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EXECUTIVE SUMMARY 

Richardson, K.M.; Murray, T.; Dean, H. (2001). Models for southern bluefin tuna in the 
New Zealand EEZ, 1998-99. 

New Zealand Fisheries Assessment Report 200I/18.21 p. 

Longline fishing effort has declined steadily within the New Zealand Exclusive Economic Zone 
coincident with a contraction of the southern bluefm tuna (SBT) fishing season and the reduction 
in Japanese longline vessels taking up SBT licences. This trend has been partially offset by a 
growth in domestic longline effort during the 1990s. 

Nominal SBT CPUE declined between 1980 and 1986, fluctuated around 30% of the 1980 level 
between 1986 and 1993, and increased thereafter to vary around 60% of the 1980 level. 

A number of generalised linear and additive CPUE standardisation models are investigated in an 
effort to better match model properties with those of longline SBT data. An iterative maximum 
likelihood power transformation approach is developed that reduces evidence for model lack-of- 
fit relative to log-nonnal and Poisson models. The relative abundance of SBT has been estimated 
using this method. 

Spatio-temporal changes in fishing patterns required that the fishery be split into distinct fishing 
areas (East Cape, West Coast, and Chatham Rise) for this analysis and separate indices were 
estimated for each. The trend in these indices for the East Cape region generally follows that of 
nominal CPUE suggesting an increase in abundance after 1994, whereas West Coast abundance 
indices are roughly constant over this period. Since most effort after 1990 'in the New Zealand 
SBT fishery has been in these two areas, the models suggest an increase in abundance for New 
Zealand SBT. 

However, this conclusion should be regarded as preliminary since the models do not account for 
the spatio-temporal complexities of the fishery. In addition, evidence for model lack-of-fit 
remains, although significantly reduced. Suggestions for further model development to deal with 
these issues are provided. 



1. INTRODUCTION 

The southern bluefin tuna (SBT) caught in the New Zealand EEZ are part of a single Southern 
Hemisphere stock that occurs in the Pacific, Indian, and Atlantic Oceans, mostly south of 30' S .  
New Zealand appears to be the easternmost extent of the range of this species, although there 
have been unconfirmed reports of fishing in some years by Japanese longliners on the high seas 
southeast of Chatham Islands. 

The fishery for SBT has been in existence for at least 50 years. Fishing has caused abundance to 
decline sharply during that time, particularly in the 1970s and 1980s, and there is concern about 
the potential for recovery of the stock (Anon. 1998). 

In New Zealand waters, SBT have been caught by handline and trolling during winter months off 
the west coast of the South Island from small vessels. These methods are still occasionally used. 
Most SBT, however, are caught by medium to large (20-50 m) longline vessels in autumn and 
winter. Southern bluefin catches, restricted to a national competitive catch limit of 420 t since 
1989, have usually k e n  below this limit. 

Fishing effort by Japanese longliners has been declining since 1979-80. In contrast, fishing effort 
by New Zealand vessels for SBT increased rapidly from 1989-90 to a peak of 0.9 million hooks 
in 1994-95 before declining to less than 0.4 million hooks in 1996-97. 

Generalised linear models are often used to account (standardise) for systematic changes in 
catchability, fishing power, etc, while estimating trends in abundance (e.g., Punt et al. 2000). 
Generalised Linear Models (GLMs) have three main components: A linear predictor describing 
the systematic component of the data, a member of the exponential class of distributions 
describing the random component, and a Iink function relating the linear predictor to the mean of 
the distribution. Generalised Additive Models (GAMs), which are extensions of GLMs allowing 
the non-linear effects of covariates on the response to be estimated from the data, are also now 
being used (e.g., Bigelow et al. 1999, Daskalov 1999). In both model types, response variables 
are assumed independent, i.e., the data arise from a random sampling process. 

The systematic component is spe&fied by an assumed relationship between mean catch rate and 
stock density. Predictors of catch rates are assumed to be without error (fixed effects), and 
multiplicative so that a logarithmic transformation of the relationship yields a linear sum of terms 
of which only the spatial density is of interest. This fmes the link function required by 
generalised linear or additive models. Quinn & Deriso (1999), Hilborn & Walters (1992), and 
Richardson et al. (1998) discuss the method in detail. 

There is a growing recognition of the need to develop an understanding of the underlying 
statistical distribution of catch rates (see Quinn & Deriso 1999, Richardson et al. 1998, Dong & 
Restrepo 1996, Power & Moser 1999) so that catch rate analyses can be put on a more solid 
statistical foundation. In the analysis of SBT longline catch and effort data, log-normal response 
models have been favoured (see, e.g., Anon. 1996). However, zero catches (common in SBT 
fisheries) present a difficulty for the log-nonnal model. This is usually resolved by adding a 
small constant to the Catch per Unit Effort (CPUE, defined here as number of fish per thousand 
hooks) before fitting the model. The arbitrary constant can, if required, be removed from the 



constant term computed using the model. Other approaches have been proposed. Vignaux (1994) 
suggested that combining a binomial model (of the probability of zero catch) with a log-normal 
model of positive CPUE might be more appropriate. A variety of statistical models has been 
applied to catch-rate data precisely because of the uncertainty about which response model to use 
(e.g., Punt et al. 2000). 

The widespread use of the log-normal response model in fisheries is probably due to familiarity 
with the method and the availability of software packages. Rarely are the consequences of using 
this model considered, and a more detailed analysis of the properties of longline CPUE data is 
warranted. 

In the present study, the properties of catch and effort data in the New Zealand SBT fishery are 
investigated from which a natural interpretation of CPUE as frequency data emerges. However, a 
Poisson GLM is not the most appropriate response model, since the data are found to be 
significantly overdispersed. Several linear response models that can better handle this property 
of the data are investigated and a significant improvement in model fit over log-normal and 
Poisson models is found. 

A generalised additive extension of one such linear model is used to standardise CPUE for SBT 
in the New Zealand EEZ and is compared with results from the more conventional log-normal 
model. 

This report satisfies Objective 2 of Project TUN1999-02: To produce a standardised CPUE 
analysis and report for CCSBT on southern bluejin tuna for the 1999 and 2000fishing years 
respectively. 

2. METHOD 

The positions of all SBT longline operations used for this analysis are shown in Figure 1. Catch 
(number of fish) and effort (number of hooks set) data for target and bycatch species, longline set 
position, date, start and finish times, sea surface temperature, vessel specifications, and other 
fisheries information were obtained from the Ministry of Fisheries for 1980-1998. 

These data originate from forms filled out by commercial fishers on each operation directed at 
catching SBT by longline and provide information on catch in number and weight by species for 
each fishing operation. Other details, such as position, effort, vessel specifications, and 
environmental factors that might affect fishing, are also given. Only data from the Tuna 
Longlining Catch, Effort and Landing Return (TLCER) forms were used in this study. 

A number of criteria were used to identify errors in catch, effort, and position. Position errors 
were detected by both graphical and analytical methods that identify unlikely sequential fishing 
positions. Range checks on position, effort, number of sets per day, average weight of fish, 
amount of catch, sea surface temperature, and operational details were used to identify such data. 
All probable errors detected were then checked against the original form or, more usually, 
against a number of fishing operations by the vessel in question that immediately precede or 
follow the given operation. Where there was clear evidence of error in recording or data entry, 
records are replaced with values used elsewhere in the trip (if constant), or by the mean of 
adjacent values. 



Errors that pass these tests include wrongly assigned fishing method codes, target species, and 
catch that appears to be wrongly identified. The effect of these errors on the analysis is 
considered slight. 

The spatio-temporal complexity of the fishery, particularly during the 1990s, motivated the 
division into three regions (East Cape, West Coast, and Chatham Rise) (Figure 1) for this 
analysis. In the Chatham Rise region, 1992-1996 were combined since there was very little 
fishing in that period. All three areas have contracted in extent since the 1980s. 

Moon phase calculations were based on algorithms given by Duffet-Smith (1990). 

2.1 Models for the random component 

McCullagh & Nelder (1989) emphasised that it is important to choose the class of statistical 
model carefully, paying attention to the type and structure of the data. In that spirit, Figure 2 
presents a histogram of log(CPUE) data from the East Cape region for Japanese vessels in the 
years 1980-1998. The log transformation is used partly for convenience in plotting the data, but 
also because this transformation is often used in linear models for longline CPUE. A small 
constant, chosen to be one-tenth of the smallest positive CPUE value, has been added to all 
CPUE values to enable plotting of zero catch rates. It is apparent fhat the distribution of these 
data has identifiable peaks at several distinct values of CPUE. When the histograms are plotted 
separately by year, there are noticeable temporal variations, but the presence of distinct peaks at 
"small" CPUE values appears to be present in all years. 

There is a separate "spike" for each unit of catch until they coalesce at larger catches. 
Furthermore, at a given value of catch, different levels of effort contribute to the variability in 
CPUE which is why there is a narrow spike at zero catch, but broader spikes at non-zero catches. 
A reasonable conclusion from this view of the longline fishing operation is that catch can be 
considered as a counting process so that longline CPUE can be viewed as proportions (of 
successes) where the total of successes and failures (i.e., effort) can vary. These data do not 
appear to be fiom a log-normal distribution, and other models are likely to be more appropriate. 

One approach would be to treat both catch and effort as random variables. The distribution of 
CPUE conditional on effort certainly appears to have simpler distributional properties (Figure 3). 
By making assumptions about the statistical properties of both catch and effort it is possible, in 
principle, to derive the distributional form of CPUE. However, there are problems with this 
approach. For example, the distribution of effort depends on both time (e.g., year) and nation. 
Even if the problem was tractable, there is no guarantee that the results would be particularly 
useful within a linear model. The approach taken here is to adopt the 'counting process' view and 
deal separately with other characteristics that can be expected or shown to be important for 
Iongline data. 

If the probability of catching a fish on any hook was constant and independent of catching a fish 
on other hooks, then CPUE could be regarded as samples of various size fiom a binomial 
population. A binomial GLM might then be a reasonable model for the random component of 
CPUE data in a given year, provided that SBT were distributed uniformly across a given area. In 
fact, since the probability of catching an SBT on a given hook can be considered small, a Poisson 
model could be used as a limiting form for the binomial distribution. 



The spatial distribution of SBT is heterogeneous, and fishers have imperfect knowledge of where 
to find them. Once a school is located, however, it can to some extent be 'tracked'. Guesswork is 
involved even then, and serial correlation is likely to exist in the catch rate data. Overdispersion, 
where the data display more variability than is allowed for in the mean-variance relationship of 
the assumed response model, is to be expected in tuna longline CPUE data. In fact, it is often 
argued that overdispersion is the rule rather than the exception in frequency data ~itzrnaurice 
1997, McCullagh & Nelder 1989). Overdispersion must be accounted for in a response model if 
incorrect inferences about the fitted parameters are to be avoided (Fitvnaurice 1997). This is not 
a matter of theoretical importance only. For example, Richardson et al. (1998) argued that it is 
necessary to estimate yearly spatial effects in order to derive abundance indices for the SBT 
fishery. 

Figure 4 exhibits one possible empirical mean-variance relation for SBT CPUE: 

with n = 1.6, providing support for the contention of overdispersion relative to a Poisson 
model. This power law mean-variance form can be accominodated within a linear model through 
the concept of quasi-likelihood (McCullagh & Nelder 1989). However, this model has a deviance 
function that is not defined when the response is zero, at least for values of the power parameter 
(n) estimated in this study. Thus, to accommodate CPUE data in a power-variance response 
model, a 'small' constant (see below) must be added to the response variate when computing the 
deviance in much the same way as for log-normal models. A s i d a r  problem occurs when fitting 
a GLM for other commonly used exponential distributions (e.g., the gamma response model). 

In contrast, negative binomial response models, which have the mean variance relation 

where B is the so-called shape parameter, are of exponential form (for fmed 8 ), have a known 
likelihood function, and are often used with over-dispersed Poisson data (Venables & Ripley 
1999, White & Bennetts 1996), or for modelling a variety of clustered populations (Seber 1986). 
Furthermore the deviance function is defined when the response is zero. 

It is possible to estimate B from the data using an alternating maximum likelihood and GLM 
method (Venables & Ripley 1999). This iterative approach, which is used below, fits a negative 
binomial model with B fixed at some value. Predicted values from this fit are used in the 
likelihood function to find a new estimate fore, and the process is repeated until a convergence 
criterion is satisfied. 

A similar approach is also possible for the power-variance model if the concept of extended 
quasi-likelihood, Q+ (McCullagh & Nelder 1989). defined by 

is used. In this equation, d, is the ith quasideviance component of the model, @ is the 

dispersion parameter, and V(.) is the variance function defined in Equation 1. 



However, CPUE data often contain many zeroes and the extended quasi-likelihood function for a 
power variance model is not defined at zero CPUE. The usual practice of adding a small constant 
to the data (116 for counts with a power-variance function in Nelder & Lee 1992) to avoid zeroes 
appears to produce acceptable models for longline CPUE data. We use 116 of the minimum 
positive CPUE as the small constant, but there is some sensitivity to this value. 

It is also possible to estimate the negative binomial shape parameter using the concept of 
extended quasi-likelihood (when the variance function in Equation 2 is used in Equation 3). 
However, results were very similar to the likelihood negative binomial model, and hence this 
method is not discussed further. 

An alternative approach is to reduce the observed overdispersion by using a suitable 
transformation of the original CPUE data and then to fit one of the standard GLMs. This is a 
variant of the method used in the classical log-normal model. In the standardisation analysis 
below, however, an iterative maximum likelihood power transformation is used to enhance the 
Poisson nature of the data, and a Poisson GLM with a logarithmic link function is then fitted. 
This is referred to as the modified response Poisson model. It must be borne in mind that the data 
have been suitably transformed before the final fit is carried out. A summary of assumptions for 
the different models discussed above is given in Table 1. 

Model selection proceeded as follows. First, a negative binomial linear (Venables & Ripley 
1999) model involving only the year predictor was used as the starting point. stepAlC was then 
used to select main effect predictor values using the AIC statistic (Aikaike 1974) to give an 
initial model. Next, since the AIC tends to over-fit, the effect of dropping or adding individual 
terms was tested at p = 0.001 and non-significant terms were discarded. The negative binomial 
shape (or aggregation) parameter is estimated at each step in both the above procedures, so 
likelihood ratio tests are used to compare the different negative binomial models. 

The modified response Poisson model, with the explanatory variables selected above, was used 
in the following analyses because this model produced the least evidence of lack of fit. The result 
of this selection procedure is a main effects modified response Poisson model with an estimated 
power parameter (0 ). 

Finally, a GAM was fitted to the data under the assumption that the predictor variables selected 
as above (in the context of a linear model) would also be important in an additive model. 
Predictor variables in the additive model were the same as for the Linear model, but interactions 
between longitude and latitude were allowed (i.e., using a twodimensional smooth term in 
latitude and longitude) if these proved significant. 

Predictor variables used were as follows. 
1. Factors 

year 
month - February to August 
nation - Japanese (foreign or charter), Domestic (N.Z. owned and operated). 

2. Covariates 
moon phase - fraction of illuminated lunar disc 
sea sulface temperature 
latitude - set start position 
longitude - set start position 



effort - hooks (thousands) 
Southern Oscillation Index (Troup's Index) 
vessel length (m) 

For the linear models used, covariates were natural splines with up to 4 degrees of freedom. The 
number of degrees of freedom was chosen by stepAIC. For GAMs, a local regression smoother 
(Chambers & Hastie 1993) with the default smoothing parameter (Yz for a one-predictor term). 
For a twopredictor term, a smoothing parameter of ?4 was used. 
The standard error for the year coefficient on the scale of the response variable,.exp(j) ,. is 
calculated as 

var[(exp(j)] = exp(2* 9)ev (ev - 1) 
with v the appropriate diagonal element of the covariance matrix, and 5 the value of the year 
linear predictor estimated during the fitting procedure. 

3. RESULTS 

For these data, all except the standard Poisson and log-normal response models produced similar 
residual plots and relative abundance indices. Comparison of deviance residual plots suggests 
that the modified response Poisson model provides the least evidence for lack of fit and this 
approach was used for the standardisation analysis that is reported here. 

Figures 5 and 6 show fitted year factor levels and mean (unstandardised) CPUE in each of the 
East Cape, Chatham Rise, and West Coast SBT fishing areas for each fitted model. Figure 5 also 
contains selected (worst) residual plots for the East Cape model, and compares results with those 
from a logarithmic model. Data from each of these regions are given in Appendix 1 along with a 
plot of mean CPUE for the New Zealand EEZ (Figure Al). 

There is evidence of lack of fit in most of the models in the above residual plots (see, e.g., Figure 
5). The problem is considerably reduced compared with lognormal or Poisson models. Compare 
the linearity of the deviance residual quantilequantile plot, the trend curves through the absolute 
deviance residuals in Figure 5. There is also a substantial reduction in estimated dispersion 
parameter for the modified response Poisson model (0.86) compared with the standard Poisson 
model (2.33). Nevertheless, caution is required when interpreting predictions from such models 
because assumptions about approximate normality of deviance residuals may not be valid. 

The estimated SBT abundance indices for the East Cape area are, considering errors in the 
estimates, similar to or less than and the nominal (mean) CPUE values until 1994 (see Figure 5). 
There is a substantial increase in mean CPUE and abundance indices after 1995. In 1998, the 
estimated abundance index is about 80% of the 1980 value. 

For the West Coast fishing area there appear to be significant differences between mean yearly 
CPUE values and estimated year coefficients (see Figure 3). However, there was a sharp 
reduction in effort after 1993 and this is reflected in the increase in the size of the confidence 
intervals over that period. There is no compelling evidence in the model for an increase in SBT 
abundance in this region after 1994, as is suggested by the mean CPUE time series, particularly 
since estimated confidence intervals probably under-estimate actual uncertainties. 



Figure 3 also shows estimated abundance indices for the Chatham Rise fishing region when 1992 
to 1996 are combined (aggregation of these years was required because there was little effort in 
this region during that time). Indices for the years 1997 and 1998 increased to about 35% of the 
1980 value. The cautionary remarks above about model lack of fit also apply here. Only a small 
proportion of overall effort in the New Zealand SBT fishery has been expended in this region 
since 1992. 

4. DISCUSSION 

Unstandardised catch rates for the New Zealand EEZ increased after 1994. Longlining in the 
West Coast.region has dominated during this period, though there is recent increased activity in 
East Cape, underlining the large spatial and temporal changes in the distribution of effort in the 
fishery. 
Standardised indices are roughly constant in the -West Coast over this period, but increase 
significantly in East Cape. It seems likely that fitted abundance trends from the three regions also 
suggest an increase in abundance for the New Zealand SBT fishery. However, since all models 
show evidence of residual model lack-of-fit, and spatio-temporal effects have been excluded, this 
conclusion should be regarded as preliminary. 
Spatio-temporal effects can be accommodated by using the additional flexibility of additive 
models. Estimation of an overall index for the New Zealand SBT fishery while accounting for 
the observed spatio-temporal complexity should be possible using such a model. Even then, 
however, the hypotheses underlying catch-rate models may not adequately reflect the complexity 
of commercial SBT longline fishing. The problem of serial correlation in the data has not been 
addressed, and during this work we found that overdispersion in the data often varied on a 
yearly basis. Further development of spatial models is definitely required. Other approaches, 
such as generalised linear mixed models, may also be useful. 
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Figure 1: Longline start positions for sets targeting SBT (TLCER data 
only) for 1980-98 in the New Zealand EEZ. The three regions used in 
estimating relative abundance indices are shown. 

Figure 2: Histogram of log(CPUE) from the East Cape region, 1980-98. A 
small constant (see p.6) is added to plotted CPUE (number of fish per 
thousand hooks) values. 



Figure 3: Histogram of log(CPUI3) for vessels in the East Cape region from sets with a 
given effort (3000 hooks). A small constant is added to CPUE values for plotting 
purposes. 

Figure 4: Regression to demonstrate an empirical power law mean-variance relation. 
Combined CPUE means and variances from Japanese and New Zealand vessels have been 
computed for each yeannonth stratum in the East Cape region. 
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Figure 5: Residual plots and year coefficients for the momed response Poisson (left) and log- ' 

normal (right) models in the East Cape area. Smoothed curves through the residual scatter 
plots are drawn using a local regression algorithm. The index of the power transformation for 
the modified response Poisson model is estimated as n=0.733. 
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Figure 6: Estimated year coefficients from the modified response Poisson model for the West 
Coast (top) and Chatham Rise (bottom) regions. The line connects relative mean CPUE and bars 
represent 20 errors. 



Table 1: Some assumptions of the models investigated. Parameters estimated in the fitting procedure 
are indicated by a "hat". NegBin denotes the negative binomial, Poi the Poisson, and Quasi the quasi- 
likelihood models. The link function, relating the lineadadditive predictor to the mean, is logarithmic 
in all models as discussed in the Introduction. 

Model 

negative binomial 

Modified response 
Poisson 

Distributional form 

CPUE-iVeg~in(,L,B") 

Mean-variance 
relation 

V ( P ) = P ( ~ + P I ~ )  

C P U E ~  - poi~ir) V ( P >  = P 



APPENDIX 1: Summary of catch and effort data 

East Cape. 

Year Sets 
1980 3 541 
1981 3 693 
1982 3 307 
1983 2438 
1984 1495 
1985 1 101 
1986 1427 
1987 1810 
1988 1724 
1989 891 
1990 810 
1991 1331 
1992 1 187 
1993 394 
1994 192 
1995 155 
1996 212 
1997 196 
1998 232 

West Coast. 

Hooks 
8 200 
9 002 
8 608 
6 504 
4 134 
3 197 
4 088 
5 363 
4 932 
2 536 
2 299 
3 876 
3 417 

886 
185 
137 
190 
269 
383 

Catch 
61 719 
50 116 
26 445 
15 245 
11 757 
8 968 
9 448 

10 531 
6 363 
2 788 
5 276 
4 314 
2 431 

970 
113 
63 

167 
718 

1 745 

Year Sets Hooks Catch CPUE' 
1985 946 2725 10217 3.7115 
1986 1007 2 883 5 964 2.0588 
1987 1 169 3 364 6 067 1.7874 
1988 714 2078 1731 0.8309 
1989 749 2142 4890 2.2916 
1990 1 147 3 375 7 389 2.1976 
1991 1748 5 174 7367 1.4217 
1992 1768 5 178 10 128 1.9463 
1993 1246 3 777 4 928 1.2882 
1994 398 980 4263 4.0797 
1995 1 005 1 984 6 548 4.2391 
1996 261 312 745 2.6012 
1997 323 917 2947 4.0284 
1998 277 837 2 069 2.455 

 umber of fish per thousand hooks 

Zero sets 
33 

117 
177 
170 
119 
107 
100 
143 
295 
250 
9 1 

27 1 
302 
107 
13 1 
119 
139 
103 
65 

% Zero sets 
0.93 
3.17 
5.35 
6.97 
7.96 
9.72 
7.01 
7.9 

17.11 
28.06 
11 -23 
20.36 
25.44 
27.16 
68.23 
76.77 
65.57 
52.55 
28.02 

Zero sets % Zero sets 
9 0.95 

39 ' 3.87 
91 7.78 

164 22.97 
62 8.28 
40 3.49 

152 8.7 
124 7.01 
159 12.76 
3 8 9.55 

112 11.14 
6 1 23.37 
23 7.12 
26 9.39 



Chatham Rise. 

Year Sets Hooks Catch C P ~ '  Zero sets % Zero sets 

WhoIe EEZ. 

Year Sets Hooks Catch 
1980 10 171 24 553 118 464 
1981 9 205 23 419 89 869 
1982 6 651 17 855 45245 
1983 4 653 12 770 25 452 
1984 3 476 10025 21 758 
1985 3279 9535 24440 
1986 3 340 9 694 18426 
1987 4 373 12 837 21 440 
1988 3918 11369 11549 
1989 2 942 8 533 11 141 
1990 2 426 7 064 14053 
1991 3 884 11 441 12451 
1992 2 990 8 699 12576 
1993 1 652 4 699 5 906 
1994 593 1 170 4 378 
1995 1161 2 124 6611 
1996 475 503 914 
1997 652 1580 4234 
1998 545 1318 3 958 

 umber of fish per thousand hooks 

Zero sets 9% Zero sets 
346 3.4 
272 2.95 
419 6.3 
353 7.59 
267 7.68 
193 5.89 
239 7.16 
382 8.74 
79 1 20.19 
520 17.68 
227 9.36 
759 19.54 
448 14.98 
272 16.46 
17 1 28.84 
233 20.07 
200 42.11 
135 20.7 1 
93 17.06 



Year 

Figure Al:  Nominal relative CPUE for the New Zealand EEZ 


