

Trawl surveys provide a relatively inexpensive opportunity to tag elasmobranchs, and recaptures should provide information on movement patterns, stock structure, and growth. The survey aimed to tag rough skate, smooth skate, school shark, and rig.

There are two species of skate that are commonly caught on the ECSI surveys, the rough skate (*Dipturus nasuta*) more common inshore, and the larger smooth skate (*D. innominatus*), more common in deeper water. There is very little known about the biological stocks of either species and hence a tagging programme should provide information on movements, home range, and possibly growth.

New Zealand school shark are assumed to comprise a single biological stock. School shark tend to be more common in shallow water under 200 m and also move inshore during summer to pup. Tagging school shark on the east coast of the South Island complements a similar programme on the west coast as part of the west coast South Island (WCSI) trawl survey, and also the long term opportunistic tagging of school shark that has occurred from most inshore research trawl surveys dating back to 1985 (Hurst et al. 1999). From 1985 to 1997 nearly 4000 school shark were tagged, with 207 recaptures. Results indicate that about half of the school sharks were recaptured within the same QMA they were tagged, but this proportion declined over time (Hurst et al. 1999). A significant number (23%) were recaptured in Australia.

Although there may have been the occasional opportunistic tagging of rig during research trawl surveys, there has only been one directed rig tagging programme between 1978 and 1985 (Francis 1988). About 2000 rig were tagged from commercial set nets and research trawls, mainly around the South Island, with about 400 recaptures. Rig move less than school shark, but there was movement of over 50 km for half the recaptures. There was evidence of separate east and west coast South Island stocks. Like school shark, rig tend to be more common in shallow water (under 200 m) and also move inshore during summer to pup. Tagging rig on the east coast of the South Island complements a similar programme as part of the WCSI trawl survey, and also the earlier tagging study of Francis (1988).

1.3 Giant stargazer tagging

A further objective of the 2007 ECSI trawl survey was to tag, mark with oxytetracycline, and release giant stargazer. The purpose is to validate the annual deposition of growth zones on otoliths, and secondarily to gather information on growth and movement.

Giant stargazer ages are estimated from counts of growth zones present in the sagittal otoliths, assumed to form annually, although this method is not validated (Sutton 1999, Manning & Sutton 2007). Oxytetracycline (OTC) is commonly used to chemically mark fish otoliths by chelating the calcium and magnesium present in the otolith. Recaptured fish otoliths are examined under ultra-violet light for the position of the fluorescent check on the otolith, providing a powerful method of validating age estimates from otoliths (Campana 2001). A chemical labelling (using OCT), tagging, and release study of giant stargazer was carried out on the Chatham Rise during the R.V. *Tangaroa* trawl surveys in January 2005 and January 2006 (Stevens & O'Driscoll 2006, 2007), but there have been no returns from this programme at the time of writing (May 2008).

The true stock structure of giant stargazer in New Zealand waters is unknown (Ministry of Fisheries Science Group (comps.) 2006). Tagging and release of fish in STA 3 during the ECSI survey may also help to address this issue.

1.4 Objectives

Overall objective

To determine the relative abundance and distribution of inshore finfish species off the east coast of the South Island; focusing on red cod (*Pseudophycis bachus*), giant stargazer (Kathetostoma

giganteum), sea perch (Helicolenus percoides), tarakihi (Nemadactylus macropterus), spiny dogfish (Squalus acanthius), and dark ghost shark (Hydrolagus novaezelandiae).

Specific objectives

- 1. To determine the relative abundance and distribution of red cod, stargazer, sea perch, tarakihi, spiny dogfish, and dark ghost shark off the east coast of the South Island from Shag Point to Waiau River by carrying out a trawl survey over the depth range 10 to 400 m. The target coefficients of variation (c.v.s) of the biomass estimates for these species are as follows: red cod (20-25%), sea perch (20%), giant stargazer (20%), tarakihi (20-30%), spiny dogfish (20%) and dark ghost shark (20-30%).
- 2. To collect the data and determine the length frequency, length-weight relationship and reproductive condition of red cod, giant stargazer, sea perch, tarakihi, spiny dogfish and dark ghost shark.
- 3. To collect otoliths from red cod, giant stargazer, sea perch and tarakihi; and spines from spiny dogfish.
- 4. To collect the data to determine the length frequencies and catch weight of all other Quota Management System (QMS) species.
- 5. To tag and release live skate and school shark.
- 6. To tag and inject giant stargazer with oxytetracycline to validate growth zones in the otoliths.
- 7. To identify benthic macro-invertebrates collected during the trawl survey.

2. METHODS

2.1 Survey area and design

30-400 m depth range

The 2007 survey (KAH0705) in the 30–400 m depth range covered the same area as the previous winter surveys, extending from the Waiau River in the north to Shag Point in the south. The survey area of 23 357 km², including untrawlable (foul) ground, was divided into 17 strata, identical to those used in the 1996 winter survey (KAH9606) (Figure 1, Table 1).

To determine the theoretical number of stations required in each of the 17 strata to achieve the required c.v. for the target species, simulations using NIWA's Optimal Station Allocation Programme were carried out using catch rates for the six target species for all five previous winter surveys. For those surveys before 1994 that used nine strata, the stations were assigned to the equivalent strata used from 1994 onward. Simulations using the minimum and maximum of the c.v. range and requiring a minimum of three stations per stratum, were carried out. The results indicated that to achieve the lower range c.v.s, 109 stations were required in the 30–400 m depth.

As for all previous winter surveys, a two-phase random stratified station survey design was used. This design has a better chance of achieving the target c.v.s, especially when species distributions change. Sufficient trawl stations to cover both first and second phase stations were generated for each stratum using the computer program Rand_stn v2.1, with the constraint that stations were at least 3 n. miles apart. We allocated 80% of the stations to phase 1 with a minimum of 3 stations and a maximum of 10

stations per stratum. A weighted allocation was then applied on the basis of species priority (in consultation with MFish), where the order in decreasing importance was tarakihi, stargazer, sea perch, red cod, dark ghost shark, and spiny dogfish. Allocation of phase 1 takes into account the spatial distribution and biomass of the key species over the previous five winter surveys. Phase 2 stations were allocated to strata with the highest variance for each species on the 2007 survey, where the c.v. was above the required target c.v, also based on this species priority.

10-30 m depth range

The extension of the winter surveys into 10 m in effect constituted a new survey in 10–30 m, and in terms of biomass estimates, is treated as an adjunct to the existing survey time series in 30 to 400 m. This is necessary because calculation of relative total biomass of the ECSI for each species is proportional to the survey area, and increasing the total area surveyed during the time series introduces additional biomass to the estimates. Further, a smaller 28 mm codend was used in the shallow depth range.

The survey area of 3577 km², including untrawlable (foul) ground, was divided into four strata, identical to those used in the ECSI summer surveys (Figure 1, Table 1). Station allocation in the 10-30 m survey was not optimised, but 3 stations were nominally allocated in each of the four strata, resulting in 12 stations. Time constraints on the survey and the large number of target species, prevented allocation of more stations and/or a phase 2 component.

2.2 Vessel and gear

The vessel and trawl gear specifications were the same as for all previous ECSI winter surveys. R.V. *Kaharoa* is a 28 m stern trawler with a beam of 8.2 m, displacement of 302 t, engine power of 522 kW, capable of trawling to depths of 500 m. The two-panel 'Alfredo' design net was constructed in 1991, specifically for the South Island trawl surveys; there are two nets (A and B), complete with ground rope and floatation. This net fishes hard down and achieves a headline height of about 4–5 m. Rectangular 'V' trawl doors fitted with Scanmar sensors were used. For the 10–30 m and 30–400 m surveys the codend inside measurement was 28 mm (knotless), and 60 mm (knotless), respectively. A bottom contact sensor was deployed on the ground rope, and a net sonde monitor (CN22) was attached to the headline to measure headline height on all tows. All trawl gear was overhauled and specifications checked before the 2007 survey. Following this the gear specifications were revised and documented (Appendix 1).

2.3 Timetable

RV *Kaharoa* departed Nelson on 4 May 2007 and trawling began on 6 May, north of Banks Peninsula, moving progressively south until all phase 1 tows in Pegasus Bay and around Banks Peninsula had been completed, including stratum 18 in 10–30 m. The survey was then based out of Timaru and tows were carried out in the most optimal manner depending on weather and the need to discharge fish, but initially were restricted to the 30–400 m depth range. The first leg was completed on 19 May when the vessel unloaded fish at Timaru and there was a change of scientific staff. Strata 19–21 in 10–30 m were completed towards the end of the survey. The survey was completed on 5 June and the vessel steamed to Wellington, arriving on 6 June 2007. The voyage leader was Michael Stevenson and skippers were Mike Baker (4 to 14 May) and Neil Pestell (15 May to 6 June).

2.4 Trawling procedure

Trawling procedures adhered strictly to those documented by Stevenson & Hanchet (1999). All tows were carried out in daylight hours (shooting and hauling) between 0730 and 1700 hours NZST. Tows were initially 1 hour duration at a speed of 3.0 knots over the ground, and tow length was about 3 n. miles. The minimum acceptable tow length was about 1.5 n. miles. Timing began when the net reached the bottom and settled, as indicated by the net monitor, and finished when hauling began. In some strata, large catches of dogfish made tows increasingly unmanageable and the standard towing time was reduced, usually to about 40 min. Standardised optimal warp/depth ratio for different depths was strictly adhered to. Tow direction was generally along depth contours and/or towards the nearest random station position, but was also dependent on wind direction and bathymetry. Some tow paths, particularly those on the slope in 200-400 m, were surveyed before towing to ensure that it was acceptable, both in depth and trawlable bathymetry. When untrawlable ground was encountered, an area within a 2 n. mile radius of the station was searched for suitable ground. If no suitable ground was found within the radius, the next alternative random station was selected. The ground contact sensor data files were downloaded at the end of the tow immediately the gear came on deck and loaded into Boxcar, a dedicated computer program that checks that the gear was in contact with the bottom throughout the tow. If contact was considered to be unsatisfactory, the tow was not included in the biomass estimation.

Doorspread (SCANMAR monitor) and headline height (net sonde sensors) were measured continuously during the tow and the signals transmitted remotely to the ship. Both parameters were recorded at 10–15 minute intervals, and averaged over the tow.

A CTD (conductivity, temperature, and depth) monitor was attached to the headline and the data downloaded at the end of the tow and loaded into *Seabird*, a dedicated computer program written for CTD data. Bottom and surface water temperatures were taken from the CTD data. Surface temperatures were taken at a depth of 5 m and bottom temperatures about 5 m above the sea floor because the CTD is attached to the net just behind the headline.

2.5 Catch and biological sampling

The catch from each tow was sorted by species, boxed, and weighed on motion-compensating 100 kg Seaway scales to the nearest 0.1 kg. Length, to the nearest centimetre below actual length, and sex were recorded for all QMS and selected non-QMS species, either for the whole catch or, for larger catches, on a sub-sample of about 100 randomly selected fish.

For each tow, biological information was obtained from a random sample of up to 20 fish for target species red cod, giant stargazer, sea perch, tarakihi, spiny dogfish, and dark ghost shark during which the following records or samples were taken: sex, length to the nearest centimetre below actual length, individual fish weight to the nearest 10 g (using motion-compensating 5 kg Seaway scales), otoliths and gonad stage of finfish (standard five-stage method.), and dorsal spines of sharks.

Gonad stages used were: 1, immature or resting; 2, maturing (oocytes visible in females, thickening gonad but no milt expressible in males); 3, mature (hyaline oocytes in females, milt expressible in males); 4, running ripe (eggs and milt free flowing); 5, spent (gonads flaccid and bloodshot).

For each of the target species red cod, sea perch, tarakihi, and stargazer a maximum of five sagittal otoliths per cm size class per sex were removed. Otoliths were stored clean and dry in small paper envelopes marked with the survey trip code, species, fish number, length, and sex. After the survey, otoliths were catalogued and are held for MFish at NIWA, Greta Point.

Spiny dogfish spines were excised from the second dorsal fin and dark ghost shark spines from the first dorsal fin, ensuring that the spine was removed from about 1 cm beneath the skin. We aimed to collect a minimum of five spines per centimetre size class for each sex. Spiny dogfish spines were placed into plastic vials and filled with 70% ethanol, and dark ghost shark spines were placed into ziplock plastic bags and frozen with details of station number, fish length, and sex. After the survey, spines were catalogued and are held for MFish at NIWA, Greta Point.

If present, macro-invertebrates were collected and preserved for later identification at Greta Point laboratories to the lowest possible taxonomic level.

All catch, biological, and length frequency data were entered into *trawl* database after the survey was completed.

2.6 Tagging procedures

As soon as the catch was on deck, it was immediately searched for the tagging candidate species rough skate, smooth skate, school shark, rig, and giant stargazer. Those in a lively condition were placed into a 700 l Dolav box pallet tank supplied with running sea water and aeration to facilitate recovery. Once recovered, skates, school shark, and rig were individually removed from the tank, tagged using a single small dart tag (Hallprint, Australia), and carefully released. Length, weight, sex, and release position (tow number) were recorded.

Similarly, after recovery, giant stargazer were removed individually from the tank, injected with the appropriate quantity (dose relative to body weight) of OTC intramuscularly, double tagged with external T-bar anchor tags, (Hallprint, Austalia), length and weight recorded, then carefully released. The tags were positioned posteriorly along the dorsal fin as giant stargazers bury themselves in the benthos. Because giant stargazer was a target species with a requirement to collect otoliths from about 400 fish, as well as determine sex and reproductive condition, priority was given in the initial stages of the survey to the biological objectives and later in the survey we tagged and injected a greater number of giant stargazer.

Following the completion of the survey all tagging details were entered into the *tag* database at NIWA, Greta Point.

2.7 Analysis of data

Relative biomass was estimated by the area-swept method described by Francis (1981, 1989) using the Trawlsurvey Analysis Program (Vignaux 1994). All tows for which the gear performance was satisfactory (code 1 or 2) were used for biomass estimation. Biomass estimates assume that: the area swept on each tow equals the distance between the doors multiplied by the distance towed; all fish within the area swept are caught and there is no escapement; all fish in the water column are below the headline height and available to the net; there are no target species outside the survey area; and fish distribution over foul ground is the same as that over trawlable ground.

Coefficients of variation (c.v.) were calculated as follows:

c.v. (%) = $S_B / B \ge 100$

where S_B is the standard deviation of the biomass (B).

For the 10–30 m and 30–400 m surveys, separate analyses of biomass, catch rates, and length frequency were carried out. A combined biomass and length frequency analysis was used for deriving scaled length frequency distributions and biomass estimates. All length frequencies were scaled by the percentage of catch sampled, area swept, and stratum area. Biomass estimates included total biomass for target and important QMS species, and recruited biomass for the target species and selected QMS species.

Catch rates (kg per square km) for the target and main QMS species were tabulated by strata and plotted for each tow to show areas of relative density throughout the survey area. For the target species only, catch rates for each of the six winter surveys are plotted together to show temporal and spatial changes in distribution. Total biomass by strata was also tabulated for the target and main QMS species.

Scaled length frequency distributions are plotted for the target species and main QMS species, and also by depth range for the target species. For the target species only, length frequencies in 30–400 m for each of the six winter surveys are plotted together to show temporal changes in size distribution.

Length-weight coefficients were determined for target species red cod, giant stargazer, sea perch, tarakihi, spiny dogfish, and dark ghost shark. Coefficients were determined by regressing natural log weight against natural log length ($W=aL^b$). These length weight coefficients were used to scale length frequencies, and potentially to calculate recruited biomass. For other species, the most appropriate length weight coefficients in the *trawl* database were used.

3. RESULTS

3.1 Trawling details

In 30–400 m (strata 1–17), 97 tows were carried out and, of these, 94 stations were deemed successful and used in biomass estimation (Table 1, Appendix 2). Of the 94 successful stations there were 87 phase one and 7 phase two stations (Table 1). Phase two stations were allocated to strata 1 and 4 to reduce c.v.s for sea perch and spiny dogfish (Table 1). The additional five stations in stratum 4 lowered the c.v. for spiny dogfish by only 1% and time constraints did not allow further stations to be completed. The survey covered the same total area as the previous winter surveys with at least three successful station per 107 km² in stratum 14 to 1 station per 416 km² in stratum 2, with an overall density of 1 station per 248 km² (Table 1). Trawlable ground represented 91% of the total survey area. Station positions and tow numbers are shown in Figure 2 and individual station data in Appendix 2.

In 10–30 m (strata 18–21), 11 tows were carried out and all were used in the biomass estimation (Table 1, Appendix 2). There were three successful tows in all four strata except stratum 21, where one of the three tows came fast, resulting in minor gear damage and the tow was abandoned. Attempts to locate trawlable ground for a replacement station were unsuccessful. There was no phase 2 component for the survey in the 10–30 m depth range. Station density ranged from 1 station per 260 km² in stratum 21 to 1 station per 425 km² in stratum 18, with an overall density of 1 station per 325 km² (Table 1). Trawlable ground represented 97% of the total survey area. Station positions and tow numbers are shown in Figure 2 and individual station data in Appendix 2.

Monitoring of headline height and doorspread, observations that the doors and trawl gear were polishing well, and information from the ground contact sensors, indicated that the gear was fishing hard down and efficiently throughout the survey. For the depth range 30–400 m, mean doorspread, headline height, distance towed, and warp to depth ratio were 4.7 m, 79 m, 2.5 n. miles, and 3.3:1, respectively

(Appendix 3). Tow distance tended to be shorter in the 100–200 m depth range where catches were largest. Net-A was on all tows except 32 to 49 when Net-B was used because of damage to Net-A.

3.2 Water temperatures

Isotherms estimated from CTD surface and bottom temperature recordings from *Kaharoa* are shown in Figures 3 and 4, respectively. There was little difference between the bottom and surface water temperatures inshore, but offshore, bottom temperatures were about 2° C cooler than surface water. Surface temperatures were warmer closer inshore and further north, but the difference in both cases was only 1° C. (range 11° to 13° C). Bottom water temperatures, however, showed no north south difference and a greater inshore offshore range of 4° C (range 9° to 13° C).

3.3 Catch composition

30-400 m depth range

The total catch from the survey in 30–400 m depth range was 105.2 t from the 94 biomass tows. Catches were highly variable, ranging from 51 kg to 7019 kg per tow, with an average of 1120 kg. Seventy-six vertebrate fish species were identified (14 chondrichthyans and 62 teleosts), as well as two cephalopod species (octopus and squid). Catch weights, percent catch, and occurrence of all species identified during the survey are given in Appendix 4. The catches were dominated by spiny dogfish and barracouta with catches of 41 t and 27 t, representing 39% and 26%, respectively, of the total catch. These two species, and the next five most abundant species, dark ghost shark, tarakihi, arrow squid, sea perch, and red cod, made up 82% of the total catch (Appendix 4). The percent of the catch represented by the six target species was as follows: spiny dogfish, 39%; dark ghost shark 7%; tarakihi 3%; sea perch 3%; red cod 2%; and giant stargazer 1%, making a combined total of 55%. Spiny dogfish was caught in every tow and barracouta, giant stargazer, arrow squid, witch, and carpet shark in 83% or more of the tows.

Invertebrate species identified from the catch after the survey are given in Appendix 5.

10-30 m depth range

The total catch from the survey in the 10–30 m depth range was 8.2 t from 11 biomass tows. Catches were also highly variable, ranging from 110 kg to 3648 kg per tow, with an average of 750 kg. Thirtysix vertebrate fish species were identified (8 chondrichthyans and 28 teleosts), as well as two cephalopod species (octopus and squid). Catch weights, percent catch, and occurrence of all species identified during the survey are given in Appendix 4. The catches were dominated by barracouta and spiny dogfish with catches of 3.2 t and 1.6 t, representing 38% and 19%, respectively, of the total catch. These two species, and the next five most abundant species, leatherjacket, elephantfish, red gurnard, arrow squid, and rough skate, made up 94% of the total catch (Appendix 4). The percent of the catch represented by the six target species was as follows: spiny dogfish 19%; tarakihi 0.9%, red cod 0.6%, dark ghost shark 0%; giant stargazer 0%; and sea perch 0%, making a combined total of 20.4%. Spiny dogfish, barracouta, and rough skate were caught in every tow, and blue warehou and leatherjacket in 82% of the tows.

Invertebrate species identified from the catch after the survey are given in Appendix 5.

3.4 Biomass estimates

30-400 m depth range

Biomass estimates and c.v.s for the 20 most abundant commercial species in 30–400 m, including the target species, are given in Table 2. Of the target species, spiny dogfish had by far the largest biomass at 35 386 t, followed by dark ghost shark (4483 t), tarakihi (2589 t), sea perch (1945 t), red cod (1486), and giant stargazer (755 t). Of the non-target species, barracouta had the second largest biomass of all species at 21 132 t. Coefficients of variation for the target species were spiny dogfish 27%, dark ghost shark 25%, tarakihi 24%, sea perch 21%, red cod 25%, and giant stargazer 18% (Table 2). These c.v.s were within the target range specified in the project objectives for dark ghost shark, red cod, giant stargazer, and tarakihi, and within 1% for sea perch. For spiny dogfish the c.v. was 27%, slightly above the target of 20%.

Recruited biomass estimates and c.v.s for the target species and eight of the non-target species are shown in Table 2. For the target species the percentage of total biomass that was recruited fish was spiny dogfish 83%, dark ghost shark 59%, tarakihi 68%, sea perch 96%, red cod 87%, and giant stargazer 96%.

10-30 m depth range

Biomass estimates and c.v.s in 10–30 m for the 20 most abundant commercially species, including the target species, are given in Table 3. Of the target species, only spiny dogfish, red cod, and tarakihi were represented in the catch. The dominant species in terms of biomass (over 550 t) were spiny dogfish, barracouta, leatherjacket, elephantfish, red gurnard, and arrow squid. However, only three species had acceptable levels of precision around the biomass estimates, spiny dogfish (22%), red cod (22%), and rough skate (22%). All other c.v.s were greater than 35%.

Recruited biomass estimates for the two species with acceptable c.v.s show that the percentage of total biomass that was recruited fish was spiny dogfish 85%, and red cod 86%.

3.5 Catch rates and distribution

Catch rates by stratum (1-21, 10-400 m), for the 20 most abundant commercially important species, including the target species are given in Table 4, and catch rates of target species by station are shown in Figure 5. Biomass by stratum (1-21, 10-400 m), for the 20 most abundant commercially important species, including the target species, are given in Table 5.

3.5.1 Target species

Dark ghost shark was predominantly caught in waters deeper than 100 m throughout the survey area, with the shallowest catch in 67 m. Highest catch rates were in the 100 to 200 m strata 11, 10, and 9, and the 200 to 400 m strata 17 and 14. The highest biomass estimates were in 100 to 200 m strata 11, 10, and 9, and 200 to 400 m stratu 17.

Giant stargazer was predominantly caught in waters deeper than about 30 m throughout the survey area, with the shallowest catch in 36 m and the deepest in 391 m. Highest catch rates were in 30 to 100 m strata 4 and 6, and 100 to 200 m strata 11, 8, and 9. The highest biomass estimates were in the 30 to 100 m strata 4 and 6, and 100 to 200 m stratum 11.

Red cod was caught in all depth ranges throughout the survey area, with the shallowest catch in 13 m and the deepest in 362 m. Highest catch rates were in 30 to 100 m strata 1 and 7, 100 to 200 m stratum 11,

and 200 to 400 m stratum 14. The highest biomass estimates were in 30 to 100 m strata 4, 7, and 6, and 100 to 200 stratum 11.

Sea perch was predominantly caught in waters deeper than about 50 m throughout the survey area, with the shallowest catch in 33 m and the deepest in 391 m. Highest catch rates were in the south in 30 to 100 m strata 1 and 100 to 200 m strata 10, 9, 11, and 8. The highest biomass estimates were in 30 to 100 m strata 1 and 6, and 100 to 200 m stratum 10, 9, and 11.

Spiny dogfish was caught in all depth ranges throughout the survey area from all tows, with the shallowest catch in 13 m and the deepest in 391 m. Highest catch were rates in 10 to 30 m stratum 19, 30 to 100 m strata 3, 4, and 5, and 100 to 200 m stratum 11. The highest biomass estimates were in 10 to 30 m stratum 19, 30 to 100 m strata 4, 3, 5, 7, and 6, and 100 to 200 m stratum 11.

Tarakihi was predominantly caught in waters between about 30 and 200 m throughout the survey area, with the shallowest catch in 24 m and the deepest in 395 m. Highest catch rates and biomass estimates were in the central Canterbury Bight in 30 to 100 m stratum 4, and were about three-fold greater than the next highest. Other strata with high catch rates included 10 to 30 m stratum 21, 30 to 100 m strata 5 and 1, and 100 to 200 m stratum 13. Similarly, high biomass estimates were in 30 to 100 m strata 5 and 3, and 100 to 200 m stratum 13.

3.5.2 Other species

Catch rates of non-target species by station are shown in Figure 6 and Table 4. Barracouta were caught mainly shallower than 200 m throughout the survey area, with shallowest catch in 13 m and the deepest in 314 m. Consistently high catch rates were recorded in the central Canterbury Bight in strata 4 and 10 close to the 100 m depth contour. Elephantfish were caught mainly in the four 10 to 30 m strata with a few catches in the deeper 30–100 m strata. Red gurnard were caught mainly in the four 10 to 30 m strata, but many smaller catches were also made in the 30–100 m strata.

3.6 Biological and length frequency data

Details of length frequency and biological data recorded for each species are given in Table 6. Over 37 000 length frequency and 12 000 biological records were taken from 43 species. This included otoliths from 428 red cod, 423 sea perch, 420 giant stargazer, and 241 tarakihi. Dorsal spines were collected from 423 spiny dogfish and 418 dark ghost shark.

Scaled length frequency distributions of the target species over the 30-400 m depth range as well as for the depth ranges 10-30 m, 30-100 m, 100-200 m, and 200-400 m are plotted in Figure 7. Scaled length frequency distributions of the non-target species over the 30-400 m depth range, and also the 10-30 m depth range for species with a shallow distribution, are plotted in Figure 8. The length-weight coefficients used to scale the length frequency data are shown in Appendix 6.

The length frequency distribution for dark ghost shark is bimodal (Figure 7), although the smaller mode is less well defined. These modes are further to the right for females, indicating faster growth. The large mode (males 50–65 cm) comprises mainly recruited fish (over 55 cm) and is prevalent in the 30–200 m and particularly the 100–200 m depth range. Conversely the smaller mode (males 20–50 cm) is pre-recruited fish and is dominant in 200–400 m. The overall sex ratio (males:females) in 30–400 m is 0.77:1.

The length frequency distributions for giant stargazer for males/unsexed shows one strong mode of large fish (20-55 cm), and a mode of small fish at about 10-20 cm (Figure 7). The large number of

unsexed fish represent those that were tagged and released. Female distributions have no discernible modes. For both sexes the distributions were similar in all depth ranges, but relatively few fish were caught in 200–400 m. The overall sex ratio (males:females) in 30–400 m is 0.79:1.

The length frequency distribution for red cod shows three defined modes at 10-20 cm (0+), 30-50 cm (1+ and 2+ combined), and 50-60 for males and 50-70 for females (females grow larger and faster than males), representing 3+/4+ fish (Figure 7). The 1+ mode is more evident in 100-200 m (25-35 m). Size varies with depth with the largest fish in 30-100 m, although some large females were also caught in the shallow 10-30 m depth range. The overall sex ratio (males:females) in 30-400 m is 1.03:1.

The length frequency distribution for sea perch is unimodal with peaks at about 25 cm for both males and females (Figure 7). The bulk of fish were caught in 30-100 m and 100-200 m. The overall sex ratio (males:females) in 30-400 m is 1.2:1.

The length frequency distribution for spiny dogfish is unimodal with peaks at about 56 cm for males and 53 cm for females (Figure 7). Although caught in all depth ranges, the bulk of fish were in 30-100 m. The overall sex ratio (males:females) in 30-400 m is 1.38:1.

The length frequency distributions for tarakihi show three distinct modes, with similar shapes for both males and females (Figure 7). The first mode (10–15 cm) has a peak at about 13 cm, the second (15–21 cm) at about 18 cm, and the third (20–33 cm) at about 26 cm. The bulk of the fish were caught at 30-100 m, although there was a large number of fish from the smallest mode in 10–30 m. The overall sex ratio (males:females) in 30–400 m is 0.98:1.

Details of the gonad stages for the finfish target species are given in Table 7. Tarakihi and red cod were predominantly immature/resting (stage 1), and to a lesser extent maturing (stage 2), but there were also a few red cod with more advanced stages. Sea perch and giant stargazer were also mostly in the immature/resting and maturing stage, but there were considerable numbers in the more advanced stages of development, particularly males.

3.7 Tagging

A total of 752 individual skates and sharks from four species were tagged, length and weight recorded, and released during the survey (see Table 6). The total included 356 rough skate, 186 smooth skate, 171 school shark, and 39 rig. In addition, 344 giant stargazer were double tagged, length and weight recorded, injected with OTC, and released.

4. DISCUSSION

4.1 2007 survey

We report the findings of the 2007 ECSI bottom trawl survey in May–June 2007 using R.V. Kaharoa (KAH0705) in 30–400 m. This survey represents a reinstatement of the discontinued winter time series of 5 previous surveys, the last of which was in 1996. The 2007 survey was successful in meeting all the project objectives with the exception of the c.v.s for spiny dogfish (maximum target c.v. = 20%, c.v. achieved = 27.2%) and sea perch (maximum target c.v. = 20%, c.v. achieved = 21.5%). The high spiny dogfish c.v. was also greater than for any previous winter survey, and was caused, to a large extent, by a few very large catches of spiny dogfish in stratum 4 (see Table 4,

Figure 5). There was insufficient time to allocate phase 2 stations required to reduce the spiny dogfish c.v., and it was also low on the priority list for allocation of phase 2 stations.

The ancillary inshore survey in 10–30 m yielded a different species composition from the main survey area. Only three of the target species were represented (red cod, spiny dogfish, and tarakihi) and, of these, c.v.s were acceptable only for red cod (22%) and spiny dogfish (22%). It may also be useful for rough skate (c.v. 22%), and possibly for red gurnard and elephantfish, but without the allocation of more stations, and a phase 2 component, the c.v.s are likely to be high for these two species. The ECSI summer survey time series, for example, allocated considerably more stations to these strata and achieved variable but generally acceptable c.v.s for red gurnard and elephantfish (Beentjes & Stevenson 2001, Stevenson & Beentjes 2002).

4.2 Trends in biomass, distribution and size

Implicit in our interpretation of trends in biomass, geographic distribution, and length distribution is the 11 year interval separating the last two surveys. During this period we have no information on these variables.

Biomass for dark ghost shark was the highest of the six surveys and continues the trend of increasing biomass from 1991 to 2007 (Table 8, Figure 9). The 2007 biomass is about four-fold greater than in 1991. All surveys have a large component of pre-recruited fish (range 30 to 62% of total biomass) (Table 9, Figure 10). The distribution of dark ghost shark over the time series is similar and was confined to the continental slope and edge, although the large biomass in 2007 is commensurate with a slightly expanded distribution throughout the survey area in this depth and into Pegasus Bay (Figure 11). The size distributions of dark ghost shark in each of the last four surveys are similar and generally bimodal (Figure 12). The distributions differ from those of the Chatham Rise and Southland/Sub-Antarctic surveys (O'Driscoll & Bagley 2001, Livingston et al. 2002) in that ECSI has a large component of pre-recruited fish (under 55 cm) suggesting that this area may be an important nursery ground for juvenile dark ghost shark.

Biomass for giant stargazer was the highest of the six surveys, and biomass appears to have increased following a general decline from 1991 to 1994 (see Table 8, Figure 9). Pre-recruited biomass is a small component of the total biomass estimate on all surveys (range 2 to 5% of total biomass) (Table 9, Figure 10). The distribution of giant stargazer varies in terms of the geographic areas of high density, but overall this species is consistently well represented over the entire survey area, most commonly from 30 m to about 200 m (see Figure 11). The size distributions of giant stargazer in each of the six surveys are similar and generally bimodal for males, and less defined for females (Figure 12). Giant stargazer on the ECSI overall are generally smaller than those from the Chatham Rise, Southland, and WCSI surveys (Bagley & Hurst 1996, Stevenson & Hanchet 2000, Livingston et al. 2002), suggesting that this area may be an important nursery ground for juvenile giant stargazer.

Biomass for red cod was the lowest of the six surveys, and is almost one-quarter of that in 1994 when it peaked (see Table 8, Figure 9). The high biomass in 1994 and the very low biomass in 2007 are consistent with the size of commercial landings in RCO 3 at these times. Pre-recruited biomass is a small component of the total biomass in the 1996 and 2007 surveys (13% and 13%) compared to 1994 when pre-recruited biomass was 59% of total biomass (Table 9, Figure 10). The distribution of red cod varies in terms of the geographic areas of high density, but overall this species is consistently well represented over the entire survey area, most commonly from 30 m to about 300 m (see Figure 11), but is also found in waters shallower than 30 m. The size distributions of red cod in each of the six surveys are similar and generally characterised by a 0+ mode (10–20 cm), 1+ mode (30–40 cm), and a less defined right hand tail comprised predominantly of 2+ and 3+ fish. The 1996 and particularly the 2007 surveys show very poor recruitment of 1+ fish compared to earlier surveys. In contrast the 1994 survey indicated the presence of a very strong 1+ cohort which resulted in high commercial catches in the following years.

Red cod on the ECSI, overall, are generally smaller than those from Southland (Bagley & Hurst 1996) suggesting that this area may be an important nursery ground for juvenile red cod.

Biomass for sea perch lies in the mid range of those of previous surveys and there is no trend in biomass over the time series (see Table 8, Figure 9). Pre-recruited biomass is a very small component of the total biomass estimate on all surveys (range 3 to 6% of total biomass) (see Table 9, Figure 10). The distribution of sea perch varies in terms of the geographic areas of high density, but overall this species is consistently well represented over the entire survey area, most commonly from about 70 m to 300 m (see Figure 11). The size distributions of sea perch on each of the six surveys are similar and generally unimodal with a right hand tail (Figure 12). Sea perch on the ECSI, overall, are generally smaller than those from the Chatham Rise and Southland surveys (Bagley & Hurst 1996, Livingston et al. 2002). This suggests that this area may be an important nursery ground for juvenile sea perch and/or that sea perch tend to be larger at greater depths (Beentjes et al. 2007) and the ECSI survey does not extend to the full depth range of sea perch which are found as deep as 800 m.

Biomass for spiny dogfish was the highest of the six surveys. Biomass increased almost three-fold between 1994 and 1996 and appears to have remained at this high level (see Table 8, Figure 9). Spiny dogfish has had the largest biomass of all species with the exception of barracouta in 1992 and 1993. Pre-recruited biomass was a small component of the total biomass estimate in the 1992 to 1994 surveys (1 to 3 % of total biomass), but has increased markedly to 10% in 1996 and 16% in 2007 (see Table 9, Figure 10). The distribution of spiny dogfish varies in terms of the geographic areas of high density, but overall this species is consistently well represented over the entire survey area, most commonly from 30 m to about 350 m (see Figure 11), but is also common in waters shallower than 30 m. The size distributions of spiny dogfish in each of the 1992 to 1994 surveys are similar and generally bimodal for males, and less defined for females (Figure 12). In 1996 and 2007 the distributions are dominated by smaller fish. Spiny dogfish on the ECSI, overall are considerably smaller than those from the Chatham Rise, Southland, and the sub-Antarctic surveys (Bagley & Hurst 1996, O'Driscoll & Bagley 2001, Livingston et al. 2002), suggesting that this area may be an important nursery ground for juvenile spiny dogfish.

Biomass for tarakihi lies in the upper range of those of previous surveys and there is no apparent trend in biomass over the time series (see Table 8, Figure 9). Pre-recruited biomass is a major component of the total biomass estimate on all surveys (ranging from 18 to 59% of total biomass) (see Table 9, Figure 10). The distribution of tarakihi varies in terms of the geographic areas of high density, but overall this species is consistently well represented over the entire survey area, most commonly from 30 m to about 150 m (see Figure 11), but is also common in waters shallower than 30 m. The size distributions of tarakihi in each of the six surveys are similar and generally multi-modal, representing individual cohorts in the smaller modes (Figure 12). Tarakihi on the ECSI, overall, are generally smaller than those from the West coast South Island (Stevenson & Hanchet 2000), suggesting that this area may be an important nursery ground for juvenile tarakihi.

5. ACKNOWLEDGMENTS

This research was funded by Ministry of Fisheries (Project INT2006/02). Thanks to all NIWA scientific staff on board for their contribution to a successful survey, Neil Bagley and Warrrick Lyons for overhauling the trawl gear, Warrick for documenting the trawl net specifications shown in this report, and the many staff who identified the macro-invertebrates. We acknowledge skippers Mike Baker and Neil Pestell, and the crew of *Kaharoa* for their valuable contribution. Thanks to Steve Brouwer for reviewing this report and Mike Beardsell for editorial comments.

6. REFERENCES

- Bagley, N.W.; Hurst, R.J. (1996). Trawl survey of middle depth and inshore bottom species off Southland, February-March 1995 (TAN9502). New Zealand Fisheries Data Report No. 73. 48 p.
- Beentjes, M.P. (1995a). Inshore trawl survey of the Canterbury Bight and Pegasus Bay, May-June 1992 (KAH9205). New Zealand Fisheries Data Report 55. 58 p.
- Beentjes, M.P. (1995b). Inshore trawl survey of the Canterbury Bight and Pegasus Bay, May-June 1993 (KAH9306). New Zealand Fisheries Data Report 56. 78 p.
- Beentjes, M.P. (1998a). Inshore trawl survey of the Canterbury Bight and Pegasus Bay, May-June 1994 (KAH9406). NIWA Technical Report 20. 65 p.
- Beentjes, M.P. (1998b). Inshore trawl survey of the Canterbury Bight and Pegasus Bay, May-June 1996 (KAH9606). NIWA Technical Report 21. 66 p.
- Beentjes, M.P.; Horn, P.L.; Bagley, N. (2007). Characterisation of the Chatham Rise sea perch fishery. New Zealand Fisheries Assessment Report 2007/16. 84 p.
- Beentjes, M.P.; Smith, M.; Phillips, N.L. (2004). Analysis of catchability for east coast South Island trawl surveys and recommendations on future survey design. New Zealand Fisheries Assessment Report 2004/5. 68 p.
- Beentjes, M.P.; Stevenson, M.L. (2000). Review of the east coast South Island winter trawl survey time series, 1991–96. NIWA Technical Report 86. 64 p.
- Beentjes, M.P.; Stevenson, M.L. (2001). Review of east coast South Island summer trawl survey time series, 1996–97 to 1999–2000. NIWA Technical Report 108. 92 p.
- Beentjes, M.P.; Wass, R. (1994). Inshore trawl survey of the Canterbury Bight and Pegasus Bay, May-June 1991 (KAH9105). New Zealand Fisheries Data Report 48. 49 p.
- Campana, S.E. (2001). Accuracy, precision, and quality control in age determination, including a review of the use and abuse of age validation methods. *Journal of Fish Biology 59*: 197–242.
- Francis, M.P. (1988). Movement patterns of rig (*Mustelus lenticulatus*) tagged in southern New Zealand. New Zealand Journal of Marine and Freshwater Research 22: 259-272.
- Francis, R.I.C.C. (1981). Stratified random trawl surveys of deep-water demersal fish stocks around New Zealand. Fisheries Research Division Occasional Publication No.32. 28 p.
- Francis, R.I.C.C. (1989). A standard approach to biomass estimation from bottom trawl surveys. New Zealand Fisheries Assessment Research Document 89/3. 3 p. (Unpublished report held in NIWA library, Wellington.)
- Francis, R.I.C.C.; Horn, P.L. (2005). Information relevant to the possible continuation of the winter series of east coast South Island trawl surveys. Note to the Inshore Working Group. INS-WG-2005/30. 10 p. (Unpublished report held by MFish, Wellington.)
- Francis, R.I.C.C.; Hurst, R.J.; Renwick, J.A. (2001). An evaluation of catchability assumptions in New Zealand stock assessments. *New Zealand Fisheries Assessment Report 2001/1*. 37 p.
- Hurst, R.J.; Bagley, N.W.; McGregor, G.A.; Francis, M.P. (1999). Movements of the New Zealand school shark, *Galeorhinus galeus*, from tag returns. New Zealand Journal of Marine and Freshwater Research 33: 29–48.
- Livingston, M.E.; Bull, B.; Stevens, D.W.; Bagley, N.W. (2002). A review of hoki and middle depths trawl surveys of the Chatham Rise, January 1992–2001. *NIWA Technical Report 113*. 146 p.
- Manning, M.J.; Sutton, C.P. (2007). Further study on the age and growth of giant stargazer, Kathetostoma giganteum, from the west coast of the South Island (STA 7). New Zealand Fisheries Assessment Report 2007/12. 68 p.
- Ministry of Fisheries Science Group (comps.) (2006). Report from the Fishery Assessment Plenary, May 2006: stock assessments and yield estimates. 875 p. (Unpublished report held in NIWA library, Wellington.)
- O'Driscoll, R.L.; Bagley, N.W. (2001). Review of summer and autumn trawl survey time series from the Southland and Sub-Antarctic areas, 1991–98. *NIWA Technical Report 102*. 115 p.
- Stevens, D.W.; O'Driscoll, R.L. (2006). Trawl survey of hoki and middle depth species on the Chatham Rise, January 2005 (TAN0501). New Zealand Fisheries Assessment Report 2006/13.73 p.

- Stevens, D.W.; O'Driscoll, R.L. (2007). Trawl survey of hoki and middle depth species on the Chatham Rise, January 2006 (TAN0601). New Zealand Fisheries Assessment Report 2007/5. 73 p.
- Stevenson, M.L.; Beentjes, M.P. (2002). Inshore trawl survey of the Canterbury Bight and Pegasus Bay, December 2000-January 2001 (KAH0014, CMP0001). NIWA Technical Report 112. 97 p.
- Stevenson, M.L.; Hanchet, S. (1999). Design and data analysis procedures for inshore trawl surveys. NIWA Technical Report 53. 18 p.
- Stevenson, M.L.; Hanchet, S.M. (2000). Review of inshore trawl survey series of the west coast South Island and Tasman and Golden Bays, 1992–97. *NIWA Technical Report 82*. 79 p.
- Sutton, C.P. (1999). Ageing methodology, growth parameters, and estimates of mortality for giant stargazer (*Kathetostoma giganteum*) from the east and south coasts of the South Island. New Zealand Fisheries Assessment Research Document 99/15. 19 p. (Unpublished report held in NIWA library, Wellington.)
- Vignaux, M. (1994). Documentation of Trawlsurvey Analysis Program. MAF Fisheries Internal Report No. 225. 44 p. (Unpublished report held in NIWA library, Wellington.)

Table 1: Stratum depth ranges, survey area, non-trawlable area, number of successful phase 1 and phase 2 stations, and station density.

					N	lo. stations	Station density
		Area		Foul ground		o. stations	(km ² per
Stratum	Depth (m)	(km^2)	Description	(km ²)	Phase 1	Phase 2	station)
1	30-100	984	Shag Point	202	5	2	141
2	30-100	1 247	Oamaru	0	3	0	416
3	30-100	3 023	Timaru	0	8	0	378
4	30-100	2 703	Rakaia	0	8	5	208
5	30-100	2 485	Banks Pen.	0	6	0	414
6	30-100	2 373	Pegasus	208	8	0	297
7	30-100	2 089	Conway	871	10	0	209
8	100-200	628	Shag Point	17	3	0	209
9	100-200	1 163	Oamaru	0	5	0	233
10	100-200	1 191	Timaru	0	7	0	170
11	100-200	1 482	Banks Pen.	0	5	0	296
12	100-200	764	Pegasus	132	3	0	255
13	100-200	999	Conway	406	3	0	333
14	200-400	321	Oamaru Crack	17	3	0	107
15	200-400	430	Timaru	0	4	0	108
16	200-400	751	Banks Pen.	0	3	0	250
17	200-400	724	Conway	165	3	0	241
Subtotal (a	verage)	23 357		2 018	87	7	(248)
18	10-30	1 276	Pegasus	0	3	0	425
19	10-30	987	Rakaia	0	3	0	329
20	10-30	794	Timaru	0	3	0	265
21	10-30	520	Oamaru	226	2	0	260
Subtotal (a	verage)	3 577		226	11	0	(325)
Total (aver	age)	26 934		2 244	98	7	(257)

			Males		Females		All fish			Recruited
Common name	Catch (kg)	Biomass (t)	c.v. (%)	Biomass (t)	c.v. (%)	Biomass (t)	c.v. (%)	Size (cm)	Biomass (t)	c.v. (%)
Dark ghost shark	7 120	1 696	24.9	2 783	28.3	4 483	25.3	>55	2 6 2 6	25.7
Giant stargazer	1 059	140	12.9	314	23.4	755	17.6	>30	722	18.0
Red cod	2 476	581	30.3	904	27.6	1 486	24.8	>40	1 295	25.2
Sea perch	2 709	1 138	21.4	816	22.8	1 954	21.5	>20	1 880	22.0
Spiny dogfish	40 832	22 253	25.4	13 133	32.8	35 386	27.2	>50	29 555	27.3
Tarakihi	3 165	1 232	25.6	1 353	23.8	2 589	24.5	>25	1 766	24.2
Arrow squid	3 030	*		*		1 242	23.1			
Barracouta	26 916	10 129	17.2	10 911	17.5	21 132	17.0			
Blue warehou	1 797	661	79.1	757	79.0	1 418	79.0	>45	155	38.6
Elephantfish	1 182	444	41.5	587	28.1	1 034	32.3	>50	518	20.7
Hapuku	335	125	33.8	124	24.3	248	27.6	>65	75	67.5
Hoki	258	67	66.4	66	57.5	134	61.9			
Leatherjacket	178	*		*		96	44.1			
Ling	607	98	29.9	184	26.8	283	27.1	>65	190	31.4
Red gurnard	1 926	794	34.0	660	36.1	1 453	34.6	>30	1 1 5 5	34.9
Rig	152	67	32	67	49.9	134	37.3	>90	32	70.8
Rough skate	1 123	453	22.5	421	22.04	878	21.6			
School shark	672	308	23.9	230	24.9	538	21.6	>90	187	30.1
Silver warehou	794	200	47.0	212	46.9	445	43.6	>25	392	49.2
Smooth skate	970	449	24.5	256	25.2	705	20.1			

Table 2: Catch and estimated biomass for top 20 commercial species, including target species (bold) in 30-400 m. * not measured.

* Not sexed

Table 3: Catch and estimated biomass for top 20 commercial species, including target species (bold) in 10-30 m. * not measure	Table 3: Catch and estimated biomass for to	op 20 commercial species,	, including target species ((bold) in 10-30 m. *	not measured.
---	---	---------------------------	------------------------------	----------------------	---------------

			Males		Females		All fish			Recruited
Common name	Catch (kg)	Biomass (t)	c.v. (%)	Biomass (t)	c.v. (%)	Biomass (t)	c.v. (%)	Size (cm)	Biomass (t)	c.v. (%)
Dark ghost shark	0	0		0	-	0		>55	0	
Giant stargazer	0	0	-	0	<u></u> -	0	<u>1</u>	>30	0	
Red cod	47	4	49.4	63	23.0	66	22	>40	56.8	24.2
Sea perch	0	0		0		0	-	>20	0	<u></u>
Spiny dogfish	1 569	1 195	15.7	718	51.6	1 913	22	>50	1 634	20.2
Tarakihi	71	43	99.4	35.7	99.0	85	92	>25	5.85	100.0
Arrow squid	447	*		*		536	89			
Barracouta	3 149	2 043	80.4	1 762	72.4	3 806	77			
Blue warehou	54	16	72.5	15	83.3	64	47	>45	0	
Elephantfish	728	324	33.2	501	41.4	825	36	>50	139	52.4
Hapuku	6	4	72.7	5	100.0	9	50			
Hoki	0	0	-	0	-	0		>65	0	
Leatherjacket	1 024	*	-	*		1 230	60			
Ling	0	0	100	0		0	7772	>65		
Red gurnard	489	222	39.0	373	33.5	595	35	>30	398	29.0
Rig	39	24	67.4	34	56.5	59	46	>90	12	100.0
Rough skate	323	189	27.6	189	17.0	383	22			
School shark	11	4	39.7	10	37.1	14	36	>90	0	
Silver warehou	4	3	73.6	2	60.3	6	59	>25	0	
Smooth skate	0	0	177	0	575	0	55			

Table 4: Catch rates (kg.km⁻²) and standard deviation () by stratum (1–21) for the 20 most abundant commercial species, including target species. Species codes are given in Appendix 4. * less than 5 kg.km⁻².

r species		9	species_						
GUR	ELE	BAR	TAR	STA	SPE	SPD	RCO	GSH	Stratum
23	130	636	109	22	210	55	140	0	1
(20)	(138)	(728)	(277)	(16)	(553)	(71)	(198)		
15	14	18	26	26	0	149	22	0	2
(17)	(10)	(22)	(44)	(39)		(80)	(27)		
175	177	356	77	18	29	3 059	13	13	3
(363)	(298)	(271)	(213)	(32)	(42)	(5 772)	(14)	(36)	
123	10	2 799	529	53	18	4 865	126	31	4
(220)	(17)	(3 678)	(688)	(84)	(35)	(7611)	(329)	(68)	
7	35	1 289	158	27	1	1 035	37	4	5
(7)	(60)	(1 433)	(251)	(46)	(2)	(1 917)	(85)	(7)	
6	18	728	38	49	93	241	81	60	6
(6)	(26)	(1 381)	(44)	(79)	(188)	(277)	(118)	(171)	
244	71	856	34	4	45	906	128	0	7
(420)	(91)	(1 351)	(101)	(5)	(109)	(1 355)	(208)		
0	25	591	0	68	156	110	29	133	8
	(43)	(491)		(67)	(271)	(108)	(38)	(182)	
0	3	875	0	44	255	260	1	528	9
	(6)	(764)		(20)	(416)	(114)	(1)	(664)	
3	0	1 415	17	34	439	677	32	761	10
(4)		(920)	(24)	(17)	(401)	(1 007)	(31)	(502)	
6	0	1 078	24	79	166	3 724	110	838	11
(8)		(943)	(33)	(98)	(157)	(6 165)	(213)	(898)	
1	0	290	8	26	81	84	0	0	12
(2)		(476)	(12)	(9)	(81)	(54)			
0	34	194	161	16	55	770	46	107	13
	(21)	(60)	(18)	(22)	(28)	(1 073)	(59)	(39)	
0	0	0	0	10	2	29	332	380	14
				(10)	(3)	(15)	(562)	(178)	
0	0	2	0	11	*	210	8	263	15
		(5)		(11)	(*)	(248)	(15)	(484)	
0	0	1	*	6	1	51	12	141	16
		(1)	(1)	(7)	(2)	(31)	(12)	(162)	
0	0	8	10	16	8	80	4	1 245	17
		(14)	(13)	(22)	(12)	(76)	(8)	(2 023)	
142	0	76	0	0	0	204	38	0	18
(126)		(66)				(170)	(18)		
206	494	3 681	7	0	0	1 305	5	0	19
(181)	(475)	(5 109)	(11)			(673)	(8)		
242	418	94	0	0	0	403	11	0	20
(342)	(275)	(93)				(255)	(9)		
37	10	3	150	0	0	87	9	0	21
(12)	(2)	(1)	(212)			(18)	(11)		

Table 4-continued

		<u>. 6. 50 -</u>								Other s	
Stratum	HAP	HOK	LEA	LIN	NOS	RSK	SCH	SPO	SSK	SWA	WAR
1	1	0	*	54	18	64	1	0	25	*	14
	(3)		(*)	(75)	(17)	(59)	(2)		(56)	(*)	(36)
2	0	0	4	9	13	151	1	1	8	*	28
			(7)	(16)	(15)	(136)	(2)	(100)	(13)	(*)	(33)
3	7	0	*	2	13	37	51	0 042	61	1	5
	(9)		(*)	(5)	(10)	(81)	(84)	(0 044)	(79)	(1)	(9)
4	32	0	6	3	20	43	5	0 034	32	4	4
	(84)		(14)	(6)	(25)	(52)	(9)	(0 058)	(88)	(4)	(6)
5	8	0	0	0	15	20	3	0 041	12	2	0
	(14)				(11)	(32)	(5)	(0 100)	(29)	(2)	(1)
6	9	0	0	0	38	80	53	2	15	1	470
	(8)				(48)	(139)	(37)	(100)	(30)	(2)	(1 328)
7	3	0	36	1	14	43	33	4	13	16	77
	(3)		(62)	(2)	(11)	(56)	(45)	(0 053)	(23)	(23)	(174)
8	19	0	0	16	19	51	8	0	75	1	59
	(33)			(17)	(16)	(88)	(8)		(69)	(2)	(79)
9	8	0	0	4	34	0	21	1	59	1	0
	(8)			(9)	(15)		(23)	(100)	(96)	(1)	
10	14	0	0	7	20	1	1	7	21	9	7
	(21)			(6)	(21)	(4)	(2)	(0 072)	(25)	(10)	(14)
11	25	0	0	31	10	2	5	0 0 00	67	9	1
	(14)			(58)	(7)	(5)	(8)		(77)	(11)	(2)
12	14	0	0	0	25	24	4	0	40	31	0
	(8)				(32)	(2)	(7)		(35)	(28)	
13	0	0	0	0	78	0	127	0	0	126	22
					(94)		(103)			(213)	(38)
14	6	2	0	30	340	2	0	0	0	8	0
	(10)	(4)		(39)	(346)	(3)				(8)	
15	0	1	0	105	551	6	0	0	76	25	0
		(1)		(181)	(376)	(7)			(83)	(28)	
16	4	97	0	33	323	11	0	0	10	265	0
	(7)	(162)		(46)	(516)	(20)			(16)	(340)	
17	4	82	0	77	251	6	0	0	2	3	0
	(7)	(102)		(90)	(290)	(5)			(3)	(4)	
18	6	0	0	0	6	7	2	53	0	4	21
	(6)				(8)	(7)	(2)	(50)		(5)	(27)
19	0	0	520	0	48	166	9	0 005	0	*	6
			(439)		(20)	(61)	(8)	(100)		(1)	(4)
20	0	0	16	0	3	121	3	1	0	1	39
			(27)		(4)	(118)	(4)	(100)		(2)	(49)
21	3	0	1 355	0	922	219	0	0	0	0	0
	(4)		(1 895)		(1 304)	(141)					

r species			species		- Y - 0				
GUR	ELE	BAR	TAR	STA	SPE	SPD	RCO	GSH	Stratum
22	128	626	107	22	207	54	138	0	1
(33)	(40)	(43)	(96)	(28)	(99)	(49)	(53)		
19	17	22	32	32	0	186	27	0	2
(65)	(43)	(71)	(97)	(87)		(31)	(71)		
526	532	1 070	231	55	87	9 194	40	40	3
(73)	(59)	(27)	(98)	(61)	(51)	(67)	(38)	(95)	
334	26	7 582	1 434	143	48	13 179	341	84	4
(50)	(48)	(36)	(36)	(44)	(56)	(43)	(73)	(60)	
17	87	3 207	393	66	3	2 574	93	11	5
(44)	(71)	(45)	(65)	(71)	(65)	(76)	(93)	(66)	
15	44	1 727	91	116	220	571	191	143	5
(33	(49)	(67)	(41)	(57)	(71)	(41)	(52)	(100)	
508	148	1 785	71	8	94	1 889	268	0	7
(54)	(41)	(50)	(94)	(46)	(76)	(47)	(51)		
(15	366	0	42	97	68	18	82	8
	(100)	(48)		(57)	(100)	(57)	(75)	(79)	
(3	1 016	0	51	296	302	1	613	9
	(100)	(39)		(21)	(73)	(20)	(69)	(56)	
3	0	1 712	21	41	532	820	39	920	10
(51)		(25)	(52)	(18)	(34)	(56)	(37)	(25)	
9	0	1 600	36	118	246	5 527	164	1 243	11
(59		(39)	(60)	(55)	(42)	(74)	(86)	(48)	
1	0	221	6	20	62	64	0	0	12
(100		(95)	(90)	(20)	(57)	(37)			
(34	192	160	16	54	764	46	106	13
	(35)	(18)	(6)	(79)	(29)	(80)	(73)	(21)	
(0	0	0	3	1	9	106	121	14
				(55)	(80)	(29)	(98)	(27)	
(0	1	0	5	0	89	3	112	15
		(100)		(47)	(71)	(59)	(97)	(92)	
(0	1	*	5	1	39	9	107	16
		(100)	(100)	(66)	(94)	(35)	(58)	(66)	
(0	6	7	11	6	58	3	899	17
		(100)	(78)	(80)	(84)	(55)	(100)	(94)	
181	0	98	0	0	0	260	48	0	18
(51)		(50)				(48)	(27)		
203	488	3 633	7	0	0	1 288	5	0	19
(51)	(55)	(80)	(87)			(30)	(100)		
192	332	74	0	0	0	320	9	0	20
(82)	(38)	(57)				(37)	(47)		
19	5	2	78	0	0	46	5	0	21
(23	(17)	. (24)	(100)			(14)	(85)		

Table 5: Estimated biomass (t) and coefficient of variation () by stratum (1–21) for the 20 most abundant commercial species, including target species. Species codes are given in Appendix 4. * less than 0.5 t.

Table 5-continued

									110-	Other sp	pecies
Stratum	HAP	HOK	LEA	LIN	NOS	RSK	SCH	SPO	SSK	SWA	WAR
1	1	0	*	53	18	63	1	0	24	0	14
	(100)		(43)	(53)	(35)	(35)	(100)		(86)	(100)	(100)
2	0	0	5	12	16	188	2	1	10	0	34
			(100)	(96)	(66)	(52)	(100)	(100)	(100)	(100)	(69)
3	22	0	*	6	38	110	154	42	183	3	14
	(44)		(70)	(85)	(28)	(78)	(58)	(44)	(46)	(46)	(67)
4	. 87	0	15	7	55	118	12	34	87	10	12
	(72)		(70)	(65)	(34)	(33)	(54)	(58)	(76)	(31)	(38)
5	19	0	0	0	37	49	7	41	30	4	1
	(76)	225	2	224	(30)	(66)	(73)	(100)	(99)	(65)	(68)
6	20	0	0	0	91	189	127	2	34	3	1114
	(34)				(44)	(61)	(24)	(100)	(73)	(51)	(100)
7	7	0	75	2	30	90	68	4	27	32	161
	(33)		(54)	(56)	(25)	(41)	(43)	(53)	(56)	(47)	(71)
8	12	0	0	10	12	32	5	0	47	1	37
	(100)		-	(64)	(47)	(100)	(55)		(53)	(100)	(77)
9	9	0	0	5	40	0	24	1	68	1	0
	(49)			(88)	(19)		(48)	(100)	(73)	(53)	
10	17	0	0	8	24	2	1	7	25	11	8
10.11	(57)	2		(34)	(39)	(100)	(100)	(72)	(45)	(44)	(78)
11	36	0	0	45	15	4	7	0	99 (52)	14	1
	(25)	0	0	(85)	(33)	(100)	(73)		(52)	(52)	(100)
12	10 (34)	0	0	0	19	18	3 (100)	0	30 (50)	24 (52)	0
12		0	0	0	(75)	(4)		0			22
13	0	0	0	0	77 (70)	0	126 (47)	0	0	125 (98)	22 (100)
14	2	ĩ	0	9		0	(47)	0	0	(98)	
14	(100)	(100)	0	(77)	109 (59)	(100)	0	0	0	(60)	0
15	(100)	0	0	45	235	3	0	0	32	10	0
15	0	(100)	0	(86)	(34)	(58)	0	0	(55)	(58)	0
16	3	74	0	25	245	9	0	0	8	201	0
10	(100)	(96)	0	(80)	(92)	(100)	U	U	(89)	(74)	0
17	3	59	0	56	181	4	0	0	1	2	0
17	(100)	(72)	Ū	(67)	(67)	(51)	U	0	(100)	(73)	0
18	7	0	0	0	8	9	2	53	0	4	
10	(56)	, in the second s	•	Ű	(78)	(54)	(51)	(50)	0	(75)	27
19	0	0	513	0	47	163	9	5	0	*	(73)
	v	Ŭ	(49)	Y	(24)	(21)	(50)	(100)	v	(100)	(75)
20	0	0	13	0	2	96	2	1	0	1	(37)
	U.		(95)	U	(100)	(56)	(77)	(100)		(71)	31
21	2	0	705	0	480	114	0	0	0	0	(72)
	(100)	×	(99)		(100)	(46)			×	v	0

Table 6: Number of biological, length frequency, and tagging records. Measurement methods: 1, fork length; 2, total length; 4, mantle length; 5, pelvic length; B, carapace length; G, total length excluding tail filament. + Data include one or more of the following: fish length, fish weight, gonad stage, otoliths, spines.

		Length frequ	ency data				+ Tagging		
						No. of			
Species	Measurement	No. of	No. of	No. of	No. of	otoliths	No. of	Size range	
code	method	samples	fish	samples	fish	or spines	fish	(cm)	
BAR	1	100	7 764						
BCO	2	21	170						
BRA	5	1	1	1	1				
BRI	2	1	7						
BYS	1	1	1						
ELE	1	43	1 1 2 6						
EMA	1	1	1						
ESO	2	13	58						
GFL	2	1	3						
GSH	G	47	2 849	42	1 821	418			
GUR	2	64	2 2 3 5	1	14				
HAK	2	3	18						
HAP	2	50	123						
HOK	2	7	417						
JDO	2	2	2						
JMD	1	21	50						
JMM	. 1	9	14						
JMN	1	4	9						
KAH	1	1	1						
KIN	1	1	1						
LDO	2	6	88						
LEA	2	14	1 060						
LIN	2	40	423	1	28				
LSO	2	42	427						
MDO	2	1	1						
MOK	1	6	6						
RCO	2	76	1 830	65	1 245	428			
RSK	5	60	535	60	479	5.479 (A)	356	21-70	
SCH	2	48	308	47	307		171	34-157	
SCI	В	1	5	1	5				
SFL	2	12	98						
SPD	2	105	7 830	76	3 440	423			
SPE	2	61	3 534	53	1 945	259			
SPO	2	24	115	22	113		39	53-96	
SPZ	2	1	3						
SSK	5	47	300	47	299		186	15-123	
STA	2	80	867	80	867	420	344	18-78	
SWA	1	70	1 1 1 2						
TAR	1	66	3 521	49	1 764	241			
TRU	1	1	1						
TUR	2	1	1						
WAR	1	41	859						
WWA	1	2	6						
Total			37 780		12 328		1 096		

Table 7: Gonad	stages of finfish	target species.
----------------	-------------------	-----------------

Species	Sex	No. of				Gon	ad state
		fish	1	2	3	4	5
30-400 m							
Giant stargazer	Males	150	95	36	11	3	5
	Females	213	190	13	8	1	1
Red cod	Males	283	191	64	1	4	23
	Females	310	179	130	1	12000	-77
Sea perch	Males	383	54	196	93	31	9
	Females	267	193	40	7	2	25
Tarakihi	Males	320	300	13	1	-	6
	Females	376	333	23	=	1. 	20
10–30 m							
Red cod	Males	2	2		-	-	1000
	Females	15	10	5	-	-	-

Gonad stage for males and females: stage 1- immature/resting; 2- maturing; 3- ripening; 4- running ripe; 5- spent

Table 8: Estimated biomass (t), coefficient of variation (c.v.), for the target species (bold) and major commercial species for each ECSI winter survey. Biomass estimates for 1991 have been adjusted to allow for non-sampled strata (7 & 9). * Rough and smooth skates not separated, combined biomass = 1 993 t (c.v. 25%).

		1991	<u></u>	1992		1993		1994		1996		2007
		c.v.		c.v.	201-011	c.v.	11 mar 1	c.v.	Sector Conference (S	c.v.	Tan Land	c.v.
	Biomass	(%)	Biomass	(%)	Biomass	(%)	Biomass	(%)	Biomass	(%)	Biomass	(%)
Dark ghost shark	962	42	934	44	2 911	42	2 702	25	3 176	23	4 483	25
Giant stargazer	672	17	669	16	609	14	439	17	465	11	755	18
Red cod	3 760	33	4 527	40	5 601	30	5 637	35	4 619	30	1 486	25
Sea perch	1716	30	1 934	28	2 948	32	2 342	29	1 671	25	1 954	22
Spiny dogfish	12 873	22	10 787	26	13 949	17	14 530	10	35 169	15	35 386	27
Tarakihi	1 712	33	932	26	3 805	55	1 219	31	1 656	24	2 589	24
Arrow squid	443	22	1 303	32	1 062	17	1 421	25	1 204	30	1 242	23
Barracouta	8 361	29	11 672	23	18 197	22	6 965	34	16 848	19	21 132	17
Blue warehou	104	90	116	43	50	39	165	78	238	64	1 418	79
Chilean jack mackerel	47	26	200	31	225	28	155	38	1 585	34	18	37
Elephantfish	300	40	176	32	481	33	164	32	858	30	1 034	32
Hapuku	186	24	104	35	177	31	54	32	102	19	248	28
Hoki	61	93	108	75	413	32	125	49	460	32	134	62
Leatherjacket	44	57	14	76	7	58	29	60	10	58	96	44
Ling	1009	35	525	17	651	27	488	19	488	21	283	27
Red gurnard	763	40	142	30	576	31	123	34	505	27	1 453	35
Rig	175	30	66	18	67	30	54	29	63	37	134	37
Rough skate	*	*	224	24	335	21	517	20	177	19	878	22
School shark	100	30	104	21	369	42	155	36	202	18	538	22
Silver warehou	29	21	32	22	256	44	35	28	231	32	445	44
Smooth skate	*	*	605	18	658	25	306	25	385	24	705	20

	Recruited		1991		1992		1993		1994		1996		2007	
	length		c.v.											
	(cm)	Biomass	(%)											
Dark ghost shark	55													
Pre-recruit		292	68	576	54	1 064	40	1 314	35	1 195	30	1 857	46	
Recruited		668	40	358	31	1 808	53	1 388	22	1 981	23	2 626	26	
Giant stargazer	30													
Pre-recruit		26	22	34	14	19	16	10	25	13	34	33	24	
Recruited		646	17	635	16	590	14	430	17	452	11	722	18	
Red cod	40													
Pre-recruit		1 823	45	2 089	50	1 0 2 6	51	3 342	40	584	31	190.45	33	
Recruited		2 054	37	2 438	33	4 468	27	2 296	36	4 036	33	1 295	25	
Sea perch	20													
Pre-recruit		70	44	49	28	178	76	70	24	52	45	73	18	
Recruited		1 483	30	1 443	28	2 770	30	2 272	29	1 619	25	1 880	22	
Spiny dogfish	50													
Pre-recruit		_		300	26	367	71	208	49	3 444	23	5 830	46	
Recruited				9 177	31	13 098	17	14 322	10	31 725	16	29 555	27	
Tarakihi	25													
Pre-recruit		305	38	273	26	2 2 3 4	62	493	31	519	30	823	30	
Recruited		1 415	33	630	28	1 571	47	726	35	1 1 37	27	1 766	24	

Table 9: Estimated biomass (t), coefficient of variation (c.v.), of recruited and pre-recruited target species for each ECSI winter surveys. Biomass estimates for 1991 have been adjusted to allow for non-sampled strata (7 & 9). -, not measured.

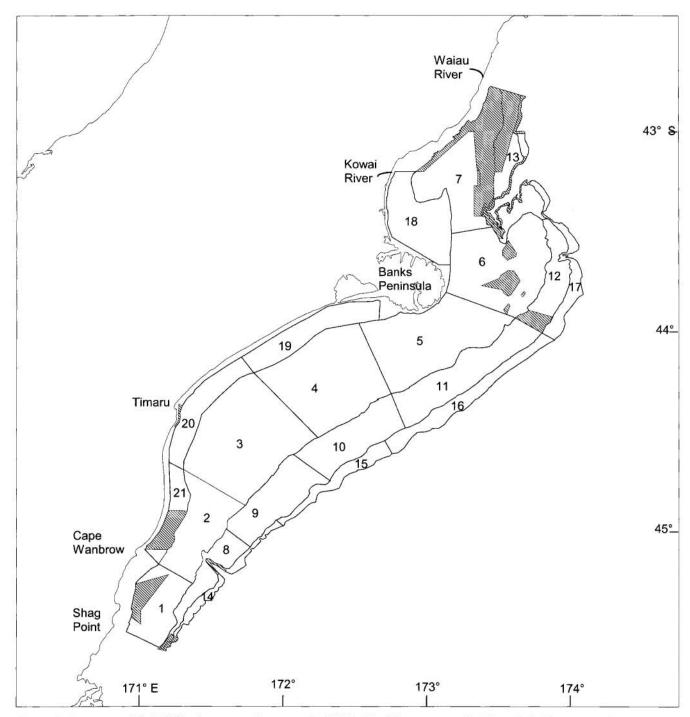


Figure 1: Strata used in ECSI winter trawl surveys in 2007 (30–400 m, strata 1–17) and shallow strata in 10–30 m (strata18–21). Hashed areas are foul ground.

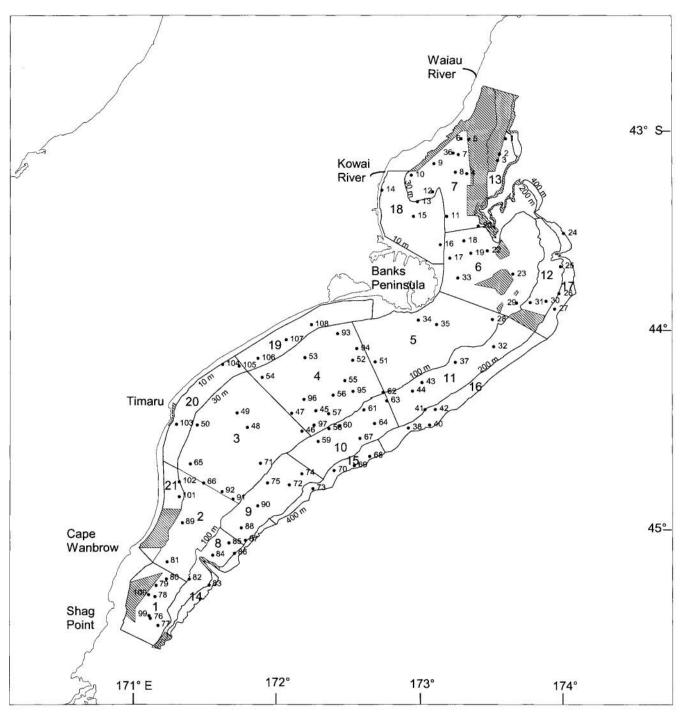


Figure 2: All tows and tow numbers from the 2007 ECSI survey. Hashed areas are foul ground.

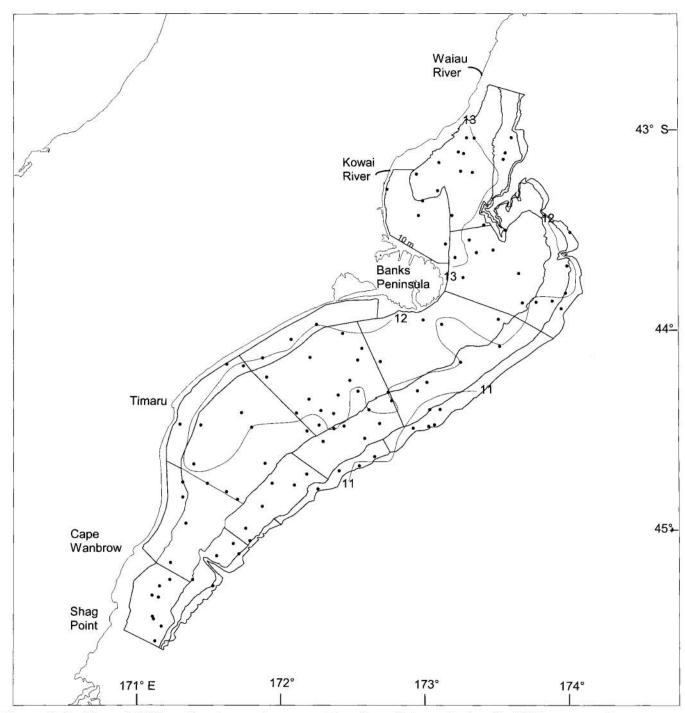


Figure 3: Positions of CTD surface temperature recordings from Kaharoa during the 2007 survey and estimated isotherms.

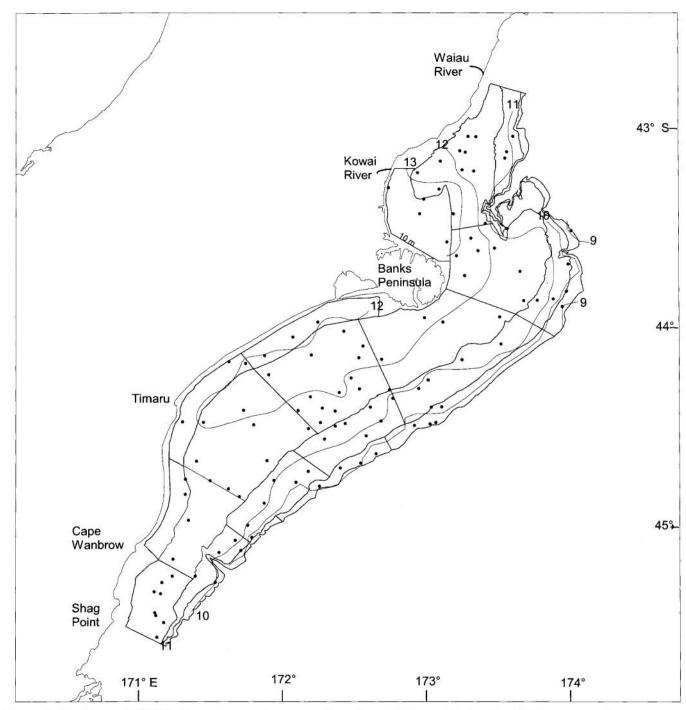


Figure 4: Positions of CTD bottom temperature recordings from *Kaharoa* during the 2007 survey and estimated isotherms.

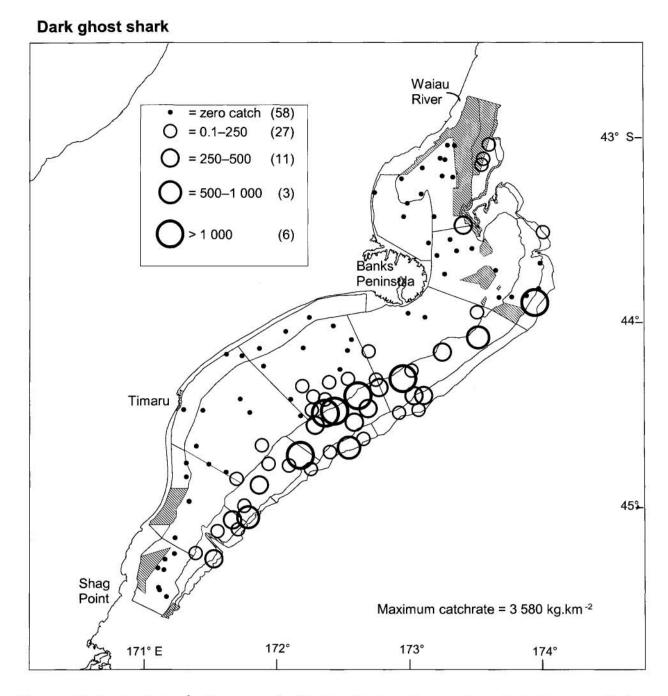


Figure 5: Catch rates (kg.km⁻²) of target species. Number of stations in parentheses. Hashed areas are foul ground.

Giant stargazer

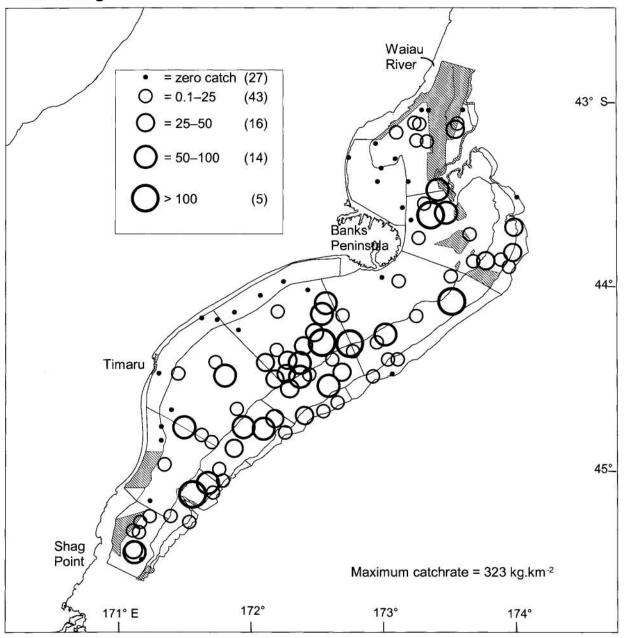


Figure 5-continued

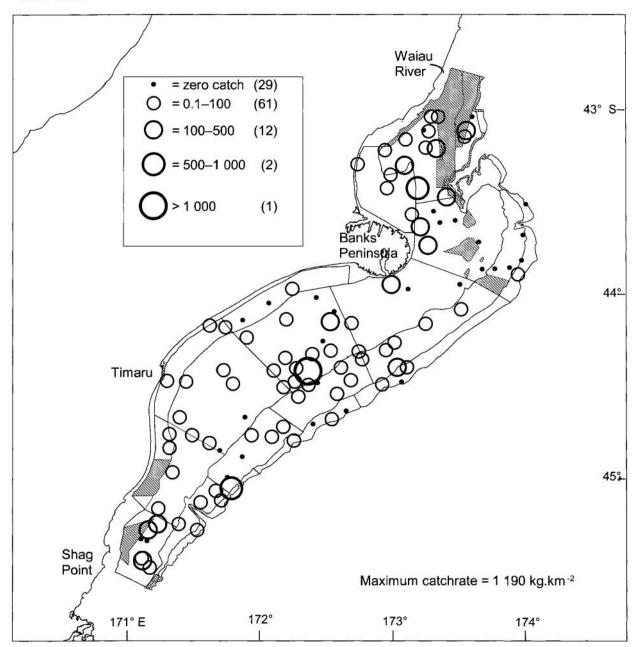


Figure 5-continued

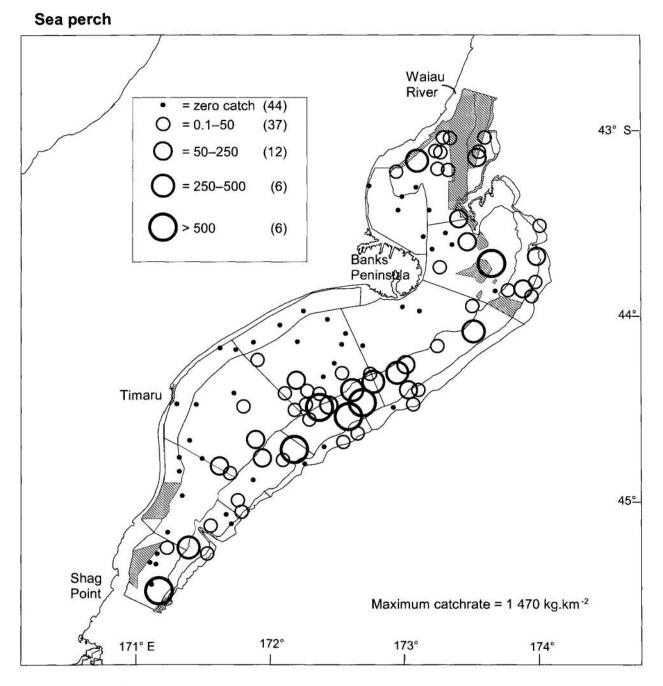


Figure 5-continued

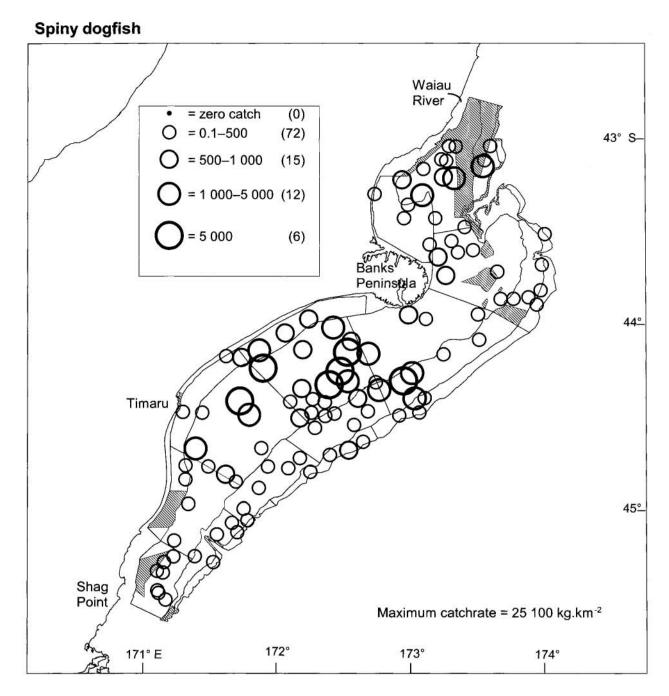


Figure 5-continued

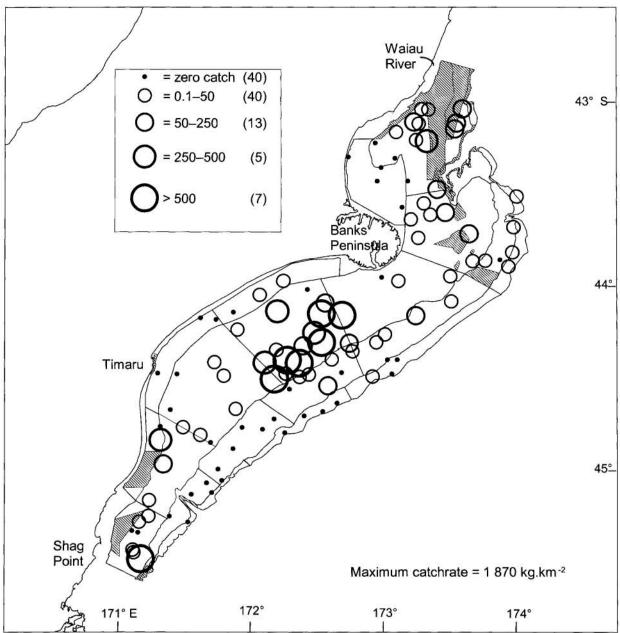
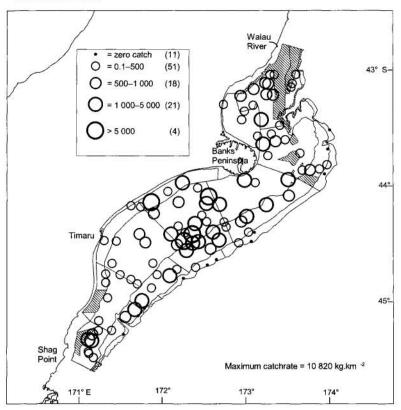



Figure 5-continued

Barracouta

Blue warehou

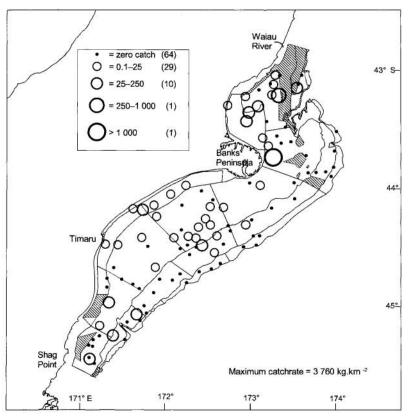
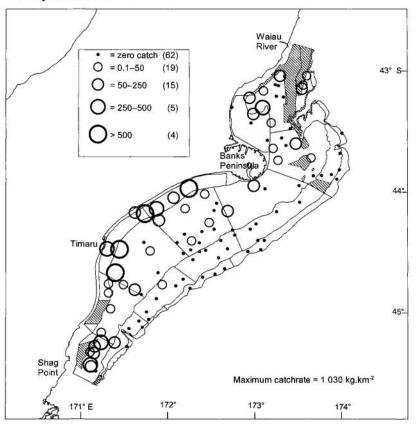



Figure 6: Catch rates (kg.km⁻²) of non-target species. Number of stations in parentheses. Hashed areas are foul ground.

Elephantfish

Hapuku

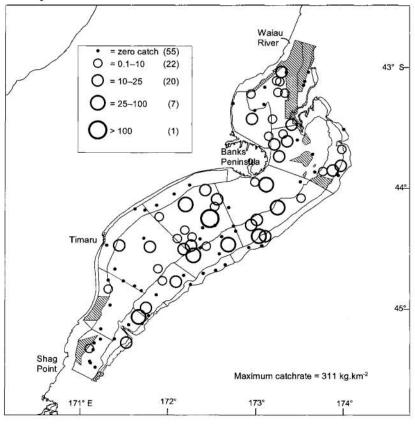
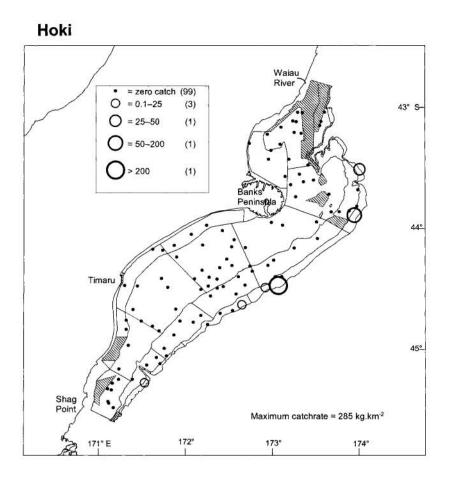



Figure 6-continued

Leatherjacket

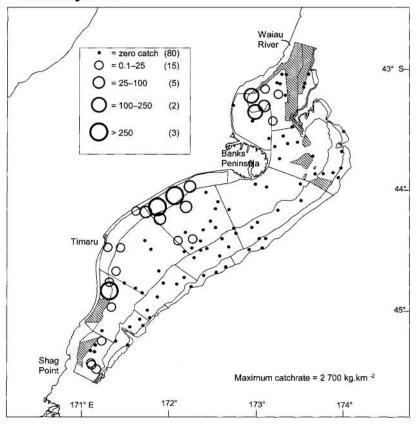
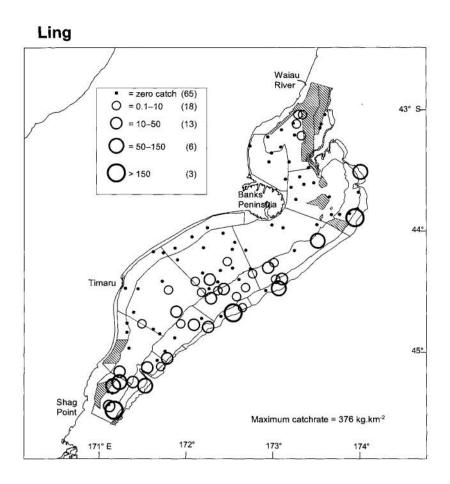



Figure 6-continued

Arrow squid

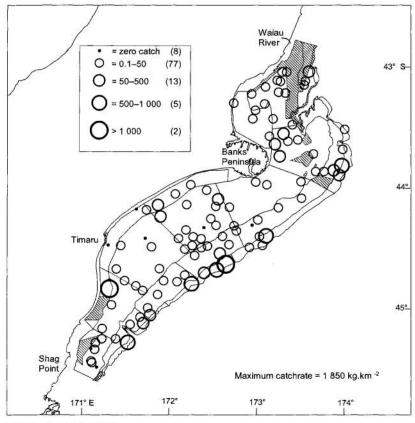


Figure 6-continued

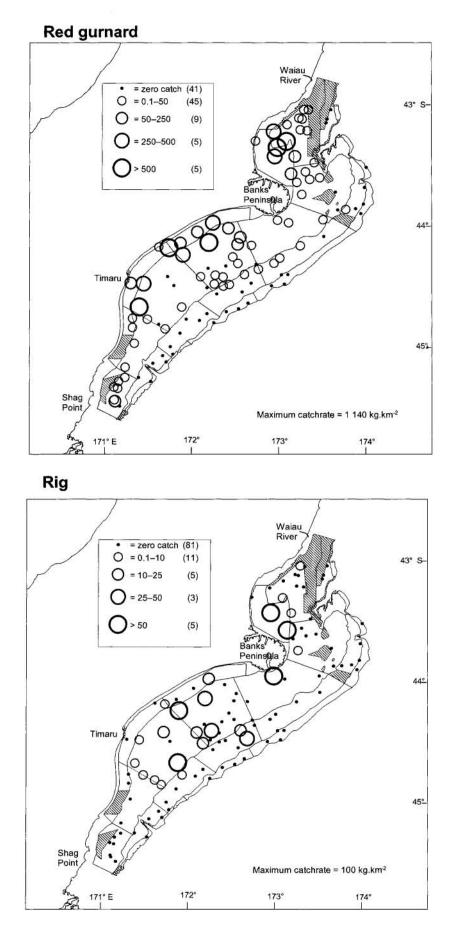


Figure 6-continued

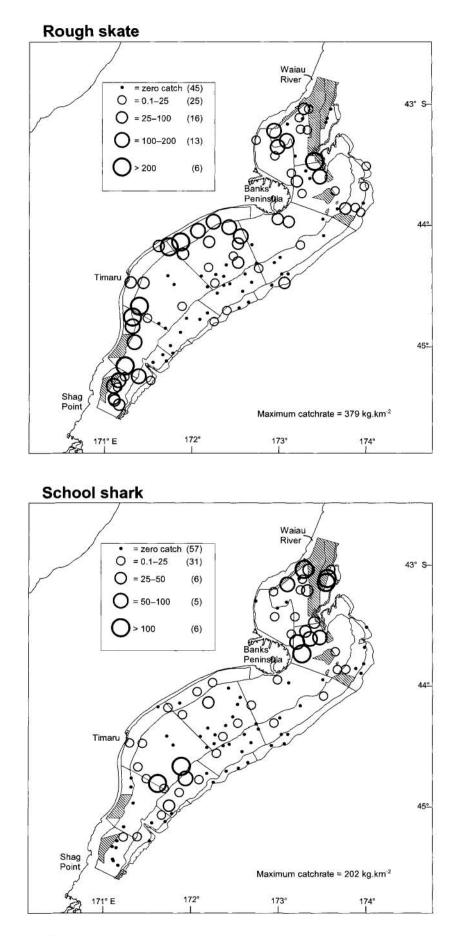
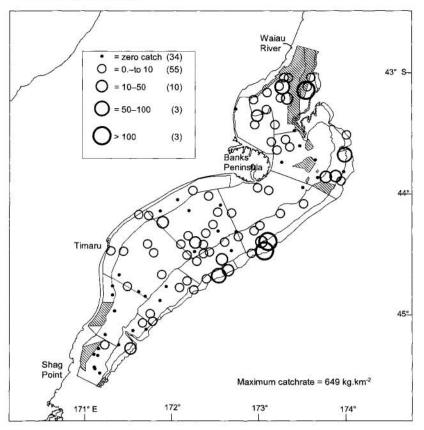
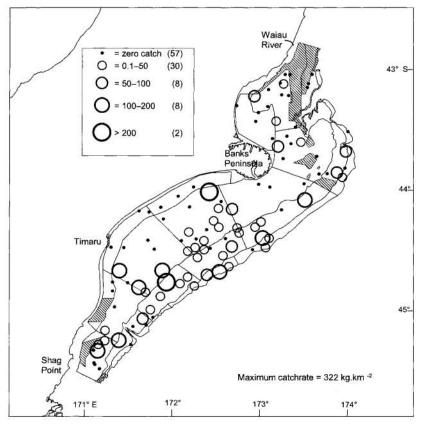
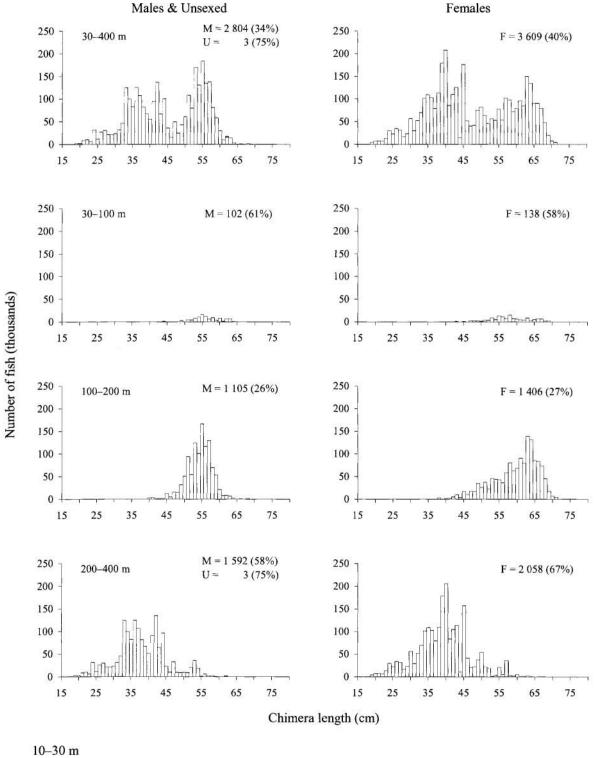
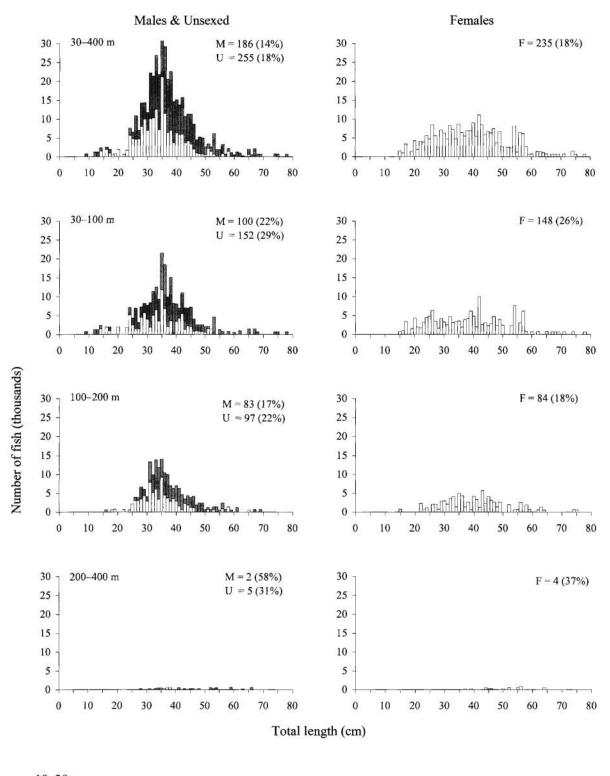



Figure 6-continued

Silver warehou

Smooth skate


Figure 6-continued

Dark ghost shark

No catch

Figure 7: Scaled length frequency distributions for the target species by depth range for the 2007 survey. Population estimates are in thousands of fish. M, number of males; F, number of females; U, unsexed; (), c.v. Shaded areas represent unsexed fish.

Giant stargazer

10-30 m No catch

Figure 7-continued

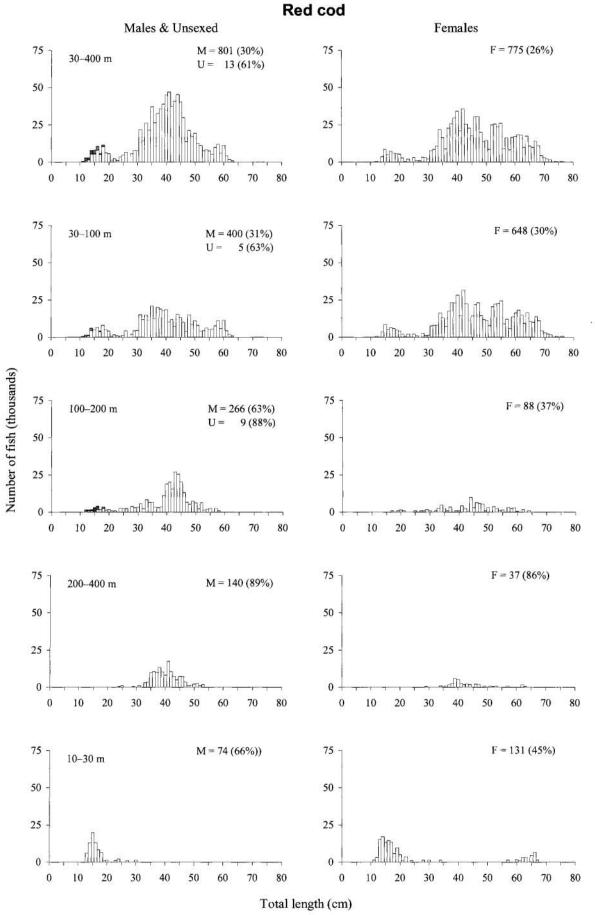
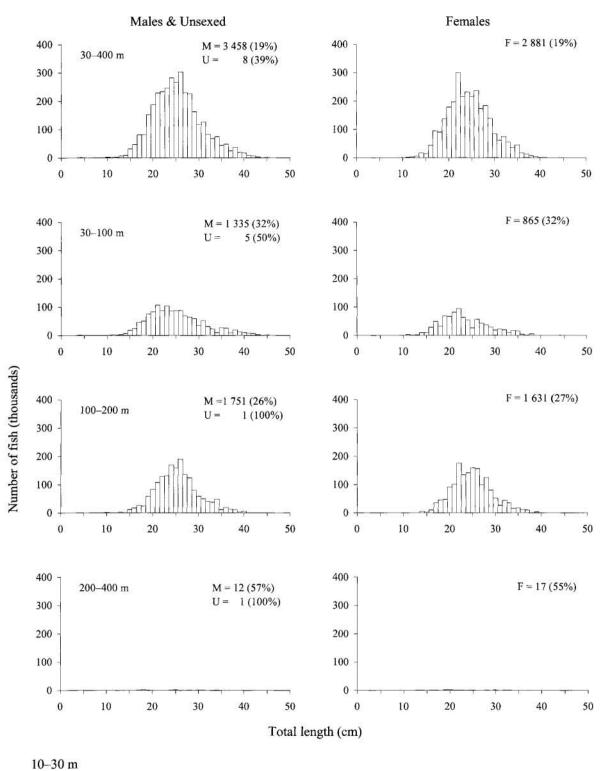



Figure 7-continued

Sea perch

No catch

Figure 7-continued

Spiny dogfish

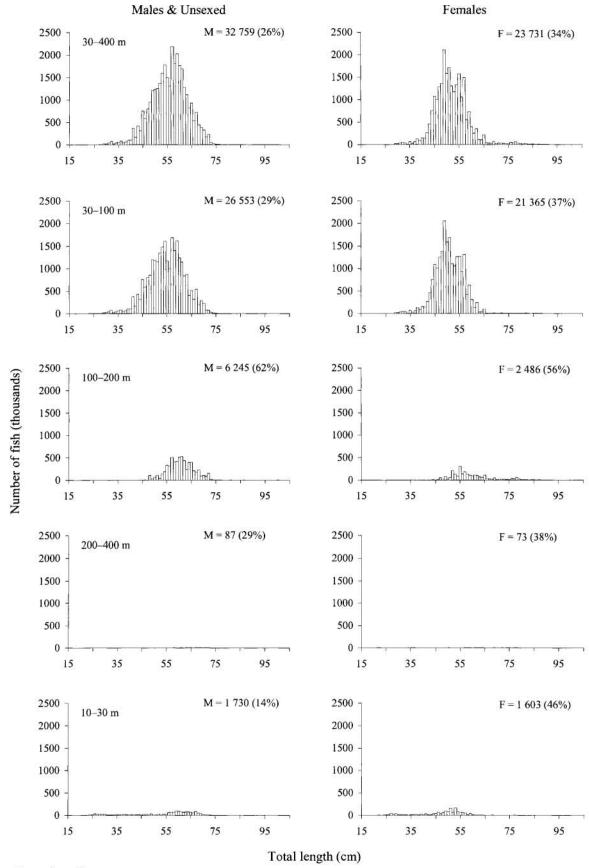


Figure 7-continued

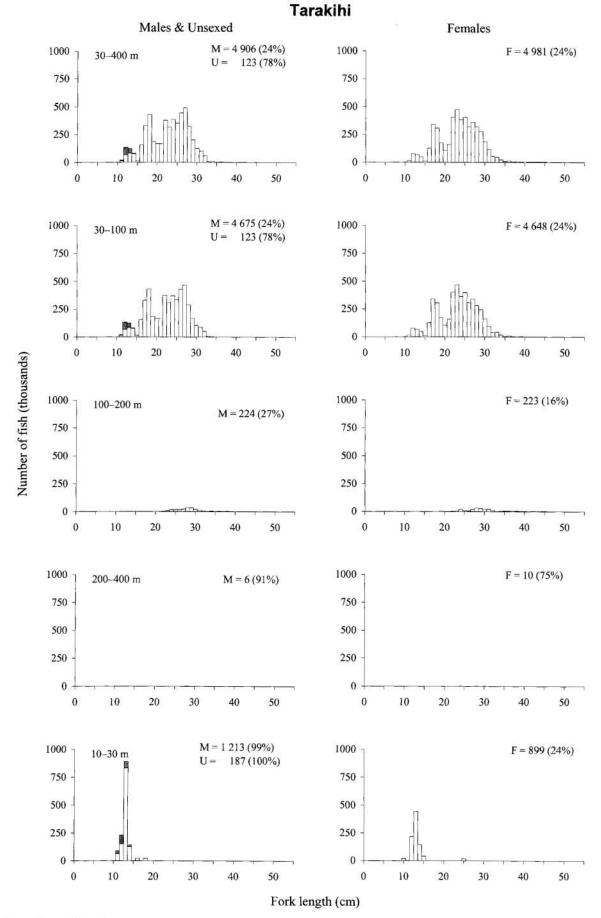


Figure 7-continued

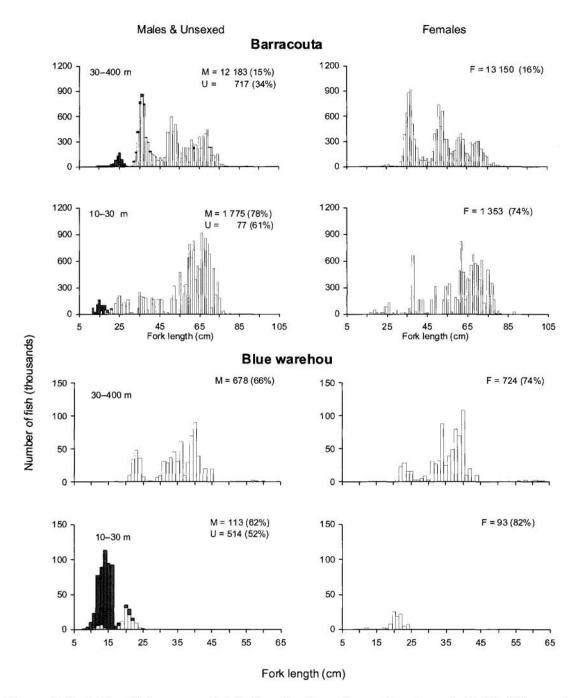


Figure 8: Scaled length frequency distributions for the main non-target species in 30-400 m, and also 10-30 m for species with a shallow distribution for the 2007 survey. Population estimates are in thousands of fish. M, number of males; F, number of females; U, unsexed; (), c.v. Shaded areas represent unsexed fish.

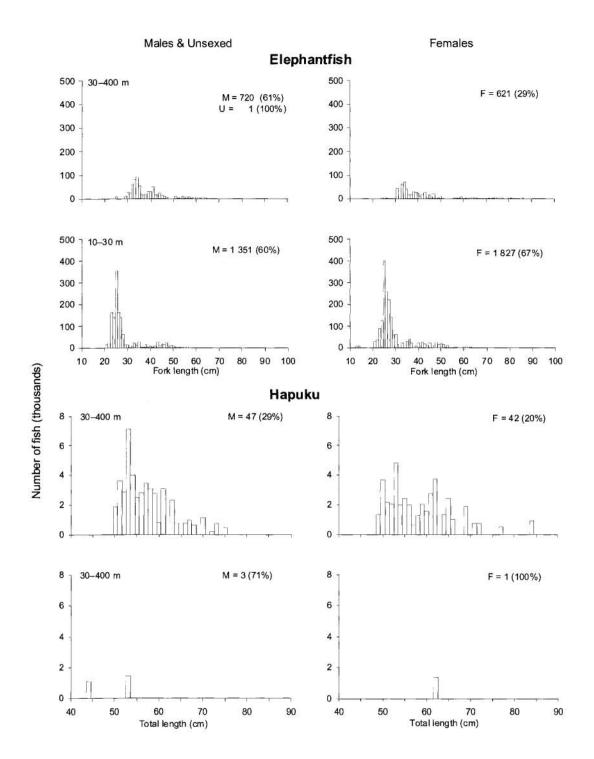
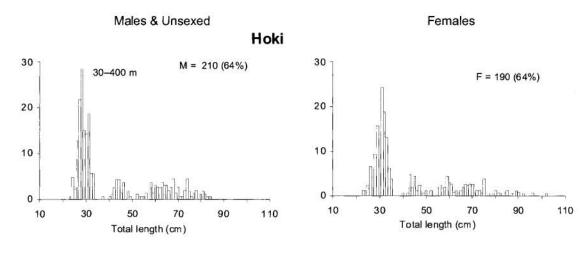



Figure 8-continued

10–30 m No catch

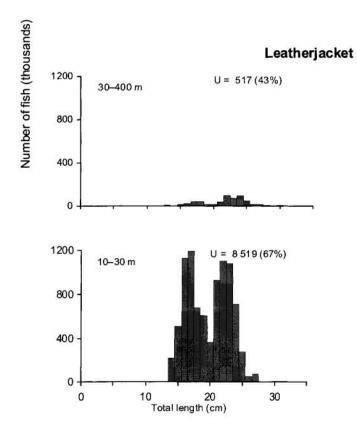
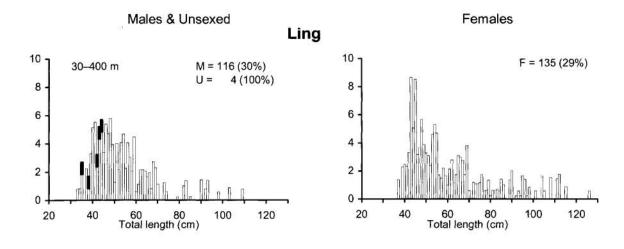



Figure 8-continued

10–30 m No catch

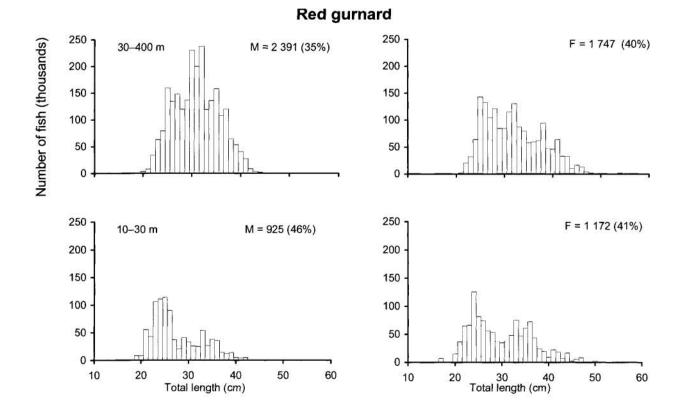


Figure 8-continued

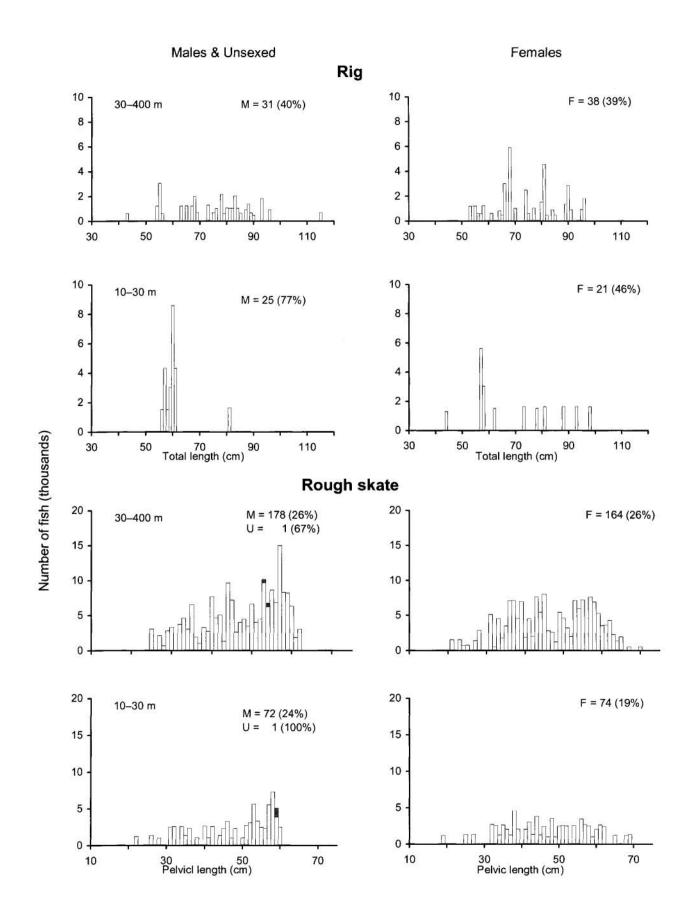


Figure 8-continued

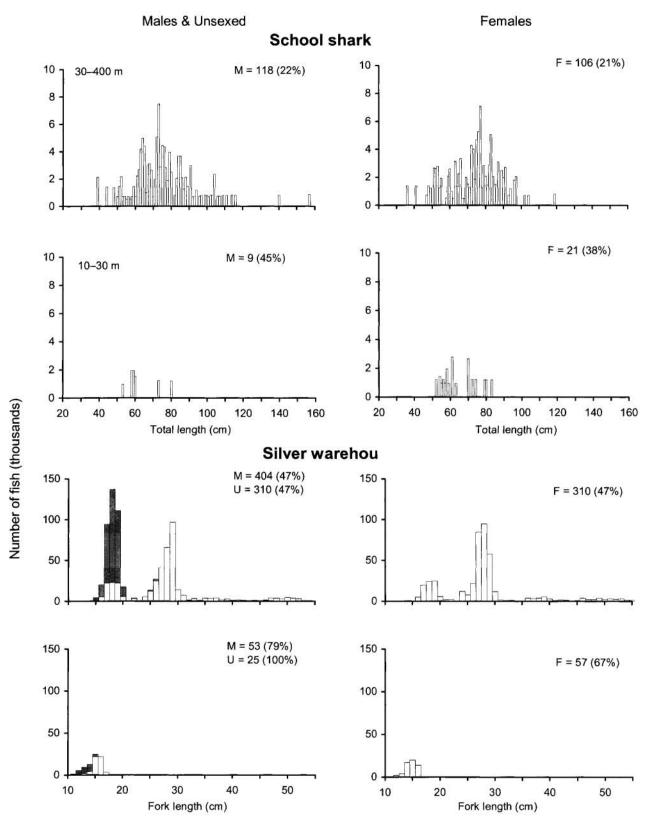


Figure 8-continued

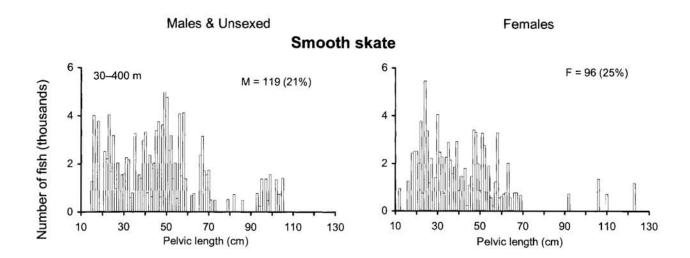
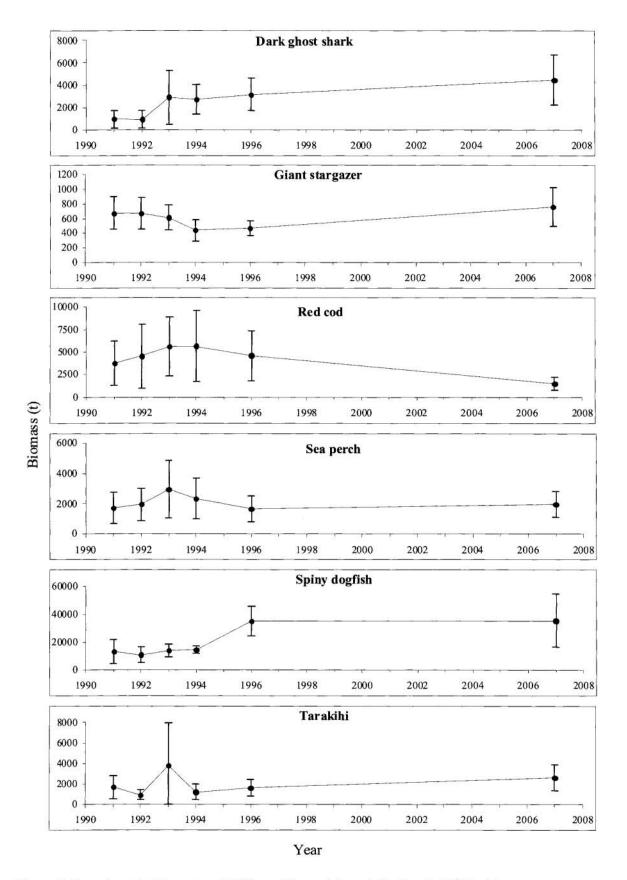
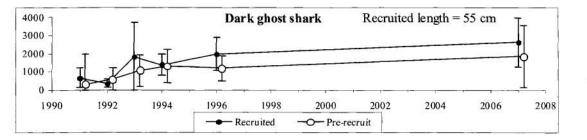
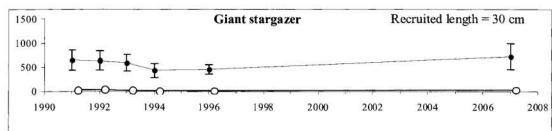
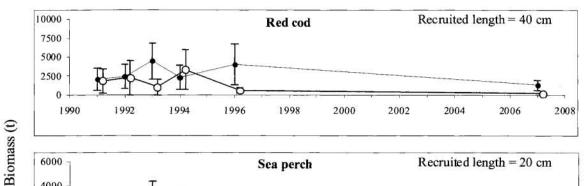
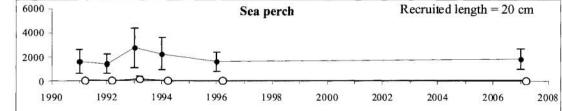
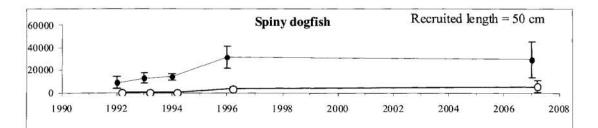


Figure 8-continued


Figure 9: Target species biomass and 95% confidence intervals for the six ECSI winter surveys.

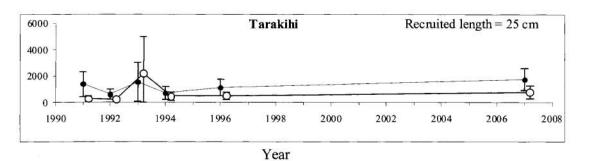
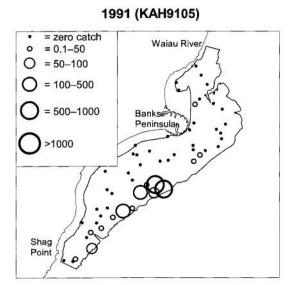
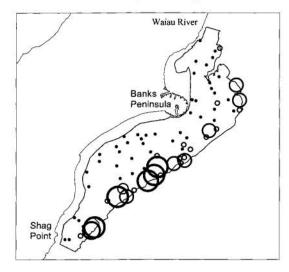
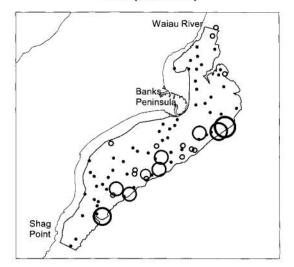
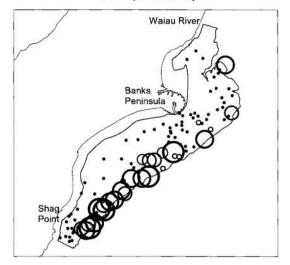




Figure 10: Target species recruited and pre-recruited biomass and 95% confidence intervals for the six ECSI winter surveys.

Dark ghost shark



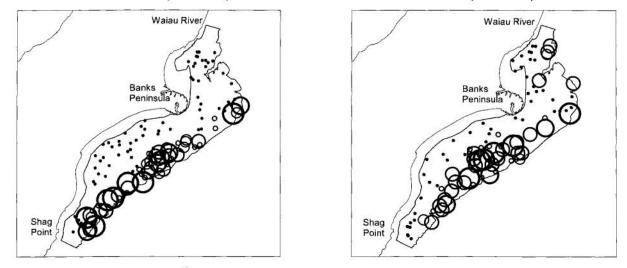
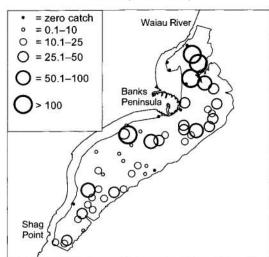
1993 (KAH9306)

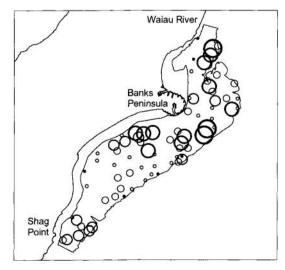


1996 (KAH9606)

1992 (KAH9205)

1994 (KAH9406)

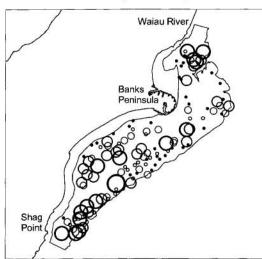
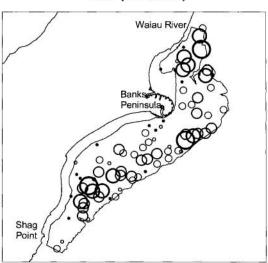
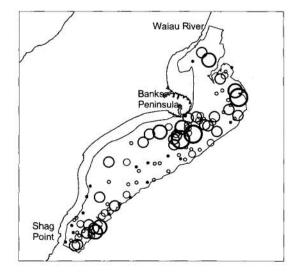



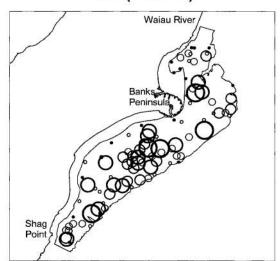

Figure 11: Catch rates (kg.km⁻²) of target species for the six ECSI winter trawl surveys in 30-400 m.

Giant stargazer

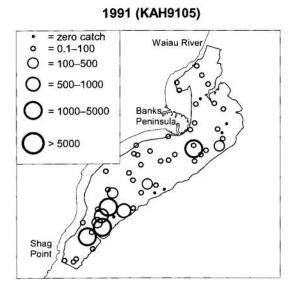
1993 (KAH9306)

1996 (KAH9606)

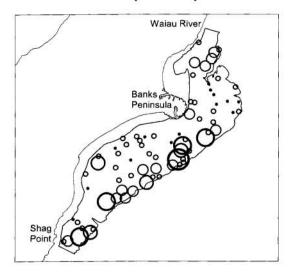





Figure 11-continued

1992 (KAH9205)



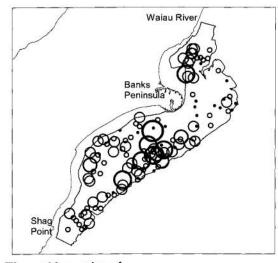
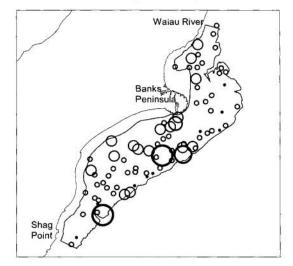
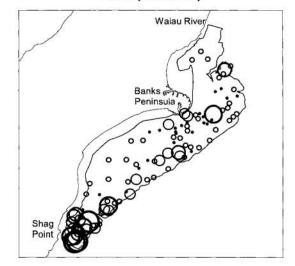
1994 (KAH9406)

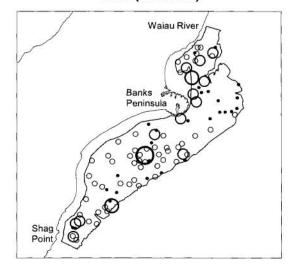


Red cod

1993 (KAH9306)

1996 (KAH9606)


Figure 11-continued

1992 (KAH9205)

1994 (KAH9406)

Sea perch

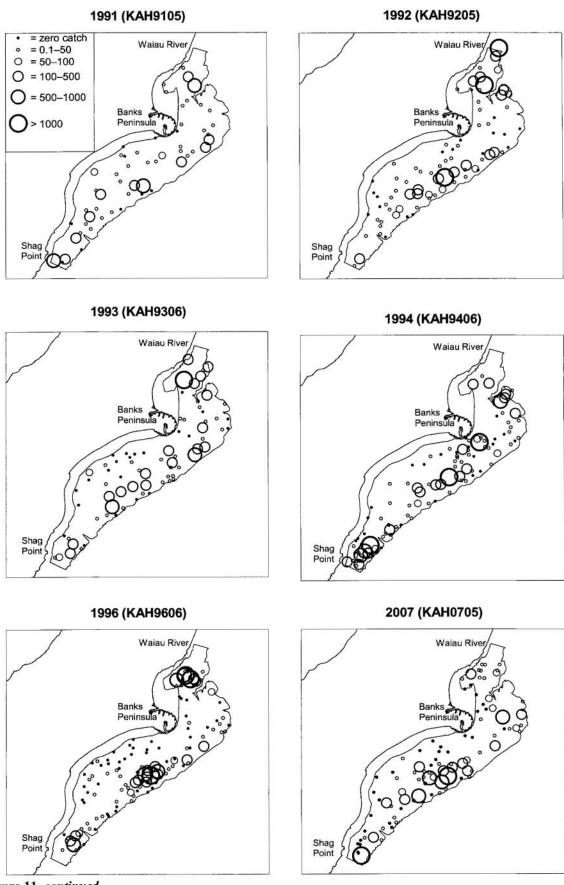
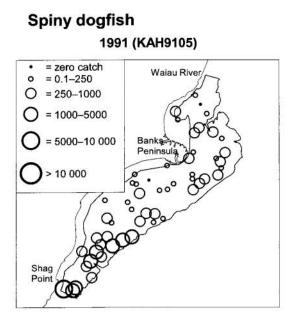
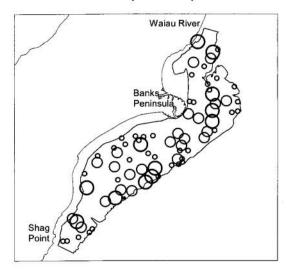
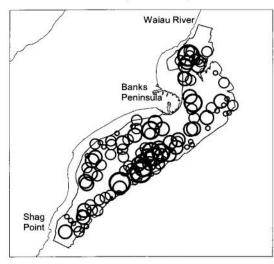
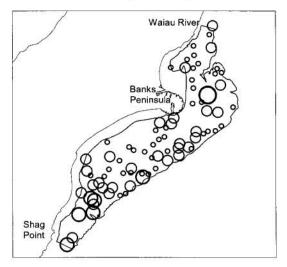
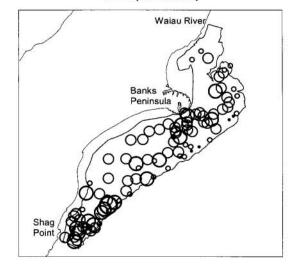
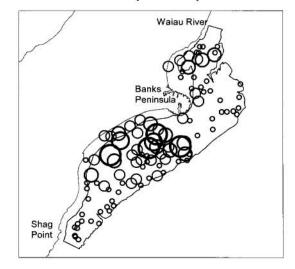




Figure 11-continued

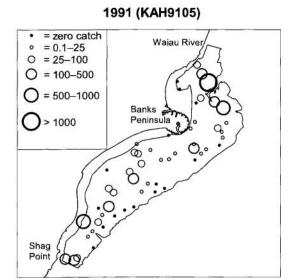
1993 (KAH9306)

1996 (KAH9606)

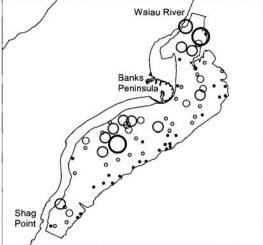





Figure 11-continued

1992 (KAH9205)



1994 (KAH9406)



Tarakihi

1993 (KAH9306)

1996 (KAH9606)

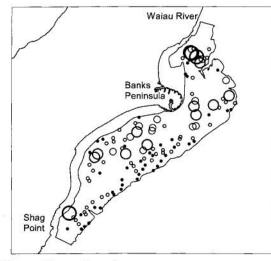
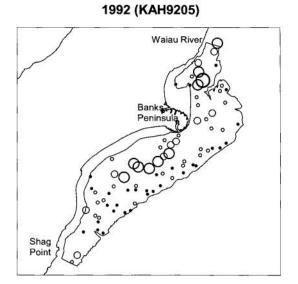
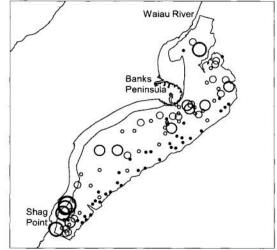
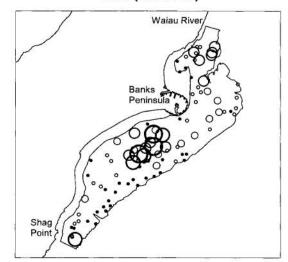





Figure 11-continued

1994 (KAH9406)

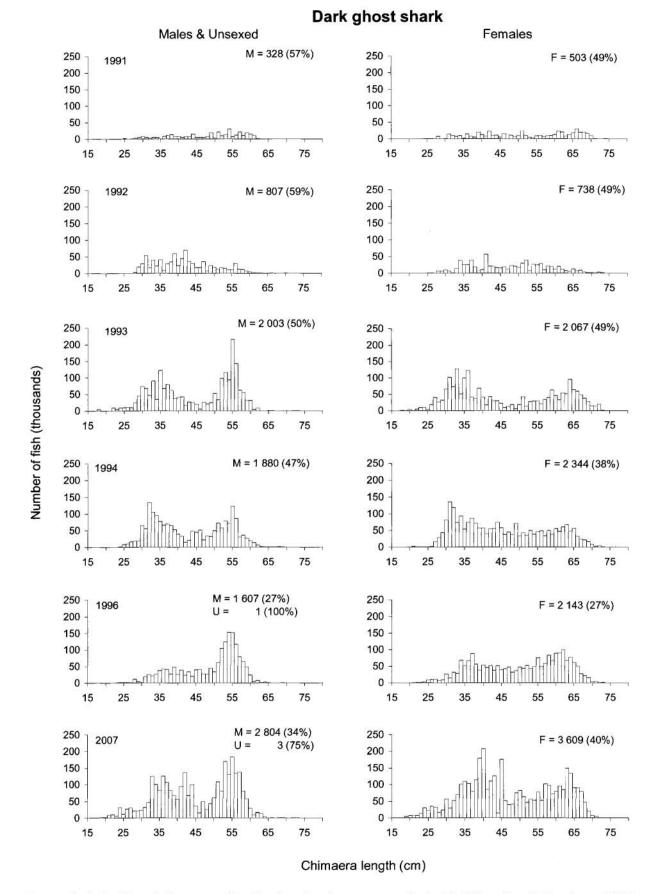


Figure 12: Scaled length frequency distributions for the target species in 30-400 m, for all six winter ECSI surveys. Population estimates are in thousands of fish. M, males; F, females; U, unsexed; (), c.v. Shaded areas represent unsexed fish.

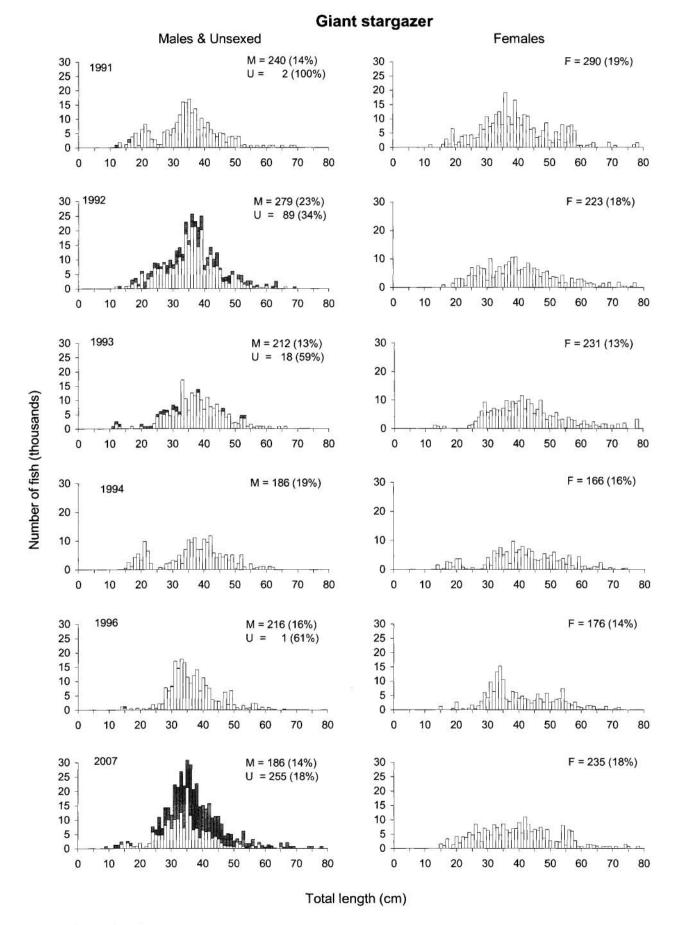
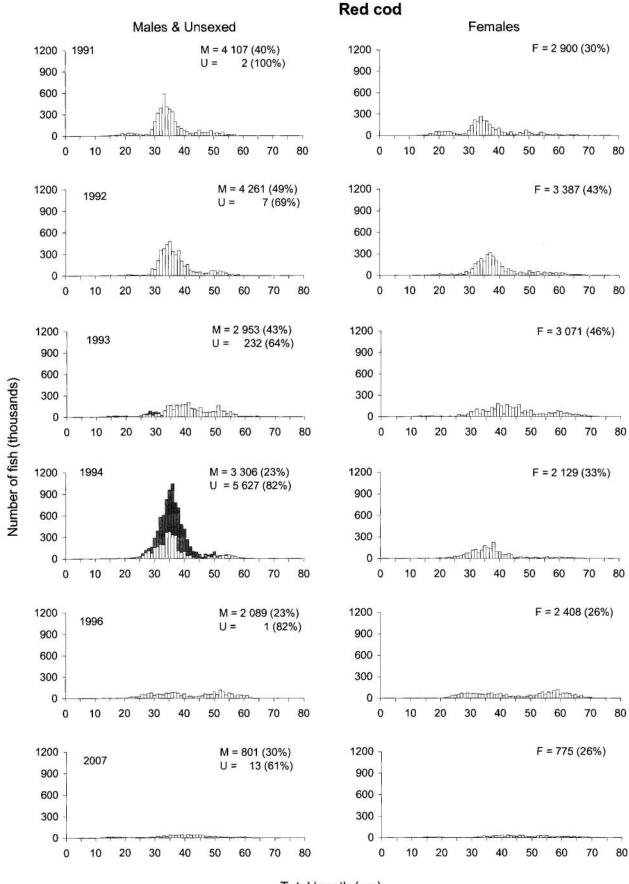



Figure 12-continued

Total length (cm)

Figure 12-continued

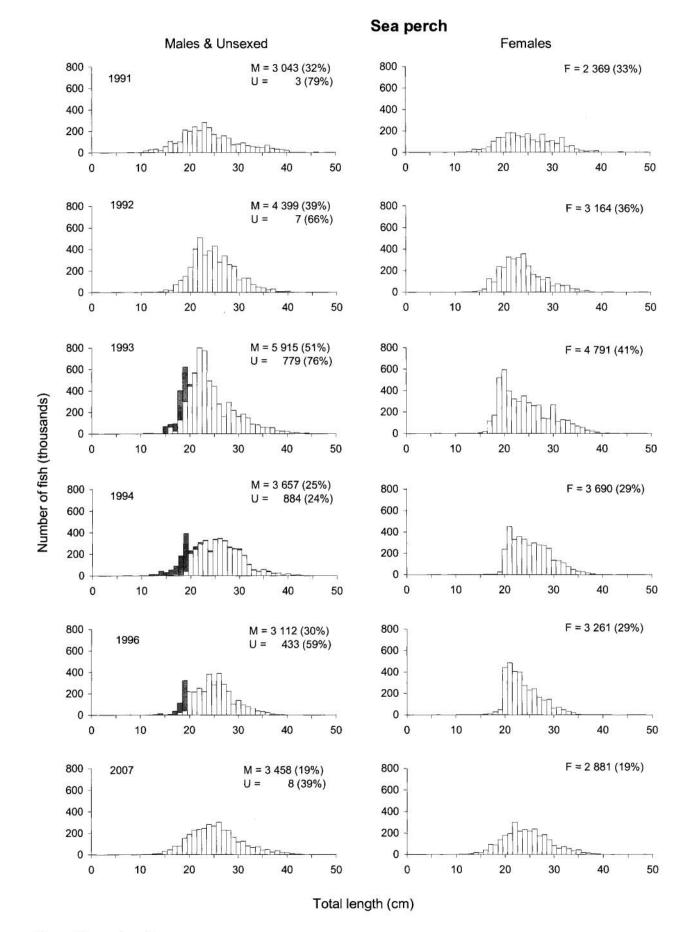


Figure 12-continued

Males & Unsexed

Spiny dogfish

Females

1991 Not measured

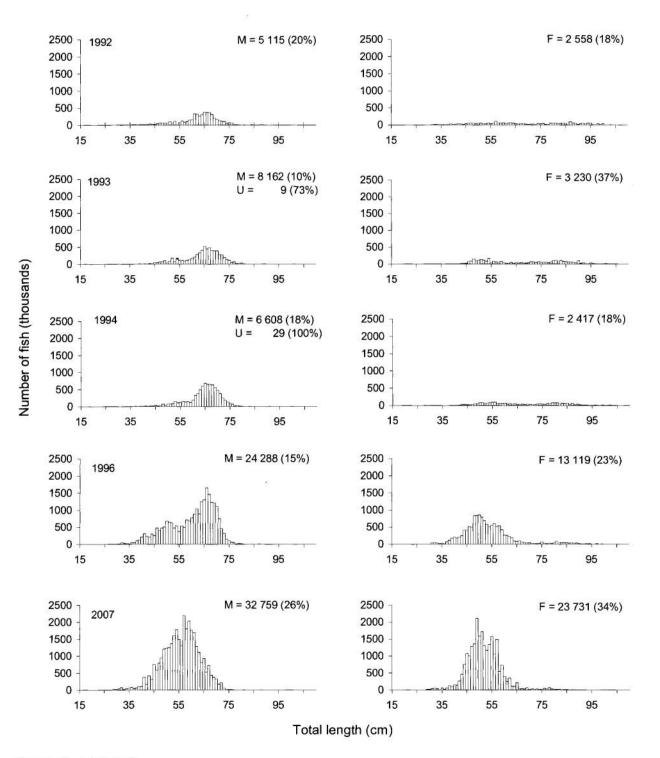
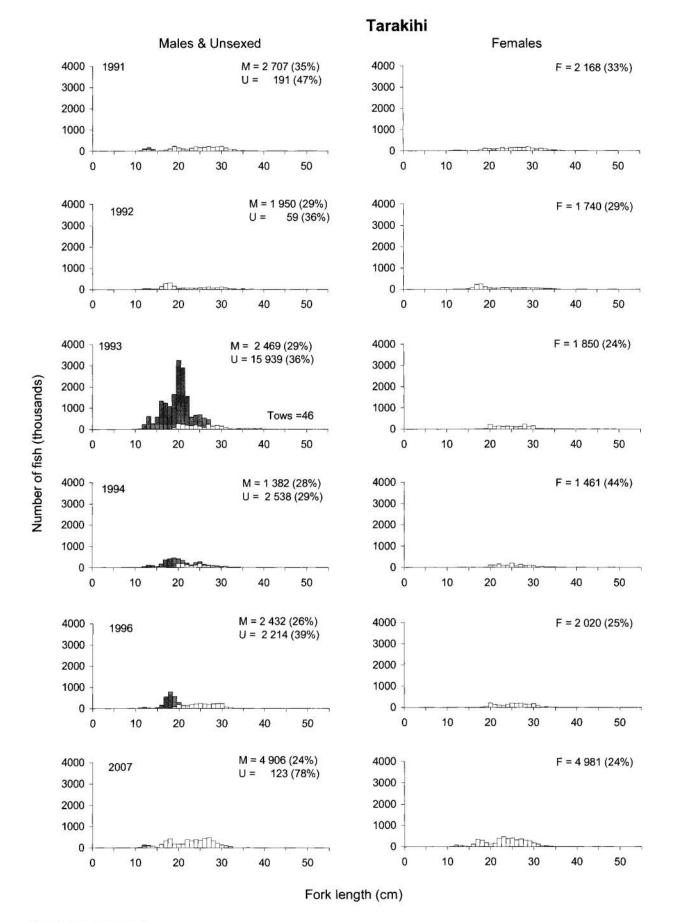
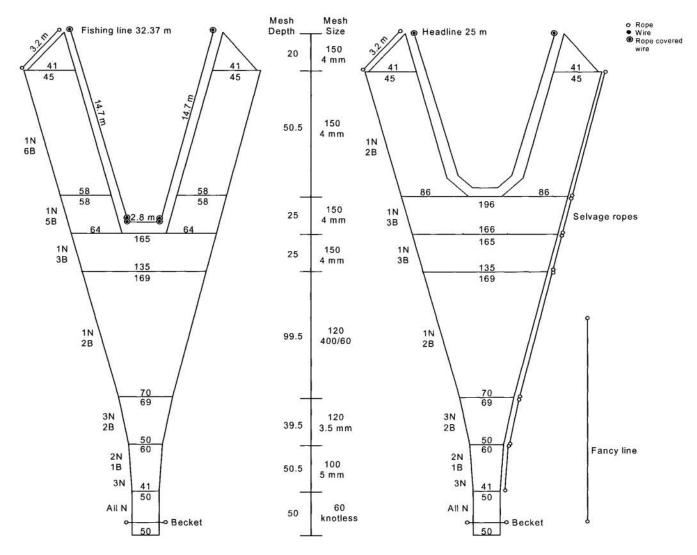


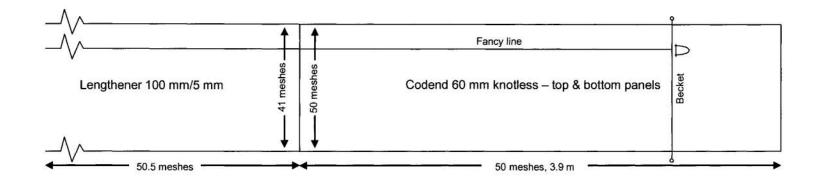
Figure 12-continued

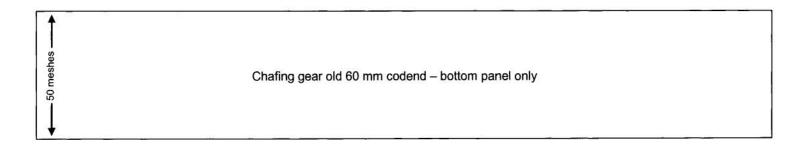



Figure 12-continued

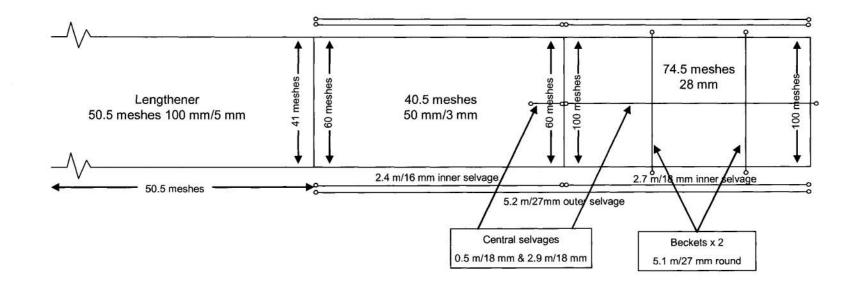
Appendix 1: R.V. Kaharoa bottom trawl gear specifications, and details of net plan, codend, flotation, ground rope, sweeps, and bridals.

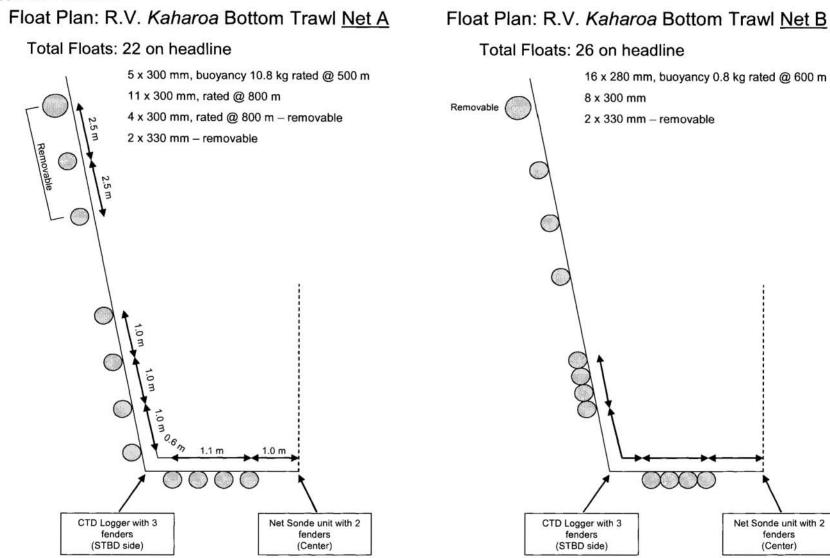
Trawl warp Trawl doors – rectangular V Backstrop length Sweep length Bridle length Layback Approximate doorspread Optimum wingspread Angle of attack of sweeps and bridles	top bottom Using (Prado 1990)		16 mm, 6 x 19 PPC 3.2 m ² 630 kg 7.5 m 55 m 12 mm 55 m 16 mm 55 m 150 mm 60 - 90 m 12.35 m 14° @ 69.4 m 16° @ 77.4 m 19° @ 89.4 m
Flotation	Net A headline net sonde CTD logger	20 2	330 mm diameter floats 300 mm diameter floats fender floats fender floats
Crown drama amonifications	total buoyancy		~ 250 kg
Ground rope specifications Net attachments	wire rope rubber rollers rubber spacers steel balls toggled hangers BCS Net sonde CTD logger	464	35 m 18 mm (6 x 19) 110 x 170 mm 40 x 80 mm 150 mm diameter, 12 kg 7.1 kg 15 kg 15 kg
	total weight		~ 280 kg
V-line specifications	'Hi-man' Superline		24 mm, 6.4 m
Headline specifications	Rope covered wire		25.05 m
Fishing line specifications	Rope covered wire		2 x 14.7 m, 1 x 2.8 m


Net Plan: R.V. Kaharoa Bottom Trawl


Mesh and twine size	No. meshes deep	Selvage ropes nylon 26 mm
150 mm 4 mm (type)	20	V-lines 24 mm Hi-man superline 6.4 m
150 mm 4 mm (type)	50.5	6.3 m
150 mm 4 mm (type)	25	3.3 m
150 mm 4 mm (type)	25	3.3 m
120 mm 400/60 (pe)	99.5	10.8 m
. 120 mm 3.5 mm (type)	39.5	4.0 m
100 mm 5 mm (type)	50.5	4.2 m
60 mm knotless (type)	50	and at the second

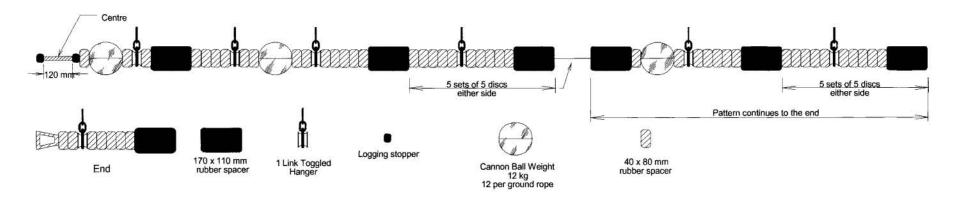
Appendix 1 -continued


Codend for ECSI Inshore (30 - 400 m) trawl survey



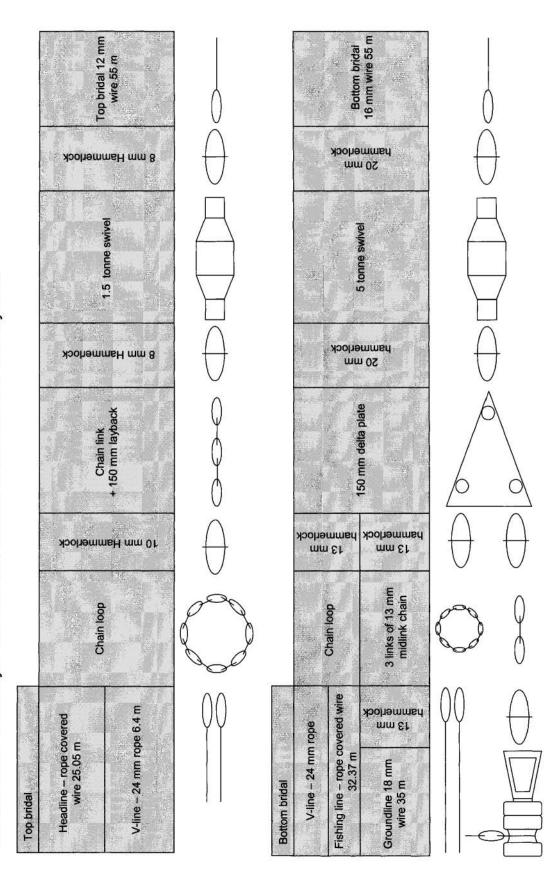
Appendix 1-continued

Codend for ECSI Inshore (10 – 30 m) trawl survey

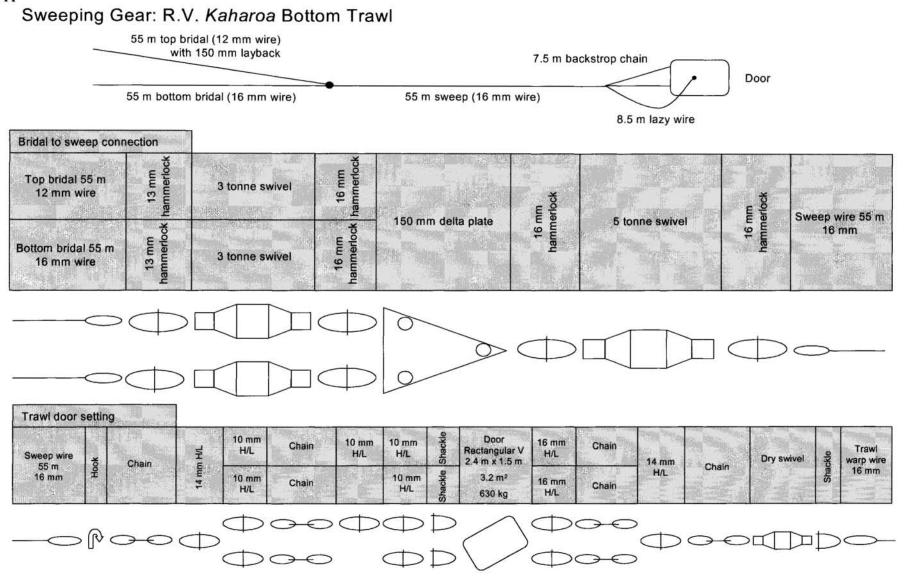


Appendix 1 -continued

Appendix 1-continued


Ground Rope Assembly: R.V. Kaharoa Bottom Trawl

31.950 m x 18 mm 6/19 wire + 1 x 13 mm H/lock & 3 links of 13 mm midlink chain each end


Appendix 1-continued

Net to Bridal Assembly: R.V. Kaharoa Bottom Trawl with 150 mm layback

80

Appendix1-continued

Appendix 2: Summary of station data.

		-			Start of tow	e entre	End of tow	Geard	lepth (m)	Dist. trawled	Headline	Doorspread	Surface temp.	Bottom temp.
Station	Strata	Date	Time	°' S	°' E	°' S	°' E	Min.	Max.	(n. miles)	height (m)	(m)	(°C)	(°C)
1	13	5-May-07	1553	43 02.41	173 36.05	43 05.30	173 35.15	128	130	2.96	4.6	83.7	12.8	10.9
2	13	6-May-07	646	43 07.02	173 33.51	43 09.90	173 34.70	120	124	3	4.5	75.5	12.9	11.3
3	13	6-May-07	922	43 08.95	173 32.71	43 11.78	173 31.32	114	116	3	4.5	74.4	12.8	11.3
4	7	6-May-07	1254	43 12.87	173 19.82	43 10.08	173 21.02	61	64	2.92	4.6	74.2	13.5	11.7
5	7	6-May-07	1541	43 02.57	173 20.66	43 05.07	173 18.43	59	59	2.98	4.7	74.1	13	11.4
6	7	7-May-07	641	43 02.47	173 17.47	43 04.61	173 14.65	55	60	2.97	4.6	75.2	13.2	11.9
7	7	7-May-07	922	43 07.19	173 16.29	43 09.66	173 13.93	50	55	3.01	4.8	77.8	13.3	11.9
8	7	7-May-07	1130	43 12.48	173 15.02	43 12.20	173 10.92	42	46	3	4.8	76.1	13.4	11.9
9	7	7-May-07	1322	43 09.86	173 05.93	43 12.00	173 02.96	42	46	3.04	4.6	77.3	13.3	12.3
10	7	7-May-07	1516	43 13.35	172 56.51	43 16.17	172 54.90	33	35	3.05	4.6	76.3	13.6	12.5
11	7	8-May-07	644	43 25.75	173 11.29	43 22.70	173 11.40	34	34	3.05	4.5	72	13.2	13.1
12	7	8-May-07	906	43 18.35	173 05.42	43 18.97	173 01.43	32	32	2.96	4.7	71.6	13.7	13.5
13	7	8-May-07	1143	43 21.38	172 59.08	43 19.64	172 55.64	30	31	3.04	4.6	73.3	13.7	13.5
14	18	8-May-07	1447	43 17.90	172 44.23	43 19.88	172 44.10	13	15	1.98	4.7	70.4	13.8	13.8
15	18	9-May-07	652	43 25.74	172 57.33	43 27.59	172 58.65	27	28	2.08	4.6	75.1	13.6	13.5
16	18	9-May-07	913	43 34.28	173 08.65	43 36.31	173 08.90	24	25	2.03	4.7	71.4	13.4	13.4
17	6	9-May-07	1117	43 38.37	173 12.59	43 35.44	173 13.05	46	48	2.94	4.3	76.7	13.2	12.9
18	6	9-May-07	1403	43 33.15	173 18.52	43 36.24	173 18.36	64	65	3.09	4.8	72.5	12.8	12.5
19	6	9-May-07	1550	43 36.84	173 21.48	43 39.94	173 21.45	75	75	3.1	4.6	73.8	12.7	12.4
20	6	10-May-07	650	43 28.64	173 24.53	43 31.54	173 25.54	86	89	2.99	4.6	73.4	12.7	11.1
21*	13	10-May-07	927	43 30.19	173 33.39	43 32.18	173 32.76	92	132	2.03	4.5	78.8		
22	6	10-May-07	1149	43 36.12	173 28.37	43 39.24	173 28.26	88	91	3.12	4.5	73.4	12.6	11.4
23	6	10-May-07	1439	43 43.12	173 39.03	43 46.24	173 38.20	90	90	3.17	4.9	79.7	12.4	11.3
24	17	11-May-07	710	43 30.86	174 00.41	43 33.44	174 02.70	351	365	3.06	4.5	85	11.3	8.6
25	12	11-May-07	952	43 40.84	173 59.07	43 43.72	173 58.10	151	151	2.96	4.1	82.3	12.1	10.7
26	17	11-May-07	1244	43 49.03	173 58.47	43 51.82	173 56.64	218	220	3.08	4.4	84	12.3	9.3
27	17	11-May-07	1511	43 53.70	173 56.71	43 56.10	173 54.41	310	314	2.91	4.2	88	11.2	8.7
28	5	12-May-07	1331	43 56.88	173 30.46	43 55.20	173 33.73	95	95	2.89	4.7	80.9	12.3	11.4
29	6	12-May-07	1532	43 51.92	173 40.56	43 49.97	173 43.45	97	99	2.85	4.8	80.2	12.5	11.3
30	12	13-May-07	647	43 51.34	173 52.99	43 53.90	173 50.94	138	144	2.95	4.5	84.8	11.1	10.8

Appendix 2-continued

					Start of tow		End of tow	Gear of	lepth (m)	Dist. trawled	Headline	Doorspread	Surface temp.	Bottom temp.
Station	Strata	Date	Time	°' S	°' E	°' S	°' E	Min.	Max.	(n. miles)	height (m)	(m)	(°C)	(°C)
31	12	13-May-07	852	43 51.78	173 46.28	43 53.82	173 43.74	105	106	2.74	4.5	79.9	11.8	11.1
32	11	13-May-07	1624	44 05.05	173 30.98	44 06.73	173 27.66	122	125	2.91	4.1	81.2	12	11.2
33	6	14-May-07	643	43 44.34	173 15.96	43 41.65	173 17.04	66	68	2.8	4.1	67.9	12.5	12.4
34	5	15-May-07	653	43 57.08	172 59.31	43 54.72	173 01.96	55	68	3.03	4.6	72.6	12.3	12.3
35	5	15-May-07	925	43 58.40	173 06.93	43 56.44	173 10.04	75	75	2.97	4.7	73.5	11.9	11.7
36	5	15-May-07	1209	43 06.73	173 14.07	43 08.81	173 10.84	92	96	3.14	4.2	77.3	11.9	11.6
37	11	15-May-07	1405	44 09.76	173 14.85	44 08.09	173 18.31	102	111	2.99	4.7	85.7	11.6	11.5
38	16	16-May-07	658	44 29.51	172 55.09	44 28.35	172 58.89	313	314	2.94	5.1	96.7	10.7	9.4
39*	16	16-May-07	913	44 29.00	173 01.60	44 28.25	173 05.82	374	393	3.1	4.5	92.6	10.4	9.5
40	16	16-May-07	1124	44 28.58	173 04.00	44 29.35	173 00.16	357	391	2.84	4.5	88.9	10.5	9.6
41	11	16-May-07	1350	44 24.00	173 02.00	44 21.75	173 04.76	151	161	2.99	4.6	88.2	10.7	10.4
42	16	17-May-07	651	44 23.91	173 06.35	44 22.19	173 09.69	230	242	2.94	5.1	94.5	10.6	10.4
43	11	17-May-07	1003	44 15.84	173 00.80	44 17.06	172 56.83	106	110	3.09	4.2	83.7	11.9	10.8
44	11	17-May-07	1312	44 18.38	172 56.87	44 19.28	172 54.38	117	120	1.99	4.4	80.4	11.9	10.9
45	4	18-May-07	645	44 24.27	172 16.47	44 25.93	172 14.83	80	83	2.03	4.6	78.5	12.1	11.7
46	3	18-May-07	841	44 30.40	172 10.70	44 28.13	172 10.05	84	90	2.31	4.7	78.2	11.6	11.2
47	4	18-May-07	1015	44 25.03	172 06.33	44 22.38	172 04.34	67	72	3	4.8	71.1	12.2	11.8
48	3	18-May-07	1306	44 29.30	171 47.76	44 30.11	171 43.73	63	65	2.98	4.9	71.4	12	11.8
49	3	18-May-07	1459	44 24.90	171 43.45	44 21.96	171 42.69	50	53	2.98	4.7	71.9	12.6	12.5
50	3	19-May-07	1555	44 28.60	171 26.56	44 30.47	171 27.57	36	42	2	5.5	73.3	12.7	12.6
51	5	20-May-07	653	44 09.59	172 41.33	44 09.46	172 38.42	67	73	2.09	4.4	69.4	12.2	12.1
52	4	20-May-07	843	44 09.15	172 31.88	44 09.29	172 29.08	59	63	2.02	4.5	68.7	12.2	12.1
53	4	20-May-07	1229	44 08.30	172 11.90	44 09.10	172 09.43	45	46	1.94	4.8	75.3	12.5	12.8
54	4	20-May-07	1505	44 14.26	171 54.00	44 15.37	171 51.34	43	45	2.2	4.7	75.7	12.7	12.8
55	4	21-May-07	653	44 15.27	172 28.53	44 16.80	172 26.64	75	76	2.04	4.7	73.2	12.4	11.7
56	4	21-May-07	848	44 19.61	172 23.62	44 20.74	172 22.25	77	78	1.49	4.9	74.1	12.6	12.1
57	4	21-May-07	1202	44 25.18	172 21.82	44 26.62	172 22.47	86	91	1.51	4.9	80.3	12.4	11.5
58	10	21-May-07	1433	44 29.65	172 21.92	44 31.07	172 21.32	105	108	1.48	4.8	82.6	12.2	11.3
59	10	21-May-07	1633	44 33.53	172 17.41	44 34.52	172 15.93	110	112	1.44	4.7	82.2	11.6	11.4
60	10	22-May-07	700	44 28.90	172 26.12	44 28.03	172 27.84	110	110	1.5	4.7	82.4	11.8	11.3

Appendix 2-continued

					Start of tow		End of tow	Gear d	lepth (m)_	Dist. trawled	Headline	Doorspread	Surface temp.	Bottom temp.
Station	Strata	Date	Time	°' S	°' E	°' S	°' E	Min.	Max.	(n. miles)	height (m)	(m)	(°C)	(°C)
61	10	22-May-07	844	44 24.00	172 36.60	44 23.50	172 38.58	109	110	1.5	4.8	82.8	12	11.2
62	5	22-May-07	1048	44 18.78	172 44.61	44 18.03	172 46.91	94	96	1.85	4.7	80.4	12	11.1
63	10	22-May-07	1256	44 21.33	172 46.08	44 22.76	172 44.17	110	114	1.97	4.7	80.4	12	10.8
64	10	22-May-07	1510	44 28.15	172 41.08	44 29.05	172 39.41	131	135	1.49	4.8	81.4	11.7	11
65	3	24-May-07	1349	44 40.24	171 23.62	44 42.27	171 24.17	40	41	2.06	4.8	73	12.4	11.8
66	2	24-May-07	1550	44 46.05	171 29.34	44 48.99	171 30.79	50	56	3.11	4.7	77.4	11.8	11.7
67	10	25-May-07	656	44 32.60	172 34.88	44 33.79	172 32.62	136	139	2	4.6	82.9	11.4	10.4
68	15	25-May-07	923	44 38.00	172 39.00	44 39.51	172 35.56	360	365	2.87	4.7	84.9	11.3	9.9
69	15	25-May-07	1146	44 40.80	172 32.56	44 42.03	172 28.86	361	362	2.9	4.5	84.5	10.8	10
70	15	25-May-07	1440	44 42.25	172 24.05	44 44.04	172 20.69	227	234	2.98	4.4	87.6	11.5	10.4
71	3	26-May-07	702	44 40.06	171 53.28	44 38.46	171 55.22	96	96	2.11	4.7	83.1	11.5	11.1
72	9	26-May-07	922	44 46.56	172 05.44	44 48.30	172 06.89	135	136	2.02	4.4	84.8	11	10.7
73	15	26-May-07	1118	44 47.73	172 15.30	44 49.72	172 12.29	270	318	2.91	4.4	86.7	11.2	10.3
74	9	26-May-07	1333	44 43.28	172 10.62	44 41.82	172 10.38	130	135	1.46	4.7	85.3	11.3	10.3
75	9	26-May-07	1544	44 46.02	171 56.28	44 46.29	171 53.39	109	116	2.06	4.4	83.4	11.5	11
76	1	27-May-07	657	45 26.79	171 06.96	45 28.23	171 06.40	59	62	1.53	4.8	73.1	11.4	11.5
77	1	27-May-07	841	45 28.96	171 10.17	45 27.72	171 11.57	94	95	1.58	4.4	63.8	11.5	11.5
78	1	27-May-07	1135	45 20.24	171 08.93	45 19.15	171 10.39	53	54	1.49	5.4	72.5	11.4	11.4
79	1	28-May-07	705	45 16.86	171 09.40	45 14.99	171 10.76	49	50	2.1	4.7	73.5	11.4	11.5
80	1	28-May-07	826	45 14.97	171 13.73	45 13.25	171 15.33	57	58	2.05	5	73.3	11.4	11.5
81	2	28-May-07	949	45 09.86	171 13.96	45 07.91	171 14.63	48	50	2	5	72.8	11.4	11.4
82	8	28-May-07	1207	45 14.93	171 23.27	45 14.31	171 26.08	101	116	2.07	4.9	82.4	11.6	11.5
83	14	28-May-07	1400	45 16.80	171 31.65	45 14.08	171 33.49	257	275	3.01	4.9	98.4	11.2	11.1
84	8	28-May-07	1609	45 07.81	171 33.18	45 05.82	171 34.75	117	120	2.27	4.5	85	11.4	11.1
85	8	29-May-07	710	45 04.11	171 40.02	45 05.59	171 39.75	129	129	1.49	4.4	80.3	11.4	11.3
86	14	29-May-07	846	45 07.20	171 42.39	45 04.93	171 44.95	210	255	2.9	5.1	93.3	11.2	10.1
87	14	29-May-07	1039	45 03.30	171 46.98	45 01.19	171 49.77	225	260	2.88	4.8	89.1	11.2	9.9
88	9	29-May-07	1237	44 59.57	171 45.27	44 57.61	171 45.52	125	126	1.96	4.8	83.5	11.1	11
89	2	29-May-07	1533	44 58.06	171 20.39	44 55.07	171 21.10	40	47	3.03	4.5	72.2	11.3	11.3
90	9	30-May-07	716	44 52.91	171 52.12	44 52.03	171 49.47	116	124	2.07	4.5	82.1	11.1	11.1

Appendix 2-continued

Appendi	x 2-conti	пиеа											G G	P
		-		1	Start of tow		End of tow	Gear of	lepth (m)	Dist. trawled	Headline	Doorspread	Surface temp.	Bottom temp.
Station	Strata	Date	Time	°' S	°' E	°' S	°' E	Min.	Max.	(n. miles)	height (m)	(m)	(°C)	(°C)
91	3	30-May-07	856	44 50.87	171 41.75	44 49.82	171 39.34	90	97	2	4.5	81.9	11.4	11.2
92	3	30-May-07	1021	44 48.57	171 37.16	44 50.54	171 36.86	79	83	1.98	4.8	77.3	11.3	11.3
93	4	1-Jun-07	717	44 01.14	172 25.53	44 01.57	172 28.31	41	49	2.04	4.6	72.6	12	12.2
94	4	1-Jun-07	854	44 05.63	172 33.64	44 06.92	172 34.83	57	57	1.54	4.7	71.4	12.2	12
95	4	1-Jun-07	1104	44 18.50	172 32.02	44 20.52	172 32.11	76	82	2.02	4.6	76.1	11.6	11.6
96	4	1-Jun-07	1345	44 20.87	172 11.50	44 22.91	172 11.61	69	71	2.04	4.6	71.1	11.9	11.7
97	4	1-Jun-07	1527	44 28.63	172 15.76	44 30.12	172 15.25	92	97	1.53	4.6	77.9	11.5	11.3
98*	1	2-Jun-07	726	45 33.36	171 07.44	45 32.66	171 07.84	97	97	0.75	4.6	67.7	11.5	11.5
99	1	2-Jun-07	847	45 25.97	171 06.46	45 24.10	171 07.47	56	57	1.99	4.7	72.4	11.5	11.5
100	1	2-Jun-07	1011	45 19.66	171 06.26	45 17.73	171 07.17	45	46	2.03	4.9	71.9	11.3	11.5
101	21	3-Jun-07	728	44 50.18	171 19.02	44 48.44	171 19.39	29	30	1.75	4.4	67.2	11.2	11.2
102	21	3-Jun-07	912	44 45.69	171 19.03	44 44.39	171 17.78	26	31	1.57	4.6	67.5	11.2	11.2
103	20	3-Jun-07	1146	44 28.36	171 17.82	44 26.60	171 19.46	20	21	2.11	4.5	69.1	11.9	11.9
104	20	3-Jun-07	1520	44 10.34	171 37.25	44 09.75	171 39.94	16	17	2.01	4.8	69	11.8	11.8
105	20	3-Jun-07	1635	44 10.89	171 44.20	44 11.59	171 46.70	23	29	1.92	4.7	74.1	12.1	12.1
106	19	4-Jun-07	724	44 08.48	171 52.19	44 07.42	171 54.60	25	25	2.02	4.3	73.3	12	12
107	19	4-Jun-07	914	44 02.94	172 04.06	44 02.23	172 06.56	24	24	1.93	4.7	74.2	11.9	11.9
108	19	4-Jun-07	1052	43 58.43	172 14.62	43 58.02	172 17.28	28	29	1.95	4.7	72.1	12	12

* Station not used for biomass estimates because of poor gear performance

	n	Mean	s.d.	Range
All stations				
Headline height (m)	105	4.6	0.23	4.1-5.5
Doorspread (m)	105	78.0	6.68	63.8-98.4
Distance (n. miles)	105	2.4	0.60	1.44-3.17
Warp:depth ratio	105	3.9	2.01	2.40-14.29
Standard survey (30–400 m)				
30-400 m				
Headline height (m)	94	4.7	0.24	4.1-5.5
Doorspread (m)	94	78.8	6.71	63.8-98.4
Distance (n. miles)	94	2.5	0.59	1.44-3.17
Warp:depth ratio	94	3.3	0.85	2.40-6.56
Walp.deptil Tutto	21	5.5	0.05	2.10 0.50
30–100 m				
Headline height (m)	55	4.7	0.23	4.1-5.5
Doorspread (m)	55	74.5	3.67	63.8-83.1
Distance (n. miles)	55	2.5	0.58	1.49-3.17
Warp:depth ratio	55	3.6	0.96	2.6-6.6
100–200 m				
Headline height (m)	26	4.6	0.21	4.1-4.9
Doorspread (m)	26	82.4	2.90	74.4-88.2
Distance (n. miles)	26	2.2	0.62	1.44-3.09
Warp:depth ratio	26	2.9	0.19	2.6-3.6
200–400 m				
Headline height (m)	13	4.7	0.31	4.2-5.1
Doorspread (m)	13	89.4	4.84	84 - 98.4
Distance (n. miles)	13	2.9	0.07	2.84-3.08
Warp:depth ratio	13	2.6	0.16	2.4-2.9
Inshore survey (10–30 m)				
Headline height (m)	11	4.6	0.15	4.3-4.8
Doorspread (m)	11	71.2	2.78	67.2–75.1
Distance (n. miles)	11	1.9	0.16	1.57 -2.11
Warp:depth ratio	11	8.8	2.39	6.8-14.3

Appendix 3: Gear parameters for biomass stations by depth range. N, number of stations; s.d., standard deviation.

Appendix 4: Species codes, common names, scientific names, total catch, and occurrence for stations in 30–400 m and 10–30 m, in order of catch weight.

30-400 m depth range

Species	an a		Catch	% of total	Occurrence
code	Common name	Scientific name	(kg)	catch	(% stations)
SPD	Spiny dogfish	Squalus acanthias	40 832.3	38.8	100
BAR	Barracouta	Thyrsites atun	26 916.3	25.6	88
GSH	Dark ghost shark	Hydrolagus novaezelandiae	7 120.4	6.8	50
TAR	Tarakihi	Nemadactylus macropterus	3 164.9	3.0	66
NOS	NZ southern arrow squid	Nototodarus sloanii Ualiaalamuu am	3 030.0	2.9	97 65
SPE	Sea perch	Helicolenus spp.	2708.8	2.6	65
RCO	Red cod Rubbish other than fish	Pseudophycis bachus	2 475.8	2.4 1.9	71
RUB		Chalidaniah dana barran	2 000.0 1 925.7	1.9	1 56
GUR	Red gurnard Blue warehou	Chelidonichthys kumu	1 923.7		
WAR		Seriolella brama		1.7	34
CAR	Carpet shark	Cephaloscyllium isabella	1 372.3	1.3	83
ELE	Elephantfish	Callorhinchus milii	1 182.0	1.1	37
RSK	Rough skate	Dipturus nasutus	1 123.3	1.1	53
SCG	Scaly gurnard	Lepidotrigla brachyoptera	1 107.3	1.1	76
STA	Giant stargazer	Kathetostoma giganteum	1 059.2	1.0	85
SSK	Smooth skate	Dipturus innominatus	970.3	0.9	51
SWA	Silver warehou	Seriolella punctata	794.4	0.8	69
SCH	School shark	Galeorhinus galeus	672.1	0.6	45
LIN	Ling	Genypterus blacodes	607.4	0.6	43
SDO	Silver dory	Cyttus novaezelandiae	526.9	0.5	50
CBE	Crested bellowsfish	Notopogon lilliei	453.7	0.4	47
WIT	Witch	Arnoglossus scapha	441.7	0.4	90
HAP	Hapuku	Polyprion oxygeneios	335.2	0.3	50
PIG	Pigfish	Congiopodus leucopaecilus	328.9	0.3	59
JAV	Javelinfish	Lepidorhynchus denticulatus	327.4	0.3	6
HOK	Hoki	Macruronus novaezelandiae	258.0	0.2	6
LEA	Leatherjacket	Parika scaber	177.5	0.2	18
CBI	Two saddle rattail	Caelorinchus biclinozonalis	168.8	0.2	27
SPO	Rig	Mustelus lenticulatus	151.5	0.1	21
FHD	Deepsea flathead	Hoplichthys haswelli	142.7	0.1	7
BCO	Blue cod	Parapercis colias	133.0	0.1	22
LSO	Lemon sole	Pelotretis flavilatus	96.0	0.1	40
ERA	Electric ray	Torpedo fairchildi	85.5	0.1	12
CAS	Oblique banded rattail	Caelorinchus aspercephalus	75.2	0.1	19
CBO	Bollons's rattail	C. bollonsi	65.9	0.1	3
LDO	Lookdown dory	Cyttus traversi	55.3	0.1	6
JMD	N.Z. jack mackerel	Trachurus declivis	52.4	<0.1	21
SCC	Sea cucumber	Stichopus mollis	49.5	<0.1	38
BRA	Short-tailed black ray	Dasyatis brevicaudata	39.7	<0.1	1
SSI	Silverside	Argentina elongata	38.6	<0.1	43
OCT	Octopus	Pinnoctopus cordiformis	36.5	<0.1	16
SPF	Scarlet wrasse	Pseudolabrus miles	25.4	<0.1	2
SFL	Sand flounder	Rhombosolea plebeia	23.7	<0.1	6
MOK	Moki	Latrisopsis ciliaris	22.5	<0.1	6
JMM	Chilean jack mackerel	T. symmetricus murphyi	20.5	< 0.1	9
TOD	Dark toadfish	Neophrynichthys latus	14.1	< 0.1	30
UNI	Unidentified	a na an an ann an Anna Anna ann an Saonna ann Anna Anna Anna Anna Anna Anna	13.7	<0.1	17
CRB	Crab	Decapoda	13.4	< 0.1	29
19933-057	141 - MADR	ŧ.			

Appendix 4-continued

30-400 m depth range

Species			Catch	% of total	Occurrence
code	Common name	Scientific name	(kg)	catch	(% stations)
ONG	Sponges	Porifera (phylum)	12.7	< 0.1	12
KIN	Kingfish	Seriola lalandi	12.1	< 0.1	1
COF	Flabellum coral	Flabellidae	11.7	<0.1	6
ANT	Anemones	Anthazoa	6.7	< 0.1	13
PAG	Hermit crab	Paguroidea	6.6	< 0.1	30
BTS	Pavoraja spinifera	Pavoraja spinifera	6.0	< 0.1	2
GFL	Greenback flounder	Rhombosolea tapirina	5.9	< 0.1	1
ESO	N.Z. sole	Peltorhamphus novaezelandiae	5.6	< 0.1	7
JMN	N.Z. jack mackerel	T. novaezelandiae	5.4	< 0.1	4
SAM	Quinnat salmon	Oncorhynchus tshawytscha	3.9	< 0.1	2
HAK	Hake	Merluccius australis	3.4	< 0.1	2
WWA	White warehou	Seriolella caerulea	3.2	< 0.1	2
CTU	Cook's turban shell	Cookia sulcata	3.1	< 0.1	10
GON	Sandfish	Gonorynchus sp.	2.9	< 0.1	3
BBE	Banded bellowsfish	Centriscops humerosus	2.7	< 0.1	1
CON	Conger eel	Conger spp.	2.3	<0.1	1
KAH	Kahawai	Arripis trutta	2.3	< 0.1	1
EMA	Blue mackerel	Scomber australasicus	2.2	< 0.1	1
ASR	Starfish	Asteroidea	2.1	<0.1	9
SPR	Sprats	Sprattus antipodum, S. muelleri	2.0	< 0.1	3
GAS	Gastropod	Gastropoda	1.9	<0.1	9
COU	Coral (unspecified)	Anthozoa	1.8	< 0.1	3
CRU	Crustacean (unspecified)	Crustacea	1.6	<0.1	5
GPF	Girdled wrasse	Notolabrus cinctus	1.5	<0.1	1
DSP	Deepsea pigfish	Congiopodus coriaceus	1.3	<0.1	3
HAG	Hagfish	Eptatretus cirrhatus	1.2	<0.1	1
JDO	John dory	Zeus faber	1.2	< 0.1	2
MDO	Mirror dory	Zenopsis nebulosus	1.2	< 0.1	1
YCO	Yellow cod	Parapercis gillesi	1.1	<0.1	1
MSL	Sladen's star	Medialter sladini	1.0	< 0.1	4
SUR	Kina	Evechinus chloroticus	1.0	< 0.1	3
AGR	Ribbonfish	Agrostichthys parkeri	0.9	<0.1	1
OPA	Opalfish	Hemerocoetes spp.	0.9	< 0.1	10
ETL	Lucifer dogfish	Etmopterus lucifer	0.8	<0.1	1
TRU	Trumpeter	Latris lineata	0.8	<0.1	1
QSC	Queen scallop	Chlamys delicatula	0.6	< 0.1	2
BYS	Alfonsino	Beryx splendens	0.5	<0.1	1
DCS	Dawson's catshark	Halaelurus sawsoni	0.5	<0.1	2
SCO	Swollenhead conger	Bassanago bulbiceps	0.5	<0.1	1
SHO	Seahorse	Hippocampus abdominalis	0.5	<0.1	4
STY	Spotty	Notolabrus celidotus	0.5	<0.1	2
TOP	Pale toadfish	Neophrynichthys angustus	0.5	<0.1	1
MSB	Blue mussel	Mytilus galloprovincialis	0.4	<0.1	1
POL	Sea worm	Polychaeta	0.4	<0.1	2
SCI	Scampi	Metanephrops challengeri	0.4	<0.1	1
GPA	Parasol urchin	Gonocisaris parasol	0.3	<0.1	2
HDR	Hydroid	Hydrozoa	0.3	<0.1	3
OYS	Dredge oyster	Tiostrea chilensis	0.3	< 0.1	3
SPM	Sprat	Sprattus muelleri	0.3	<0.1	1
	1770288857578	1994 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	1000		

Appendix 4-continued

30-400 m depth range

Species code	Common name	Scientific name	Catch (kg)	% of total catch	Occurrence (% stations)
BTA	Pavoraja asperula	Pavoraja asperula	0.2	< 0.1	1
LFB	Longfinned boarfish	Zanclistius elevatus	0.2	< 0.1	1
SDR	Spiny seadragon	Solegnathus spinosissimus	0.2	< 0.1	2
SHR	Sea hare	Aplysiomorpha	0.2	< 0.1	2
CCX	Small banded rattail	Caelorinchus parvifasciatus	0.1	< 0.1	1
DGT	Dragonets	Callionymidae	0.1	<0.1	1
FIS	Fish (unspecified)		0.1	< 0.1	1
GLB	Globefish	Contusus richei	0.1	<0.1	1
GOU	Umbrella urchin	Gonocisaris umbraculum	0.1	< 0.1	1
GRM	Deepsea kina	Gracilechinus multisentatus	0.1	<0.1	1
PCO	Ahuru	Auchenoceros punctatus	0.1	<0.1	1
RHY	Common roughy	Paratrachichthys trailli	0.1	< 0.1	1
SFI	Starfish	Asteroidea	0.1	< 0.1	1
		Total	105 162		

10-30 m depth range

Guardian	-1		Catab	0/ aftatal	0
Species	C	Scientific name	Catch	% of total	Occurrence
code	Common name	Scientific name	(kg)	catch	(% stations)
BAR	Barracouta	Thyrsites atun	3 148.8	38.2	100
SPD	Spiny dogfish	Squalus acanthias	1 568.5	19.0	100
LEA	Leatherjacket	Parika scaber	1 023.9	12.4	73
ELE	Elephantfish	Callorhinchus milii	727.6	8.8	73
GUR	Red gurnard	Chelidonichthys kumu	489.1	5.9	100
NOS	NZ southern arrow squid	Nototodarus sloanii	447.4	5.4	73
RSK	Rough skate	Dipturus nasutus	323.4	3.9	100
TAR	Tarakihi	Nemadactylus macropterus	70.7	0.9	27
CAR	Carpet shark	Cephaloscyllium isabella	69.6	0.8	73
WAR	Blue warehou	Seriolella brama	53.6	0.6	82
RCO	Red cod	Pseudophycis bachus	46.5	0.6	82
GLB	Globefish	Contusus richei	43.8	0.5	55
ERA	Electric ray	Torpedo fairchildi	40.4	0.5	27
SPO	Rig	Mustelus lenticulatus	39.4	0.5	36
SPR	Sprats	Sprattus antipodum, S. muelleri	38.2	0.5	55
SFL	Sand flounder	Rhombosolea plebeia	27.6	0.3	55
SEV	Broadnose sevengill shark	Notorynchus cepedianus	24.5	0.3	9
ESO	N.Z. sole	Peltorhamphus novaezelandiae	13.3	0.2	55
SCH	School shark	Galeorhinus galeus	11.1	0.1	55
WIT	Witch	Arnoglossus scapha	6.3	0.1	55
HAP	Hapuku	Polyprion oxygeneios	6.1	0.1	27
BRI	Brill	Colistium guntheri	5.8	0.1	9
TUR	Turbot	Colistium nudipinnis	4.4	0.1	9
SWA	Silver warehou	Seriolella punctata	4.3	0.1	55
SPZ	Spotted stargazer	Genyagnus monopterygius	3.7	<0.1	9
YBF	Yellow-belly flounder	Rhombosolea leporina	2.6	<0.1	9
JMM	Chilean jack mackerel	T. symmetricus murphyi	2.5	< 0.1	9
LSO	Lemon sole	Pelotretis flavilatus	2.4	< 0.1	45
PCO	Ahuru	Auchenoceros punctatus	1.7	<0.1	45

Appendix 4-continued

10-30 m depth range

Species code	Common name	Scientific name	Catch	% of total catch	Occurrence (% stations)
coue	Compon name	Scientific name	(kg)	caten	(76 stations)
STY	Spotty	Notolabrus celidotus	1.3	< 0.1	18
HAG	Hagfish	Eptatretus cirrhatus	0.8	< 0.1	9
HOR	Horse mussel	Atrina zelandica	0.5	< 0.1	9
CRB	Crab	Decapoda	0.4	<0.1	9
HAK	Hake	Merluccius australis	0.4	< 0.1	9
TOD	Dark toadfish	Neophrynichthys latus	0.4	<0.1	18
SAZ	Sand stargazer	Crapatalus novaezelandiae	0.3	<0.1	18
ASR	Starfish	Asteroidea	0.2	<0.1	9
JMD	N.Z. jack mackerel	Trachurus declivis	0.2	< 0.1	9
SPS	Speckled sole	Peltorhamphus latus	0.2	< 0.1	18
ANC	Anchovy	Engraulis australis	0.1	<0.1	9
CRU	Crustacean (unspecified)	Crustacea	0.1	< 0.1	9
OCT	Octopus	Pinnoctopus cordiformis	0.1	< 0.1	9
PAD	Paddle crab	Ovalipes catharus	0.1	<0.1	9
PIG	Pigfish	Congiopodus leucopaecilus	0.1	< 0.1	9
SAM	Quinnat salmon	Oncorhynchus tshawytscha	0.1	<0.1	9
SCC	Sea cucumber	Stichopus mollis	0.1	<0.1	9
SLS	Slender sole	Peltorhamphus tenuis	0.1	<0.1	9
		Total	8 253		

Grand Total (10-400 m) 113 415

Appendix 5: Macro-invertebrates collected on the 2007 survey.

Taxon	Occurance
Porifera	
Callyspongia n. sp. 12	2
Chondropsis cf n. sp. 4	2
Crella incrustans (Carter, 1885) sensu Bergquist & Fromont (1988)	2
Dactylia n. sp. 1	1
Ircina aucklandensis Cook & Bergquist, 1999	1
Ircinia akaroa Cook & Bergquist, 1999	2
Psammocinia cf maorimotu Cook & Bergquist, 1998	2
Psammocinia sp. D Cook & Bergquist, 1998	1
Tedania diversirhaphidiophora Brondsted, 1923	1
Cnidaria: Anthozoa	
Actinotolidae	54
Flabellum sp.	6
Hormathiidae	30
cf. Bathyphellia australis Dunn, 1983	1
Parabunodactis sp. Carlgren 1928	4
Indeterminate family	1
indeterminate rainity	1
Cnidaria: Hydrozoa	
Cryptolaria prima Busk,1857	1
Mollusca: Gastropoda	
Aeneator otagoensis	1
Alcithoe arabica	2
Alcithoe larochei	9
Aplysiomorpha	2
Archidoris wellingtonensis	4
Argobuccinum pustulosum tumidum	4
Austrofusus glans	3
Calliostoma punctulatum	2
Calliostoma turnerarum	3
Cookia sulcata	9
Dorididae	1
Fusitriton magellanicus laudansus	34
Provocator mirabilis	1
Mollusca: Bivalvia	
Dosinia greyi	1
Mytilus galloprovincialis	1
Modiolarca impacta	1
Ostrea chilensis	3
Psychrochlamys delicanula	2
teredo 'worms'	2
Mollusca: Octopoda	
Pinnoctopus cordiformis	16
	- 9

Polychaeta							
Aphrodita talpa	1						
Euphione squamosa	3						
Protula bispiralis	1						
Pseudopotamilla laciniosa	1						
Salmacina australis (Haswell, 1885)	1						
Spirobranchus latiscapus	1						
Spirobranchus polytrema	1						
Crustacea: Stomatopoda							
Pterygosquila schizodontia (Richardson, 1953)	5						
Crustacea: Brachyura							
Leptomithrax longipes (Thomson, 1902)	8						
Nectocarcinus antarcticus (Jacquinot, 1853)							
Thacanophrys filholi (A. Milne Edwards, 1876)							
Crustacea: Cirripedia							
Megabalanus decorus	1						
Notobalanus vestitus	3						
Notomegabalanus decorus	2						
Crustacea: Decapoda							
Diacanthurus rubricatus (Henderson, 1888)	15						
Diacanthurus spinulimanus (Miers, 1876)	8						
Ovalipes catharus							
Paguristes pilosus (H. Milne Edwards, 1836)	1						
Phylladiorhynchus pusillus	2						
Bryozoa							
Adeonellopsis cf. pentapora (Canu & Bassler, 1929)	1						
Aetea australis (Jullien, 1888)	1						
Aimulosia marsupium (MacGillivray, 1869)	1						
Arachnopusia unicornis (Hutton, 1873)	3						
Beania discodermiae (Ortmann, 1890)	1						
Bitectipora rostrata (MacGillivray, 1887)	1						
Caberea rostrata (Busk, 1884)	2						
Caberea solida (Gordon, 1986)	1						
Caberea sp.	1						
Calloporina angustipora (Hincks, 1885)	1						
Cellaria tenuirostris (Busk, 1852)	1						
Celleporaria agglutinans (Hutton, 1873)	2						
Celleporina grandis (Gordon, 1989)	1						
Celleporina sinuata (Gordon, 1989)	3						
Chaperia granulosa (Gordon, 1986)	1						
Chaperiopsis cervicornis (Busk, 1854)	1						
Chaperiopsis funda (Uttley & Bullivant, 1972)	1						
Chaperiopsis lanceola (Hayward & Thorpe, 1988)	1						
Chiastosella enigma (Brown, 1954)	2						
Corbulella corbula (Hincks, 1880)	1						
Crassimarginatella cucullata (Waters, 1898)	1						
Crisia tenuis (MacGillivray, 1879)	1						
Diaperoecia purpurascens (Hutton, 1873)	1						
Disporella pristis (MacGillivray, 1884)	1						

Ellisina sericea (MacGillivray, 1890)
Entalophoroecia sp.
Escharella spinosissima (Hincks, 1881)
Eurystrotos sp.
Exochella conjuncta (Brown, 1952)
Exochella jullieni (Gordon, 1989)
Fenestrulina incompta (Gordon, 1984)
Fenestrulina multicava (Gordon, 1989)
Fenestrulina reticulata (Powell, 1967)
Figularia huttoni (Brown, 1952)
Foveolaria elliptica (Busk, 1884)
Galeopsis polyporus (Brown, 1952)
Hemismittoidea hexaspinosa (Uttley & Bullivant, 1972)
Hippomenella vellicata (Hutton, 1873)
Hornera foliacea (MacGillivray, 1869)
Idmidronea sp.
Liripora pseudosarniensis (Taylor & Gordon, 2001)
Micropora sp.
Microporella agonistes (Gordon, 1984)
Odontionella cyclops (Busk, 1854)
Parasmittina aotea (Brown, 1952)
Parkermavella incurvata (Uttley & Bullivant, 1972)
Parkermavella punctigera (MacGillivray, 1883)
Penetrantia parva (Silén, 1946)
Rhynchozoon cf. larreyi (Audouin, 1826)
Schizosmittina conjuncta (Uttley & Bullivant, 1972)
Smittina rosacea (Powell, 1967)
Smittina torques (Powell, 1967)
Smittoidea maunganuiensis (Waters, 1906)
Telopora lobata (Tenison-Woods, 1880)
Tubulipora sp. bilobate
Tubulipora sp. blue
Tubulipora sp. white
Echinodermata: Echinoidea
Evechinus chloroticus
Goniocidaris parasol
Goniocidaris umbraculum
Gracilechinus multidentatus
Pseudechinus huttoni
Echinodermata: Asteroidea
Asteriidae, unknown genus and species Diplodontias dilatatus
Diplodontias miliaris
•
Dipsacaster magnificus
Henricia ralphae Mediaster sladeni
Odontaster sucklandensis
Odontaster benhami
Patiriella regularis
Pentagonaster pulchellus
Pseudechinaster rubens
Psilaster acuminatus
1 suusier acummatus

Pteraster (Pteraster) robertsoni

Echinodermata: Holothuroidea		
Bathyplotes moselyi	1	
Neothyonidium dearmatum	1	
Stichopus mollis	40	
Echinodermata: Ophiuroidea		
Pectinura maculata (Verrill, 1869)	1	
Tunicata: Ascidacea		
Cnemidocarpa bicornuta	1	
Cnemidocarpa madagascariensis var. regalis	1	
Pyura picta	4	

Appendix 6: Length weight coefficients used to scale length frequencies. $W = aL^b$ where W is weight (g) and L is length (cm);* data missing. DB, NIWA trawl database.

				Range (cm)		
Species	а	b	n	Min.	Max.	Data source
Barracouta	0.0055	2.9812	429	23.8	87.2	DB, KAH9701
Blue warehou	0.0144	3.1050	338	27.4	69.6	DB, TAN9604
Dark ghost shark	0.0013	3.3707	1187	19	71.9	This survey
Elephantfish	0.0049	3.1654	378	13.4	91	DB, KAH9618
Giant stargazer	0.0114	3.0999	867	9	78.3	This survey
Hapuku	0.0078	3.1400	307	49	108	DB, TAN9301
Hoki	0.0046	2.8840	525	22	110	DB, SHI8301
Leatherjacket	0.0088	3.2110	*	*	*	DB, IKA8003
Ling	0.0013	3.2801	179	32.2	123.7	DB, KAH0004
Red cod	0.0075	3.0610	783	12.4	76.8	This survey
Red gurnard	0.0087	3.0540	384	27	57	Db, KAH9606
Rig	0.0033	3.0568	113	43.9	115	This survey
Rough skate	0.0321	2.8988	479	19.9	70	This survey
School shark	0.0025	3.1602	306	32.7	157	This survey
Sea perch	0.0092	3.1953	862	4.5	43.9	This survey
Silver warehou	0.0048	3.3800	262	16.6	57.8	DB , TAN502
Smooth skate	0.0338	2.8798	299	12.6	123	This survey
Spiny dogfish	0.0014	3.2350	1 687	23.6	96.5	This survey
Tarakihi	0.0091	3.2154	780	11.1	49.7	This survey