Trawl survey of middle depth species in the Southland and Sub-Antarctic areas, November-December 2008 (TAN0813)
R. L. O'Driscoll
N. W. Bagley

# Trawl survey of middle depth species in the Southland and Sub-Antarctic areas, November-December 2008 (TAN0813) 

R. L. O'Driscoll<br>N. W. Bagley

NIWA
Private Bag 14901
Wellington 6241

# Published by Ministry of Fisheries 

Wellington

# ISSN 1175-1584 

## Ministry of Fisheries

2009

O’Driscoll, R.L.; Bagley, N.W. (2009).
Trawl survey of middle depth species in the Southland and Sub-Antarctic areas, November-December 2008 (TAN0813). New Zealand Fisheries Assessment Report 2009/56 . 67 p.

## EXECUTIVE SUMMARY

O'Driscoll, R.L.; Bagley, N.W. (2009). Trawl survey of middle depth species in the Southland and Sub-Antarctic areas, November-December 2008 (TAN0813).

New Zealand Fisheries Assessment Report 2009/56. 67 p.

The twelfth Tangaroa summer trawl survey of the Southland and Sub-Antarctic areas was carried out from 24 November to 23 December 2008. Ninety-five trawls were successfully completed in 21 strata.

Biomass estimates (and c.v.s) for all strata were 48341 t ( $14 \%$ ) for hoki, 22880 t ( $10 \%$ ) for ling, and $2354 \mathrm{t}(16 \%)$ for hake. The hoki biomass was similar to the 2007 estimate of 46003 t , confirming the large increase from 2006 ( 14747 t ). The hake estimate from all strata was also similar to that from 2007 (2622 t), although the estimate from core $300-800 \mathrm{~m}$ strata was lower because almost half of the hake biomass in 2008 was in stratum $25(800-1000 \mathrm{~m})$ at Puysegur. Ling were down slightly (by $14 \%$ ) from 2007 (26 494 t). The biomass of javelinfish was the highest in the Sub-Antarctic trawl time series and four times higher than in 2007. Southern blue whiting and white warehou were also up from 2007, while estimates for some other species like ribaldo and pale ghost shark were down.

The size distribution of hoki was relatively broad, from $35-110 \mathrm{~cm}$. The main age modes showed progression of cohorts from the 2007 survey, with a mode at age 6 (2002 year-class) for both males and females and at age 8 (2000 year-class) for females in 2008. Some larger older hoki (ages 9-16) were also present. The age distributions for hake and ling were also broad, with most hake aged between 4 and 18 years, and most ling between 3 and 15 years. The numbers of ling at ages 3 and 4 were the highest recorded in the summer time series for both sexes and may be indicative of good recent recruitment.

Acoustic data were also collected during the trawl survey. Total acoustic backscatter within 10 m of the bottom was the highest in the recent (since 2000) summer series. Total backscatter throughout the water column was also high. There was a weak positive correlation between acoustic density from bottom marks and trawl catch rates.

## 1. INTRODUCTION

Trawl surveys of the Southland and Sub-Antarctic region (collectively referred to as the "Southern Plateau") provide fishery-independent abundance indices for hoki, hake, and ling. Although the TACC for hoki has been reduced from 250000 t to 90000 t since 2000-01, hoki is still New Zealand's largest fishery. The Southland and Sub-Antarctic region is believed to be the principal residence area for the hoki that spawn off the west coast of the South Island (WCSI) in winter ("western" stock). Annual catches of hoki from the Southern Plateau (including Puysegur) peaked between 35000 and 36500 t from 1999-2000 to 2001-02, but have declined to 8000-9000 t in 2005-06 to 2007-08 (Ballara et al., NIWA, unpublished results). Hoki are managed as a single stock throughout the EEZ, but there is an agreement to split the catch between western and eastern areas. The catch limit for hoki from western areas (including the Southern Plateau) was 25000 t in 2007-08. Hake and ling are also important commercial species in Southland and the Sub-Antarctic. The catches of hake and ling in the southern areas in 2007-08 were 2445 t (HAK 1, includes the western Chatham Rise), 4145 t (LIN 5, Southland), and 4502 t (LIN 6, Sub-Antarctic).

Two time series of trawl surveys have been carried out from Tangaroa in the Southland and SubAntarctic region: a summer series in November-December 1991, 1992, 1993, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007 and 2008; and an autumn series in March-June 1992, 1993, 1996 and 1998 (reviewed by O'Driscoll \& Bagley (2001)). The main focus of the early surveys (1991-93) was to estimate the abundance of hoki. The surveys in 1996 and 1998 were developed primarily for hake and ling. Autumn was chosen for these species as the biomass estimates were generally higher and more precise at this time of year. Autumn surveys also allowed the proportion of hoki maturing to spawn to be estimated (Livingston et al. 1997, Livingston \& Bull 2000). However, interpretation of trends in the autumn trawl survey series was complicated by the possibility that different proportions of the hoki adult biomass may have already left the survey area to spawn. The timing of the trawl survey was moved back to November-December in 2000 to obtain an estimate of total adult hoki biomass at a time when abundance should be at a maximum in the Southland and the Sub-Antarctic areas.

The hoki biomass estimate from the four Southern Plateau surveys in 2003 to 2006 were the lowest observed in either the summer or autumn Sub-Antarctic trawl time-series (O'Driscoll \& Bagley 2004, 2006a, 2006b, 2008). The biomass estimate in 2006 was $28 \%$ lower than in 2005, the second lowest in the time series (after 2003), and less than $20 \%$ of the biomass observed in the Sub-Antarctic in the early 1990s (O'Driscoll \& Bagley 2008). The biomass estimate for hoki in 2007 was 46003 t , which was three times that of 2006 survey and back to the 2001-02 biomass levels (Bagley et al. 2009). However, the large increase between the 2006 and 2007 surveys could not be fitted by the assessment model (Francis 2009a), and there was concern that this increase was caused by a change in trawl catchability (Bagley et al. 2009). The apparent change in catchability was not related to changes in gear or gear performance. The trawl was repeatedly measured in 2007 and gear parameters were consistent with specifications obtained on previous surveys (Bagley et al. 2009). Despite the large increase in the estimated hoki biomass, back to the 2001-02 levels, the 2007 estimate was still less than $50 \%$ of the biomass observed in the Sub-Antarctic in the early 1990s.

The stock status for "western" hoki stock from the 2008 assessment suggested that median estimates of current biomass were $28-30 \% \mathrm{~B}_{0}$ and that there was an extended period of poor recruitment from 1995 to 2001 (Francis 2009a). The 2008 survey, carried out from 24 November to 23 December 2008 (TAN0813) provided a twelfth summer estimate of western hoki biomass in time for the 2009 assessment. With the discontinuation of the WCSI acoustic surveys, this is the only abundance index available for western hoki.

### 1.1 Project objectives

The trawl survey was carried out under contract to the Ministry of Fisheries (project MDT2007/01B). The specific objectives for the project were as follows.

1. To continue the time series of relative abundance indices for hoki, hake (HAK 1), and ling (LIN 5 and 6) on the Southern Plateau.
2. To determine the population age and size structure and reproductive biology of hoki, hake, and ling.
3. To determine the proportions at age of hoki taken in the survey using otolith samples.
4. To collect acoustic and related data during the trawl survey.
5. To collect gonad samples from female hoki for studies on the proportion spawning.
6. To collect and preserve specimens of unidentified organisms taken during the trawl survey, and identify them later ashore.

## 2. METHODS

### 2.1 Survey design

As in previous years, the survey was a two-phase stratified random design (after Francis 1984). The survey area was divided into 21 strata by depth ( $300-600,600-800$, and $800-1000 \mathrm{~m}$ ) and area (Figure 1). There are 15 core 300-800 m strata (Strata 1 to 15) which have been surveyed in all previous summer and autumn surveys (Table 1). Strata 3 and 5 were subdivided in 2000 to increase the coverage in the region where hake and ling aggregations were thought to occur (Bull et al. 2000). Deeper 800-1000 m strata (Strata 25-28) have been surveyed since 1996. There is no $800-1000 \mathrm{~m}$ stratum along the eastern side of the survey area as catches of hake, hoki, and ling from adjacent strata are small. Known areas of foul ground were excluded from the survey.

The allocation of stations in phase 1 was based on a statistical analysis of catch rate data from the eight most recent surveys (2000-07) using the 'allocate' procedure of Bull et al. (2000) as modified by Francis (2006). A minimum of three stations per stratum was used. Conservative target coefficients of variation (c.v.s) of $17 \%$ for hake and $12 \%$ for hoki and ling were used in the statistical analysis to increase the chance that the usual Ministry of Fisheries target c.v.s of $20 \%$ for hake and $15 \%$ for hoki and ling would be met. Additional stations were added to some strata outside the statistical framework because of the need to focus effort on covering the full distributional range of hake age classes. A total of 84 stations was originally planned for phase 1 (Table 1), with phase 2 stations to be allocated at sea to improve c.v.s for hoki, hake, ling, and southern blue whiting, and to increase the number of hake sampled.

### 2.2 Vessel and gear specifications

R.V. Tangaroa is a purpose-built research stern trawler of 70 m overall length, a beam of 14 m , $3000 \mathrm{~kW}(4000 \mathrm{hp})$ of power, and a gross tonnage of 2282 t .

The trawl was the same as that used on previous surveys of middle depth species by Tangaroa. The net is an eight-seam hoki bottom trawl with 100 m sweeps, 50 m bridles, 12 m backstrops, 58.8 m
groundrope, 45 m headline, and 60 mm codend mesh (see Chatterton \& Hanchet (1994) for net plan and rigging details). The trawl doors were Super Vee type with an area of $6.1 \mathrm{~m}^{2}$.

The winch control system was changed from the original Brattvaag system, in use from 1991 to mid 2008, to a Scantrol system. Care was taken to ensure the new controls emulated the old system.

### 2.3 Trawling procedure

Trawling followed the standardised procedures described by Hurst et al. (1992). Station positions were selected randomly before the voyage using the Random Stations Generation Program (Version 1.6) developed at NIWA, Wellington. A minimum distance between stations of 3 n . miles was used. If a station was found to be on foul ground, a search was made for suitable ground within 3 n . miles of the station position. If no suitable ground could be found, the station was abandoned and another random position was substituted. Tows were carried out during daylight hours (as defined by Hurst et al. (1992)), with all trawling between 0448 h and 1936 h NZST. At each station the trawl was towed for 3 n . miles at a speed over the ground of 3.5 knots. If foul ground was encountered, or the tow hauled early due to reducing daylight, the tow was included as valid only if at least 2 n . miles had been covered. If time ran short at the end of the day and it was not possible to reach the last station, the vessel headed towards the next station and the trawl was shot on that course before 1900 h NZST, if at least $50 \%$ of the steaming distance to the next station was covered.

Towing speed and gear configuration were maintained as constant as possible during the survey, following the guidelines given by Hurst et al. (1992). Measurements of doorspread (from a Scanmar 400 system), headline height (from a Furuno net monitor), and vessel speed were recorded every 5 min during each tow and average values calculated.

### 2.4 Acoustic data collection

Acoustic data were collected during trawling and while steaming between trawl stations (both day and night) with the new Tangaroa multi-frequency (18, 38, 70, 120, and 200 kHz ) Simrad EK60 echosounders with hull-mounted transducers. All five frequencies were calibrated following standard procedures (Foote et al. 1987) on 30 May 2008 during a fisheries oceanography voyage (TAN0806). The system and calibration parameters are given in Table 2.

### 2.5 Hydrology

Temperature and salinity data were collected using a calibrated Seabird SM-37 Microcat CTD datalogger (serial number 2958) mounted on the headline of the trawl. Data were collected at 5 s intervals throughout the trawl, providing vertical profiles. Surface values were read off the vertical profile at the beginning of each tow at a depth of about 5 m , which corresponded to the depth of the hull temperature sensor used in previous surveys. Bottom values were about 7.0 m above the sea-bed (i.e., the height of the headline).

### 2.6 Catch and biological sampling

At each station all items in the catch were sorted into species and weighed on Seaway motioncompensating electronic scales accurate to about 0.3 kg . Where possible, finfish, squid, and crustaceans were identified to species and other benthic fauna were identified to species, genus, or family.

Unidentified organisms were collected and frozen at sea. Specimens are being stored at NIWA for subsequent identification.

An approximately random sample of up to 200 individuals of each commercial, and some common noncommercial, species from every successful tow was measured and sex determined. More detailed biological data were also collected on a subset of species and included fish weight, sex, gonad stage, gonad weight, and occasional observations on stomach fullness, contents, and prey condition. Otoliths were taken from hake, hoki, and ling for age determination. A description of the macroscopic gonad stages used for the three main species is given in Appendix 1.

Liver and gutted weights were recorded from up to 20 hoki per station to determine condition indices. Female gonads from the subset of hoki with recorded organ weights were preserved in formalin and are available for histological examination to estimate proportion spawning (Grimes \& O'Driscoll 2006).

Spines were also taken from shovelnosed dogfish and deepwater spiny dogfish for MFish project ENV2008/04.

### 2.7 Estimation of biomass and length frequencies

Doorspread biomass was estimated by the swept area method of Francis (1981, 1989). The new analysis programme SurvCalc (Francis 2009b) was used to calculate biomass. Formulae followed those of the original Trawl Survey Analysis program (Vignaux 1994). Total survey biomass was estimated for the top 20 species in the catch by weight. Biomass and c.v. were also calculated by stratum for major species. The group of 12 major species was defined by O'Driscoll \& Bagley (2001), and comprises the three target species (hoki, hake, ling), eight other commercial species (black oreo, dark ghost shark, lookdown dory, pale ghost shark, ribaldo, southern blue whiting, spiny dogfish, white warehou), and one non-commercial species (javelinfish).

The catchability coefficient (an estimate of the proportion of fish in the path of the net which is caught) is the product of vulnerability, vertical availability, and areal availability. These factors were set at 1 for the analysis, the assumptions being that fish were randomly distributed over the bottom, that no fish were present above the height of the headline, and that all fish within the path of the trawl doors were caught.

Scaled length frequencies were calculated for the major species with SurvCalc, using length-weight data from this survey.

Only data from stations where the gear performance was satisfactory (codes 1 or 2 ) were included for estimating biomass and calculating length frequencies.

### 2.8 Estimation of numbers at age

Hoki, hake, and ling otoliths were prepared and aged using validated ageing methods (hoki, Horn \& Sullivan (1996) as modified by Cordue et al. (2000); hake, Horn (1997); ling, Horn (1993)).

Subsamples of 759 hoki otoliths, 583 ling otoliths, and 600 hake otoliths were selected from those collected during the trawl survey. Subsamples were obtained by randomly selecting otoliths from 5 cm length bins covering the bulk of the catch and then systematically selecting additional otoliths to ensure the tails of the length distributions were represented. The numbers aged approximated the sample size necessary to produce mean weighted c.v.s of less than $20 \%$ across all age classes.

Numbers at age were calculated from observed length frequencies and age-length keys using customised NIWA catch-at-age software (Bull \& Dunn 2002). For hoki, this software also applied the "consistency scoring" method of Francis (2001), which uses otolith ring radii measurements to improve the consistency of age estimation.

### 2.9 Acoustic data analysis

Acoustic analysis generally followed the methods applied to recent Sub-Antarctic trawl surveys (e.g., Bagley et al. 2009). All acoustic recordings made during the survey were visually examined. Marks were classified into seven main categories based on the relative depth of the mark in the water column, mark orientation (surface or bottom-referenced), mark structure (layers or schools), and the relative strength of the mark on the five frequencies. Most of the analyses in this report are based on the 38 kHz data as this frequency was the only one available (along with uncalibrated 12 kHz data) for all previous surveys that used the old CREST acoustic system (Coombs et al. 2003). We did not attempt to do a full multifrequency analysis of mark types for this report.

Descriptive statistics were produced on the frequency of occurrence of different marks. Brief descriptions of the mark types are given below. Example ( 38 kHz ) echograms may be found in O’Driscoll (2001).

1. Surface layers

These occurred within the upper 100 m of the water column and tended to be stronger on 18 kHz (previously 12 kHz ) than on other frequencies.

## 2. Pelagic layers

Surface-referenced midwater layers which were typically continuous for more than 1 km . Like surface layers these were typically strongest on 18 kHz .

## 3. Pelagic schools

Well defined schools in midwater which are generally similar on all frequencies.

## 4. Pelagic clouds

Surface-referenced midwater marks which were more diffuse and dispersed than pelagic layers, typically over 100 m thick with no clear boundaries.

## 5. Bottom layers

Bottom-referenced layers which were continuous for more than 1 km and were generally stronger on 38 kHz and 70 kHz than on 18 kHz .

## 6. Bottom clouds

Bottom-referenced marks which were more diffuse and dispersed than bottom layers with no clear upper boundary.

## 7. Bottom schools

Distinct schools close to the bottom.

As part of the qualitative description, the quality of acoustic data recordings was subjectively classified as 'good', 'marginal', or 'poor' (see appendix 2 of O'Driscoll \& Bagley (2004) for examples). Only good or marginal quality recordings were considered suitable for quantitative analysis.

A quantitative analysis was carried out on daytime trawl recordings. Acoustic data collected on 38 kHz during each tow were integrated using custom Echo Sounder Package (ESP2) software (McNeill 2001). Three values of the mean acoustic backscatter per square kilometre were calculated for each trawl. The
first estimate was based an integration height of 10 m above the acoustic bottom, which was similar to the measured headline height of the trawl (average 7.0 m ). The second acoustic estimate integrated all backscatter from bottom referenced marks (bottom layers, clouds, and schools) up to 100 m off the bottom, but excluded all other mark types. The final acoustic estimate was of the total acoustic backscatter throughout the water column. Acoustic density estimates (backscatter per $\mathrm{km}^{2}$ ) from bottomreferenced marks were then compared with trawl catch rates ( kg per $\mathrm{km}^{2}$ ). No attempt was made to scale acoustic estimates by target strength, correct for differences in catchability, or carry out species decomposition (O’Driscoll 2002, 2003).

## 3. RESULTS

### 3.1 Survey coverage

The trawl survey and acoustic work contracted for this voyage were successfully completed. Weather conditions were calm to moderate for much of the voyage and only 8 hours was lost due to unfavourable sea conditions. A further 24 hours were lost before the survey started because of a hydraulic pipe on a gilson winch failing during a gear trial.

Ninety-five successful trawl survey stations were completed in 21 strata (Figure 2, Table 1). This total included 83 phase 1 stations and 12 phase 2 stations. One phase 1 station in stratum 5 A was dropped because the ground in the vicinity of the final station in this stratum was foul, and substitute stations required a considerable steam.

One additional station was completed in stratum 13 during phase 1 of the survey due to variable catches of hoki and ling and because of the long steaming distance to return to these areas for any phase 2 work. Most phase 2 effort was directed at reducing the c.v. for hake and increasing the number of hake sampled in strata $4,11,25$, and 28.

Three stations were considered unsuitable for biomass estimation: station 1 came fast, station 18 was hauled early because of deteriorating weather, and station 62 was rejected due to gear damage.

Stratum 26, south of Campbell Island was, completed this year. Often this stratum is dropped should time be lost due to weather or other factors (as in 2003, 2004 and 2006). No hoki, hake, or ling were caught in this stratum.

### 3.2 Gear performance

Gear parameters by depth and for all observations are summarised in Table 3. The headline height was obtained for all successful tows, and doorspread readings were available for 92 of the 95 tows. Missing doorspread values were calculated from data collected in the same depth range on this voyage. Measured gear parameters in 2008 were within the range of those obtained on other voyages of Tangaroa in this area when the same gear was used (Table 4). The new Scantrol winch controllor behaved similarly to the original Brattvaag system with no change to gear parameters. Warp-to-depth ratios were the same as in previous years, following the recommendations of Hurst et al. (1992).

### 3.3 Catch

A total catch of 57.1 t was recorded from all trawl stations ( 56.2 t from valid biomass tows). From the 198 species or species groups caught: 96 were teleosts, 27 elasmobranchs, 10 cephalopods, and 17 crustaceans (Appendix 2). For the key species hoki accounted for $22.4 \%$, ling $11.4 \%$, and hake $6.0 \%$ of
the total catch, while $16 \%$ if the catch was javelinfish. Specimens retained for later identification ashore are listed in Appendix 3.

### 3.4 Biomass estimates

Total survey biomass estimates for the 20 species with highest catch weights are given in Table 5 . Biomass estimates are presented by stratum for the 12 major species (as defined by O'Driscoll \& Bagley (2001)) in Table 6. Subtotals for these species are given for the core 300-800 m depth range (strata $1-$ 15) and core + Puysegur 800-1000 m (strata 1-25) in Table 6 to allow comparison with results of previous surveys where not all deep ( $800-1000 \mathrm{~m}$ ) strata were surveyed (Table 7). The time series of core estimates for the 12 major species are plotted in Figure 3.

Biomass estimates for hoki for all strata in 2008 was 48340 t. The hoki biomass was similar to the 2007 estimate of 46003 t , confirming the large increase from 2006 ( 14747 t ) (Figure 3). Despite the large increases in 2007 and 2008 the hoki biomass is still much lower than the biomass observed in the SubAntarctic in the early 1990s (Table 7). The biomass estimates for length ranges corresponding to $1+$ (less than 46 cm ) and $2+(46-57 \mathrm{~cm})$ hoki were $948 \mathrm{t}($ c.v. $48 \%)$ and 1563 t (c.v. $37 \%$ ) respectively.

The hake estimate from all strata was 2355 t , also similar to that from $2007(2622 \mathrm{t})$, although the estimate from core $300-800 \mathrm{~m}$ strata was lower because almost half of the hake biomass ( 1088 t ) in 2008 was in stratum $25(800-1000 \mathrm{~m})$ at Puysegur (see Table 6). The ling estimate was 22879 t , down slightly (by 14\%) from 2007 (26 492 t ).

Six of the nine other major species also increased from 2007 for the total survey area. Most changes were generally small and within the levels of the sampling uncertainty (Figure 3). However, the biomass of javelinfish was the highest in the Sub-Antarctic trawl time series and four times higher than last year's estimate. Southern blue whiting biomass was nearly double the estimate from 2007 at 15219 t . Estimates for pale ghost shark, ribaldo, and spiny dogfish were lower than 2007.

### 3.5 Species distribution

The distribution and catch rates at each station for hoki, hake, and ling are given in Figures 4-6. Hoki were widespread throughout the core survey area, occurring in 90 of the 95 successful trawl stations. As in previous surveys, hoki catch rates were generally higher in the west, on the edge of the StewartSnares shelf, on the western side of the Campbell Rise, and at Puysegur (Figure 4a). A moderately large catch of 801 kg was made to the northeast of the Pukaki Rise in stratum 11. Catches of small ( 1 and 2 year-old) hoki followed a similar distribution to those observed in previous surveys, and were taken in stratum 1 (300-600 m) at Puysegur and in the $300-600 \mathrm{~m}$ strata along the edge of the Stewart-Snares shelf (Figures 4 b and 4 c ).

Hake were concentrated in deeper water at Puysegur in stratum 25 ( $800-1000 \mathrm{~m}$ ). Catches to the south and east of the Stewart-Snares shelf were small, less than 65 kg per tow (Figure 5) while most stations in the east and south of the survey area caught no hake. Ling were caught on all but three stations between 300 and 800 m depth (Figure 6). One large catch of ling of 1.7 t was taken at Puysegur in stratum 1 ( $300-600 \mathrm{~m}$ ). Both hoki and ling were seldom caught deeper than 800 m . No hoki or ling were taken in the southern most stratum, 26 ( $800-1000 \mathrm{~m}$ )

### 3.6 Biological data

The numbers of fish of each species measured or selected for biological analysis are shown in Table 8. Pairs of otoliths were removed from 1360 hoki, 1051 ling, and 827 hake. Length-weight relationships used to scale length frequency data are given in Table 9. Length frequency histograms by sex for hoki, hake, and ling are compared to those observed in previous surveys in Figures 7-9. Length frequencies for the other major species are shown in Figure 10.

Hoki length frequencies in 2008 show a broad size range with a similar length distribution to the 2007 survey (Figure 7). Population scaled numbers of hoki were similar to those recorded in 2007. There were fewer small 1+ and 2+ hoki than in the 2003 and 2004 surveys. Modes at $33-46 \mathrm{~cm}$ and $47-57 \mathrm{~cm}$ correspond to hoki from the 2007 and 2006 year-classes (Figure 7). Although these juvenile year-classes were abundant by number, they contributed relatively little to the biomass (see Section 3.4). Modes from about $70-95 \mathrm{~cm}$ consisted of fish from the 2002-04 year classes at ages 4-6 and followed modes at ages 3-5 from the 2007 survey. Ageing indicated a mode at age 6 (2002 year-class) for both males and females (Figure 11). Some larger older hoki were also present between 90 and 110 cm for the females and 90 and 98 cm for the males (see Figure 11a), with a strong showing of females from the 2000 year class at age 8 (see Figure 11b).

The length frequency distribution of hake showed no clear modes (see Figure 8). As in some previous surveys small ( $50-70 \mathrm{~cm}$ ) hake were captured in quite high numbers at $800-1000 \mathrm{~m}$ depth at Puysegur (stratum 25). Hake were taken in low numbers outside stratum 25 and this is reflected in the core strata length and age frequencies. Since 1998 there has been a lower proportion of large hake (older than age 12) than were observed in surveys in the early 1990s (Figure 12).

The length frequency distribution of ling was broad, with a slight increase in the numbers of fish under 50 cm for both sexes (see Figure 9). These smaller fish were reflected in the age frequencies, with the highest numbers of fish at age 3 and age 4 recorded for any of the surveys in the summer times series (Figure 13). The age frequency for ling showed most fish were between 3 and 15 years old, with the mode at age 4 for males and no clear mode for females (Figure 13).

The length frequency distribution of southern blue whiting caught in 2008 had a strong mode between 24 and 31 cm for both sexes (see Figure 10). These are probably fish of age 2 (2006 year-class). Black oreo were slightly larger than those observed in 2007, with modal lengths of 31 cm for males and 32 cm for females (see Figure 10). Other points of interest in Figure 10 included: a large mode at 31 cm in the length distribution of javelinfish, different from the past four surveys where bimodal length frequencies were recorded (O’Driscoll \& Bagley 2006a, 2006b, 2008, Bagley et al. 2009); the continuing high proportion of female ribaldo; and the difference in the length frequencies of male and female spiny dogfish.

Gonad stages for hoki, hake, and ling are summarised in Table 10. Immature hoki made up $25 \%$ of fish examined, and these were typically fish smaller than 70 cm . Most adult hoki ( $67 \%$ ) were in the resting phase. About $2 \%$ of female hoki and $8 \%$ of male hoki were macroscopically staged as partially spent or spent. Female ling were mostly resting ( $65 \%$ ) or immature ( $20 \%$ ), but male ling of all gonad stages were recorded, with $45 \%$ in spawning condition (ripe and running ripe). Immature stage hake made up $60 \%$ of the observations for both sexes. About $20 \%$ of male hake were ripe or running ripe, while few female hake in these stages were recorded.

### 3.7 Hoki condition indices

Liver and gutted weights were recorded from 1333 hoki. Mean hoki liver condition index (LCI = liver weight divided by gutted weight) and somatic condition factor ( $\mathrm{CF}=$ gutted weight divided by length cubed) are given in Table 11. Somatic condition was relatively high in 2008, but liver condition (of all fish combined) was lower than in the four previous years (Table 11). This suggests good overall body condition, but less good recent feeding, and/or later spawning, both of which would reduce liver condition.

A comparison of LCI of hoki in the Chatham Rise and Sub-Antarctic trawl surveys showed consistent patterns between the areas (Figure 14). The comparison was restricted to $60-80 \mathrm{~cm}$ hoki, because LCI can vary with size, and the length distributions of fish differ between the two areas (see Stevens et al. (2009) for Chatham Rise data). The consistent pattern in liver condition of hoki from the Chatham Rise and Sub-Antarctic suggests that similar processes are affecting the two areas. This hypothesis will be investigated further in 2009-10 as part of the MFish project ENV2009/04.

As in 2001-07 female hoki that were macroscopically staged as spent (stage 7) during the 2008 SubAntarctic survey tended to have lower LCI (average LCI $=2.54 \%, n=32$ ) than resting (stage 2 ) females (average $\mathrm{LCI}=2.92 \%, n=620$ ). This suggests that fish that have recently spawned may have lower condition than fish that either spawned earlier or did not spawn. A similar pattern was observed for male hoki in 2005 (O’Driscoll \& Bagley 2006b), 2006 (O’Driscoll \& Bagley 2008), and 2007 (Bagley et al. 2009), but not in 2001-04 or 2008. In 2008, the average LCI for male hoki that were partially spent or spent (stages 6-7) $(n=50)$ was the same as the average LCI of $2.50 \%$ for resting (stage 2 ) males ( $n=$ 270).

Gonad samples were taken from 705 female hoki and preserved in $10 \%$ buffered formalin. These are available for histological examination to estimate proportion spawning (Grimes \& O'Driscoll 2006).

### 3.8 Acoustic results

A total of 235 acoustic data files ( 97 trawl files and 138 steam files) was recorded during the 2008 survey. Data quality was generally good, but deteriorated during periods of bad weather. About $11 \%$ of the acoustic files were considered too noisy to be analysed quantitatively (Table 12).

Mark types were similar to those described for previous surveys (O'Driscoll 2001, O'Driscoll \& Bagley 2003a, 2003b, 2004, 2006a, 2006b, 2008, Bagley et al. 2009). The frequency of occurrence in 2008 of each of the seven mark categories is given in Table 13. Surface layers were observed in $82 \%$ of daytime echograms and $98 \%$ of night echograms in 2008 (Table 13). The identity of organisms in these surface layers is unknown because no tows have been targeted at the surface in this region. Acoustic scattering is probably contributed by a number of pelagic zooplankton (including gelatinous organisms such as salps) and fish. Pelagic schools and layers were also common and likely contain mesopelagic fish species such as pearlsides (Maurolicus australis) and myctophids, which are important prey of hoki. Bottom layers, which are associated with a mix of demersal fish species, were observed in $59 \%$ of day steam files, $36 \%$ of overnight steams, and $45 \%$ of trawl files in 2008 (Table 13). As in previous years (O’Driscoll 2001, O’Driscoll \& Bagley 2006b, Bagley et al. 2009), bottom schools were occasionally observed during the day in $300-600 \mathrm{~m}$ water depth, and these were often associated with catches of southern blue whiting in the bottom trawl (e.g., Figure 15).

Pelagic and bottom layers tend to disperse at night, to form pelagic and bottom clouds respectively. In previous surveys cloud marks were detected more often in night recordings. However, in 2008, dispersed cloud marks were frequently observed in daytime recordings during trawls and while steaming (Table 14). The increase in dispersed marks in 2008 was associated with an increase in total backscatter
(i.e., backscatter throughout the water column) from the 92 trawl files which were integrated (Table 14). Data from the other five trawl recordings were not included in the quantitative analysis because the acoustic data were too noisy (three files) or because the accompanying bottom trawl was not considered suitable for biomass estimation (two files). Total acoustic backscatter in 2008 was $33 \%$ higher than in 2007 and the highest in the four survey's where this has been calculated (Table 14). Likewise, the backscatter from the bottom 10 m was $67 \%$ higher in 2008 than that in 2007, and was the highest in the series. This was consistent with the high total trawl catch rates recorded in 2008 (Table 14).

There was a weak positive correlation between acoustic backscatter and trawl catch rates (Figure 16). Trawl catch rates were more strongly correlated with total acoustic backscatter from bottom-referenced marks than with backscatter from the bottom 10 m only (Figure 16). This suggests that the trawl may be vertically herding fish from more than 10 m above the bottom. Weak, but significant, positive correlations between backscatter and catches have been observed in surveys in 2000, 2001, 2003, 2005, and 2007 (O’Driscoll 2002, O’Driscoll \& Bagley 2004, 2006b, Bagley et al. 2009), but not in 2002, 2004, or 2006 (O’Driscoll \& Bagley 2003b, 2006a, 2008).

Acoustic methods are unlikely to provide alternative abundance estimates for demersal species in the Sub-Antarctic because of the relatively low fish densities and mixed species composition. However, we believe it is useful to continue to collect acoustic data to monitor other components of the ecosystem (especially mesopelagic fish) and to aid in the interpretation of trawl survey results. A more extensive analysis of mesopelagic acoustics in the Sub-Antarctic from this and previous surveys will be carried out in 2009-10 as part of MFish project ENV200904. Analysis of analogous acoustic data from the Chatham Rise trawl survey series has already led to development of a time-series of abundance estimates for diurnally migrating mesopelagic fish (O'Driscoll et al. 2009). Comparison of acoustic data from the two regions suggests that there is $2-5$ times more total backscatter on the Chatham Rise (38-59 $\mathrm{m}^{2} \mathrm{~km}^{-2}$, Stevens et al. 2009) than in the Sub-Antarctic ( $9-16 \mathrm{~m}^{2} \mathrm{~km}^{-2}$, Table 14).

### 3.9 Hydrological data

Temperature profiles were available from 98 CTD casts. Surface ( 5 m depth) temperatures ranged between 7.1 and $13.1^{\circ} \mathrm{C}$ (Figure 17), while bottom temperatures were between 4.6 and $11.4{ }^{\circ} \mathrm{C}$ (Figure 18). Bottom temperature decreased with depth, with lowest bottom temperatures recorded from water deeper than 900 m on the margins of the Campbell Plateau. Highest surface and bottom temperatures were at Puysegur. As in previous years, there was a general trend of increasing water temperatures towards the north and west (Figures 17-18).

The average surface temperature in 2008 of $9.4^{\circ} \mathrm{C}$ was similar to that observed in $2007\left(9.5{ }^{\circ} \mathrm{C}\right)$, and within the range of average surface temperatures observed in 2002-06 (8.8-10.3 $\left.{ }^{\circ} \mathrm{C}\right)$. In general there is a negative correlation between surface temperature and depth of the thermocline (Figure 19), with cooler surface temperatures in years when the thermocline is deep (e.g., 2003), and warm surface temperatures when there is a shallow mixed layer (e.g., 2002). O'Driscoll \& Bagley (2006b) hypothesised that the depth of the thermocline is related to the amount of surface mixing and extent of thermal stratification, with shallower mixed layers in those years with warmer, more settled weather. As in 2007 , the thermocline in 2008 was at about $80-150 \mathrm{~m}$, which is average for this time of year (e.g., Figure 19). Average bottom temperatures in $2008\left(6.9^{\circ} \mathrm{C}\right)$ were within the range of average temperatures observed in 2002-07 (6.7-7.0 $\left.{ }^{\circ} \mathrm{C}\right)$. However, at some locations (e.g., Figure 19), bottom temperatures were the lowest observed. It is difficult to compare temperatures with those observed on Sub-Antarctic surveys before 2002 because temperature sensors were uncalibrated.

## 4. DISCUSSION

There was a very large (threefold) increase in estimates of hoki abundance between the 2006 and 2007 trawl surveys (Bagley et al. 2009). This increase was confirmed by the 2008 survey, but could not be fitted by the stock assessment model in 2009. Bagley et al. (2009) explored two possible explanations for the sharp rise in 2007: 1) recruitment of hoki to the Sub-Antarctic from the Chatham Rise; 2) a change in trawl survey catchability between 2006 and 2007. Neither hypothesis could be discounted, but there was more supporting evidence for a change in trawl catchability (Bagley et al. 2009). Hoki increased across all age classes in 2007, which was not consistent with the hypothesis of recruitment from the Chatham Rise which mainly occurs at ages 3-7 (Livingston et al. 2002). The age frequency observed in 2008 (see Figure 11) was consistent with the age frequency in 2007. Biomass estimates in core strata for 11 of the 12 major species also increased from 2006 to 2007, which supported the hypothesis that there was a change in catchability between these two surveys (Bagley et al. 2009). There was no consistent increase or decrease in abundance of core species between 2007 and 2008, with 5 of 12 species decreasing and 7 species increasing (see Figure 6). It is still not clear whether catchability was unusually high in 2007-08 or unusually low in 2006.

Any apparent changes in trawl survey catchability were not related to changes in gear or gear performance. The trawl has been within consistent specifications throughout the time series (see Table 4). Bagley et al. (2009) found that unstandardised commercial catch rates of hoki during the survey period also increased considerably from 2006 to 2007, suggesting that the change in hoki catchability was not restricted to the research survey. Total acoustic backscatter from bottom marks in 2007-08 was also higher than that observed in 2006 (see Table 14), which was consistent with the higher trawl catches.

## 5. CONCLUSIONS

The hoki biomass was similar to the 2007 estimate of 46005 t , confirming the large increase from 2006 ( 14747 t ). The survey methodology was consistent with previous years and it is still not clear whether catchability was unusually high in 2007-08 or unusually low in 2006. Despite the large increase in the estimated hoki biomass in the past two surveys the 2008 estimate is still much less than the biomass observed in the Sub-Antarctic in the early 1990s. The hoki age frequency observed in 2008 was consistent with the age frequency in 2007. In 2008, modes at age 6 for males and females, and at age 8 for females, showed progression of the 2002 and 2000 year-classes, observed at ages 5 and 7 in 2007.

Biomass estimates for hake and ling for all strata in 2008 were slightly lower that those recorded in 2007, by $12 \%$ and $14 \%$ respectively. However, the estimate of hake biomass from core $300-800 \mathrm{~m}$ strata was much lower than in 2007 because almost half of the hake biomass in 2008 was in stratum 25 (800-1000 m) at Puysegur.

## 6. ACKNOWLEDGMENTS

Thanks to the scientific staff who participated in this voyage, and the master, officers, and crew of Tangaroa who contributed to the success of this voyage. Thanks to the scientific staff involved with the otolith preparation and reading of the hake, hoki, and ling otoliths, and Peter Horn for the calculation of the age frequencies. Identification of unidentified organisms taken during the trawl survey was coordinated by Sadie Mills, and our thanks to Sadie and the team of experts for the identification of material collected. This work was carried out by NIWA under contract to the Ministry of Fisheries (Contract No. MDT2007/01B).

## 7. REFERENCES

Bagley, N.W.; O’Driscoll, R.L.; Francis, R.I.C.C.; Ballara, S.L. (2009). Trawl survey of middle depth species in the Southland and Sub-Antarctic areas, November-December 2007 (TAN0714). New Zealand Fisheries Assessment Report 2009/9. 63 p.
Bull, B.; Bagley, N.W.; Hurst, R.J. (2000). Proposed survey design for the Southern Plateau trawl survey of hoki, hake and ling in November-December 2000. Final Research Report to the Ministry of Fisheries for Project MDT1999/01 Objective 1. 31 p. (Unpublished report held by Ministry of Fisheries, Wellington.)
Bull, B.; Dunn, A. (2002). Catch-at-age user manual v1.06.2002/09/12. NIWA Internal Report 114. 23 p. (Unpublished report held in NIWA library, Wellington.)
Chatterton, T.D.; Hanchet, S.M. (1994). Trawl survey of hoki and associated species in the Southland and Sub-Antarctic areas, November-December 1991 (TAN9105). New Zealand Fisheries Data Report 41.55 p.
Coombs, R.F.; Macaulay, G.J.; Knol, W.; Porritt, G. (2003). Configurations and calibrations of 38 kHz fishery acoustic survey systems, 1991-2000. New Zealand Fisheries Assessment Report 2003/49. 24 p.
Cordue, P.L.; Ballara, S.L.; Horn, P.L. (2000). Hoki ageing: recommendation of which data to routinely record for hoki otoliths. Final Research Report to the Ministry of Fisheries for Project MOF1999/01 (Hoki ageing). 24 p. (Unpublished report held by Ministry of Fisheries, Wellington.)
Foote, K.G.; Knudsen, H.P.; Vestnes, G.; MacLennan, D.N.; Simmonds, E.J. (1987). Calibration of acoustic instruments for fish density estimation: a practical guide. ICES Cooperative Research Report 144.68 p.
Francis, R.I.C.C. (1981) Stratified random trawl surveys of deep-water demersal fish stocks around New Zealand. Fisheries Research Division Occasional Publication 32. 28 p.
Francis, R.I.C.C. (1984) An adaptive strategy for stratified random trawl surveys. New Zealand Journal of Marine and Freshwater Research 18: 59-71.
Francis, R.I.C.C. (1989). A standard approach to biomass estimation from bottom trawl surveys. New Zealand Fisheries Assessment Research Document 89/3. 3 p. (Unpublished report held in NIWA library, Wellington.)
Francis, R.I.C.C. (2001). Improving the consistency of hoki age estimation. New Zealand Fisheries Assessment Report 2001/12. 18 p.
Francis, R.I.C.C. (2006). Optimum allocation of stations to strata in trawl surveys. New Zealand Fisheries Assessment Report 2006/23. 50 p.
Francis R.IC.C. (2009a). Assessment of hoki (Macruronus novaezelandiae) in 2008. New Zealand Fisheries Assessment Report 2009/7. 80 p.
Francis, R.I.C.C. (2009b). SurvCalc User Manual. 39 p. (Unpublished report held at NIWA, Wellington.)
Grimes, P.J.; O'Driscoll, R.L. (2006). Estimating the proportion of female hoki on the Southern Plateau which spawn each year by microscopic examination of gonad samples. Final Research Report for Ministry of Fisheries Project MDT2003/01 Objective 6.40 p. (Unpublished report held by Ministry of Fisheries, Wellington.)
Horn, P.L. (1993). Growth, age structure, and productivity of ling, Genypterus blacodes (Ophidiidae), in New Zealand waters. New Zealand Journal of Marine and Freshwater Research 27: 385-397.
Horn, P.L. (1997). An ageing methodology, growth parameters and estimates of mortality for hake (Merluccius australis) from around the South Island, New Zealand. Marine and Freshwater Research 48: 201-209.
Horn, P.L.; Sullivan, K.J. (1996). Validated aging methodology using otoliths, and growth parameters for hoki (Macruronus novaezelandiae) in New Zealand waters. New Zealand Journal of Marine and Freshwater Research 30: 161-174.

Hurst, R.J.; Bagley, N.; Chatterton, T.; Hanchet, S.; Schofield, K.; Vignaux, M. (1992). Standardisation of hoki/middle depth time series trawl surveys. MAF Fisheries Greta Point Internal Report 194.89 p. (Unpublished report held in NIWA library, Wellington.)
Livingston, M.E.; Bull, B. (2000). The proportion of western stock hoki developing to spawn in April 1998. New Zealand Fisheries Assessment Report 2000/13. 20 p.

Livingston, M.E.; Bull, B.; Stevens, D.W. (2002). Migration patterns during the life-cycle of hoki (Macruronus novaezelandiae): an analysis of trawl survey data in New Zealand waters 1991-2002. Final Research Report for Ministry of Fisheries Research Project HOK2000/01 Objective 6. (Unpublished report held by Ministry of Fisheries, Wellington.)
Livingston, M.E.; Vignaux, M.; Schofield, K.A. (1997). Estimating the annual proportion of nonspawning adults in New Zealand hoki, Macruronus novaezelandiae. Fishery Bulletin 95: 99-113.
McNeill, E. (2001). ESP2 phase 4 user documentation. NIWA Internal Report 105. 31 p. (Unpublished report held in NIWA library, Wellington.)
O'Driscoll, R.L. (2001). Classification of acoustic mark types observed during the 2000 Sub-Antarctic trawl survey (TAN0012). Final Research Report for Ministry of Fisheries Research Project MDT2000/01 Objective 3.28 p. (Unpublished report held by Ministry of Fisheries, Wellington.)
O'Driscoll, R.L. (2002). Estimates of acoustic:trawl vulnerability ratios from the Chatham Rise and Sub-Antarctic. Final Research Report for Ministry of Fisheries Research Projects HOK2001/02 Objective 3 \& MDT2001/01 Objective 4.46 p. (Unpublished report held by Ministry of Fisheries, Wellington.)
O'Driscoll, R.L. (2003). Determining species composition in mixed species marks: an example from the New Zealand hoki (Macruronus novaezelandiae) fishery. ICES Journal of Marine Science 60: 609616.

O'Driscoll, R.L.; Bagley, N.W. (2001). Review of summer and autumn trawl survey time series from the Southland and Sub-Antarctic area 1991-1998. NIWA Technical Report 102. 115 p.
O'Driscoll, R.L.; Bagley, N.W. (2003a). Trawl survey of middle depth species in the Southland and Sub-Antarctic areas, November-December 2001 (TAN0118). New Zealand Fisheries Assessment Report 2003/1. 53 p.
O'Driscoll, R.L.; Bagley, N.W. (2003b). Trawl survey of middle depth species in the Southland and Sub-Antarctic areas, November-December 2002 (TAN0219). New Zealand Fisheries Assessment Report 2003/46. 57 p.
O'Driscoll, R.L.; Bagley, N.W. (2004). Trawl survey of hoki, hake, and ling in the Southland and SubAntarctic areas, November-December 2003 (TAN0317). New Zealand Fisheries Assessment Report 2004/49. 58 p.
O'Driscoll, R.L.; Bagley, N.W. (2006a). Trawl survey of hoki, hake, and ling in the Southland and SubAntarctic areas, November-December 2004 (TAN0414). New Zealand Fisheries Assessment Report 2006/2. 60 p.
O'Driscoll, R.L.; Bagley, N.W. (2006b). Trawl survey of hoki, hake, and ling in the Southland and SubAntarctic areas, November-December 2005 (TAN0515). New Zealand Fisheries Assessment Report 2006/45. 64 p.
O'Driscoll, R.L.; Bagley, N.W. (2008). Trawl survey of middle depth species in the Southland and SubAntarctic areas, November-December 2006 (TAN0617). New Zealand Fisheries Assessment Report 2008/30. 61 p.
O'Driscoll, R. L.; Gauthier, S.; Devine, J. (2009). Acoustic surveys of mesopelagic fish: as clear as day and night? ICES Journal of Marine Science 66: 1310-1317.
Stevens, D.W.; O'Driscoll, R.L.; Horn, P.L. (2009). Trawl survey of hoki and middle depth species on the Chatham Rise, January 2008 (TAN0801). New Zealand Fisheries Assessment Report 2009/18. 86 p.

Vignaux, M. (1994). Documentation of Trawlsurvey Analysis Program. MAF Fisheries Greta Point Internal Report 225. 44 p. (Unpublished report held in NIWA library, Wellington.)

Table 1: Stratum areas, depths, and number of successful biomass stations from the November-December 2008 Southland and Sub-Antarctic trawl survey. Stratum boundaries are shown in Figure 1, and station positions are plotted in Figure 2.

| Stratum | Name | Depth <br> (m) | $\begin{gathered} \text { Area } \\ \left(\mathrm{km}^{2}\right) \end{gathered}$ | Proposed phase 1 stations | Completed phase 1 stations | Completed phase 2 stations |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Puysegur Bank | 300-600 | 2150 | 4 | 4 |  |
| 2 | Puysegur Bank | 600-800 | 1318 | 4 | 4 |  |
| 3a | Stewart-Snares | 300-600 | 4548 | 5 | 5 |  |
| 3b | Stewart-Snares | 300-600 | 1556 | 4 | 4 |  |
| 4 | Stewart-Snares | 600-800 | 21018 | 4 | 4 | 2 |
| 5a | Snares-Auckland | 600-800 | 2981 | 5 | 4 |  |
| 5b | Snares-Auckland | 600-800 | 3281 | 4 | 4 |  |
| 6 | Auckland Is. | 300-600 | 16682 | 4 | 4 |  |
| 7 | South Auckland | 600-800 | 8497 | 3 | 3 |  |
| 8 | N.E. Auckland | 600-800 | 17294 | 4 | 4 |  |
| 9 | N. Campbell Is. | 300-600 | 27398 | 6 | 6 |  |
| 10 | S. Campbell Is. | 600-800 | 11288 | 3 | 3 |  |
| 11 | N.E. Pukaki Rise | 600-800 | 23008 | 4 | 4 | 3 |
| 12 | Pukaki | 300-600 | 45259 | 7 | 7 |  |
| 13 | N.E. Camp. Plateau | 300-600 | 36051 | 3 | 3 | 1 |
| 14 | E. Camp. Plateau | 300-600 | 27659 | 3 | 3 |  |
| 15 | E. Camp. Plateau | 600-800 | 15179 | 3 | 3 |  |
| 25 | Puysegur Bank | 800-1 000 | 1928 | 4 | 4 | 4 |
| 26 | S.W. Campbell Is. | 800-1 000 | 31778 | 3 | 3 |  |
| 27 | N.E. Pukaki Rise | 800-1 000 | 12986 | 3 | 3 |  |
| 28 | E. Stewart Is. | 800-1 000 | 8336 | 4 | 4 | 2 |
| Total |  |  | 320159 | 84 | 83 | 12 |

Table 2: EK60 transceiver settings and other relevant parameters. Values in bold were calculated from the calibration on 30 May 2008.

| Parameter |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Frequency (kHz) | 18 | 38 | 70 | 120 | 200 |
| GPT model | GPT-Q18(2)- | GPT-Q38(4)- | GPT-Q70(1)- | GPT- | GPT- |
|  | S 1.0 | S 1.0 | S 1.0 | Q120(1)-S | Q120(1)-S |
|  | 00907205c47 | 00907205c46 | 00907205ca9 | 1.0 | 1.0 |
|  | 6 | 3 | 8 | 00907205814 | 00907205 |
|  |  |  |  | 8 | 8148 |
| GPT serial number | 652 | 650 | 674 | 668 | 692 |
| GPT software version | 050112 | 050112 | 050112 | 050112 | 050112 |
| ER60 software version | 2.1.2 | 2.1.2 | 2.1.2 | 2.1.2 | 2.1.2 |
| Transducer model | Simrad ES18- | Simrad ES38 | Simrad ES70- | Simrad | Simrad |
|  | 11 |  | 7C | ES120-7C | ES200-7C |
| Transducer serial number | 2080 | 23083 | 158 | 477 | 364 |
| Transmit power (W) | 2000 | 2000 | 1000 | 500 | 300 |
| Pulse length (ms) | 1.024 | 1.024 | 1.024 | 1.024 | 1.024 |
| Transducer peak gain (dB) | 22.96 | 25.81 | 26.43 | 26.17 | 24.96 |
| Sa correction (dB) | -0.81 | -0.57 | -0.35 | -0.36 | -0.25 |
| Bandwidth (Hz) | 1570 | 2430 | 2860 | 3030 | 3090 |
| Sample interval (m) | 0.191 | 0.191 | 0.191 | 0.191 | 0.191 |
| Two-way beam angle (dB) | -17.0 | -20.60 | -21.0 | -21.0 | -20.70 |
| Absorption coefficient ( $\mathrm{dB} / \mathrm{km}$ ) | 2.67 | 9.79* | 22.79 | 37.44 | 52.69 |
| Speed of sound (m/s) | 1494 | 1494 | 1494 | 1494 | 1494 |
| Angle sensitivity (dB) alongship/athwartship | 13.90/13.90 | 21.90/21.90 | 23.0/23.0 | 23.0/23.0 | 23.0/23.0 |
| 3 dB beamwidth $\left({ }^{\circ}\right)$ alongship/athwartship | 10.8/10.8 | 7. 0/7.0 | 6.6/6.6 | 6.5/6.6 | 6.8/6.9 |
| Angle offset ( ${ }^{\circ}$ ) alongship/athwartship | 0.0/0.0 | 0.0/0.0 | 0.0/0.0 | 0.0/0.0 | 0.0/0.0 |
| Calibration RMS deviation (dB) | 0.26 | 0.16 | 0.25 | 0.35 | 0.39 |

[^0]Table 3: Survey tow and gear parameters (recorded values only). Values are number of tows (n), and the mean, standard deviation (s.d.), and range of observations for each parameter.

|  | $n$ | Mean | s.d | Range |
| :---: | :---: | :---: | :---: | :---: |
| Tow parameters |  |  |  |  |
| Tow length (n.miles) | 95 | 2.99 | 0.12 | 2.07-3.05 |
| Tow speed (knots) | 95 | 3.5 | 0.06 | 3.3-3.6 |
| Gear parameters (m) |  |  |  |  |
| 300-600 m |  |  |  |  |
| Headline height | 37 | 6.9 | 0.22 | 6.6-7.5 |
| Doorspread | 37 | 114.1 | 5.10 | 103.8-125.4 |
| 600-800 m |  |  |  |  |
| Headline height | 38 | 6.9 | 0.21 | 6.4-7.3 |
| Doorspread | 35 | 116.3 | 4.78 | 104.6-125.3 |
| 800-1000 m |  |  |  |  |
| Headline height | 20 | 6.9 | 0.25 | 6.2-7.3 |
| Doorspread | 20 | 116.9 | 5.04 | 109.7-128.3 |
| All stations 300-1000 m |  |  |  |  |
| Headline height | 95 | 6.9 | 0.22 | 6.2-7.5 |
| Doorspread | 92 | 115.5 | 5.05 | 103.8-128.3 |

Table 4: Comparison of doorspread and headline measurements from all surveys in the summer Tangaroa time-series. Values are the mean and standard deviation (s.d.). The number of tows with measurements (n) and range of observations is also given for doorspread.

|  |  |  |  | Doorspread $(\mathrm{m})$ |  |  | Headline height $(\mathrm{m})$ |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Survey | $n$ | mean | s.d. | $\min$ | $\max$ |  | mean | s.d. |
| 1991 | 152 | 126.5 | 7.05 | 106.5 | 145.5 |  | 6.6 | 0.31 |
| 1992 | 127 | 121.4 | 6.03 | 105.0 | 138.4 |  | 7.4 | 0.38 |
| 1993 | 138 | 120.7 | 7.14 | 99.9 | 133.9 |  | 7.1 | 0.33 |
| 2000 | 68 | 121.4 | 5.22 | 106.0 | 132.4 |  | 7.0 | 0.20 |
| 2001 | 95 | 117.5 | 5.19 | 103.5 | 127.6 |  | 7.1 | 0.25 |
| 2002 | 97 | 120.3 | 5.92 | 107.0 | 134.5 |  | 6.8 | 0.14 |
| 2003 | 13 | 123.1 | 3.80 | 117.3 | 129.7 |  | 7.0 | 0.22 |
| 2004 | 85 | 120.0 | 6.1 | 105.0 | 131.8 |  | 7.1 | 0.28 |
| 2005 | 91 | 117.1 | 6.53 | 104.0 | 134.4 |  | 7.2 | 0.22 |
| 2006 | 85 | 120.5 | 4.82 | 104.0 | 129.7 |  | 7.0 | 0.24 |
| 2007 | 94 | 114.3 | 7.43 | 97.5 | 130.8 | 7.2 | 0.23 |  |
| 2008 | 92 | 115.5 | 5.05 | 103.8 | 128.3 |  | 6.9 | 0.22 |

Table 5: Biomass estimates, coefficients of variation, and catch of the 20 species with highest catch weights in the 2008 Sub-Antarctic trawl survey. Estimates are from successful biomass stations for all strata combined. Biomass estimates from 2007 (from Bagley et al. 2009) are shown for comparison.

|  | Species code | 2008 (TAN0813) |  |  | 2007 (TAN0714) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Catch | Biomass | c.v. | Catch | Biomass | c.v. |
| Species |  | (kg) | (t) | (\%) | (kg) | (t) | (\%) |
| Hoki | HOK | 12789 | 48340 | 14 | 15672 | 46003 | 16 |
| Javelinfish | JAV | 9111 | 48659 | 15 | 2691 | 12066 | 12 |
| Ling | LIN | 6501 | 22879 | 10 | 5477 | 26492 | 8 |
| Hake | HAK | 3420 | 2355 | 16 | 2012 | 2662 | 15 |
| Silver warehou | SWA | 2256 | 4122 | 55 | 349 | 514 | 38 |
| Black oreo | BOE | 1942 | 7848 | 49 | 433 | 2674 | 72 |
| Shovelnosed dogfish | SND | 1839 | 910 | 26 | 381 | 261 | 32 |
| Pale ghost shark | GSP | 1658 | 10098 | 13 | 2119 | 13107 | 11 |
| Southern blue whiting | SBW | 1416 | 15219 | 14 | 966 | 8165 | 24 |
| Ridge-scaled rattail | MCA | 1295 | 11198 | 37 | 1098 | 8544 | 19 |
| Spiny dogfish | SPD | 1207 | 3096 | 19 | 1590 | 3589 | 17 |
| Longnose velvet dogfish | CYP | 1089 | 1780 | 19 | 924 | 2176 | 26 |
| Deepwater spiny dogfish | CSQ | 949 | 813 | 26 | 338 | 1154 | 25 |
| White warehou | WWA | 935 | 2209 | 40 | 1450 | 1707 | 61 |
| Glass sponge | HYA | 748 | 7490 | 33 | 348 | 4095 | 59 |
| Smooth oreo | SSO | 555 | 1150 | 58 | 211 | 862 | 50 |
| Baxter's lantern dogfish | ETB | 555 | 2269 | 21 | 431 | 2583 | 20 |
| Oliver's rattail | COL | 555 | 2663 | 16 | 281 | 1587 | 32 |
| Ribaldo | RIB | 491 | 910 | 16 | 327 | 1086 | 13 |
| Arrow squid | NOS | 428 | 396 | 36 | 1753 | 2161 | 86 |
| Total catch (all species) |  | 56156 |  |  | 44748 |  |  |

Table 6: Estimated biomass (t) and coefficients of variation (\%, below in parentheses) of the $\mathbf{1 2}$ major species by stratum. Species codes are given in Appendix 2. Subtotals are provided for core strata (1-15) and core + Puysegur 800-1000 m (Strata 1-25).

| Stratum | HOK | LIN | HAK | BOE | GSH | GSP |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1371 | 2320 | 37 | 0 | 89 | 4 |
|  | (62) | (57) | (66) |  | (42) | (100) |
| 2 | 528 | 180 | 109 | 0 | 0 | 5 |
|  | (38) | (35) | (66) |  |  | (63) |
| 3a | 1662 | 757 | 68 | 0 | 12 | 161 |
|  | (42) | (49) | (88) |  | (82) | (100) |
| 3b | 711 | 165 | 42 | 0 | 107 | 0 |
|  | (52) | (55) | (83) |  | (40) |  |
| 4 | 3802 | 1858 | 185 | 2679 | 0 | 1304 |
|  | (30) | (26) | (29) | (88) |  | (34) |
| 5a | 313 | 136 | 120 | 0 | 2 | 63 |
|  | (24) | (28) | (38) |  | (100) | (55) |
| 5b | 444 | 310 | 103 | 0 | 0 | 382 |
|  | (6) | (19) | (37) |  |  | (19) |
| 6 | 797 | 257 | 22 | 0 | 753 | 0 |
|  | (29) | (43) | (100) |  | (45) |  |
| 7 | 1979 | 423 | 30 | 0 | 0 | 110 |
|  | (54) | (51) | (100) |  |  | (45) |
| 8 | 7964 | 2206 | 72 | 0 | 0 | 660 |
|  | (9) | (9) | (63) |  |  | (22) |
| 9 | 4148 | 2309 | 20 | 0 | 102 | 887 |
|  | (20) | (25) | (100) |  | (94) | (35) |
| 10 | 484 | 286 | 0 | 0 | 0 | 119 |
|  | (54) | (38) |  |  |  | (23) |
| 11 | 6704 | 744 | 240 | 30 | 0 | 362 |
|  | (59) | (42) | (81) | (63) |  | (30) |
| 12 | 3594 | 4233 | 26 | 0 | 0 | 2514 |
|  | (50) | (8) | (100) |  |  | (22) |
| 13 | 7978 | 3594 | 0 | 0 | 0 | 1848 |
|  | (49) | (29) |  |  |  | (42) |
| 14 | 1246 | 2296 | 0 | 0 | 63 | 819 |
|  | (30) | (37) |  |  | (100) | (67) |
| 15 | 3255 | 757 | 0 | 0 | 0 | 97 |
|  | (59) | (55) |  |  |  | (21) |
| Subtotal (strata 1-15) | 46980 | 22831 | 1074 | 2709 | 1128 | 9335 |
|  | (14) | (10) | (23) | (87) | (32) | (13) |
| 25 | 508 | 36 | 1088 | 0 | 0 | 7 |
|  | (43) | (57) | (24) |  |  | (29) |
| Subtotal (strata 1-25) | 47488 | 22867 | 2162 | 2709 | 1128 | 9342 |
|  | (14) | (10) | (17) | (87) | (32) | (13) |
| 26 | 0 | 0 | 0 | 0 | 0 | 455 |
|  |  |  |  |  |  | (51) |
| 27 | 473 | 0 | 21 | 2994 | 0 | 34 |
|  | (45) |  | (100) | (100) |  | (45) |
| 28 | 379 | 12 | 172 | 2145 | 0 | 267 |
|  | (53) | (90) | (52) | (21) |  | (23) |
| Total (All strata) | 48340 | 22879 | 2355 | 7848 | 1128 | 10098 |
|  | (14) | (10) | (16) | (49) | (32) | (13) |

Table 6 (cont): Estimated biomass ( $t$ ) and coefficients of variation (\%, below in parentheses) of the 12 major species by stratum. Species codes are given in Appendix 2. Subtotals are provided for core strata (1-15) and core + Puysegur 800-1000 m (Strata 1-25).

| Stratum | JAV | LDO | RIB | SBW | SPD | WWA |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 33 | 14 | 8 | 0 | 465 | 361 |
|  | (35) | (47) | (100) |  | (62) | (100) |
| 2 | 36 | 11 | 33 | 0 | 0 | 37 |
|  | (20) | (11) | (17) |  |  | (69) |
| 3a | 524 | 27 | 0 | 0 | 98 | 16 |
|  | (62) | (30) |  |  | (17) | (68) |
| 3 b | 4 | 16 | 0 | 0 | 218 | 72 |
|  | (64) | (42) |  |  | (39) | (54) |
| 4 | 2830 | 17 | 84 | 0 | 154 | 122 |
|  | (40) | (100) | (50) |  | (22) | (65) |
| 5a | 115 | 9 | 37 | 0 | 3 | 84 |
|  | (16) | (58) | (9) |  | (100) | (93) |
| 5b | 513 | 2 | 24 | 1 | 13 | 0 |
|  | (27) | (100) | (20) | (100) | (48) |  |
| 6 | 0 | 0 | 123 | 73 | 85 | 0 |
|  |  |  | (21) | (38) | (100) |  |
| 7 | 1487 | 0 | 130 | 0 | 6 | 0 |
|  | (34) |  | (30) |  | (100) |  |
| 8 | 8135 | 68 | 74 | 3 | 106 | 48 |
|  | (30) | (59) | (43) | (58) | 34) | (59) |
| 9 | 3881 | 41 | 13 | 602 | 570 | 1248 |
|  | (74) | (98) | (100) | (37) | (42) | (65) |
| 10 | 1107 | 0 | 133 | 0 | 0 | 0 |
|  | (15) |  | (55) |  |  |  |
| 11 | 7137 | 17 | 100 | 561 | 39 | 0 |
|  | (34) | (69) | (59) | (100) | (55) |  |
| 12 | 5221 | 238 | 0 | 8517 | 374 | 106 |
|  | (56) | (30) |  | (13) | (26) | (87) |
| 13 | 8608 | 190 | 0 | 3136 | 494 | 105 |
|  | (49) | (76) |  | (46) | (52) | (65) |
| 14 | 2496 | 55 | 0 | 2223 | 454 | 0 |
|  | (62) | (96) |  | (41) | (76) |  |
| 15 | 3441 | 108 | 22 | 103 | 13 | 0 |
|  | (40) | (81) | (100) | (100) | (100) |  |
| Subtotal (strata 1-15) | 45568 | 813 | 781 | 15219 | 3092 | 2199 |
|  | (16) | (25) | (18) | (14) | (19) | (40) |
| 25 | 594 | 2 | 107 | 0 | 0 | 0 |
|  | (16) | (82) | (38) |  |  |  |
| Subtotal (strata 1-25) | 46162 | 815 | 888 | 15219 | 3092 | 2199 |
|  | (16) | (25) | (16) | (14) | (19) | (40) |
| 26 | 0 | 0 | 0 | 0 | 0 | 0 |
| 27 | 1646 | 0 | 10 | 0 | 0 | 0 |
|  | (15) |  | (100) |  |  |  |
| 28 | 851 | 0 | 12 | 0 | 4 | 10 |
|  | (44) |  | (64) |  | (65) | (63) |
| Total (All strata) | 48659 | 815 | 910 | 15219 | 3096 | 2209 |
|  | (15) | (25) | (16) | (14) | (19) | (40) |

Table 7: Time series of biomass estimates of hoki and hake for core $\mathbf{3 0 0} \mathbf{- 8 0 0} \mathbf{~ m}$ strata and for all surveyed strata from Sub-Antarctic trawl surveys.


Table 7 cntd: Time series of biomass estimates of ling for core $\mathbf{3 0 0 - 8 0 0} \mathbf{~ m}$ strata and for all surveyed strata from Sub-Antarctic trawl surveys.

| LING |  | Core strata (300-800 m) |  | All strata (300-1000 m) |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Biomass | c.v. (\%) | Biomass | c.v. (\%) |
|  | Summer series |  |  |  |  |
|  | 1991 | 24085 | 7 |  |  |
|  | 1992 | 21368 | 6 |  |  |
|  | 1993 | 29747 | 12 |  |  |
|  | 2000 | 33023 | 7 | 33033 | 7 |
|  | 2001 | 25059 | 7 | 25167 | 6 |
|  | 2002 | 25628 | 10 | 25635 | 10 |
|  | 2003 | 22174 | 10 | 22192 | 10 |
|  | 2004 | 23744 | 12 | 23794 | 12 |
|  | 2005 | 19685 | 9 | 19755 | 9 |
|  | 2006 | 19637 | 12 | 19661 | 12 |
|  | 2007 | 26486 | 8 | 26492 | 8 |
|  | 2008 | 22831 | 10 | 22879 | 10 |
|  | Autumn series |  |  |  |  |
|  | 1992 | 42334 | 6 |  |  |
|  | 1993 | 33553 | 5 |  |  |
|  | 1996 | 32133 | 8 | 32363 | 8 |
|  | 1998 | 30776 | 9 | 30893 | 9 |

Table 8: Numbers of fish for which length, sex, and biological data were collected; - no data.

| Species | Length frequency data |  |  |  | Length-weight data |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | No. of fish measured |  | No. of | No. of | No. of |
|  | Total $\dagger$ | Male | Female | samples | fish | samples |
| Alfonsino | 1 | 1 | 0 | 1 | 1 | 1 |
| Arrow squid | 437 | 265 | 171 | 31 | 284 | 30 |
| Banded rattail | 3057 | 392 | 358 | 46 | 741 | 23 |
| Baxter's lantern dogfish | 459 | 231 | 228 | 32 | 401 | 32 |
| Bigeye cardinalfish | 79 | 0 | 0 | 1 | 0 | 0 |
| Black cardinalfish | 47 | 18 | 14 | 5 | 47 | 5 |
| Black oreo | 1428 | 745 | 682 | 12 | 266 | 12 |
| Bollons's rattail | 190 | 81 | 109 | 10 | 87 | 9 |
| Brown chimaera | 2 | 2 | 0 | 1 | 2 | 1 |
| Dark ghost shark | 405 | 230 | 175 | 17 | 326 | 17 |
| Deepwater spiny dogfish | 134 | 66 | 68 | 18 | 134 | 18 |
| Finless flounder | 18 | 12 | 6 | 1 | 18 | 1 |
| Four-rayed rattail | 842 | 26 | 45 | 10 | 93 | 4 |
| Frostfish | 1 | 1 | 0 | 1 | 1 | 1 |
| Gemfish | 1 | 0 | 1 | 1 | 1 | , |
| Giant chimaera | 1 | 1 | 0 | 1 | 1 | 1 |
| Giant stargazer | 68 | 15 | 53 | 18 | 68 | 18 |
| Hake | 1124 | 306 | 818 | 47 | 1075 | 47 |
| Hapuku | 1 | 0 | 1 | 1 | 1 | 1 |
| Hoki | 7298 | 2745 | 4552 | 90 | 1390 | 80 |
| Humpback rattail | 3 | 0 | 3 | 1 | 3 | 1 |
| Javelinfish | 9491 | 349 | 1561 | 77 | 1625 | 54 |
| Ling | 2156 | 1162 | 994 | 80 | 1085 | 72 |
| Longnose velvet dogfish | 248 | 63 | 185 | 16 | 232 | 16 |
| Longnosed chimaera | 89 | 48 | 41 | 30 | 89 | 30 |
| Lookdown dory | 127 | 54 | 73 | 42 | 127 | 42 |
| Lucifer dogfish | 146 | 75 | 71 | 7 | 34 | 5 |
| Notable rattail | 81 | 0 | 0 | 1 | 0 | 0 |
| Oblique banded rattail | 1117 | 46 | 363 | 21 | 424 | 14 |
| Oliver's rattail | 2295 | 62 | 129 | 19 | 423 | 10 |
| Orange roughy | 218 | 100 | 117 | 14 | 193 | 14 |
| Owston's dogfish | 9 | 5 | 4 | 1 | 9 | 1 |
| Pale ghost shark | 1130 | 567 | 563 | 74 | 963 | 74 |
| Pale toadfish | 1 | 0 | 0 | 1 | 1 | 1 |
| Ray's bream | 22 | 10 | 11 | 10 | 22 | 10 |
| Red cod | 104 | 65 | 39 | 7 | 104 | 7 |
| Ribaldo | 284 | 75 | 209 | 42 | 256 | 42 |
| Ridge-scaled rattail | 668 | 381 | 287 | 30 | 361 | 29 |
| Rough skate | 15 | 7 | 8 | 8 | 15 | 8 |
| Scampi | 7 | 4 | 3 | 2 | 7 | 2 |
| School shark | 7 | 7 | 0 | 3 | 7 | 3 |
| Sea perch | 14 | 9 | 5 | 4 | 14 | 4 |
| Seal shark | 10 | 3 | 7 | 3 | 10 | 3 |
| Shovelnosed dogfish | 188 | 96 | 92 | 13 | 188 | 13 |
| Silver dory | 308 | 199 | 109 | 2 | 60 | 2 |
| Silver warehou | 415 | 192 | 223 | 8 | 102 | 8 |
| Silverside | 1333 | 532 | 582 | 32 | 691 | 29 |
| Small banded rattail | 61 | 13 | 14 | 3 | 0 | 0 |
| Smallscaled cod | 14 | 6 | 8 | 1 | 14 | 1 |
| Small-scaled slickhead | 306 | 171 | 135 | 7 | 199 | 7 |
| Smooth oreo | 485 | 249 | 236 | 15 | 139 | 15 |
| Smooth skate | 9 | 4 | 5 | 8 | 9 | 8 |

Table 8 cont: Numbers of fish for which length, sex, and biological data were collected.

| Species | Length frequency data |  |  |  | Length-weight data |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | No. of fish measured |  |  | No. of | No. of | No. of |
|  | Total $\dagger$ | Male | Female | Samples | fish | samples |
| Southern blue whiting | 2757 | 1213 | 1467 | 29 | 664 | 29 |
| Spiky oreo | 153 | 99 | 54 | 1 | 44 | 1 |
| Spiny dogfish | 576 | 160 | 416 | 52 | 345 | 52 |
| Two saddle rattail | 50 | 0 | 0 | 1 | 0 | 0 |
| White rattail | 23 | 13 | 10 | 4 | 23 | 4 |
| White warehou | 405 | 253 | 152 | 26 | 224 | 26 |
| Widenosed chimaera | 50 | 28 | 22 | 14 | 50 | 14 |

$\dagger$ Total is sometimes greater than the sum of male and female fish because the sex of some fish was not recorded.

Table 9: Length-weight regression parameters* used to scale length frequencies for the $\mathbf{1 2}$ major species.

|  | Regression parameters |  |  |  | Length <br> Species |  |  | $a$ | $b$ | $r^{2}$ | $n$ | range $(\mathrm{cm})$ | Data source |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Black oreo | 0.035164 | 2.8534 | .85 | 264 | $23.2-37.8$ | TAN0813 |  |  |  |  |  |  |  |
| Dark ghost shark | 0.002961 | 3.1840 | .96 | 325 | $34.4-68.5$ | TAN0813 |  |  |  |  |  |  |  |
| Javelinfish | 0.001638 | 3.0866 | .94 | 1625 | $18.2-56.4$ | TAN0813 |  |  |  |  |  |  |  |
| Hake | 0.002492 | 3.2457 | .97 | 1075 | $44.2-124.2$ | TAN0813 |  |  |  |  |  |  |  |
| Hoki | 0.005024 | 2.8712 | .98 | 1390 | $34.6-109.5$ | TAN0813 |  |  |  |  |  |  |  |
| Ling | 0.001300 | 3.2877 | .98 | 1083 | $36.7-126.2$ | TAN0813 |  |  |  |  |  |  |  |
| Lookdown dory | 0.027480 | 2.9624 | .97 | 127 | $16.7-54.0$ | TAN0813 |  |  |  |  |  |  |  |
| Pale ghost shark | 0.013396 | 2.7913 | .97 | 963 | $25.9-83.8$ | TAN0813 |  |  |  |  |  |  |  |
| Ribaldo | 0.006827 | 3.1033 | .97 | 255 | $29.0-72.2$ | TAN0813 |  |  |  |  |  |  |  |
| Southern blue whiting | 0.003715 | 3.1505 | .99 | 664 | $17.2-57.3$ | TAN0813 |  |  |  |  |  |  |  |
| Spiny dogfish | 0.000486 | 3.5033 | .94 | 344 | $55.9-97.5$ | TAN0813 |  |  |  |  |  |  |  |
| White warehou | 0.066312 | 2.6922 | .97 | 223 | $29.5-60.3$ | TAN0813 |  |  |  |  |  |  |  |

* $\mathrm{W}=a \mathrm{~L}^{b}$ where W is weight $(\mathrm{g})$ and L is length $(\mathrm{cm}) ; r^{2}$ is the correlation coefficient, $n$ is the number of samples.

Table 10: Numbers of hoki, hake, and ling at each reproductive stage*.

| Reproductive stage | Hoki |  | Hake |  | Ling |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Male | Female | Male | Female | Male | Female |
| 1 | 897 | 990 | 183 | 497 | 176 | 199 |
| 2 | 1601 | 3404 | 36 | 117 | 244 | 635 |
| 3 | 7 | 34 | 11 | 143 | 175 | 26 |
| 4 | 4 | 1 | 25 | 6 | 516 | 111 |
| 5 | 1 | 0 | 35 | 3 | 8 | 2 |
| 6 | 198 | 5 | 14 | 7 | 25 | 0 |
| 7 | 15 | 92 | 2 | 45 | 2 | 0 |
| Total staged | 2723 | 4526 | 306 | 818 | 1146 | 973 |

*See Appendix 1 for description of gonad stages.

Table 11: Average liver condition index (LCI) and somatic condition factor (CF) for hoki sampled during Sub-Antarctic trawl surveys 2001-08.

|  | LCI |  |  |  | CF |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Year | Male | Female |  | Male | Female |
| 2001 | 2.58 | 3.12 |  | 2.61 | 2.57 |
| 2002 | 2.37 | 2.74 |  | 2.63 | 2.60 |
| 2003 | 2.36 | 2.93 |  | 2.62 | 2.60 |
| 2004 | 2.71 | 3.25 |  | 2.63 | 2.59 |
| 2005 | 3.01 | 3.15 |  | 2.75 | 2.68 |
| 2006 | 2.66 | 2.98 |  | 2.71 | 2.70 |
| 2007 | 3.03 | 3.22 |  | 2.70 | 2.68 |
| 2008 | 2.53 | 2.69 |  | 2.72 | 2.67 |

LCI $=$ liver weight $(\mathrm{g}) /$ gutted weight $(\mathrm{g}) \times 100$
$\mathrm{CF}=$ gutted weight $(\mathrm{g}) /(\text { length }(\mathrm{cm}))^{3} \times 1000$

Table 12: Quality of acoustic data collected during trawl surveys in the Sub-Antarctic between 2000 and 2008. The quality of each recording was subjectively categorised as "good", "marginal" or "poor" based on the appearance of the 38 kHz echograms (see appendix 2 of $\mathrm{O}^{\prime}$ Driscoll \& Bagley (2004) for examples).

| Survey | Number of <br>  | recordings | Good | Marginal |
| :--- | ---: | ---: | ---: | ---: |

Table 13: Percentage occurrence of the seven acoustic mark types classified by O'Driscoll (2001) in trawl surveys of the Sub-Antarctic between 2000 and 2008. Several mark types were usually present in the same echogram. $\boldsymbol{n}$ is the number of acoustic files examined.

| Acoustic file | Survey | $n$ | Surface layer | Pelagic marks |  |  | Bottom marks |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | School | Layer | Cloud | Layer | Cloud | School |
| Day steam | 2000 (TAN0012) | 90 | 93 | 71 | 63 | 6 | 58 | 17 | 11 |
|  | 2001 (TAN0118) | 85 | 91 | 71 | 72 | 41 | 54 | 26 | 12 |
|  | 2002 (TAN0219) | 72 | 92 | 72 | 75 | 19 | 79 | 19 | 14 |
|  | 2003 (TAN0317) | 64 | 94 | 56 | 53 | 47 | 67 | 30 | 13 |
|  | 2004 (TAN0414) | 49 | 82 | 63 | 55 | 43 | 69 | 31 | 12 |
|  | 2005 (TAN0515) | 75 | 91 | 77 | 73 | 63 | 67 | 59 | 16 |
|  | 2006 (TAN0617) | 73 | 88 | 53 | 67 | 37 | 30 | 34 | 3 |
|  | 2007 (TAN0714) | 65 | 94 | 74 | 57 | 43 | 43 | 52 | 12 |
|  | 2008 (TAN0813) | 74 | 86 | 80 | 59 | 74 | 59 | 89 | 19 |
| Night steam | 2000 (TAN0012) | 36 | 97 | 22 | 14 | 33 | 17 | 67 | 3 |
|  | 2001 (TAN0118) | 26 | 100 | 23 | 19 | 85 | 38 | 85 | 8 |
|  | 2002 (TAN0219) | 23 | 100 | 13 | 13 | 96 | 39 | 91 | 0 |
|  | 2003 (TAN0317) | 22 | 95 | 14 | 14 | 86 | 32 | 73 | 0 |
|  | 2004 (TAN0414) | 22 | 95 | 14 | 23 | 68 | 36 | 95 | 0 |
|  | 2005 (TAN0515) | 23 | 100 | 61 | 44 | 100 | 57 | 91 | 4 |
|  | 2006 (TAN0617) | 24 | 96 | 33 | 42 | 75 | 13 | 83 | 4 |
|  | 2007 (TAN0714) | 24 | 100 | 42 | 33 | 83 | 38 | 96 | 0 |
|  | 2008 (TAN0813) | 64 | 98 | 19 | 20 | 72 | 36 | 83 | 3 |
| Trawl | 2000 (TAN0012) | 108 | 90 | 50 | 52 | 23 | 37 | 20 | 10 |
|  | 2001 (TAN0118) | 110 | 81 | 60 | 62 | 32 | 35 | 26 | 15 |
|  | 2002 (TAN0219) | 108 | 91 | 60 | 59 | 32 | 41 | 31 | 15 |
|  | 2003 (TAN0317) | 83 | 86 | 37 | 53 | 28 | 46 | 25 | 4 |
|  | 2004 (TAN0414) | 92 | 63 | 47 | 48 | 29 | 38 | 33 | 10 |
|  | 2005 (TAN0515) | 99 | 85 | 65 | 60 | 55 | 38 | 52 | 6 |
|  | 2006 (TAN0617) | 95 | 67 | 40 | 54 | 29 | 29 | 25 | 1 |
|  | 2007 (TAN0714) | 105 | 78 | 53 | 41 | 43 | 39 | 30 | 10 |
|  | 2008 (TAN0813) | 97 | 78 | 56 | 45 | 69 | 45 | 69 | 9 |

Table 14: Average trawl catch (excluding benthic organisms) and acoustic backscatter from tows where acoustic data quality was suitable for echo integration for SubAntarctic surveys between 2000 and 2008. All tows were conducted during daylight. Only bottom-referenced regions were integrated in $2000-04$.

| Survey | Number of recordings | Trawl catch ( $\mathrm{kg} \mathrm{km}^{-2}$ ) |  | Average acoustic backscatter $\left(\mathrm{m}^{2} \mathrm{~km}^{-2}\right)$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Mean | Median | Bottom 10 m only | All bottom marks | Entire echogram |
| 2000 (TAN0012) | 100 | 697 | 590 | 0.502 | 3.37 | - |
| 2001 (TAN0118) | 101 | 779 | 567 | 0.506 | 2.90 | - |
| 2002 (TAN0219) | 96 | 726 | 443 | 0.657 | 4.08 | - |
| 2003 (TAN0317) | 48 | 568 | 351 | 0.622 | 2.50 | - |
| 2004 (TAN0414) | 80 | 1031 | 393 | 0.484 | 1.77 | - |
| 2005 (TAN0515) | 87 | 691 | 457 | 0.623 | 2.40 | 14.88 |
| 2006 (TAN0617) | 69 | 543 | 436 | 0.475 | 1.89 | 8.80 |
| 2007 (TAN0714) | 75 | 833 | 525 | 0.541 | 3.45 | 12.06 |
| 2008 (TAN0813) | 92 | 939 | 747 | 0.905 | 3.17 | 16.02 |



Figure 1: Stratum boundaries for the November-December 2008 Southland and Sub-Antarctic trawl survey.


Figure 2: Map showing start positions of all bottom trawls (including unsuccessful stations) from the November-December 2008 Southland and Sub-Antarctic trawl survey.


Figure 3: Trends in biomass ( $\pm 2$ standard errors) of major species in the core $300-800 \mathrm{~m}$ strata in all SubAntarctic trawl surveys from Tangaroa. Solid circles show the summer time series and solid triangles the autumn time series. The open circle shows biomass from a survey of the same area in September-October 1992.


Figure 4a: Distribution and catch rates of all hoki in the summer 2008 trawl survey. Circle area is proportional to catch rate.


Figure 4b: Distribution and catch rates of $1+(<45 \mathrm{~cm})$ hoki in the summer 2008 trawl survey. Circle area is proportional to catch rate.


Figure 4c: Distribution and catch rates of 2+ $(\mathbf{4 5 - 5 7} \mathrm{cm})$ hoki in the summer 2008 trawl survey. Circle area is proportional to catch rate.


Figure 5: Distribution and catch rates of hake in the summer 2008 trawl survey. Circle area is proportional to catch rate.


Figure 6: Distribution and catch rates of ling in the summer 2008 trawl survey. Circle area is proportional to catch rate.


Figure 7a: Scaled length frequency for male hoki from all Sub-Antarctic Tangaroa trawl surveys. Population numbers for core strata are presented as black bars and for all strata as white bars. Because few hoki were caught outside core strata, white bars are very small. Numbers ( $m$ values) above are for all strata and below (in bold) for core strata with c.v.s in parentheses.


Figure 7b: Scaled length frequency for female hoki from all Sub-Antarctic Tangaroa trawl surveys. Population numbers for core strata are presented as black bars and for all strata as white bars. Because few hoki were caught outside core strata, white bars are very small. Numbers ( $f$ values) above are for all strata and below (in bold) for core strata with c.v.s in parentheses.


Figure 8a: Scaled length frequency for male hake from all Sub-Antarctic Tangaroa trawl surveys. Population numbers for core strata are presented as black bars and for all strata as white bars. Numbers ( $m$ values) above are for all strata and below (in bold) for core strata with c.v.s in parentheses.


Figure 8b: Scaled length frequency for female hake from all Sub-Antarctic Tangaroa trawl surveys. Population numbers for core strata are presented as black bars and for all strata as white bars. Numbers ( $f$ values) above are for all strata and below (in bold) for core strata with c.v.s in parentheses.


Figure 9a: Scaled length frequency for male ling from all Sub-Antarctic Tangaroa trawl surveys. Population numbers for core strata are presented as black bars and for all strata as white bars. Because few ling were caught outside core strata, white bars are very small. Numbers ( $m$ values) above are for all strata and below (in bold) for core strata with c.v.s in parentheses.


Figure 9b: Scaled length frequency for female ling from all Sub-Antarctic Tangaroa trawl surveys. Population numbers for core strata are presented as black bars and for all strata as white bars. Because few ling were caught outside core strata, white bars are very small. Numbers ( $f$ values) above are for all strata and below (in bold) for core strata with c.v.s in parentheses.


Figure 10: Length frequency distributions by sex of other major species in the November-December 2007 survey. Scaled total is the estimated total number of fish in the surveyed area, c.v. is the coefficient of variation, $m, f$, and $n$ values are the number of fish measured.


Figure 10 cont: Length frequency distributions by sex of other major species in the November-December 2007 survey. Scaled total is the estimated total number of fish in the surveyed area, c.v. is the coefficient of variation, $\boldsymbol{m}$ and $\boldsymbol{f}$ values are the number of fish measured.


Figure 10 cont: Length frequency distributions by sex of other major species in the November-December 2007 survey. Scaled total is the estimated total number of fish in the surveyed area, c.v. is the coefficient of variation, $m$ and $f$ values are the number of fish measured. Black bars are unsexed fish.


Figure 11a: Scaled age frequency for male hoki from all Sub-Antarctic Tangaroa trawl surveys for the core $300-800 \mathrm{~m}$ survey area. Number of fish aged ( $m$ values) are given with c.v.s in parentheses.


Figure 11b: Scaled age frequency for female hoki from all Sub-Antarctic Tangaroa trawl surveys for the core $300-800 \mathrm{~m}$ survey area. Number of fish aged ( $f$ values) are given with c.v.s in parentheses.


Figure 12a: Scaled age frequency for male hake from all Sub-Antarctic Tangaroa trawl surveys for the core $300-800 \mathrm{~m}$ survey area. Number of fish aged ( $m$ values) are given with c.v.s in parentheses.


Figure 12b: Scaled age frequency for female hake from all Sub-Antarctic Tangaroa trawl surveys for the core $300-800 \mathrm{~m}$ survey area. Number of fish aged ( $f$ values) are given with c.v.s in parentheses.


Figure 13a: Scaled age frequency for male ling from all Sub-Antarctic Tangaroa trawl surveys for the core $300-800 \mathrm{~m}$ survey area. Number of fish aged ( $m$ values) are given with c.v.s in parentheses.


Figure 13b: Scaled age frequency for female ling from all Sub-Antarctic Tangaroa trawl surveys for the core $300-800 \mathrm{~m}$ survey area. Number of fish aged ( $f$ values) are given with c.v.s in parentheses.


Figure 14: Mean liver condition (+/- 2 standard errors) for $60-80 \mathrm{~cm}$ hoki in the Chatham Rise and SubAntarctic trawl surveys.


Figure 15: Acoustic echogram ( 38 kHz ) collected during tow 22 on the Pukaki Rise (stratum 12) showing bottom schools. The trawl caught 190 kg of southern blue whiting.


Figure 16. Relationship between total trawl catch rate (all species excluding benthic invertebrates) and acoustic backscatter recorded during the trawl in the Sub-Antarctic in 2008. Rho values are Spearman's rank correlation coefficients.


Figure 17: Surface water temperatures ( ${ }^{\circ} \mathbf{C}$ ). Squares indicate station positions. Not all temperatures are labelled where two or more stations were close together. Contours show isotherms estimated by eye.


Figure 18: Bottom water temperatures ( ${ }^{\circ} \mathbf{C}$ ). Squares indicate station positions. Not all temperatures are labelled where two or more stations were close together. Contours show isotherms estimated by eye.


Figure 19: Comparison of vertical profiles of temperature from the net-mounted CTD on tows in stratum 9 at approximately $5045^{\prime} \mathrm{S}$ and $16900^{\prime} \mathrm{E}$ in 2002 (TAN0219 station 54, on 6 December), 2003 (TAN0317 station 45, on 29 November), 2004 (TAN0414 station 54, on 14 December), 2005 (TAN0515 station 42, on 6 December), 2006 (TAN0617 station 33, on 5 December), 2007 (TAN0714 station 40, on 7 December), and 2008 (TAN0813 station 17, on 30 November). The profile from 2008 is the bold line. Labels on the other lines indicate the year (i.e., 2002 is ' 02 ').

## Appendix 1: Description of gonad development used for staging male and female teleosts

|  | ch gonad stage | Males | Females |
| :---: | :---: | :---: | :---: |
| 1 | Immature | Testes small and translucent, threadlike or narrow membranes. | Ovaries small and translucent. No developing oocytes. |
| 2 | Resting | Testes thin and flabby; white or transparent. | Ovaries are developed, but no developing eggs are visible. |
| 3 | Ripening | Testes firm and well developed, but no milt is present. | Ovaries contain visible developing eggs, but no hyaline eggs present. |
| 4 | Ripe | Testes large, well developed; milt is present and flows when testis is cut, but not when body is squeezed. | Some or all eggs are hyaline, but eggs are not extruded when body is squeezed. |
| 5 | Running-ripe | Testis is large, well formed; milt flows easily under pressure on the body. | Eggs flow freely from the ovary when it is cut or the body is pressed. |
| 6 | Partially spent | Testis somewhat flabby and may be slightly bloodshot, but milt still flows freely under pressure on the body. | Ovary partially deflated, often bloodshot. Some hyaline and ovulated eggs present and flowing from a cut ovary or when the body is squeezed. |
| 7 | Spent | Testis is flabby and bloodshot. No milt in most of testis, but there may be some remaining near the lumen. Milt not easily expressed even when present. | Ovary bloodshot; ovary wall may appear thick and white. Some residual ovulated eggs may still remain but will not flow when body is squeezed. |

Appendix 2: Scientific and common names, species codes and occurrence (Occ.) of fish, squid, and other organisms. Note species codes, particularly invertebrates are continually updated on the database following this and other surveys.

| Scientific name | Common name | Species code | Occ. |
| :---: | :---: | :---: | :---: |
| Porifera | unspecified sponges | ONG | 5 |
| Hexactinellida: glass sponges |  |  |  |
| Hyalascus sp. | floppy tubular sponge | HYA | 28 |
| Geodiidae |  |  |  |
| Geodinella vestigifera | ostrich egg sponge | GVE | 3 |
| Crellidae |  |  |  |
| Crella incrustans | orange frond sponge | CIC | 2 |
| Hymedesmiidae |  |  |  |
| Phorbas spp. | grey fibrous massive sponge | PHB | 5 |
| Tetillidae |  |  |  |
| Tetilla leptoderma | furry oval sponge | TLD | 4 |

## Cnidaria

| Hydrozoa | unidentified hydroid | HDR | 1 |
| :---: | :---: | :---: | :---: |
| Scyphozoa | unspecified jellyfish | JFI | 4 |
| Anthozoa |  |  |  |
| Actiniaria | unspecified sea anemones | ANT | 1 |
| Actiniidae |  |  |  |
| Bolocera spp | smooth deepsea anemone | BOC | 1 |
| Actinostolidae | deepsea anemone | ACS | 15 |
| Alcyoniidae |  |  |  |
| Hormathiidae | warty deepsea anemone | HMT | 12 |
| Hexacorallia | unspecified coral | COU | 3 |
| Paragorgiidae |  |  |  |
| Paragorgia aborea | bubblegum coral | PAB | 1 |
| Ascidiacea | unspecified sea squirt | ASC | 1 |
| Tunicata |  |  |  |
| Thaliacea | unspecified salps | SAL | 4 |
| Salpidae |  |  |  |
| Pyrosoma atlanticum |  | PYR | 6 |

## Mollusca

Gastropoda: gastropods
Capulidae Malluvium calcareum cap limpet MCC 3

## Ranellidae

Fusitron magellanicus
Volutidae
Cephalopoda: squid and octopus
Teuthoidea: squids
Histioteuthidae
Histioteuthis spp
Ommastrephidae
Nototodarus sloanii
Todarodes filippovae
Onychoteuthidae
Moroteuthis ingens
M. robsoni

| cap limpet | MCC | 3 |
| :--- | :--- | ---: |
|  | FMA | 7 |
| unspecified volute | VOL | 3 |
| unspecified squid | SQX | 3 |
|  |  |  |
| violet squid | VSQ | 8 |
| arrow squid | NOS | 32 |
| Antarctic flying squid | TSQ | 19 |
| warty squid | MIQ | 67 |
| warty squid | MRQ | 8 |

## Appendix 2: (Continued)

Scientific name

Octopoda: Octopus
Octopodidae
Benthoctopus spp.
Enteroctopus zealandicus
Graneledone spp.
Opisthoteuthididae
Opisthoteuthis spp.

## Crustacea

Malacostraca
Dendrobranchiata/Pleocyemata
Caridea
Campylonotidae
Camplyonotus rathbonae
Nematocarcinidae
Lipkius holthuisi
Oplophoridae
Acanthephyra spp.
Oplophorus spp.
Pasiphaeidae
Pasiphaea aff. tarda
Palinura
Polychelidae
Polycheles spp
Nephropidae: clawed lobsters
Metanephrops challengeri
Anomura
Lithodidae
Lithodes cf longispinus
Lithodes murrayi
Neolithodes brodiei
Paralomis zelandica
Majidae
Jacquinotia edwardsii
Leptomithrax garricki
Portunidae
Nectocarcinus bennetti
Paguridae
Sympagurus dimorphus
Colossendeidae
Colossendeis spp.

## Echinodermata

Asteroidea
Asteriidae
Cosmasterias dyscrita
Pseudechinaster rubens
Sclerasterias mollis
Astropectinidae
Dipsacaster magnificus
Psilaster acuminatus
Proserpinaster neozelanicus

Common name
Species
code Occ.

| deepwater octopus | BNO | 2 |
| :--- | :--- | :--- |
| yellow octopus | EZE | 2 |
| deepwater octopus | DWO | 7 |
|  | OSQ | 1 |
| umbrella octopus | OPI | 3 |


| sabre prawn | CAM | 5 |
| :--- | :--- | ---: |
| omega prawn | LHO | 38 |
| deepwater prawn | ACA | 1 |
| deepwater prawn | OPP | 1 |
| deepsea blind lobster | PTA | 7 |
| dLY | 3 |  |


| scampi | SCI | 2 |
| :--- | :--- | :--- |
| unidentified crab | CRB | 3 |


| long-spined king crab | LLT | 4 |
| :--- | :--- | :--- |
| southern stone crab | LMU | 5 |
| Brodie's king crab |  |  |
| prickly king crab | NEB | 3 |
|  | PZE | 2 |
| giant spider crab | GSC | 4 |
| Garrick's masking crab | GMC | 2 |
| smooth red swimming crab | NCB | 1 |
| hermit crab | SDM | 2 |
| giant sea spiders | PYC | 1 |


| unspecified asteroid | ASR | 3 |
| :--- | :--- | ---: |
| cat's foot star | CDY | 1 |
| cross-fish | PRU | 1 |
|  | SMO | 1 |
| magnificent sea-star |  |  |
| geometric star | DMG | 13 |
|  | PSI | 2 |
|  | PNE | 2 |

## Appendix 2: (Continued)

| Scientific name | Common name | Species code | Occ. |
| :---: | :---: | :---: | :---: |
| Benthopectinidae |  |  |  |
| Benthopecten spp. |  | BES | 1 |
| Echinasteridae |  |  |  |
| Henricia compacta |  | HEC | 3 |
| Goniasteridae |  |  |  |
| Ceramaster patagonicus | pentagon star | CPA | 16 |
| Hippasteria trojana | trojan star | HTR | 21 |
| Lithosoma novaezelandiae | rock star | LNV | 7 |
| Mediaster sladeni | Sladen's star | MSL | 1 |
| Pillsburiester aoteanus |  | PAO | 9 |
| Radiasteridae |  |  |  |
| Radiaster gracilis |  | RGR | 2 |
| Solasteridae |  |  |  |
| Crossaster japonicus | sun star | CJA | 5 |
| Solaster torulatus | chubby sun-star | SOT | 2 |
| Zoroasteridae |  |  |  |
| Zoroaster spp | rat-tail star | ZOR | 26 |
| Echinoidea | unspecified sea urchin | ECH | 1 |
| Regularia |  |  |  |
| Cidaridae |  |  |  |
| Goniocidaris umbraculum | umbrella urchin | GOU | 4 |
| Echinothuriidae, Phormosomatidae | unspecified Tam O'Shanter urchin | TAM | 31 |
| Echinothuriidae | unspecified Tam O'Shanter urchin | ECT | 4 |
| Echinidae |  |  |  |
| Gracilechinus multidentatus | deepsea kina | GRM | 1 |
| Ophiuroidea |  |  |  |
| Gorgonocephalidae |  |  |  |
| Gorgonocephalus sp | gorgons head basket-star | GOR | 1 |
| Holothuroidea | unspecified sea cucumbers | HTH | 27 |
| Aspidochirotida |  |  |  |
| Synallactidae |  |  |  |
| Bathyplotes moseleyi |  | BAM | 5 |
| Pseudostichopus mollis |  | PMO | 13 |
| Elasipodida |  |  |  |
| Laetmogonidae |  |  |  |
| Pannychia moseleyi |  | PAM | 1 |
| Chondrichthyes |  |  |  |
| Triakidae: smoothhounds |  |  |  |
| Galeorhinus galeus | school shark | SCH | 3 |
| Squalidae: dogfishes |  |  |  |
| Centrophorus squamosus | deepwater spiny dogfish | CSQ | 20 |
| Centroscymnus coelolepis |  | CYL | 4 |
| C. crepidater | longnose velvet dogfish | CYP | 23 |
| C. owstoni | smooth skin dogfish | CYO | 6 |
| C. plunketi | Plunket's shark | PLS | 4 |
| Deania calcea | shovelnose dogfish | SND | 14 |
| Etmopterus baxteri | Baxter's dogfish | ETB | 41 |
| E. lucifer | lucifer dogfish | ETL | 50 |
| Scymnorhinus licha | seal shark | BSH | 14 |
| Squalus acanthias | spiny dogfish | SPD | 55 |
| Oxynotidae: rough sharks |  |  |  |
| Oxynotus bruniensis | prickly dogfish | PDG | 2 |

## Appendix 2: (Continued)

Scientific name
Scyliorhinidae: cat sharks

Apristurus spp
Halaelurus dawsoni
Torpedinidae: electric rays Typhlonarke spp.
Rajidae: skates Bathyraja shuntovi
Dipturus innominata
D. nasuta

Notoraja spp
Notoraja asperula
N. spinifera

Chimaeridae: chimaeras, ghost sharks
Chimaera sp Chimaera lignaria
Hydrolagus bemisi H. novaezelandiae

Rhinochimaeridae: longnosed chimaeras
Harriotta raleighana
Rhinochimaera pacifica

## Osteichthyes

Notacanthidae: spiny eels N. sexspinis

Synaphobranchidae: cutthroat eels Diastobranchus capensis
Congridae: conger eels Bassanago bulbiceps B. hirsutus

Gonorynchiformes: sandfish Gonorynchus forsteri \& greyi
Argentinidae: silversides Argentina elongata
Bathylagidae: deepsea smelts Bathylagus antarcticus Nansenia spp.
Alepocephalidae: slickheads Alepocephalus australis
Platytroctidae: tubeshoulders Persparsia kopua
Chauliodontidae: viperfishes Chauliodus sloani
Stomiidae: scaly dragonfishes Stomias spp
Astronesthidae: snaggletooths Species not identified
Malacosteidae: loosejaws Species not identified
Idiacanthidae: black dragonfishes Idiacanthus sp
Sternoptychidae: hatchetfishes Argyropelecus gigas
Photichthyidae: lighthouse fishes Photichthys argenteus

Common name
deepsea catsharks APR 7
Dawson's catshark DCS 7
numbfish $\quad$ BER 1

| longnosed deepsea skate | PSK | 3 |
| :--- | :--- | :--- |
| smooth skate | SSK | 8 |


| smooth skate | SSK | 8 |
| :--- | :--- | :--- |
| rough skate | RSK | 9 |

bluntnosed skate BTH 3
smooth deepsea skate $\quad$ BTA 18
prickly deepsea skate BTS 6

| brown chimaera | CHP | 1 |
| :--- | :--- | ---: |
| giant chimaera | CHG | 1 |
| pale ghost shark | GSP | 79 |
| dark ghost shark | GSH | 17 |
|  |  |  |
| longnose chimaera | LCH | 32 |
| widenose chimaera | RCH | 15 |


| spineback | SBK | 44 |
| :--- | :--- | ---: |
| basketwork eel | BEE | 18 |
| swollenheaded conger <br> hairy conger | SCO | 35 |
| sandfish | HCO | 32 |
| silverside | GON | 2 |
|  | SSI | 37 |


| deepsea smelt | BAA | 3 |
| :--- | :--- | :--- |
| deepsea smelt | NAN | 2 |
|  |  |  |

PER 2

сcc.
widenose chimaera $\quad$ RCH
15

| viperfish | CHA | 6 |
| :--- | :--- | :--- |
| scaly dragonfish | STO | 2 |
| snaggletooth | AST | 1 |
| loosejaw | MAL | 1 |
| black dragonfish | IDI | 2 |
| giant hatchetfish | AGI | 1 |
| lighthouse fish | PHO | 22 |


| Scientific name | Common name | Species code | Occ. |
| :---: | :---: | :---: | :---: |
| Paralepididae: barracudinas |  |  |  |
| Magnisudis prionosa | barracudina | BCA | 1 |
| Myctophidae: lanternfishes |  |  |  |
| Species not identified | lanternfish | LAN | 2 |
| Diaphus sp. |  | DIA | 2 |
| Gymnoscopelus spp. | lanternfish | GYM | 4 |
| G. piabilis | lanternfish | GYP | 1 |
| Lampadena spp. | lanternfish | LPD | 1 |
| Lampanyctodes hectoris | lanternfish | LHE | 2 |
| Lampanyctus spp. | lanternfish | LPA | 4 |
| Protomyctophum spp. | lanternfish | PRO | 1 |
| Moridae: morid cods |  |  |  |
| Antimora rostrata | violet cod | VCO | 7 |
| Notophycis marginata | dwarf cod | DCO | 3 |
| Halargyreus johnsoni | Johnson's cod | HJO | 14 |
| Lepidion microcephalus | small-headed cod | SMC | 10 |
| Mora moro | ribaldo | RIB | 42 |
| Pseudophycis bachus | red cod | RCO | 8 |
| Tripterophycis gilchristi | grenadier cod | GRC | 1 |
| Gadidae: true cods |  |  |  |
| Micromesistius australis | southern blue whiting | SBW | 30 |
| Merlucciidae: hakes |  |  |  |
| Lyconus sp |  | LYC | 4 |
| Macruronus novaezelandiae | hoki | HOK | 93 |
| Merluccius australis | hake | HAK | 47 |
| Macrouridae: rattails, grenadiers |  |  |  |
| Caelorinchus aspercephalus | oblique-banded rattail | CAS | 41 |
| C. biclinozonalis | two saddle rattail | CBI | 1 |
| C. bollonsi | Bollons's rattail | CBO | 17 |
| C. fasciatus | banded rattail | CFA | 75 |
| C. innotabilis | notable rattail | CIN | 26 |
| C. kaiyomaru | Kaiyomaru rattail | CKA | 17 |
| C. matamua | Mahia rattail | CMA | 16 |
| C. oliverianus | Oliver's rattail | COL | 50 |
| C. parvifasciatus | small-banded rattail | CCX | 6 |
| C. supernasutus | supanose rattail | CFX | 1 |
| Coryphaenoides dossenus | humpback rattail | CBA | 13 |
| C. serrulatus | serrulate rattail | CSE | 16 |
| C. subserrulatus | fourrayed rattail | CSU | 33 |
| Lepidorhynchus denticulatus | javelinfish | JAV | 89 |
| Macrourus carinatus | ridge-scaled rattail | MCA | 33 |
| Mesobius antipodum | black javelinfish | BJA | 4 |
| Nezumia namatahi | squashed face rattail | NNA | 1 |
| Trachyrincus aphyodes | white rattail | WHX | 11 |
| Trachyrincus longirostris | unicorn rattail | WHR | 1 |
| Ventrifossa nigromaculata | blackspot rattail | VNI | 22 |
| Ophidiidae: cusk eels |  |  |  |
| Genypterus blacodes | ling | LIN | 83 |
| Trachichthyidae: roughies |  |  |  |
| Hoplostethus atlanticus | orange roughy | ORH | 14 |
| H. mediterraneus | silver roughy | SRH | 7 |
| Paratrachichthys trailli | common roughy | RHY | 2 |
| Diremidae: discfishes |  |  |  |
| Diretmus argenteus | discfish | DIS | 3 |

## Appendix 2: (Continued)

| Scientific name | Common name | Species code | Occ. |
| :---: | :---: | :---: | :---: |
| Anoplogastridae: fangtooth |  |  |  |
| Anoplogaster cornuta | fangtooth | ANO | 1 |
| Berycidae: alfonsions |  |  |  |
| Beryx splendends | alfonsino | BYS | 1 |
| Zeidae: dories |  |  |  |
| Capromimus abbreviatus | capro dory | CDO | 2 |
| Cyttus novaezealandiae | silver dory | SDO | 5 |
| C. traversi | lookdown dory | LDO | 43 |
| Macrorhamphosidae: snipefishes |  |  |  |
| Centriscops humerosus | banded bellowsfish | BBE | 4 |
| Scorpaenidae: scorpionfishes |  |  |  |
| Helicolenus spp. | sea perch | SPE | 4 |
| Oreosomatidae: oreos |  |  |  |
| Allocyttus niger | black oreo | BOE | 14 |
| Neocyttus rhomboidalis | spiky oreo | SOR | 4 |
| Pseudocyttus maculatus | smooth oreo | SSO | 16 |
| Congiopodidae: pigfishes |  |  |  |
| Alertichthys blacki | alert pigfish | API | 1 |
| Congiopodus coriaceus | deepsea pigfish | DSP | 2 |
| Hoplichthyidae: ghostflatheads |  |  |  |
| Hoplichthys haswelli | deepsea flathead | FHD | 4 |
| Psychrolutidae: toadfishes |  |  |  |
| Neophrynichthys angustus | pale toadfish | TOP | 11 |
| N. latus | dark toadfish | TOD | 2 |
| Psychrolutes sp | blobfish | PSY | 4 |
| Percichthyidae: temperate basses |  |  |  |
| Polyprion oxygeneios | hapuku | HAP | 1 |
| Apogonidae: cardinalfishes |  |  |  |
| Epigonus lenimen | bigeye cardinalfish | EPL | 8 |
| E. telescopus | black cardinalfish | EPT | 6 |
| Bramidae: pomfrets |  |  |  |
| Brama brama | Ray's bream | RBM | 15 |
| B. australis | southern Ray's bream | SRB | 1 |
| Nototheniidae: ice cods |  |  |  |
| Paranotothenia microlepidota | smallscaled cod | SCD | 1 |
| Uranoscopidae: armourhead stargazers |  |  |  |
| Kathetostoma giganteum | giant stargazer | STA | 18 |
| Percophidae: opalfishes |  |  |  |
| Hemerocoetes spp | opalfish | OPA | 2 |
| Gempylidae: snake mackerels |  |  |  |
| Rexea solandri | gemfish | SKI | 1 |
| Trichiuridae: cutlassfishes |  |  |  |
| Lepidopus caudatus | frostfish | FRO | 1 |
| Centrolophidae: raftfishes, medusafishes |  |  |  |
| Centrolophus niger | rudderfish | RUD | 7 |
| Icichthys australis | ragfish | RAG | 1 |
| Schedophilus huttoni |  | SUH | 1 |
| Seriolella caerulea | white warehou | WWA | 26 |
| S. punctata | silver warehou | SWA | 8 |
| Tubbia tasmanica |  | TUB | 1 |
| Bothidae: lefteyed flounders |  |  |  |
| Arnoglossus scapha | witch | WIT | 2 |
| Neoachiropsetta milfordi | finless flounder | MAN | 31 |

## Appendix 3: Scientific and common names of benthic invertebrates formally identified following the voyage.

| NIWA | Cruise/Station |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No. | No | Phylum | Class | Order | Family | Genus | Species |
| 48104 | TAN0813/29 | Crustacea | Malacostraca | Decapoda | Majidae | Teratomaia | richardsoni |
| 48113 | TAN0813/83 | Crustacea | Malacostraca | Decapoda | Majidae | Teratomaia | richardsoni |
| 48108 | TAN0813/53 | Bryozoa | Gymnolaemata | Cheilostomata | Bitectiporidae | Bitectipora | retepora |
| 48108 | TAN0813/53 | Bryozoa | Gymnolaemata | Cheilostomata | Chaperiidae | Chaperiopsis (Clipeochaperia) | funda |
| 48108 | TAN0813/53 | Bryozoa | Gymnolaemata | Cheilostomata | Smittinidae | Parasmittina | aotea |
| 48109 | TAN0813/57 | Bryozoa | Gymnolaemata | Cheilostomata | Celleporidae | Celleporina | sinuata |
| 48109 | TAN0813/57 | Bryozoa | Gymnolaemata | Cheilostomata | Smittinidae | Hippomonavella | flexuosa |
| 48109 | TAN0813/57 | Bryozoa | Gymnolaemata | Cheilostomata | Celleporidae | Lagenipora(?) |  |
| 48109 | TAN0813/57 | Bryozoa | Gymnolaemata | Cheilostomata | Microporellidae | Microporella | agonistes |
| 48109 | TAN0813/57 | Bryozoa | Gymnolaemata | Cheilostomata | Bitectiporidae | Parkermavella | punctigera |
| 48109 | TAN0813/57 | Bryozoa | Gymnolaemata | Cheilostomata | Bitectiporidae | Parkermavella | virago |
| 48109 | TAN0813/57 | Bryozoa | Gymnolaemata | Cheilostomata | Bitectiporidae | Schizomavella(?) |  |
| 50288 | TAN0813/57 | Bryozoa | Gymnolaemata | Cheilostomata | Microporellidae | Microporella | agonistes |
| 50289 | TAN0813/57 | Bryozoa | Gymnolaemata | Cheilostomata | Smittinidae | Hippomonavella | flexuosa |
| 50290 | TAN0813/57 | Bryozoa | Gymnolaemata | Cheilostomata | Bitectiporidae | Parkermavella | virago |
| 50291 | TAN0813/57 | Bryozoa | Gymnolaemata | Cheilostomata | Celleporidae | Celleporina | sinuata |
| 50292 | TAN0813/57 | Bryozoa | Gymnolaemata | Cheilostomata | Bitectiporidae | Parkermavella | punctigera |
| 48105 | TAN0813/34 | Urochordata | Ascidiacea [Tunicates] | Enterogona Aplousobranchia | Polyclinidae | Synoicum |  |
| 47848 | TAN0813/56 | Cnidaria | Anthozoa | Actiniaria |  |  |  |
| 47868 | TAN0813/56 | Cnidaria | Anthozoa | Actiniaria | Isanthidae |  |  |
| 47869 | TAN0813/42 | Cnidaria | Anthozoa | Actiniaria |  |  |  |
| 47871 | TAN0813/56 | Cnidaria | Anthozoa | Actiniaria |  |  |  |
| 47872 | TAN0813/68 | Cnidaria | Anthozoa | Actiniaria | Hormathiidae |  |  |
| 47873 | TAN0813/56 | Cnidaria | Anthozoa | Actiniaria | Hormathiidae |  |  |
| 48100 | TAN0813/23 | Cnidaria | Anthozoa | Gorgonacea | Acanthogorgiidae | Acanthogorgia |  |
| 48107 | TAN0813/53 | Cnidaria | Hydrozoa | Anthoathecata | Stylasteridae | Errina |  |
| 48117 | TAN0813/93 | Cnidaria | Anthozoa | Alcyonacea | Alcyoniidae | Anthomastus |  |
| 48098 | TAN0813/3 | Echinodermata | Asteroidea | Velatida | Korethrasteridae | Peribolaster | lictor |
| 48110 | TAN0813/58 | Echinodermata | Asteroidea | Paxillosida | Radiasteridae | Radiaster | gracilis |
| 48111 | TAN0813/58 | Echinodermata | Holothuroidea (Class) | Aspidochirotida | Synallactidae | Bathyplotes | moseleyi |
| 48112 | TAN0813/69 | Echinodermata | Asteroidea | Forcipulatida | Asteriidae | Perissasterias | monacantha |
| 48116 | TAN0813/93 | Echinodermata | Asteroidea | Valvatida | Goniasteridae | Mediaster | arcuatus |
| 48119 | TAN0813/45 | Echinodermata | Asteroidea | Valvatida | Goniasteridae | Pillsburiaster | aoteanus |

## Appendix 3: (continued)

| NIWA | Cruise/Station |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
| No. | No | Phylum | Class | Order |
| 48099 | TAN0813/5 | Porifera | Demospongiae | Poecilosclerida |
| 48101 | TAN0813/23 | Porifera | Demospongiae | Poecilosclerida |
| 48102 | TAN0813/23 | Porifera | Demospongiae | Astrophorida |
| 48103 | TAN0813/23 | Porifera | Demospongiae | Astrophorida |
| 48106 | TAN0813/43 | Porifera | Demospongiae | Spirophorida |
| 48114 | TAN0813/91 | Porifera | Demospongiae | Spirophorida |
| 48115 | TAN0813/86 | Porifera | Demospongiae | Astrophorida |
| 48118 | TAN0813/87 | Porifera | Demospongiae | Astrophorida |
| 48120 | TAN0813/16 | Porifera | Demospongiae | Poecilosclerida |
| 52586 | TAN0813/23 | Porifera | Demospongiae | Spirophorida |


| Family | Genus | Species |
| :--- | :--- | :--- |
| Latrunculiidae | Latrunculia | millerae |
| Coelosphaeridae | Lissodendoryx | bifacialis |
| Geodiidae | Geodia | regina |
| Pachastrellidae | Poecillastra | laminaris |
| Tetillidae | Cinachyrella |  |
| Tetillidae | Cinachyrella |  |
| Geodiidae | Pachymatisma |  |
| Geodiidae | Pachymatisma |  |
| Coelosphaeridae | Lissodendoryx |  |
| Tetillidae | Craniella | neocaledoniae |


[^0]:    * Acoustic densities were calculated with an absorption coefficient of $8.0 \mathrm{~dB} \mathrm{~km}^{-1}$ so that these would be comparable to earlier results from the CREST acoustic system.

