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EXECUTIVE SUMMARY

McKenzie, A.; Smith, A.N.H. (2009). The 2008 stock assessment of paua (Haliotis iris) in
PAU 7.

New Zealand Fisheries Assessment Report 2009/34. 84 p.

A length-based stock assessment model was used to assess the PAU 7 paua (abalone, Haliotis
iris) stock. The assessment used Bayesian techniques to estimate model parameters, the state of
the stock, future states of the stock, and their uncertainties. Point estimates from the mode of
the joint posterior distribution were used to explore sensitivity of the results to model
assumptions and the input data; the assessment itself was based on marginal posterior
distributions generated from Markov chain-Monte Carlo simulation.

The model was revised slightly from the 2005 assessment model used for PAU 7 by the
inclusion of a common observation error term in the tag-recapture data likelihood, which is also
in the other data likelihoods.

The model was fitted to seven datasets from areas 17 and 38 within PAU 7: two standardised
CPUE series, a standardised index of relative abundance from research diver surveys,
proportions-at-length from commercial catch sampling and research diver surveys, tag-recapture
data, and maturity-at-length data.

Iterative re-weighting of the datasets produced a base case result in which the standard
deviations of the normalised residuals were close to unity for most datasets. Model results for
PAU 7 suggest a stock that is depleted: current levels of spawning and recruited biomass are
below agreed reference levels from an earlier period in the fishery history. However, the
current exploitation rate is moderate, at an estimated 37%.

The model projections, made for three years using recruitments re-sampled from the recent
model estimates, suggest a very strong likelihood of rebuilding for both spawning and recruited
biomass. Risks of decreased biomass are small.
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1. INTRODUCTION

1.1 Overview

This document presents a Bayesian stock assessment of blackfoot paua (abalone, Haliotis iris)
in PAU 7 (at the northern end of the South Island, Figure 1) using data to the end of 2007-08.
The assessment is made with the length-based model first used in 1999 for PAU 5B (Breen et
al. 2000a) and revised for subsequent assessments in PAU 5B (Stewart Island) and PAU 7
(Andrew et al. 2000a, Breen et al. 2000b, 2001, Breen & Kim 2003, 2005). Model revisions
made for PAU 4 (Breen & Kim, 2004a) and PAU 5A (Breen & Kim 2004b) in 2004 were
mostly discarded. The model was published by Breen et al. (2003).

Most catches have been taken from statistical areas 17 and 38. There is no time series of
research diver surveys from outside these areas, and proportions-at-length from commercial
catch sampling are very different from the other two areas, 18 and 36. Accordingly, Breen et al.
(2001) and Breen & Kim (2003, 2005) based their assessments on areas 17 and 38 only. The
Shellfish Fishery Assessment Working Group agreed to continue this practice for this
assessment.

The seven sets of data fitted to in the assessment model were: (1) a standardised CPUE series
covering 1983-2001 based on FSU/CELR data, (2) a standardised CPUE series covering 2002—
2005 based on PCELR data, (3) a standardised research diver survey index (RDSI), (4) a
research diver survey proportions-at-lengths series, (5) A commercial catch sampling length
frequency series, (6) tag-recapture length increment data, and (7) maturity-at-length data. Catch
history was an input to the model, encompassing commercial, recreational, customary, and
illegal catch. Another document describes the datasets that are used in the stock assessment and
the updates that were made for the 2008 assessment (McKenzie & Smith 2009).

The assessment was made in several steps. First, the model was fitted to the data with arbitrary
weights on the various data sets. The weights were then iteratively adjusted to produce
balanced residuals among the datasets. The fit obtained is the mode of the joint posterior
distribution of parameters (MPD). Next, from the resulting fit, Markov chain-Monte Carlo
(MCMC) simulations were made to obtain a large set of samples from the joint posterior
distribution. From this set of samples, forward projections were made with different assumed
catch levels and a set of agreed indicators was obtained. Sensitivity of the results was explored
by comparing MPD fits made with datasets removed one at a time and by comparing MCMC
retrospective analyses.

This document describes the model, assumptions made in fitting, the fit of the model to the data,
projection results, and sensitivity trials.

1.2 Description of the fishery

The paua fishery was summarised by Schiel (1992), Annala et al. (2003), and in numerous
previous assessment documents (e.g., Schiel 1989, McShane et al. 1994, 1996, Breen et al.
2000a, 2000b, 2001, Breen & Kim 2003, 2004a, 2004b). A further summary is not presented
here.

The fishing year for paua is from 1 October to 30 September. In what follows we refer to
fishing year by the second portion; thus we call the 1997-98 fishing year “1998”.



2. MODEL

This section gives an overview of the model used for stock assessment of PAU 7 in 2008; for
full details see Breen & Kim (2005). The model was developed for use in PAU 5B in 1999 and
has been revised each year for subsequent assessments, in many cases echoing changes made to
the rock lobster assessment model (Breen et al. 2002, Kim et al. 2004), which is a similar but
more complex length-based Bayesian model. Only minor changes were made in 2008 to the
2005 assessment model (Breen & Kim 2005).

21 Changes to the 2005 assessment model

Only one minor change was made. Echoing a change made to the PAU 5B model, the common
observation error component (& ) was introduced to the tag-recapture likelihood function:

_1n(L)(cij | 9) =%
O .

J

+ ln(a}“g ) +0.5 1n(27r),

where

2
tag _ -~ tag 2 d
o/ =6l |0, +(0'j )

Two further model changes were explored: (1) using a multinomial likelihood for the length-
frequency data, and (2) using an inverse logistic growth curve instead of the exponential growth
(Haddon et al. 2008). Neither of the changes improved the model, and were not used in final
model runs.

2.2 Model description

The model (BLePSAM: Bayesian Length-based Paua Stock Assessment Model) does not use
age; instead it uses a number of length bins (51 in this assessment), each of 2 mm shell length.
The left-hand edge of the first bin is 70 mm and the largest bin is well above the maximum size
observed. Sexes are not distinguished. The time step is one year for the main dynamics. There
is no spatial structure within the area modelled. The model is implemented in AD Model
Builder™ (Otter Research Ltd., http://otter-rsch.com/admodel.htm) version 6.2.1, compiled with
the Borland 5.01 compiler.

2.21 Estimated parameters

Parameters estimated by the model are as follows. The parameter vector is referred to
collectively as 6.

In(RO) natural logarithm of base recruitment

M instantaneous rate of natural mortality

g, expected annual growth increment at length a
g5 expected annual growth increment at length f
@ c.v. of the expected growth increment

6
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Umax

scalar between recruited biomass and CPUE

coefficient of proportionality between ¢’ and ¢'*, the scalar for PCPUE
scalar between numbers and the RDSI

length at which maturity is 50%

interval between Lsy and Los

length at which research diver selectivity is 50%

distance between 7’5y and Tos

length at which commercial diver selectivity is 50%

distance between Dsy and Dys

common component of error
shape of CPUE vs. biomass relation
vector of annual recruitment deviations, estimated from 1977 to 2004

Constants

length of an abalone at the midpoint of the th length class (/, for class 1 is 71

mm, for class 2 is 73 mm and so on)
minimum standard deviation of the expected growth increment (assumed to be

1 mm)
standard deviation of the observation error around the growth increment

(assumed to be 0.25 mm)
minimum legal size in year ¢ (assumed to be 125 mm for all years)

a switch based whether abalone in the kth length class in year ¢ are above the
minimum legal size (MLS) (£ ,= 1) or below (£, = 0)
constants for the length-weight relation, taken from Schiel & Breen (1991)

(2.592E-08 and 3.322 respectively, giving weight in kg)
the weight of an abalone at length /,

relative weight assigned to the CPUE dataset. This and the following relative

weights were varied between runs to find a basecase with balanced residuals
relative weight assigned to the PCPUE dataset.

relative weight assigned to the RDSI dataset
relative weight assigned to RDLF dataset

relative weight assigned to CSLF dataset

relative weight assigned to maturity-at-length data
relative weight assigned to tag-recapture data

normalised square root of the number measured greater than 113 mm in CSLF
records for each year, normalised by the lowest year
normalised square root of the number measured greater than 89 mm in RDLF
records for each year, normalised by the lowest year

exploitation rate above which a limiting function was invoked (0.80 for the base
case)



2.23

mat

224

mean of the prior distribution for M, based on a literature review by Shepherd
& Breen (1992)
assumed standard deviation of the prior distribution for M

assumed standard deviation of recruitment deviations in log space (part of the

prior for recruitment deviations)
number of recruitment deviations

length associated with g (75 mm)
length associated with g, (120 mm)

Observations

observed catch in year ¢
standardised CPUE in year ¢
standardised PCPUE in year ¢

standard deviation of the estimate of observed CPUE in year ¢, obtained from
the standardisation model
standard deviation of the estimate of observed PCPUE in year ¢, obtained from

the standardisation model
standardised RDSI in year ¢

the standard deviation of the estimate of RDSI in year t, obtained from the
standardisation model
observed proportion in the kth length class in year ¢ in RDLF

observed proportion in the kth length class in year # in CSLF
initial length for the jth tag-recapture record

observed length increment of the jth tag-recapture record
time at liberty for the jth tag-recapture record

observed proportion mature in the kth length class in the maturity dataset

Derived variables

base number of annual recruits
number of abalone in the Ath length class at the start of year ¢

number of abalone in the Ath length class in the mid-season of year ¢
recruits to the model in the kth length class in year ¢
expected annual growth increment for abalone in the kth length class

standard deviation of the expected growth increment for abalone in the Ath
length class, used in calculating G
growth transition matrix

biomass of abalone available to the commercial fishery at the beginning of

year ¢



biomass of abalone above the MLS in the mid-season of year ¢

S 05 biomass of mature abalone in the mid-season of year ¢
U, exploitation rate in year ¢
4 the complement of exploitation rate
SF,, finite rate of survival from fishing for abalone in the kth length class in year ¢
44 relative selectivity of research divers for abalone in the Ath length class
Ve relative selectivity of commercial divers for abalone in the kth length class
O error of the predicted proportion in the kth length class in year ¢ in RDLF data
O‘,i, error of the predicted proportion in the kth length class in year ¢ in CSLF data
O';l standard deviation of the predicted length increment for the jth tag-recapture
record

O';.“g total error predicted for the jth tag-recapture record
o error of the proportion mature-at-length for the kth length class
—In (L) negative log-likelihood

f total function value

2.2.5 Predictions

1, predicted CPUE in year ¢

2 , predicted PCPUE in year ¢

J , predicted RDSI in year ¢

[3,’;,, predicted proportion in the kth length class in year 7 in research diver surveys

I’)Z,; predicted proportion in the kth length class in year ¢ in commercial catch
sampling

d ; predicted length increment of the jth tag-recapture record

[7,1"‘” predicted proportion mature in the kth length class

2.2.6 Initial conditions

The initial population is assumed to be in equilibrium with zero fishing mortality and the base
recruitment. The model is run for 60 years with no fishing to obtain near-equilibrium in
numbers-at-length. Recruitment is evenly divided among the first five length bins:

(1) R, =02R0 for ISk <5

=0 for k>5

N

@ R



A growth transition matrix is calculated inside the model from the estimated growth parameters.
If the growth model is linear, the expected annual growth increment for the kth length class is

3) Alk=[—ﬂg“_agﬂ —lk] 1—{1+—g“_gﬂ]
8, ~ 8 a-p

The model uses the AD Model Builder™ function posfun, with a dummy penalty, to ensure a
positive expected increment at all lengths, using a smooth differentiable function. The posfun

. . . .78 . .
function is also used with a real penalty to force the quantity (1 + a—ﬁ] to remain positive.
a —

If the growth model is exponential (used for the base case), the expected annual growth
increment for the kth length class is

(h-a)/(B~a)
@  AL=g,(g,/g,)

again using posfun with a dummy penalty to ensure a positive expected increment at all lengths.

The standard deviation of g, is assumed to be proportional to g, with minimumo

(%) o% = (gk¢ - O-MIN)(% tan”' (106 (gk¢ ~ Ouy )) + 0'5] T Oy

From the expected increment and standard deviation for each length class, the probability
distribution of growth increments for an abalone of length /, is calculated from the normal

distribution and translated into the vector of probabilities of transition from the kth length bin to
other length bins to form the growth transition matrix G. Zero and negative growth increments
are permitted, i.e., the probability of staying in the same bin or moving to a smaller bin can be
non-zero.

In the initialisation, the vector N, of numbers-at-length is determined from numbers in the

previous year, survival from natural mortality, the growth transition matrix G, and the vector of
recruitment R :

©  N.=(N,e")eG+R,

where the dot () denotes matrix multiplication.

2.2.7 Dynamics

2.2.7.1 Sequence of operations

After initialising, the first model year is 1965 and the model is run through 2008. In the first 9
years the model is run with an assumed catch vector, because it is unrealistic to assume that the
fishery was in a virgin state when the first catch data became available in 1974. The assumed
catch vector rises linearly from zero to the 1974 catch. These years can be thought of as an
additional part of the initialisation, but they use the dynamics described in this section.

10



Model dynamics are sequenced as follows:

e numbers at the beginning of year 7-1 are subjected to fishing, then natural mortality,
then growth to produce the numbers at the beginning of year z.

e recruitment is added to the numbers at the beginning of year ¢.

e Dbiomass available to the fishery is calculated and, with catch, is used to calculate the
exploitation rate, which is constrained if necessary.

e half the exploitation rate (but no natural mortality) is applied to obtain mid-season
numbers, from which the predicted abundance indices and proportions-at-length are
calculated. Mid-season numbers are not used further.

2.2.7.2 Main dynamics

For each year ¢, the model calculates the start-of-the-year biomass available to the commercial
fishery. Biomass available to the commercial fishery is:

(1) B, =) N JVw,
k

where

1

1+ 19_((1k_[)ﬂ%95*~“’j

The observed catch is then used to calculate exploitation rate, constrained for all values above
U™ with the posfun function of AD Model Builder™. If the ratio of catch to available biomass
exceeds U™, then exploitation rate is constrained and a penalty is added to the total negative
log-likelihood function. Let minimum survival rate A4,,;, be 1-U"* and survival rate 4, be 1-U;:

® V=

9) A =1-—\ for QSU“’“

t t

-1
B, C
(10) 4 =054 [1+|3-———"~ for —=>y™

The penalty invoked when the exploitation rate exceeds U™ is:

(11) 1000000(%1 _(l_g_tD

This prevents the model from exploring parameter combinations that give unrealistically high
exploitation rates. Survival from fishing is calculated as:

(12 SF,=1-(1-4,)P,

11



or

(13)  SF,, =1-(1-4)V;
The vector of numbers-at-length in year ¢ is calculated from numbers in the previous year:

(14) N, =((SF,®N,)e")eG+R,

where ® denotes the element-by-element vector product. The vector of recruitment, R, , is
determined from R0 and the estimated recruitment deviations:

(5, —0.5052)

(15)  R,,=0.2R0e for 1<k<5
(16) R, =0 for k>5

The recruitment deviation parameters &, were estimated for all years from 1977; there was no

constraint for deviations to have a mean of 1 in arithmetic space except for the constraint of the
prior, which had a mean of zero in log space; and we assumed no stock recruitment relationship.

2.2.8 Model predictions

The model predicts CPUE in year ¢ from mid-season recruited biomass, the scaling coefficient
and the shape parameter:

h

(17) it =q' (Bz+0.5)

Available biomass B, .is the mid-season vulnerable biomass after half the catch has been

t+0.5
removed (no natural mortality is applied, because the time over which half the catch is removed
might be short). It is calculated as in equation (7), but using the mid-year numbers, N, , :

l—A, )
(18) NZﬁTO.s=Nk,,(1—( 5 )Vk‘]-

Similarly,

(19) izt = q12 (Bt+0.5 )h = qu (BHO'S )h

The same shape parameter % is used for both series: experiment outside the model showed that
this was appropriate despite the different units of measurement for the two series. The predicted
research diver survey index is calculated from mid-season model numbers in bins greater than
89 mm length, taking into account research diver selectivity-at-length:

1- 4
(20) lezio‘s = Nk,t (1_( > t) V,{'J

12



55
QD) Jo=q" D NS

k=11
where the scalar is estimated and the research diver selectivity V" is calculated from:

1

_[(lk *TS%HOJ

The model predicts proportions-at-length for the RDLF from numbers in each length class for
lengths greater than 89 mm:

2 V=

1+19

res
Nk,t+045

23) Py, =S for 11<k <51

res
z Nk,t+045

k=11

Predicted proportions-at-length for CSLF are similar:

Nvuln
Q4) Py, = for 23<k <51
vuln
z N k,t+0.5

k=23

The predicted increment for the jth tag-recapture record, using the linear model, is

At

A~ _a — J

o5y d | P08y 1_(1+M]
8,8 a-p

where At ;1s in years. For the exponential model (used in the base case) the expected increment
is

A (L/—a) (B-a)
(26) d,=Atg, (gﬂ /ga) /

The error around an expected increment is
. 1 .
27) o-jd = (dj¢ — Oy )(; tan™! (106 (dj¢ — O )) + O.Sj + Oy

Predicted maturity-at-length is

(28)  pi=

13



2.2.9 Fitting
2.2.9.1 Likelihoods

The distribution of CPUE is assumed to be normal-log and the negative log-likelihood is:

09) —ln(L)<fl |¢9) _ (ln(lx)—ln(lt)) _'_ln(ml%[j_,_ojln(zﬂ)

and similarly for PCPUE:

(30) —ln(L)(IA2t |<9) = (ln(IZt)—ln(I2t)) +1n(0f12%,zj+0.51n(27r)

The distribution of the RDSI is also assumed to be normal-log and the negative log-likelihood
is:

2
N (ln(J)—ln J, ) J ~
(D —In(L)(J,]6)= )hn( ’2) +1n[0r O/Jj+0.51n(27r)
(O-Jd/ j w
2| 7t J
@
The proportions-at-length from CSLF data are assumed to be normally distributed, with a

standard deviation that depends on the proportion, the number measured, and the weight
assigned to the data:

o3
Ko, /P}:,t +0.1

The negative log-likelihood is:

(32 o), =

(- 5)

33  —In(L)(p;,10)= o)
o},

+In(oy,)+0.5In(27)

The likelihood for research diver sampling is analogous. Errors in the tag-recapture dataset
were also assumed to be normal. For the jth record, the total error is a function of the predicted
standard deviation (equation (27)), observation error, and weight assigned to the data:

34 tag ~/ tag 2+ d 2
(B34 o =0/w™,o, +|0o;

14



and the negative log-likelihood is:
A \2
d,-d,)

(35) —ln(L)(a?j | 49) (26—’;)2
O .

J

+ ln(a;.“g ) + 0.51n(27r)

The proportion mature-at-length was assumed to be normally distributed, with standard
deviation analogous to proportions-at-length:

(e}

@™\ p; +0.1

The negative log-likelihood is:

(B6) o) =

mat _ ~ mat 2
Pk Pi

37 —In(L)(p;" 0)= o
O

+ln(0',2”“’)+0.51n(27r)

2.2.9.2 Normalised residuals

These are calculated as the residual divided by the relevant o term used in the likelihood. For
CPUE, the normalised residual is

In(7,)~In(7,)
)

and similarly for PCPUE and RDSI. For the CSLF proportions-at-length, the residual is

(38)

S ~S
pk,z - pk,t
S
k.t

(39)

and similarly for proportions-at-length from the RDLFs. Because the vectors of observed
proportions contain many empty bins, the residuals for proportions-at-length include large
numbers of small residuals, which distort the frequency distribution of residuals. When
presenting normalised residuals from proportions-at-length, we arbitrarily ignore normalised
residuals less than 0.05.

For tag-recapture data, the residual is

A

J J
‘0 —
J

and for the maturity-at-length data the residual is

mat __ ~mat

(41) Dy D

mat
k

15



2.2.9.3 Dataset weights

Weights were chosen experimentally in choosing a base case, iteratively changing them to
obtain standard deviations of the normalised residuals (sdnr) close to unity for each dataset.

2.2.9.4 Priors and bounds

Bayesian priors were established for all estimated parameters. Most were incorporated simply
as uniform distributions with upper and lower bounds arbitrarily set wide so as not to constrain
the estimation. The prior probability density for M was a normal-log distribution with mean

M,, and standard deviation o,,. The contribution to the objective function of estimated M = x
is:

TR L =L T PN

2
20,

The prior probability density for the vector of estimated recruitment deviations, &, was
assumed to be normal with a mean of zero. The contribution to the objective function for the
whole vector is:

Z(gt)z
43) —ln(L)(8|,ug,o"s):i=1—2+ln(0'g)+0.51n(27r).
20,

2.2.9.5 Penalty

A penalty is applied to exploitation rates higher than the assumed maximum (equation 10); it is
added to the objective function after being multiplied by an arbitrary weight (1E6) determined
by experiment.

AD Model Builder™ also has internal penalties that keep estimated parameters within their
specified bounds, but these should have no effect on the final outcome, because choice of a base
case excludes the situations where parameters are estimated at or near a bound.

2.2.10 Fishery indicators

The assessment is based on the following indicators calculated from their posterior
distributions: the model’s mid-season recruited and spawning biomass from 2008 (current
biomass), from 2011 (projected biomass), from the nadir (lowest point) of the population
trajectory (Bmin and Smin), and from a reference period, 1985-87. This was a period when the
biomass was stable, production was good, and there was a subsequent period when the fishery
flourished. The means of values from the three years were called Sav and Bav for spawning and
recruited biomass respectively. We also used annual exploitation rate in 2008, U05, and in
2011, U11. Ratios of these reference points are also used.

Six additional indicators are calculated as the percentage of runs in which:

spawning biomass in 2011 had decreased from 2008: S17<S08
spawning biomass in 2011 was less than the reference level: S17<Sav

16



spawning biomass in 2011 was less than the nadir: S77<Smin
recruited biomass in 2011 had decreased from 2008: B1/<B08
recruited biomass in 2011 was less than the reference level: B1/<Bav
recruited biomass in 2011 was less than the nadir: B/ /<Bmin

2.2.11 Markov chain-Monte Carlo (MCMC) procedures

AD Model Builder™ uses the Metropolis-Hastings algorithm. The step size is based on the
standard errors of the parameters and their covariance relationships, estimated from the Hessian
matrix.

For the MCMC:s in this assessment we ran single long chains that started at the MPD estimate.
The base case was 5 million simulations long and we saved samples, regularly spaced by 5000.
For sensitivities we made chains of 2.5 million, saving samples regularly spaced by 5000. In all

MCMC trials we fixed the value of @ to the estimated MPD value because it may be
inappropriate to let a variance component change during the MCMC.

2.2.12 Sensitivity trials

These involved trials based on the MPD estimates and other trials based on full sets of MCMC
simulations.

For the MPD trials, datasets were removed one at a time (seven trials), the model was fitted to a
single CPUE series from 1983 to 2007, based on catch per diver day, and the inverse logistic
model for growth was used. For the single CPUE series only, the data were iteratively re-
weighted to balance the sdnrs; in all other trials the weights were left as in the base case.

The MCMC trials comprised retrospective trials in which data (except for tag-recapture data)
were removed one year at a time for comparison with the base case. Two and half million
MCMC simulations were made in each trial and 500 samples saved.

Two MCMC trials were made in which the assumed maximum exploitation rate, u™ , was
changed from 0.80 in the base case to 0.65 and 0.90.

2.2.13 Alternative non-commercial catch projections

Stochastic projections were made through 2008 by running the dynamics forward in time with
each of the 500 parameter vectors, driving the model with a specified catch vector, this being
the assumed catch for 2008 (202.1 t). The sequence of operations was as described for the main
dynamics.

Recruitment in projections was stochastic, obtained by re-sampling the recruitments estimated
from 1997 to 2006. Because the 2008 recruitment deviation is poorly determined by the data (it
has no effect on any of the quantities being fitted), the estimated value is inappropriate for
projections and was over-written with values obtained by re-sampling. Projected exploitation
rate in projections is limited by simply truncating it at the specified maximum.

Two alternative projections were made with different assumptions for the non-commercial
catch: (a) zero non-commercial catch and (b) the linear ramp in the non-commercial catch from
1974 to 2000 continued until 2011. The catches for the base case projection and alternative
projections are summarised in Table 1.
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2.2.14 Finding a base case

The base case was chosen by altering the relative weights of each dataset until the standard
deviations of the normalised residuals were close to 1.0 for each dataset. The specifications for
estimated parameters are shown in Table 2, with fixed values in Table 3.

2.3 MPD results

Base case parameter estimates and some indicators are shown in the first data column of Table
4, with the base case denoted as “001”. The weights chosen gave standard deviations of
normalised residuals that were very close to 1 for all data sets.

The MPD estimate of M was 0.15, somewhat larger than the assumed mean of the prior
distribution, 0.10 (Table 4), but still within the prior.

The model estimated /4 as 0.730, giving a relation between CPUE and biomass with some
hyperstability (Table 4). This is what one would expect from abalone populations, where divers
can maintain high catch rates as the stock is fished down.

The base case model fits the two observed CPUE abundance indices credibly (Figure 2); though
it is unable to fit the PCPUE index for 2006. The fit to the RDSI index is flatter then the general
pattern of the index, though the fit does mirror the pattern of decrease to 2000 and subsequent
increase (Figure 2). Residuals are reasonable given the sparse data (Figure 3), though those for
the PCPUE index show that the fitted values are mostly below the observations. Further
increasing the weight on the PCPUE index enables a more balanced residual pattern, but the fit
to the CPUE index decreases in response and its residual pattern worsens. The fit to maturity-
at-length is good (Figure 4).

Fits to proportions-at-length were reasonably good (Figure 5) and there was no consistent
relation between the residuals and length (Figure 6). The means of residuals at length show
some pattern (Figure 7), especially near the MLS. The g-q plot for normalised residuals from
the RDLF data is a bit better formed than that from the CSLF (Figure 8), but both are reasonable
between values of -2 and 2.

The fit to growth increment data (Figure 9) is generally acceptable except that where tags were
not recovered until more than 600 days later, the model tended to over-estimate the increment.
These tags were all from the same experiment at one site, so this could be a bias caused by the
long time at liberty or could be caused by growth differences among sites. Figure 10 shows the
g-q plot for normalised residuals for all datasets combined. The expected annual growth
increment is also shown, with the standard deviations, in Figure 11 (top).

The midpoint of the research diver selectivity ogive (Figure 11, middle) was 104.8 mm, and the
ogive was broad as in previous assessments. The midpoint of the commercial fishery selectivity
(Figure 11, bottom) was 124.1 mm, just under the MLS, and this ogive was very narrow.

The model's MPD estimates of recruitment (Figure 12, top) were lower than average in the mid
to late 1990s and about average in recent years.

Exploitation rate (Figure 12, bottom) increased steadily over the history of the fishery, reached
the maximum of about 80% in 2000 and 2003, but shows a strong recent decline to 37% in
2008.

The unfished length frequency (Figure 13) has a mode at 80 mm and has substantial numbers of
large paua. Recent proportions-at-length still have many small paua and far fewer larger paua
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above the minimum length size of 125 mm. The model recruitment plotted against the model’s
spawning biomass two years earlier (Figure 14) shows no obvious relation.

The MPD biomass trajectories, the surplus production trajectories, and surplus production
plotted against the recruited biomass are shown in Figure 15. Total biomass includes all
animals. Recruited biomass involves those animals at or above the MLS. Available biomass
involves those animals available to the commercial fishery. Estimated biomass decreased
substantially from the 1965 estimate until the turn of the century, then recruited and available
biomass show slight increases, with spawning biomass a somewhat more substantial increase.
Surplus production increased as biomass decreased, to a maximum in the early 1990s, then
declined to 2000 and shows a recent increase. Surplus production plotted against recruited
biomass suggests a maximum near 500 t, at about one-sixth of the unfished recruited biomass,
but this is based on a one-way trip and should be treated cautiously.

2.4 MPD sensitivity trials

Sensitivity trials based on MPD results involved removing the datasets one at a time to see how
they affected the model’s results, fitting to a single standardised CPUE series based on catch per
diver day and making the growth model inverse logistic instead of exponential. Results are
summarised in Table 4.

When the model was fitted to one data set at a time, recruitment estimates increased markedly
when CPUE or tag-recapture data were removed. The M estimates increased slightly when
CPUE was removed. Removal of tag data had the largest effect on the research diver selectivity
estimates, and resulted in much lower estimates of growth parameters. Apart from these
changes, sensitivity trials did not have much effect on parameter estimates, except where the
data set removed contained the only information about the parameter. Indicators were
remarkably stable in these trials. Using one continuous CPUE series led to less optimistic
biomass ratio indicators, decreasing the percentage value by about 10, for those comparing the
2008 biomass to the reference period.

Using the inverse logistic growth to fit the growth increment data gave a better total likelihood
by about 8 points, compared to the base model. However, the model took a very long time to
converge, and the Hessian matrix at the MPD fit was not positive definite. Both of these
problems are possibly due to correlation between the inverse logistic curve parameters. Because
of these two problems the inverse logistic curve was not considered any further for model runs.

2.5 MCMC results

The MCMC traces (Figure 16) showed good mixing. The main diagnostic we used was to plot
the running median and 5th and 95th quantiles of the posterior and the moving average
calculated over 40 samples. Moving means for recruitment and M showed an excursion and
return very late in the chain, along with one of the growth parameters and a research diver
selectivity, but there is no strong evidence that the chain is not converged (Figure 17).

The MCMC parameter correlation matrix (Table 5) shows a high correlation between
recruitment and M, as is usually seen; between the c.v. of growth and the other two growth
parameters; between the two research diver selectivities; the two commercial selectivity
parameters, between the first research diver selectivity parameter and recruitment and M; and
among the abundance scalars and shape parameter. This list does not seem excessive.
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2.6 Marginal posterior distributions and the Bayesian fit

Posteriors (Figure 18) were generally well formed and MPDs were mostly near the centres (but
tended to be below the median of biomass posteriors). Posteriors of the sdnrs were mostly in
the range from 0.8 to 1.2. The posteriors are summarised Table 6.

The posteriors of fits to CPUE (Figure 19) show that variation was greatest for the early years,
where data are weakest, and was low for the recent years. Some years have predictions that do
not encompass the observed values, but there is no pattern in the residuals. The posterior fits to
PCPUE (Figure 20) and RDSI (Figure 21) also fit the data well, although the model is unable to
fit the 2006 PCPUE observation, and seems unable to reproduce the range of variation seen in
the RDSI data.

The posteriors of predicted CSLFs for 1999, when both CSLF and RDLF data were available,
(Figure 22-23) were very tight and did not match the observed values for the peak size bins just
above the MLS. The residual pattern was worse for RDLFs in the same year (Figure 22-23),
although the overall fit was acceptable.

The posteriors of the fits to tagging data are difficult to show; instead we show the posterior of
the g-q plot of the residuals (Figure 24), showing a moderately poor fit that is probably related
to the influences of proportion-at-size datasets on the growth estimates.

The fit to maturity data (Figure 25) is tight because only this single data set contains any
information about maturity.

The biomass trajectory posteriors (Figure 26) are widest for the earliest years, and for recruited
biomass are very narrow near 2000, where the exploitation rate estimates were limited by the
assumed maximum. All show recent and projected increases.

In all three biomass measures, the stock declined from 1965 to 2001. Recruited biomass then
increased slightly to 2008. The projections at current assumed catch levels show a strong
increase with increasing uncertainty over the three projection years. The recruited biomass
trajectory is shown in more detail in Figure 27.

Exploitation rate (Figure 28, top) was similar to the MPD trajectory and shows a strong
decrease in projections. Median recruitment (Figure 28, bottom) is also similar to the MPD, but
individual estimates show high uncertainty (although higher or lower than average estimates are
always higher or lower than average).

The surplus production trajectory (Figure 29) was similar to the MPD, with high variability in

the 1980s and low variability near 2000. The posterior distribution of production as a function
of recruited biomass (Figure 30) suggests high productivity at low stock size.

2.7 Comparison with 2005

Distributions of parameter estimates, for parameters common to both assessments (but
excluding the recruitment deviations), are very similar (Table 7).

Biomass trajectories (Figure 31-32) and exploitation rates (Figure 33) are virtually identical.

Estimated recruitment was slightly lower in 2005 than in 2008 (Figure 34), but had the same
pattern.
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This comparison shows that the 2008 assessment is not substantially different from the 2005
assessment, as might be expected: there are only slight changes in the data, two more years’
data, and one small change to the model.

2.8 MCMC sensitivity trials

2.8.1 Retrospectives

In the retrospective MCMC sensitivity trials the data (except for tag-recapture data) were
removed from the fitting one year at a time, from 2006 to 2004, for comparison with the base
case, in which the last year of data was 2007.

The model results were generally stable to removal of data; all parameter values remained near
the base case values (Table 8).

Consequently, biomass trajectories were similar (Figure 35), at least from 1985 forward. There
are little data before then, and the sensitivity of early biomass estimates suggests that B0 would
be a poor reference point. Projections, shown in Figure 36, are similar among the trials though
2004 and 2005 show less of an increase. These results are mirrored in the exploitation rate
trajectories (Figure 37). Recruitments (Figure 38-39) show similar patterns among the trials,
albeit one noticeable pattern is that recruitment is less the further back a retrospective trial goes.

2.8.2 Maximum exploitation rate trials

When the assumed maximum exploitation rate was changed, substantial change occurred when
0.65 was assumed (Table 9); in particular, recruitment (Figure 40) and M were much larger and
the fit to the data was worse, as reflected in the function value. Research divers were estimated
to be much less sensitive to small paua. Absolute biomass indicators were all larger, as would
be expected, though biomass indicator ratios were similar. Recruited biomass trajectories
(Figure 41) were more complex: for 0.65 the historical biomass was much less than the base
case; recent biomass was slightly higher. Projection indicators involving recruited biomass
were similar to but less optimistic than the base case. Exploitation rates (Figure 42) followed
similar patterns.

2.8.3 Alternative non-commercial catch projections

Projections were not strongly dependent on assumed value for the non-commercial catch. In the
base case projection the spawning stock biomass in 2011 is estimated to be 8% higher then in
2008 (Table 10). In the zero and ramp non-commercial catch projections the spawning stock
biomass is estimated to be 13% and 4% higher respectively. In the base case projection the
probability that the 2011 spawning stock biomass is less then the reference spawning stock
biomass is estimated at 0.48 (Table 10). In the zero and ramp projections this probability is
estimated at 0.35 and 0.38 respectively.
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3. DISCUSSION

3.1  Model performance

As there was only a slight change made to the model structure (introduction of the common
error term to the tag-recapture data) and two more years of data added the diagnostics for this
assessment were very similar to those for 2005 in being favourable. During searching for the
base case MPD the model fitted the data comfortably and the residuals were balanced easily;
there were no symptoms of trouble such as badly formed Hessians, or excessive numbers of
function evaluations.

Sensitivity of the MPD indicators to dataset removal and other modelling choices was not great.
M was sensitive to removal of the CPUE series (the longest abundance index series), but the
indicators were not greatly affected. Growth estimates were sensitive to removal of the tag-
recapture data set: the model estimated much slower growth when these data were absent, but
again the indicators did not change much.

The MPD fit was best when higher values were assumed for maximum exploitation rate, and
reducing the assumption to 0.65 led to a poor fit, unrealistically high M, and other symptoms of
poor performance. This is the major source of uncertainty with respect to the MPD fits.

The diagnostics for MCMC simulations were acceptable. Retrospectives were generally stable
until four years of data had been removed, when model predictions indicated greater recruitment
and a lower exploitation rate. The 2006 data contain some significant information, which could
either be the increase in PCPUE (see Figure 2) or the shift to the right of the commercial length
frequency (see Figure 5).

As it was for the MPD, the assumed value of U™ is the major uncertainty. Increasing this
from 0.80 to 0.90 has a small effect, but decreasing it to 0.65 increased M and made projection
indicators less optimistic. Although the high M estimates appear to be unrealistic, the tendency

for projected biomass increases to be weaker with decreased U™ must be noted.

3.2 PAU 7 assessment

It cannot hurt to repeat that the assessment addresses only areas 17 and 38 within PAU 7. These
areas supported most of the catch until recently, and most of the data come from them, but the
relation between this subset of PAU 7 and PAU 7 as a whole is uncertain.

The assessment shows a depleted stock. The current spawning and recruited biomass levels are
both much lower than they were when the catch data begin in 1974 or CPUE data begin in 1983
(see Figure 26). Both are lower than the agreed target reference levels from 1985—-87: spawning
biomass has a median of 93%, with a 95% confidence interval of 79—114%; recruited biomass
has a median of 54% (46-65%). Both are above the agreed limit biomass reference points.

Current exploitation (poorly determined because it depends on the assumed value for u™ ) is
estimated to be 37% (33—42%).

The tight ranges for most model estimates derive from the model’s exploitation rate reaching its

bound, U™, Sensitivity trials show that assuming other values for U™ has little effect on
recent biomass estimates and trends, but assuming 0.65 leads to unrealistic M estimates and
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quite different biomass trajectories. The target reference points are sensitive to U™ but the
limit reference points are not. This is the major uncertainty of the assessment.

Although the stock is depleted, model projections show a very strong probability of increase in
both spawning and recruited biomass (Table 10), even if the actual non-commercial catch is
much higher then assumed in the base case. The risk of spawning biomass decrease would be
32% with a higher assumed non-commercial catch, but this nearly halves with catch at that
assumed in the base case. In projections, the recruited biomass increases substantially in three
years (at least 65%), across different assumptions made on the maximum exploitation rate and
non-commercial catch. At current catch levels, the spawning stock biomass is estimated to be at
the reference biomass levels in three years, and at 94% of the reference biomass level for
recruited biomass.

3.3 Cautionary notes

The cautionary notes from the 2005 assessment are reiterated here (Breen & Kim 2005).

3.3.1 The MCMC process underestimates uncertainty

The base case assessment results described above have more uncertainty than that reflected in
the posterior distributions. These results come from a single base case chosen from a wide
range of possibilities, although the choice of a base case was reasonably objective. The most

important uncertainty is the choice of U™ , affecting both the estimated current status of the
stock and the strength of rebuilding.

Another source of uncertainty outside the model is the 2008 catch. The assessment uses an
estimate of the proportion of PAU 7 catch that comes from areas 17 and 38. Differences
between the estimated and actual catch for 2008 in areas 17 and 38 could affect the strength of
rebuilding predicted by the assessment. A further area of uncertainty is the non-commercial
catch, which is not well known, though predicted rebuilding is not strongly dependent on the
values assumed.

3.3.2 The data are not completely accurate

The next source of uncertainty comes from the data. The commercial catch before 1974 is
unknown and, although we think the effect is minor, major differences may exist between the
catches we assume and what was taken. In addition, non-commercial catch estimates are poorly
determined and could be substantially different from what was assumed, and in recent years are
estimated to be nearly 20% of the catch. The illegal catch is particularly suspect.

The tagging data may not reflect fully the average growth and range of growth in this
population. Similarly, length frequency data collected from the commercial catch may not
represent the commercial catch with high precision: after 2004 no paua have been measured
from area 38 (McKenzie & Smith 2008, table 15).

The research diver data comprise seven surveys, but for some the standard errors are quite large

(McKenzie & Smith 2008, figure 22) and length frequencies may not be fully representative of
the population.
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3.3.3 The model is homogeneous

The model treats the whole of the assessed substock of PAU 7 as if it were a single stock with
homogeneous biology, habitat, and fishing pressures. This mean the model assumes
homogeneity in recruitment, natural mortality which does not vary by size or year, and growth
has the same mean and variance throughout the stock (we know this is violated because some
areas are stunted and some are fast-growing).

To what extent does a homogenous model make biased predictions about a heterogeneous
stock? Heterogeneity in growth can be a problem for this kind of model (Punt 2003). Variation
in growth is addressed to some extent by having a stochastic growth transition matrix based on
increments observed in several different places; similarly the length frequency data are
integrated across samples from many places.

The effect is likely to make model results optimistic. For instance, if some local stocks are
fished very hard and others not fished, recruitment failure can result because of the depletion of
spawners, because spawners must breed close to each other and because the dispersal of larvae
is unknown and may be limited. Recruitment failure is a common observation in overseas
abalone fisheries. So local processes may decrease recruitment, which is an effect that the
current model cannot account for.

3.3.4 The model assumptions may be violated

The most suspect assumption made by the model is that CPUE is an index of abundance. There
is a large literature for abalone that suggests CPUE is difficult to use in abalone stock
assessments because of serial depletion. This can happen when fishers can deplete unfished or
lightly fished beds and maintain their catch rates. So CPUE stays high while the biomass is
actually decreasing.

In fully developed fisheries such as PAU 7 this is not such a serious problem. In areas 17 and
38 the exploitation rate has been high and few undepleted areas are likely to remain. The main
problem affects the model’s estimates of the early fishery, but, in this assessment, the degree of
hyperstability appeared reasonably well determined.

Another source of uncertainty is that fishing may cause spatial contraction of populations (e.g.,
Shepherd & Partington 1995), or that some populations become relatively unproductive after
initial fishing (Gorfine & Dixon 2000). If this happens, the model will overestimate
productivity in the population as a whole. Past recruitments estimated by the model might
instead have been the result of serial depletion.
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Table 1: Total catches (kg) used for projections with alternative catches for the non-commercial
catch. In the base scenario the non-commercial catch in the projection years is taken to equal that
in 2008. For the zero scenario the non-commercial catch is taken to be zero in the projection years
(2009, 2010, 2011). For the ramp scenario the linear ramp in the non-commercial catch from 1974
to 2000 is continued to 2011. For all scenarios the commercial catch in the projection years is equal
to the estimated commercial catch in 2008.

Fishing

Year base Zero ramp
2000 238419 238419 238419
2001 180 731 180 731 184 056
2002 178 492 178 492 185 142
2003 204 755 204 755 214 730
2004 185191 185 191 198 491
2005 183 568 183 568 200 193
2006 211 695 211 695 234 145
2007 196 968 196 968 225243
2008 202 065 202 065 236 165
2009 202 065 169 565 237 365
2010 202 065 169 565 238 365
2011 202 065 169 565 239 565
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Table 2: PAU 7 base case specifications: for estimated parameters, the phase of estimation, lower
bound, upper bound, type of prior, (U, uniform; N, normal; LN = lognormal), mean and standard
deviation of the prior.

Variable Phase LB UB Prior Mean Std. dev.

In(R0) 1 5 50 8] - _
M 3001 05 LN 010 035
& 2 1 50 u - _
gs 2001 50 U _ _
¢ 2 0001 1 U _ _
q' 1 -30 0 U _ _
X 1005 1 U - _
q’ 1 30 o U o _ B
Ly, 1 70 145 U _ _
Lys s 1 1 50 U _ _
T, 2 70 125 U _ _
Tos s 2 0001 50 U _ _
Dy, 2 70 145 U _ _
Dys s 2 001 50 u _ B
In(5) 1 o001 1 U _ _
h 1 001 2 U - _
g 3 23 23 N 0 04

Table 3: Values for fixed quantities in the PAU 7 base case.

Variable Value
a 75
p 120
@’ 0.065
@'’ 0.54
a’ 0.138
@’ 75.9
@’ 36.4
@' 0.189
a" 5.53
U™ 0.800
o 1.0
O, 0.25
a 2.59E-08
b 3.322
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Table 6 : Summary of the marginal posterior distributions from the MCMC chain from the base case
for PAU 7. The projected catch is the estimated 2008 catch. The columns show the minimum values
observed in the 500 samples, the maxima, the Sth and 95th percentiles, and the medians. The last few
rows show the percentage of runs for which the indicator was true. Biomass is in tonnes.

min 5% median 95% max
f -132.5 -112.9 -104.9 -95.5 -84.5
In(RO) 14.14 14.40 14.74 15.13 15.50
M 0.106 0.122 0.159 0.207 0.241
ga 13.84 14.55 15.36 16.15 16.73
af 5.27 5.47 5.70 5.91 6.16
D5, 123.9 124.0 124.1 124.2 124.3
Tso 101.9 103.1 105.4 107.9 109.7
Tos-50 19.65 21.08 23.21 25.33 27.38
Dys.5o 2.12 2.24 2.41 2.59 2.75
Lsy 88.79 89.93 90.70 91.50 92.55
Los.s0 8.69 9.65 11.56 13.41 14.94
0 0.392 0.413 0.439 0.465 0.496
In(g") -6.93 -5.68 -4.53 -3.43 -2.54
X 0.161 0.180 0.198 0.219 0.241
In(q)) -15.64 -15.46 -15.30 -15.15 -15.04
h 0.565 0.638 0.723 0.813 0.904
sdnrCPUE 0.784 0.890 1.037 1.227 1.560
sdnrPCPUE 0.779 0.862 0.990 1.184 1.389
sdnrRDSI 0.833 0.906 0.977 1.051 1.110
sdnrCSLF 0.948 0.959 0.975 0.993 1.011
sdnrRDLF 0.956 0.979 1.011 1.044 1.072
sdnrTags 0.903 0.947 0.987 1.029 1.080
sdnrMaturity 0.963 0.966 0.991 1.066 1.202
vos 28% 33% 37% 42% 46%
Ull 15% 19% 25% 33% 41%
Smin 751 785 845 929 1045
Sav 1400 1465 1603 1812 2130
S08 1065 1230 1513 1908 2487
S09 1025 1230 1555 2021 2782
S10 973 1245 1591 2120 3086
S11 923 1237 1630 2206 3370
Bmin 99 103 107 112 116
Bav 506 564 662 764 876
B0S8 270 311 357 412 491
B09 336 389 467 554 720
B10 348 437 563 717 948
Bl1 334 450 619 859 1140
S08/Sav 70% 79% 93% 114% 134%
S08/Smin 134% 149% 177% 217% 259%
S11/Sav 62% 78% 101% 133% 194%
S11/508 82% 95% 108% 124% 147%
B08/Bav 39% 46% 54% 65% 80%
B08/Bmin 256% 288% 334% 385% 471%
B11/Bav 51% 67% 94% 132% 175%
B11/B08 104% 134% 173% 229% 310%
S11<S08 18%
S11<Sav 48%
Bl1I1<Bav 62%
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Table 7: Comparison of the posterior distributions for parameters and two indicators between the
2005 and 2008 assessments. Only those variables common to the two assessments are shown.

median 5% 95%

2005 2008 2005 2008 2005 2008

In(R0O) 14.68 14.74 14.44 14.40 14.94 15.13
M 0.150 0.159 0.128 0.122 0.177 0.207
2 15.76 15.36 14.87 14.55 16.57 16.15
g5 5418 5.695 5.221 5.467 5.607 5.908
Dsy 123.98 124.09 123.89 124.00 124.06 124.17
Tso 103.86 105.37 102.09 103.13 105.86 107.91
Tos.50 24 .43 23.21 22.10 21.08 27.20 25.33
Dys._sp 2.260 2.412 2.096 2.238 2.430 2.593
Lsp 90.72 90.70 89.91 89.93 91.49 91.50
Los.so 11.57 11.56 9.83 9.65 13.41 13.41
1) 0.609 0.439 0.575 0.413 0.648 0.465
In(g") -3.479 -4.527 -4.596 -5.676 -2.384 -3.432
X 0.192 0.198 0.174 0.180 0.213 0.219
ln(qj) -15.277  -15.301 -15.442 -15.457 -15.119  -15.154
h 0.642 0.723 0.558 0.638 0.729 0.813
Sav 1546 1603 1447 1465 1681 1812
Bav 673 662 589 564 765 764
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Table 9: Summary of parameter estimates and indicators from the MCMC sensitivity trials in
which maximum exploitation rate was varied to values indicated. Projected catches are the
estimated 2008 catch. “f” indicates the function value. Biomass indicators are in tonnes.

f

In(R0)

M

8a

8p

Dsy

Dos.50

Ts

Tys.50

Lsy

Los.s5

4

In(¢")

X

In(q”)

h
sdnrCPUE
sdnrPCPUE
sdnrRDSI
sdnrCSLF
sdnrRDLF
sdnrMaturity
sdnrTags
Uos

Ull

Smin

Sav

S08

S09

S10

Si1

Bmin

Bav

B08

B09

BI0

BI11
S08/Sav
S08/Smin
S11/Sav
S11/508
B08/Bav
B08/Bmin
Bl11/Bav
B11/B08
S11<8S08
S11<Sav
Bl1<Bav

median 5% 95%
65%  base 90% 65%  base 90% 65%  Dbase 90%
-70.4 -1049 -114.6 -78.1 -112.9 -1204 -60.7 -95.5 -103.5
1557 1474 14.64 15.1 144 1449 16.08 15.13 14.75
026 0.159 0.142 0.19 0.122 0.132 0.341 0.207 0.153
1597 1536 15.29 15.1 14.55 14.74 16.92 16.15 16.09
5.28 5.7 5.86 501 547 572 5,55 591 629
124.1 124.1 124 124 124 1239 1242 1242 124.1
2.3 2.4 2.4 2.2 2.2 2.1 2.5 2.6 2.6
109.1 1054 104.3 1059 103.1 103.5 1122 1079 1052
23.5 232 22.5 22 21.1 21 253 253 235
90.7  90.7 90.5 89.9 89.9 90 91.5 915 91
11.6 11.6 11.6 9.8 9.6 104 13.7 134 129
0.442 0439 0421 0417 0413 0401 047 0465 044
-5.02  -4.53 -4.45 -6.47 -5.68 -5.34 -3.84 -343 -3.39
0.196 0.198  0.196 0.177 0.18 0.18 0216 0219 0.215
-15.53  -153 -15.26 -15.67 -15.46 -15.39 -15.38 -15.15 -15.15
0.746 0.723  0.721 0.655 0.638 0.638 0.857 0.813 0.791
1.165 1.037 1.014 0.988 0.89 0.881 1.372 1227 1.179
1.012 0.987 1.012 0.97 0947 00978 1.049 1.029 1.033
1.025 099 0976 0.874 0.862 0.848 124 1.184 1.16
0.974 0.977 0975 0.903 0.906 0.93 1.045 1.051 1.029
0.961 0.975 0.989 0.942 0.959 0.973 0.982 0.993 1.005
1.05 1.011 1.011 1.022  0.979 0.986 1.084 1.044 1.046
0.991 0.991 0.987 0.966 0.966 0.966 1.08 1.066 1.024
0.307 0.371  0.385 0.273 0.332 0.351 0.345 0415 0414
0216 0.253  0.249 0.166 0.189 0.192 0.275 0.333 0.297
1220 845 785 1073 785 737 1440 929 814
2537 1603 1484 2081 1465 1391 3220 1812 1552
2324 1513 1419 1818 1230 1225 3072 1908 1676
2341 1555 1465 1822 1230 1238 3197 2021 1748
2352 1591 1501 1817 1245 1252 3249 2120 1845
2355 1630 1538 1785 1237 1260 3294 2206 1928
149 107 101 143 103 95 155 112 107
848 662 662 730 564 588 1028 764 719
441 357 342 382 311 313 504 412 381
561 467 460 470 389 399 659 554 538
662 563 565 536 437 467 817 717 723
721 619 635 547 450 515 960 859 858
92%  93% 95% 77%  79%  86% 113% 114% 111%
190% 177%  180% 158% 149% 164% 237% 217% 211%
93% 101%  104% 73%  78%  87% 123% 133% 130%
102% 108%  108% 88%  95%  98% 118% 124% 122%
51%  54% 52% 43%  46% 45% 62% 65% 5%
297% 334%  338% 255% 288% 307% 338% 385% 382%
85%  94% 99% 62% 67% 76% 113% 132% 131%
165% 173%  188% 129% 134% 156% 210% 229% 242%
0.426 0.178 0.11
0.672 0478 0.386
0.814 0.622  0.508
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Table 10: Summary of results from projections using alternative maximum exploitation rates
and non-commercial catches. Median values are shown for the exploitation rate in 2011 (U11)
and biomass ratios. In all runs, the median biomass exceeded Bmin and Smin.

Ull S11/Sav S11/S08 P(S11<S.) P(S11<S08) B11/Bhy B11/B08 P(Bll <B,y)

base 0.25 1.01 1.08 0.48 0.18 0.94 1.73 0.62
zero  0.20 1.06 1.13 0.35 0.05 1.05 1.94 0.41
ramp 0.30 1.04 1.04 0.38 0.32 0.92 1.63 0.63

PAU 7 036

PAU 6 035

PAU 7 018

PAU 3 018

Figure 1: Boundaries of PAU 7, statistical areas and research survey strata.
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Figure 2: Observed (dots) and predicted (solid line) CPUE (top), PCPUE (middle) and RDSI
(bottom) for the base case MPD fit for PAU 7. Error bars show the standard error term used by
the model in fitting, including the effects of the common error term and the dataset weights.
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Figure 3: Normalised residuals for CPUE (left), PCPUE (middle) and RDSI (right) for the base

case MPD fit for PAU 7. The horizontal lines in bottom plots are 5, 10, 25, 50, 75, 90, 95th
percentiles.
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Figure 4: Observed (dots) and predicted (line) proportions of maturity-at-length.
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Figure 5: Observed (dots) and predicted (lines) proportions-at-length from commercial catch
sampling (left) (CSLF) and research diver surveys (right) (RDLF) for the base case MPD fit for
PAU 7. The number under each year is the relative weight given to the dataset, based on the
number of paua measured.
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Figure 6: Residuals from base case MPD fits to CSLF (left) and RDLF (right) data seen in Figure
5.
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Figure 7: Means of normalised residuals at each length for the fits to the RDLF (upper) and
CSLF datasets.
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Figure 9: Top: predicted (closed circles) and observed (open circles) increments plotted against
initial length of tagged paua from the base case MPD fit for PAU 7; middle: standardised
residuals plotted against initial length; bottom: Q-Q plot of standardised residuals. Among the
columns, the data have been divided based on the approximate time-at-liberty, which varied
among experiments, animals within each experiment having almost the same time-at-liberty.
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Figure 10: Q-Q plot of the normalised residuals from all datasets used by the model in the base
case MPD fit.
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Figure 12: Recruitment to the model (top) and exploitation rate (bottom) from the base case
MPD fit in PAU 7.
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Figure 13: Comparison of size structures in the unfished population (heavy line) and the
populations in 1990 (thin line) and 2007 (dashed line) from the base case MPD fit in PAU 7.
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the base case MPD fit for PAU 7.
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Figure 17: Diagnostic plots on the traces from the base case PAU 7 MCMC simulations. The
central line is the running median; the upper and lower lines are the running Sth and 95th
quantiles; the central dots show a moving average over 40 samples.

56



base : posteriors

qlS CPUEpow
0.90
-15.1 7
S~ ——— | 0851
i —_—
-15.2 . 0.80
-15.3 "‘,v"_J Wy s I\*../‘* 0.75 ﬁ,w%_ﬁ.ﬁﬁ_w
. s ' ng
-15.4 /\’% 0.70 W W e
-15.5 — 065 ~—er0 o
-15.6 0.60 7
T T T T T T T T T T T T
0 200 400 600 800 1000 0 200 400 600 800 1000
dev1975 dev1976
1.5 7
1.0
1.0 - -
N—/_—w
05 0.5
5 .
7] o N LPSY)
M Mah | 2= W N
0.0 - ‘?ww/—wy 0.0 " S ]
osd — | 057 \N_W_
1.0 - -1.0
T T T T T T T T T T T T
0 200 400 600 800 1000 0 200 400 600 800 1000
15 Rdev1978 Rdev1979
1.0
1.0
—_— 0.5 /_»/—/_/f/
0.5
”h T, s
“ PRI -
0.0 1 ”W‘?fm%ﬂ 0.0 v e M
05 - \/\/\F -0.5 I S—
104 -1.0
T T T T T T T T T T T T
0 200 400 600 800 1000 0 200 400 600 800 1000
Rdev1981 Rdev 1982
0.5 0.5
- .
0.0 - L ; A 0.0 . M W
y W A Rl My
-0.5 -0.5
/\/kfv —_—
-1.0 -1.0

T T T T T T
0 200 400 600 800 1000

Figure 17 continued.

T T T T T T
0 200 400 600 800 1000

57

_Rdev1974
1.0 7
05 -
. A e { ko
00 ™ " Lt LI
51—
-1.0 ]

T T T T T T
0 200 400 600 800 1000

15 dev1977
1.0 ’\/\’f,_
0.5 7

"
" ¥ bao R A
0.0 v W W

v

~—~

-0.5

-1.0

-1.5 7

T T T T T T
0 200 400 600 800 1000

_Rdev1980
054 __——
0.0 _"“}‘V‘i"‘ﬁ. ‘J‘l. ol ), .d,ﬁ__d.w.,_.l
Yoy WO
05 ~—0
-1.0
-1.5 T T T T T
0 200 400 600 800 1000
Rdev1983
059 ———
» bl\.lﬂ'
0.0 W e %‘J vy
-0.5 ] Q/\\—\_/
-1.0

T T T T T T
0 200 400 600 800 1000



base : posteriors

dev1984 dev 1985
1.0
0590 o ————
S —

0.5 ) e P 1Y
., ! . W W
T 'ﬁ‘qu wwri“ m"""_#? N 0.0 7 iy N

0.0 \/K
M -05 1

-0.5

-1.0
T T T T T T T T T T T T
0 200 400 600 800 1000 0 200 400 600 800 1000
Rdev1987 Rdev1988

1.0 05 -

_ﬁ/_/_’————

0.8

. 0 “a i ’

0.6 T L e M ™ BT

o \
04 1 g T 7 Y W /—Rﬁ',"—
-0.5

0.2 \x

0.0 10

-0.2 ]

T T T T T T T T T T T T
0 200 400 600 800 1000 0 200 400 600 800 1000
Rdev1990 Rdev1991

0.8

o644 _

0.0 /—/—/_AA’_

0.4 M 5 A NS

Y e ww&fqlﬁm

02 oo O R TR

004 T~

e N

0.2 10

-0.4
T T T T T T T T T T T T
0 200 400 600 800 1000 0 200 400 600 800 1000
Rdev1993 Rdev1994

0.4 1 0.2

029 __ 04— ——

0.0 &
"’WM" -0.2 7 ] ",

_0.2 . B » v Q“/su . ‘l.' 04 Fs ,- ”"‘L‘_- e Py Y] M

-0.4 \/\’\ 0.6 - %

-0.6

-0.8

0.8 |
T T T T T r 10 T T T T T
0 200 400 600 800 1000 0 200 400 600 800 1000

Figure 17 continued.

58

dev1986
0.5
.
0.0 ... P
G ¢ '.J"",J‘u'\ [
-05 N \\/\/—\
-1.0
T T T T T T
0 200 400 600 800 1000
Rdev1989
] /_/—/_—_’_N
0.0 NN YL
' RS
0.5 ’\—/\__._,—
-1.0
T T T T T T
0 200 400 600 800 1000
Rdev1992
0.6
0.4
-
0.2
r
0.0  usmetds b an 5
b "“/ Wwowu
-0.2 *
0.4 k
-0.6
-0.8 B T T T T T
0 200 400 600 800 1000
Rdev1995
0.2
00 ———
0.2 A =M -WI" il ]
=W N R
-0.4
_— T
-0.6
-0.8

T T T T T T
0 200 400 600 800 1000



base : posteriors

_Rdev1996 dev1997
0.2
0.2
o~
-0.4 0 __—
i
0.6 | gl e h
T wllhl I I‘-' ‘ -0.2 7 «‘""‘.ﬁ"!“‘."‘ I W "‘_"'ﬂ.' 3
0.8 . y R
7
-1.0 \/—% -0.4
_—
1.2
-0.6
1.4
T T T T T T T T T T T T
0 200 400 600 800 1000 0 200 400 600 800 1000
Rdev1999 Rdev2000
0.4
00— | o __ ~——
" Py
-0.2 0.0 | gty o A
P T ST ¥ YN
0.2
-0.4 —
| 047
-0.6
-0.6
T T T T T T T T T T T T
0 200 400 600 800 1000 0 200 400 600 800 1000
Rdev2002 Rdev2003
0.8 067
04 0 —
0.6 o2
\,\/\/_’_ 2
0.4 . . v 0.0 \ )
02 A -0.2 7 ~
—~ —— | -04
0.0
-0.6
T T T T T T T T T T T T
0 200 400 600 800 1000 0 200 400 600 800 1000
Rdev2005 Rdev2006
1.0 1.0 7
\/\,\,\
0.5 0.5 \F/M
O-O‘J-.,"*"f"*‘ﬁﬁ—‘-—"‘v-';m‘**w Mo | 0.0 o et A S
-0.5 -0.5 7 t~————
/\/\_/—7
-1.0 -1.0

T T T T T 1
0 200 400 600 800 1000

Figure 17 continued.

T T T T T T
0 200 400 600 800 1000

59

dev1998
0.4
024
A
0.0  usm a1
. of v T \“ ‘,", v
2N
-0.4

T T T T T T
0 200 400 600 800 1000

Rdev2001
0.4

—_—
0.2

e . [
0.0 ¥ YA
02—
0.4

T T T T T T
0 200 400 600 800 1000

Rdev2004
1.0 1
0.8 1
06 »MW
0.4
024~
0.0 7

T T T T T T
0 200 400 600 800 1000

Rdev2007

1.0

_

0.5

0.0 | iyt

-0.5

-1.0

-1.5 7]

T T T T T T
0 200 400 600 800 1000



base : posteriors

dev2008 ERate08
0.45
1.0 T
x/v_ N
0.5 0.40
. ﬂw»iwnﬁg_:f~w*4+4nbﬂ;ﬁﬁggyg
0.0 7 W sttt M
0.35
—_—
057 SN~——
0.30
-1.0
T T T T T T T T T T T
0 200 400 600 800 1000 0 200 400 600 800 1000
Smin Sav
1050
1000 2000
950
,1( I’lnll_.'/ll ,’l?'lI I
8507 \*1¢3¥i’25*£**51"%f_gh 1600 %~aﬁi#fj§&¢ﬂ¢qﬁi——4i—23
g0
~—
750 1400
T T T T T T T T T T T T
0 200 400 600 800 1000 0 200 400 600 800 1000
509 $10
3000
2500
2500
2000 | ~_—— N —
2000
.4‘ , @
" gm""u“‘,r"”'& ,ﬁ‘_ .r{_l_._._‘»‘" Xl " L " A
1500 7 ) ’ 1500 v
. 1000
1000 T T T T T T T T T T T
0 200 400 600 800 1000 0 200 400 600 800 1000
Bmin Bav
115
~~ 800
NA~N——
110
Lo G 700 .
LR ROV LTy
105 O ’
600
S
100 |
T T T T T T 500 T T T T T T
0 200 400 600 800 1000 0 200 400 600 800 1000
Figure 17 continued.

60

ERate11
0.40
0357 ~
0.30
w N AL
0.25 - ¥ s vy
0.20
/W
0.15
T T T T T T
0 200 400 600 800 1000
508
2400
2200
2000
.
1800 y
1600 mw”.,ﬁr‘j_"'ﬁﬁ&hﬁk
1400 )
1200
T T T T T T
0 200 400 600 800 1000
S11
3000
2500
~————
2000
I
i e L oA
1500 ! *
-
1000
T T T T T T
0 200 400 600 800 1000
500 —B08
450
—~—~————— .
400
a0 | et s,
_—_—
300

T T T T T
200 400 600 800 1000

T
0



base : posteriors

09 10
800
600 \
_—— 700
500 7\ - Sl RSPV NI
500
400 4 -
400
T T T T T T T T T T T T
0 200 400 600 800 1000 0 200 400 600 800 1000
S08/Sav S08/Smin
2.6
1.3
2.4
1.2
~— 22 N~
1.1
o 2.0
. < q;w"'», 7y R . Irk, 18 4 s Pomofhyn "Jll ",
0.9 1 ! Al
1.6
084\ ——— -
07 14 7
T T T T T T T T T T T T
0 200 400 600 800 1000 0 200 400 600 800 1000
S11/S08 B08/Bav
0.8 1
14
13 0.7 &/—/_’_w
~— —
1.2
i 0.6
11 et ofiopioigy N _n
1.0 7\ 0.5
0.9 1
0.4
0.8 -7 T T T T T T T T T T T
0 200 400 600 800 1000 0 200 400 600 800 1000
18 B11/Bav B11/B08
3.0
1.6
N _— | 257
\/\/\/v/\
1.2
. R 2.0
10 7 Wt P Aoty A, RS A )
0.8 1.5
[,
0.6
T T T T T T 107 T T T T T
0 200 400 600 800 1000 0 200 400 600 800 1000
Figure 17 continued.

61

11
1000
800 -
o e T Ay
600 v
\_/_——’
400
T T T T T T
0 200 400 600 800 1000
S11/Sav
1.8
1.6
14 7 <
1.2
TP LA FAY e 1
1.0 W g 4
081~ —-————
0.6 7 T T T T T
0 200 400 600 800 1000
B08/Bmin
4.5 1
4.0
e
3.5 1 oty ™ ”
» bl ] t'
3.0 1
/\/_’_’
25 7 T T T T T
0 200 400 600 800 1000
sdnrCPUE
1.4
-
1.2
Y . A o N .
10 ] W o o =) o
-
0.8

0 200 400 600 800 1000



base : posteriors

_sdanPUE2 sdnrRDS| sdnrCSLF
1.10 101 7
1.3 _
105 —~—0nus——— | 100
129 Sr—_ 09 ———
0T Nt
1.1 1 R 1"./:./ s [HR A ."' 0.98 3 e Frs " F'.«"'I‘
P A Margm | 0.95 7 s A o
1.0 .,_.y"li-...{l..‘ﬂ_,u_'.“n_f_‘-'_u—' /k/; 0.97 :
0.9 090 7 o6
R
0.8 085 7 0.95
T T T T T T T T T T T T T T T T T T
0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000
sdnrRDLF sdnrtags sdnrmat
1.20
1.06
~ | 1057 115
1.04 —_—— '
1.02 1.00 1.10 7
P, l‘I."' ' 7 . -“u‘ . N M‘n’ N I‘w
1.00 7 1.05

0954 —T~——
008 oo

1,00 | Attty B £t P

0.96

0.90

T T T T T T T T T T T T T T T T T T
0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Figure 17 continued.

62



0

G0

40

Frequency

20

g0

40

F requency

20

g0

60

40

Frequency

20

il
50
40
a0

Frequency

20
10

. 80
h &0
==
[}
=
L 40
(=
T
[T
20
1 1 o
145 150 155
InFel

50
40
30
20

Frequency
o o

34 56 38 60 B2

yBeta

G0

40

Frequency

20

-

0.40

2

3 25

1 T T 1
27

S93C5LF

60
a0
40
30

Frequency

20
10

T T T 1
0.44 0.43

GrowthCh

base : posteriors

J

g0

60

40

Frequency

20

1

-7

010 014 043

,

0.2z

hd

4= o o0
o o {mm]

Frequency

[
(]

b -

A

02 104

106 108 110

Sa0RD

A

= o
o o

Frequency

[}
[}

L

89 a0

91 92

Mata0

£ =)
o o

Frequency

[
(am]

I
-6

5 4 3

qCPUE

o R
140 1a.0 16.0
galpha
_V\IJ"N""- m
T 1 1
20 22 24 26
SH5RD
_| 1T 1T T T 1
9 10 12 14
hatas

m

016 013 020 022 024

CRUEZ2par

Figure 18: Posterior distributions of parameters and indicators from base case PAU 7 MCMC.
Dots on the x-axis show the MPD estimate.
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Figure 19: The posterior distributions of the fits to CPUE data (top) and the posterior
distributions of the normalised residuals from the base case MCMC for PAU 7. In the upper
plot, black dots show the observations. For each year, the figure shows the median of the
posterior distribution (horizontal bar), the 25th and 75th percentiles (box) and 5th and 95th
percentiles of the posterior.
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Figure 20 : The posterior distributions of the fits to PCPUE data (top) and the posterior
distributions of the normalised residuals from the base case MCMC for PAU 7. In the upper
plot, black dots show the observations. For each year, the figure shows the median of the
posterior distribution (horizontal bar), the 25th and 75th percentiles (box) and 5th and 95th
percentiles of the posterior.
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Figure 21: The posterior distributions of the fits to RDSI data (top) and the posterior
distributions of the normalised residuals from the base case MCMC for PAU 7. In the upper
plot, black dots show the observations. For each year, the figure shows the median of the
posterior distribution (horizontal bar), the 25th and 75th percentiles (box) and 5th and 95th
percentiles of the posterior.
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Figure 22 : The posterior distribution of the base case MCMC fit to the CSLF data from 1999
(top) and the posterior distributions of the normalised residuals.
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Figure 23: The posterior distributions of the base case MCMC fit to the RDLF data from 1999
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Figure 24: Q-Q plot of the normalised residuals from the posterior distributions of the base case

MCMLC fits to the tag-recapture data.
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Figure 25 : The posterior distribution of the base case MCMC fit to maturity-at-length for PAU
7. Dots show the observations and the box plots summarise the posterior as in previous captions.
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Figure 28: The posterior trajectories of exploitation rate (upper) and recruitment (lower) for the

base case MCMC for PAU 7.
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Figure 29: The posterior trajectory of estimated surplus production from the base case MCMC
for PAU 7.
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Figure 30: Surplus production plotted against mid-year recruited biomass from the base case
MCMC for PAU 7. Each point represents one year in one sample from the joint posterior
distribution. For this plot, samples were uniformly thinned to 4% of the total sample.
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Figure 33: Comparison of exploitation rate from the 2005 and 2008 stock assessments.
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Figure 34: Comparison of recruitment from the 2005 and 2008 stock assessments.
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Figure 35: The posterior trajectories of recruited biomass from the MCMC retrospective
sensitivity trials for PAU 7. Labels indicate the last year of data used, thus “08” is the base case.
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Figure 36 : For 2004 onwards, the posterior trajectories of recruited biomass from the MCMC
retrospective sensitivity trials for PAU 7. Labels indicate the last year of data used, thus “08” is

the base case.

81



0.8

06

Exploitation rate
L]
I
|

| | | | |
1970 1980 1990 2000 2010

Fishing year

Figure 37: The posterior trajectories of exploitation rate from the MCMC retrospective
sensitivity trials for PAU 7. Labels indicate the last year of data used, thus “08” is the base case.
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Figure 38: The posterior trajectories of recruitment from the MCMC retrospective sensitivity
trials for PAU 7. Labels indicate the last year of data used, thus “08” is the base case.
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Figure 39: The medians of posterior trajectories of recruitment from the MCMC retrospective

sensitivity trials for 2004 to 2008. Labels indicate the last year of data used, thus “08” is the base

case.

[te] v )
o oo
[ = B
i it 1 [F—+—+HH B+
Fo——m—————— [ I ' F—FF[IH
Emsss s I T g+
|||||||||||||| gy B
Fommm—— - -—-R+{= H-
P —————— = [ —
2 L s
TR
B -+
F———= -H
F———= —F
[ H
| i -k
=
P
F--- [T 2
F——-- =
R =
e =
F—————- =
Fem—————— -
F—————— — El
P ——————— [ -
||||||| o o
T e e e
Fe——————— = -
||||||||||| Rl o
[ R F— H
Fe——————— ——H El
Femm——mmm——— -
||||||||||||| = -
||||||| 1 o DS ey Tl
= F——}————_=4 -
T F——}---1= T By 1+
E. r—t+—-1-5 FI1Th+
izt —t__ F——F—F T
|||||| I T F———1--FE=a3{IJIH+
[Ep———— - -+ - i
b - -—#-[
Fo-——=- Vs 1o
Fo———— ——H-
F=————— —-—H-
b - ——H-
Fe————— ——H-
Fo———— ——H-
Fommmes T J--+-[%
oo T 1--+-O
# bl
L = )
=] om
I I I I I I
Lo ] oo oo =T L
e =

(SUD L) JuaLIInIZe

2010

2000

1990

1480

1870

1960

Fishing year

Figure 40: Posteriors of recruitment trajectories from the MCMC sensitivity trials in which

maximum allowed exploitation rate was varied from 80% in the base case to 65% and 90%. The

65% trial is the highest set of box plots.
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Figure 41 : Recruited biomass trajectories from the MCMC sensitivity trials in which maximum
allowed exploitation rate was varied from 80% in the base case to 65% and 90%. The 65% trial
is the line that is lowest on the left and highest in the early 2000s.
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Figure 42: Posteriors of exploitation rate from the MCMC sensitivity trials in which maximum

allowed exploitation rate was varied from 80% in the base case to 65% and 90%. The 65% trial
is the lowest set of box plots.
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