Catch-at-age for hake (*Merluccius australis*) and ling (*Genypterus blacodes*) in the 2008–09 fishing year and from trawl surveys in summer 2009–10, with a summary of all available data sets

P. L. Horn¹ C. P. Sutton²

¹NIWA Private Bag 14901 Wellington 6241

> ²NIWA P O Box 893 Nelson 7040

New Zealand Fisheries Assessment Report 2010/30 September 2010

Published by Ministry of Fisheries Wellington 2010

ISSN 1175-1584 (print) ISSN 1179-5352 (online)

© Ministry of Fisheries 2010

Horn, P.L.; Sutton, C.P. (2010). Catch-at-age for hake (*Merluccius australis*) and ling (*Genypterus blacodes*) in the 2008–09 fishing year and from trawl surveys in summer 2009–10, with a summary of all available data sets. .New Zealand Fisheries Assessment Report 2010/30.

> This series continues the informal New Zealand Fisheries Assessment Research Document series which ceased at the end of 1999.

EXECUTIVE SUMMARY

Horn, P.L.; Sutton, C.P. (2010). Catch-at-age for hake (*Merluccius australis*) and ling (*Genypterus blacodes*) in the 2008–09 fishing year and from trawl surveys in summer 2009–10, with a summary of all available data sets.

New Zealand Fisheries Assessment Report 2010/30.

This report describes catch-at-age distributions for hake (*Merluccius australis*) and ling (*Genypterus blacodes*) estimated from commercial fisheries for these species in the 2008–09 fishing year (using data and otoliths collected at sea by observers), and from trawl surveys of hoki and middle depth species on the Campbell Plateau in December 2009 (TAN0911) and the Chatham Rise in January 2010 (TAN1001). For each estimated catch-at-age distribution there is a target coefficient of variation (c.v.) of 30% (mean weighted c.v. across all age classes).

For hake, the mean weighted c.v. targets were met for the three commercial fishery samples (WCSI, Sub-Antarctic, and Chatham west), but not met for the two trawl surveys. It appears likely that three relatively strong year classes were produced on the Chatham Rise in 2001, 2002, and 2003.

For ling, the mean weighted c.v. targets were met for both trawl survey samples and for the commercial trawl fishery in the Sub-Antarctic. Targets were almost met for the Chatham Rise and Cook Strait trawl fisheries. There were insufficient data collected to estimate catch-at-age for the 2009 WCSI trawl fishery. Of the three ling longline fisheries for which catch-at-age distributions were produced for 2008–09, the c.v. targets were met for the Chatham Rise and Sub-Antarctic non-spawning fisheries, but not for the Bounty Plateau fishery.

In all distributions for both species where the target c.v. was not met it was not possible to improve the precision as all available data and otoliths had been used in the analyses.

This report also provides summaries of all catch-at-age distributions available for hake and ling from the various trawl survey and fisheries series.

1. INTRODUCTION

The work presented here aimed to determine catch-at-age from the main fisheries for hake and ling in the 2008–09 fishing year, and for hake and ling from trawl surveys conducted during the summer of 2009–10. Catch-at-age data are a vital input to the stock assessment process as they provide important information on the year class strength of recruited cohorts, and enable calculation of selectivity ogives for the trawl surveys and commercial fisheries for these species. This report describes the resulting catch-at-age distributions for hake and ling; the new data extend existing series of catch-at-age data in all cases. It fulfils the third year's reporting requirements for Objectives 4 and 5 and the second year's reporting requirements for Objective 6 of Project MID2007-01 "Determination of catch-at-age in hoki, hake and ling fisheries", funded by the Ministry of Fisheries. Those objectives are as follows.

- 4. To determine the catch-at-age from hake fisheries in HAK 1, 4 and 7 from samples collected at sea by the Observer Programme, by trawl surveys and from other sources in 2008/09, with a target coefficient of variation (c.v.) of 30% for each fishstock (mean weighted c.v. across all age classes).
- 5. To determine the catch-at-age from ling fisheries in LIN 3 & 4, 5 & 6 and 7 in 2008/09 from samples collected at sea by the Observer Programme, by trawl surveys and from other sources, with a target coefficient of variation (c.v.) of 30% for each fishstock (mean weighted c.v. across all age classes).
- To collect the otoliths required for determining the catch-at-age from the Cook Strait ling fishery in winter 2009 and determine the length frequency distribution of this catch (LIN 2 & 7).

The report also summarises all the available catch-at-age data sets for hake and ling from trawl surveys and commercial fisheries, and describes the strata used in the analyses of data from the commercial trawl fisheries. The derivation of the strata was presented by Horn & Sutton (2008), although the Chatham Rise hake strata have been modified recently (Horn & Francis 2010).

2. METHODS

For hake, it was proposed to age the following samples under this project (with the number of aged otoliths in square brackets):

HAK 1 — trawl survey, Dec 2009 (project MDT2007-01C) [600]

HAK 1 — commercial trawl fishery, Sep 2008-May 2009 [600]

HAK 4 — trawl survey, Jan 2010 (project HOK2007-02C) [all available]

- HAK 4 commercial trawl fishery, Oct 2008–April 2009 [500]
- HAK 7 commercial trawl fishery, Jun–Sep 2009 [500]

For ling, it was proposed to age the following samples under this project (with the number of aged otoliths in square brackets):

LIN 3&4 — trawl survey, Jan 2010 (project HOK2007-02C) [640]

LIN 3&4 — commercial longline fishery, Jun–Oct 2009 [580]

LIN 5&6 — trawl survey, Dec 2009 (project MDT2007-01C) [570]

LIN 5&6 — commercial longline fishery, spawning, Puysegur, Oct–Dec 2008 [500]

LIN 5&6 — commercial longline fishery, non-spawning, Campbell, Feb–Jul 2009 [500]

LIN 7 — commercial trawl fishery, west coast South Island, Jun–Sep 2009 [600]

LIN 7&2 — commercial trawl fishery, Cook Strait, Jun–Sep 2009 [500]

As no observer otoliths were available from the spawning Puysegur ling line fishery, resources were transferred to processing and reading a sample from the Bounty Plateau line fishery. Samples from this fishery had been analysed previously. Also, only 95 ling otoliths had been collected by observers from the winter 2009 west coast South Island trawl fishery. This sample size was considered to be insufficient to define the age distribution of the catch, so none were read.

The following additional commercial fishery catch-at-age distributions for ling were estimated using agelength keys derived previously from the January 2009 Chatham Rise trawl survey (LIN 3&4) and the December 2008 Sub-Antarctic trawl survey (LIN 5&6).

LIN 3&4 — commercial trawl fishery, Oct 2008–May 2009 LIN 5&6 — commercial trawl fishery, Sep 2008–Apr 2009

A catch-at-age model describing the age structure of each of the commercial fisheries and surveyed areas was developed as in previous years for both species. For each of the samples, otoliths (for each sex separately) from each 1 cm length class were selected in proportion to their occurrence in the scaled length frequency, with the constraint that the number of otoliths in each length class (where available) was at least one. In addition, all otoliths from fish in the extreme right hand tail of the scaled length frequency (constituting about 2% of that length frequency) were fully sampled. This provides a sample with a mean weighted c.v. similar to that from proportional sampling, but does better than uniform sampling for the older age classes (A. Dunn, NIWA, pers. comm.). Otoliths were prepared and read using the validated ageing technique for hake (Horn 1997) or ling (Horn 1993). Catch-at-age was calculated by constructing age-length keys separately for each sex and applying them to the scaled length frequency data derived from each fishery or survey separately using software developed specifically for this task by NIWA (Bull & Dunn 2002).

Observer sampling of the HAK 1 and HAK 4 commercial trawl fisheries sometimes provides only small numbers of otoliths. Consequently, catch-at-age distributions for these fisheries are estimated using age-length keys combining commercial fishery and trawl survey age data. For example, the age-length key for the 2008–09 HAK 1 fishery includes otoliths from observer sampling from September 2008 to May 2009 plus age data from the TAN0813 trawl survey in December 2008.

The mean weighted c.v. targets for hake from trawl surveys have often not been met. To maximise the chances of meeting the target, all hake from the trawl shots used in the biomass (and scaled length-frequency) calculations were measured and had their otoliths collected. Also, any additional hake caught in survey tows not used for biomass calculations (i.e., foul shots, midwater tows, or night tows) were measured, sexed, and had their otoliths removed. These extra fish were aged, and the data incorporated into the age-length key. Consequently, in the data summaries shown below, the number of aged hake from the trawl surveys is often greater than the number of measured fish (i.e., the fish used to calculate the catch-at-length and catch-at-age).

3. RESULTS

3.1 Observer catch-at-age data from hake trawl fisheries

3.1.1 Chatham Rise

Data from the Chatham Rise had previously been analysed as four separate fisheries (e.g., Horn & Sutton 2009) as shown in Figure 1, and defined as follows:

- 1. West shallow (longitude $\leq 178.1^{\circ}$ E, and bottom depth ≤ 530 m)
- 2. West deep (longitude $\leq 178.1^{\circ}$ E, and bottom depth > 530 m)
- 3. East excl. area 404 (longitude > 178.1° E, and excluding Statistical Area 404)
- 4. Area 404 (178° W \leq longitude \leq 179.5° W, 42° S \leq latitude \leq 43.75° S)

However, following the recent assessment of the Chatham Rise hake stock (Horn & Francis 2010) it was concluded that splitting the data into two fisheries (i.e., west and east) was satisfactory. Consequently, two commercial age frequencies are developed for each year (whenever sufficient data are available) using a single age-length key and two strata separated at longitude 178.1° E. The raw data are still stratified as shown in Figure 2, so each fishery comprises two strata. A single age-length key for each year is considered to be acceptable as Horn & Dunn (2007) showed that mean age at length did not differ between fisheries.

A tow was included in the catch-at-age analysis if it occurred between 1 October and 30 April, and if at least five hake had been measured from it.

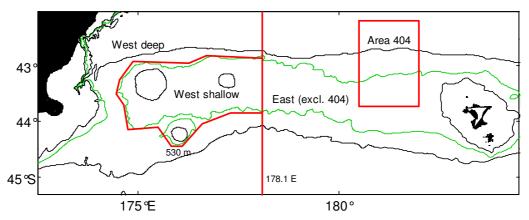


Figure 1: Fishery strata defined for the Chatham Rise hake fishery. The stratum boundary defined by depth (530 m) is shown only approximately. Isobaths at 1000, 500, and 250 m are also shown.

Observer data from each fishery were converted into catch-at-age distributions if there were at least 400 length measurements (west fishery) or 300 length measurements (east fishery). Table 1 summarises the quantities of useful data.

Table 1: Numbers of measured and aged male (Mal) and female (Fem) hake contributing to samples of
proportion at age from the two commercial trawl fisheries on the Chatham Rise. The number of
tows sampled by observers and the estimated mean weighted c.v. (%) by age are also listed.

						Mea	sured	•	Aged
			West				East		-
Mal	Fem	Tows	c.v.	Mal	Fem	Tows	c.v.	Mal	Fem
2 1 1 2	2636	163	21.9	170	247	25	43.2	233	230
355	452	90	36.7					181	217
318	603	69	32.8	234	88	14	43.1	170	191
802	917	103	28.2					113	165
354	233	28	39.6	335	75	28	48.6	145	149
3 161	3 046	390	14.9	224	140	44	41.0	393	393
712	1 279	171	19.4					290	440
807	901	168	19.0					442	499
830	1 135	185	17.6	1 017	283	47	24.7	317	426
386	492	89	20.6					455	419
176	272	61	25.4					256	345
597	438	101	26.8	378	92	38	26.6	364	304
896	437	82	24.2					391	343
234	330	69	39.1					189	255
				409	278	47	27.6	368	388
286	270	53	20.6					350	335
257	162	43	24.3					237	185
	2 112 355 318 802 354 3 161 712 807 830 386 176 597 896 234 286	2 112 2636 355 452 318 603 802 917 354 233 3 161 3 046 712 1 279 807 901 830 1 135 386 492 176 272 597 438 896 437 234 330 286 270	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Mal Fem Tows c.v. 2 112 2636 163 21.9 355 452 90 36.7 318 603 69 32.8 802 917 103 28.2 354 233 28 39.6 3 161 3 046 390 14.9 712 1 279 171 19.4 807 901 168 19.0 830 1 135 185 17.6 386 492 89 20.6 176 272 61 25.4 597 438 101 26.8 896 437 82 24.2 234 330 69 39.1 286 270 53 20.6	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$

In the 2008–09 fishing year, sufficient length data and otoliths were available to calculate a catch-atage distribution for the west fishery only (see Table 1). Details of that estimated distribution are given in Table 2. Although the sample size of measured fish just met the threshold of 400, the mean weighted c.v. of 24% was within the 30% target.

All estimated proportion at age distributions from the two Chatham Rise trawl fisheries are presented in Appendix A (Figures A1 and A2).

Table 2: Calculated numbers at age, separately by sex, with c.v.s, for hake caught during commercial
trawl operations on the Chatham Rise (west) during October 2008-April 2009, and in the Sub-Antarctic
during September 2008–May 2009. Summary statistics for the samples are also presented.

			Chatham Rise	e (west)				Sub-A	ntarctic
Age	Male	c.v.	Female	c.v.	Age	Male	c.v.	Female	c.v.
3	1 878	0.970	911	1.115	3	487	1.334	259	0.961
4	17 669	0.344	2 250	0.979	4	22 430	0.309	2 614	0.413
5	32 094	0.265	18 909	0.397	5	58 626	0.215	1 535	0.436
6	38 445	0.199	26 578	0.317	6	57 543	0.196	4 4 2 9	0.371
7	47 326	0.197	35 553	0.244	7	57 694	0.166	10 359	0.259
8	12 230	0.390	17 360	0.343	8	29 013	0.232	19 389	0.219
9	14 233	0.384	7 453	0.448	9	25 143	0.274	13 945	0.273
10	7 527	0.453	1 140	1.524	10	23 666	0.318	15 766	0.224
11	6 473	0.509	282	1.643	11	16 940	0.345	13 524	0.286
12	2 797	0.630	606	1.339	12	19 476	0.330	10 584	0.290
13	1 678	0.934	44	2.275	13	11 374	0.445	8 787	0.372
14	2 880	0.684	0	_	14	21 050	0.316	10 517	0.351
15	0	_	0	_	15	11 100	0.437	9 029	0.372
16	1 028	1.080	915	1.375	16	4 346	0.567	3 865	0.527
17	810	2.036	0	_	17	4 783	0.611	3 015	0.488
					18	3 622	1.032	1 886	0.566
					19	6 543	0.748	0	-
					20	0	-	206	1.207
					21	0	-	303	1.129
					22	3 082	0.747	0	-
					23	0	-	625	1.295
					24	1 542	1.100	0	-
					25	2 094	1.263	0	-
Measu	ured males			257					1 221
Measu	ured female	s		162					893
Aged				237					311
Aged	females			185					498
	f tows samp	oled		43					109
Mean	weighted c	.v. (sexes	pooled)	24.3					23.9

3.1.2 Sub-Antarctic

There are one major and three very minor hake fisheries in the Sub-Antarctic area, so a single fishery ogive is considered suitable for this stock. Consequently, a commercial age frequency is developed using a single age-length key and the four fishery strata shown in Figure 2, and defined as follows:

- 1. Puysegur Bank (165° E \leq longitude \leq 168° E, 46° S \leq latitude \leq 48° S)
- 2. Snares-Pukaki (165° E ≤ longitude ≤ 175° E, 46° S ≤ latitude ≤ 50.25° S, but excluding the Puysegur Bank stratum)
- 3. Auckland Island (165° E \leq longitude \leq 169° E, 50.25° S < latitude \leq 54° S)
- 4. Campbell Island (169° E < longitude $\leq 174^{\circ}$ E, 50.25° S < latitude $\leq 54^{\circ}$ S)

A tow was included in the catch-at-age analysis if it occurred between 1 September and 31 May, and if at least five hake had been measured from it. The start of the fishing year was not used as the start of the time stratum because a descriptive analysis of this fishery indicated a landings peak from September to February (Devine 2008), so it is logical to include the September catch with landings from the five months immediately following it, rather than with catches taken about seven months previously.

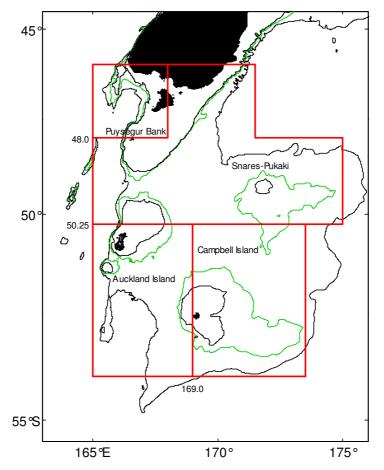


Figure 2: Fishery strata defined for the Sub-Antarctic hake fishery. Numbers show latitudes/longitudes of fishery boundaries. Isobaths at 1000, 500, and 250 m are also shown.

Table 3 summarises the quantities of data used each year to produce the catch-at-age distributions, and also lists the resulting mean weighted c.v.s. The details of the estimated catch-at-age distribution for trawl-caught hake in the 2008–09 fishing year are given in Table 2. The mean weighted c.v. of 23.9% was well within the target of 30%.

All estimated proportion at age distributions from the Sub-Antarctic trawl fishery are presented in Appendix A (Figure A3).

		Males		Females	Tows	Mean c.v.
Year	Measured	Aged	Measured	Aged		
1989–90	269	47	548	71	74	42.0
1990–91	175	_	588	-	64	_
1991–92	557	215	1 363	409	151	24.9
1992–93	833	183	1 218	518	171	27.6
1993–94	512	87	609	173	119	47.8
1994–95	167	_	597	-	92	_
1995–96	289	65	435	110	75	50.0
1996–97	84	_	219	-	54	_
1997–98	390	82	1 018	193	154	37.7
1998–99	463	174	1 077	322	199	27.4
1999–2000	3 007	259	2 526	421	307	22.5
2000-01	527	388	1 648	698	216	29.6
2001-02	921	333	2 0 2 6	874	320	23.4
2002-03	271	258	908	739	197	40.4
2003-04	1 309	350	969	518	165	24.7
2004–05	179	185	424	305	82	40.1
2005–06	1 906	218	1 094	506	153	23.2
2006–07	547	224	666	351	73	38.5
2007–08	891	325	592	682	89	23.2
2008–09	1 221	311	893	498	109	23.9

 Table 3: Numbers of measured and aged male and female hake, and the number of sampled tows and estimated mean weighted c.v. (%) by age, for the Sub-Antarctic trawl fishery.

3.1.3 West coast South Island

The fishery off WCSI was stratified as follows:

- 1. Deep (bottom depth \ge 629 m)
- 2. North shallow (latitude $< 42.55^{\circ}$ S)
- 3. South shallow (latitude $\geq 42.55^{\circ}$ S)

A tow was included in the catch-at-age analysis if it occurred between 1 June and 30 September, and if at least five hake had been measured from it.

Table 4 summarises the quantities of data used each year to produce the catch-at-age distributions, and also lists the resulting mean weighted c.v.s. The details of the estimated catch-at-age distribution for trawl-caught hake in the 2008–09 fishing year are given in Table 5. The measured sample size was large, and the mean weighted c.v. of 18.5% was well within the target of 30%.

All estimated proportion at age distributions from the WCSI trawl fishery are presented in Appendix A (Figure A4).

		Males		Females	Tows	Mean c.v.
Year	Measured	Aged	Measured	Aged		
1989–90	578	210	567	261	57	23.1
1990–91	2 288	286	1 653	358	146	18.4
1991–92	2 592	196	1 193	261	121	22.5
1992–93	2 1 2 9	188	979	163	93	29.1
1993–94	1 598	151	1 643	272	174	32.5
1994–95	2 528	271	2 769	342	152	29.2
1995–96	2 862	287	1 753	326	193	28.9
1996–97	3 286	262	1 720	198	234	21.3
1997–98	2 339	257	1 497	253	237	21.4
1998–99	4 186	270	3 744	240	307	18.3
1999–2000	2 705	258	2 330	269	285	18.9
2000-01	1 529	176	1 723	280	192	23.9
2001-02	2 281	93	2 4 3 4	385	380	33.8
2002–03	1 917	227	2 063	234	296	20.0
2003–04	2 702	303	2 181	193	353	16.5
2004–05	2 305	238	2 324	280	217	23.8
2005–06	5 502	276	4 231	298	395	16.3
2006–07	3 385	248	3 258	257	132	16.7
2007–08	4 682	321	2 416	266	147	17.7
2008–09	5 773	301	3 610	301	178	18.5

 Table 4: Numbers of measured and aged male and female hake, and the number of sampled tows and estimated mean weighted c.v. (%) by age, for the WCSI trawl fishery.

Table 5: Calculated numbers at age, separately by sex, with c.v.s, for hake caught during commercial trawl operations off the west coast of South Island (WCSI) during June–September 2009. Summary statistics for the samples are also presented.

				WCSI
Age	Male	c.v.	Female	c.v.
2	43 589	0.293	30 502	0.359
3	43 105	0.262	34 610	0.277
4	74 777	0.222	11 224	0.481
5	127 908	0.152	53 353	0.206
6	144 944	0.139	70 302	0.175
7	111 136	0.177	87 732	0.163
8	86 723	0.207	79 611	0.186
9	51 396	0.281	53 405	0.196
10	53 100	0.315	33 793	0.271
11	52 627	0.286	21 487	0.280
12	36 154	0.315	25 498	0.306
13	60 781	0.246	15 329	0.333
14	41 125	0.312	18 262	0.351
15	31 519	0.325	5 123	0.556
16	27 175	0.411	2 433	1.074
17	16 307	0.451	0	_
18	5 167	1.090	1 772	1.064
19	3 378	0.969	0	_
20	0	-	0	-
21	0	-	0	-
22	0	-	0	-
23	3 286	0.955	0	-
Measu	ured males			5 773
Measu	ured female	s		3 610
Aged	males			301
Aged	females			301
	f tows samp	led		178
Mean	weighted c	.v. (sexes	pooled)	18.5

3.2 Trawl survey catch-at-age data for hake

3.2.1 Chatham Rise

Trawl survey catch-at-age distributions are estimates of the numbers of hake, by sex and age, available to the trawl in the survey area between 200 and 800 m. In some years an additional deeper stratum (800–1000 m) on the north Rise is surveyed. However, to ensure comparability, the distributions presented here are for the 'core' strata only, i.e., 200–800 m.

Table 6 summarises the quantities of data used each year to produce the catch-at-age distributions, and also lists the resulting mean weighted c.v.s. The details of the estimated catch-at-age distribution for hake caught in the January 2010 trawl survey are given in Table 7. The mean weighted c.v. of 39.7% did not meet the target of 30%. However, this value cannot be improved as all available length data and otoliths were used in the analysis. The 30% target has been met in only one of the 19 surveys (TAN9106, see Table 6).

All estimated proportion at age distributions from the Chatham Rise trawl surveys are presented in Appendix A (Figure A5). It appears likely that a very strong year class was produced in 2001 (i.e., aged 2 in January 2004), and that it was followed by two further relatively strong year classes in 2002 and 2003. The progression of these year classes is apparent in the survey distributions since TAN0401.

		Males		Females		Mean c.v.
Source	Measured	Aged	Measured	Aged	Tows	
AEX8903	220	154	212	179	63	39.5
TAN9106	322	233	305	230	122	30.0
TAN9212	243	200	275	225	121	32.7
TAN9401	293	181	355	217	123	33.1
TAN9501	201	170	229	191	87	38.7
TAN9601	149	113	200	165	56	36.4
TAN9701	149	145	159	149	77	36.1
TAN9801	137	135	142	139	55	39.0
TAN9901	94	103	142	157	62	44.1
TAN0001	177	177	178	177	72	35.9
TAN0101	104	112	148	150	66	37.3
TAN0201	104	177	121	172	61	36.4
TAN0301	33	34	69	71	46	61.4
TAN0401	94	82	110	105	53	49.4
TAN0501	115	134	107	113	55	45.3
TAN0601	109	123	126	138	56	33.8
TAN0701	133	158	136	142	61	32.6
TAN0801	55	65	87	99	60	38.0
TAN0901	259	238	201	191	70	32.5
TAN1001	122	142	97	107	56	39.7

 Table 6: Numbers of measured and aged male and female hake, and the number of sampled tows and estimated mean weighted c.v. (%) by age, for the Chatham Rise resource surveys.

Table 7: Calculated numbers at age in the survey area, separately by sex, with c.v.s, for hake caught during trawl surveys of the Chatham Rise in January 2010 (survey TAN1001) and the Sub-Antarctic in November-December 2009 (survey TAN0911). Summary statistics for the samples are also presented.

			TA	AN1001				TA	AN0911
Age	Male	c.v.	Female	c.v.	Age	Male	c.v.	Female	c.v.
2	0	_	0	_	2	0	_	1 359	0.899
3	12 224	0.520	14 361	0.558	3	38 566	0.264	70 173	0.294
4	12 220	0.489	20 563	0.413	4	43 914	0.229	113 574	0.315
5	28 112	0.487	9 881	0.558	5	21 924	0.366	48 097	0.280
6	27 448	0.533	25 621	0.431	6	4 720	0.660	15 403	0.431
7	18 185	0.522	37 142	0.358	7	2 638	0.860	6 503	0.467
8	27 294	0.490	37 931	0.348	8	3 072	0.910	10 094	0.585
9	5 101	0.864	21 428	0.431	9	528	1.893	15 258	0.582
10	9 317	0.686	7 089	0.776	10	0	-	9 102	0.817
11	5 903	0.908	8 349	0.660	11	2 612	1.586	9 571	0.615
12	7 095	0.763	0	-	12	0	-	8 2 2 0	0.499
13	798	1.580	5 219	0.767	13	1 222	1.392	3 846	0.938
14	1 794	1.212	6 349	0.734	14	1 042	1.672	8 838	0.696
15	5 323	0.791	2 729	0.949	15	0	-	3 484	0.852
16	3 612	0.978	2 758	1.006	16	7 992	1.704	2 721	0.951
17	1 234	1.585	915	1.662	17	0	-	0	-
18	1 366	1.444	878	1.414	18	0	-	1 543	1.573
					19	0	-	0	-
					20	0	_	0	_
					21	0	-	3 168	1.565
Measur	ed males			122					152
Measur	ed females			97					382
Aged n				142					164
Aged fo				107					436
	tows sampl	ed		56					37
	veighted c.		pooled)	39.7					36.3

3.2.2 Sub-Antarctic

Trawl survey catch-at-age distributions are estimates of the numbers of hake, by sex and age, available to the trawl in the survey. The main survey series has been conducted in summer. Those surveys have sampled depths from 300 to 800 m, plus an 800–1000 m stratum at Puysegur, and, in some years, other 800–1000 m strata off the Campbell Plateau. However, to ensure comparability, the distributions presented here are for the 'core' 300–800 m strata plus the deep Puysegur stratum only. The catch-at-age distributions from the spring and autumn surveys are derived from the 'core' 300–800 m strata only.

Table 8 summarises the quantities of data used each year to produce the catch-at-age distributions, and also lists the resulting mean weighted c.v.s. The details of the estimated catch-at-age distribution for hake caught in the November–December 2009 trawl survey are given in Table 7. The mean weighted c.v. of 36% did not meet the target of 30%. However, this value cannot be improved as all available length data and otoliths were used in the analysis. The 30% target has never been met in any of the Sub-Antarctic surveys (see Table 8).

All estimated proportion at age distributions from the Sub-Antarctic trawl surveys are presented in Appendix A (Figure A6).

		Males		Females	Tows	Mean c.v.
Survey	Measured	Aged	Measured	Aged		
Summer surveys						
AEX8902	45	43	76	66	34	52.7
TAN9105	337	117	332	217	61	65.1
TAN9211	14	46	133	168	48	48.6
TAN9310	57	93	181	182	59	47.2
TAN0012	348	239	392	352	56	37.3
TAN0118	219	212	351	349	44	35.6
TAN0219	331	191	490	377	38	36.1
TAN0317	126	186	175	220	30	41.0
TAN0414	178	245	225	283	39	42.8
TAN0515	88	146	265	274	39	39.9
TAN0617	188	190	487	460	39	33.6
TAN0714	166	217	352	423	47	35.4
TAN0813	289	188	808	412	39	30.9
TAN0911	152	164	382	436	37	36.3
Autumn surveys						
TAN9204	60	58	113	107	48	46.8
TAN9304	36	36	124	122	54	49.5
TAN9605	32	86	93	137	45	61.9
TAN9805	49	94	146	189	31	52.0
Spring surveys						
TAN9209	76	68	141	113	44	43.8

 Table 8: Numbers of measured and aged male and female hake, and the number of sampled tows and estimated mean weighted c.v. (%) by age for the Sub-Antarctic resource surveys.

3.3 Observer catch-at-age data from ling longline fisheries

3.3.1 Chatham Rise

The line fishery data from the Chatham Rise are analysed using a single area stratum (i.e., FMAs 3 and 4 between 42° and 46° S), and a time stratum of 1 June to 31 October.

Table 9 summarises the quantities of data used each year to produce the catch-at-age distributions, and also lists the resulting mean weighted c.v.s. The details of the estimated catch-at-age distribution for Chatham Rise line-caught ling in the 2008–09 fishing year are given in Table 10. The mean weighted c.v. of 21.5% was well within the target value of 30%.

Table 9: Numbers of measured and aged male and female ling, and the number of sampled sets and
estimated mean weighted c.v. (%) by age, for the Chatham Rise longline fishery.

		Males		Females		Mean c.v.
Year	Measured	Aged	Measured	Aged	Sets	
2002	4 966	284	2 998	309	538	20.4
2003	3 038	337	2 071	289	429	19.1
2004	1 066	302	747	293	139	21.8
2005	889	356	479	234	137	21.6
2006	266	95	294	141	48	36.6
2007	351	174	268	139	62	31.1
2008	574	216	570	262	84	25.9
2009	619	283	798	413	147	21.5

Table 10: Calculated numbers at age, separately by sex, with c.v.s, for ling caught during commercial longline operations on the Chatham Rise (LIN 3&4) in June–October 2009, and in the Sub-Antarctic non-spawning fishery (LIN 5&6) in February–July 2009. Summary statistics for the samples are also presented.

	Chatham Rise			Sub-Antarctic non-spawning					
Age	Male	c.v.	Female	c.v.	Age	Male	c.v.	Female	c.v.
4	99	1.936	0	-	4	0	_	0	_
5	47	1.933	255	1.084	5	1 336	0.674	0	-
6	160	1.006	200	1.051	6	1 874	0.597	2 565	0.542
7	466	0.994	1 087	0.427	7	4 584	0.418	3 185	0.477
8	2 024	0.483	2 1 2 3	0.423	8	6 008	0.409	8 705	0.277
9	5 743	0.280	3 3 3 7	0.346	9	2 283	0.493	9 100	0.300
10	7 049	0.317	3 890	0.275	10	3 203	0.392	7 790	0.259
11	7 391	0.277	4 1 2 0	0.263	11	731	0.735	11 838	0.194
12	10 338	0.200	6 4 3 1	0.245	12	825	0.876	6 6 4 2	0.284
13	11 455	0.211	11 901	0.163	13	1 075	0.642	6 005	0.280
14	9 517	0.210	15 286	0.140	14	711	0.845	5 459	0.302
15	2 606	0.354	5 081	0.247	15	819	0.769	4 4 1 0	0.326
16	4 2 3 1	0.354	9 260	0.170	16	247	1.239	4 812	0.311
17	2 672	0.374	5 143	0.275	17	642	1.001	877	0.622
18	2 306	0.413	3 116	0.334	18	345	1.152	1 163	0.631
19	887	0.569	2 202	0.358	19	637	0.840	1 595	0.638
20	584	0.687	615	0.577	20	0	-	0	_
21	1 115	0.624	2 4 4 4	0.409	21	0	-	0	_
22	291	0.828	1 253	0.554	22	0	-	0	-
23	1 541	0.579	759	0.634	23	220	1.330	393	1.165
24	1 097	0.661	794	0.677	24	0	-	171	1.325
25	1 192	0.736	596	0.826	25	247	1.360	0	-
26	649	0.750	0	-	26	0	-	166	1.182
27	205	1.331	320	0.784					
28	71	1.750	0	-					
29	0	-	100	1.556					
30	453	0.857	91	1.589					
31	0	-	0	-					
32	129	1.367	0	-					
33	474	1.094	162	1.730					
34	241	1.354	0	_					
35	0	-	0	-					
36	86	1.285	0	-					
Measu	red males			619					165
Measu	red females			798					454
Aged r	nales			283					61
Aged f	emales			413					196
	sets sample	d		147					49
	veighted c.v		ooled)	21.5					28.0
	-	-							

All estimated proportion at age distributions from the Chatham Rise longline fishery are presented in Appendix B (Figure B1).

3.3.2 Sub-Antarctic

The line fishery data from the Sub-Antarctic stock are analysed as two separate fisheries, one spawning and one non-spawning. The spawning fishery was defined as a single stratum comprising the Puysegur Bank and Solander Corridor (i.e., Statistical Area 30), with a time stratum of October to

December. The non-spawning fishery was defined as a single stratum comprising all of FMAs 5 and 6, excluding Statistical Area 30 and the Bounty Plateau, with a time stratum of 1 February to 31 July.

Table 11 summarises the quantities of data used each year to produce the catch-at-age distributions for the two Sub-Antarctic longline fisheries, and also lists the resulting mean weighted c.v.s. The details of the estimated catch-at-age distribution for non-spawning Sub-Antarctic line-caught ling in the 2008–09 fishing year are given in Table 10. The sample size was relatively small, but the mean weighted c.v. of 28% did meet the target value of 30%. There was no observer sampling of spawning Sub-Antarctic line-caught ling in the 2008–09 fishing year.

		Males		Females		Mean c.v.
Fishery & year	Measured	Aged	Measured	Aged	Sets	
Spawning line fishery						
2000	4 044	242	4 231	278	83	20.6
2001	2 084	131	1 962	143	55	28.7
2002	670	197	898	284	157	22.6
2003	1 250	211	1 687	307	214	20.0
2004	887	208	1 129	289	168	22.5
2005	193	88	362	179	54	28.6
2006	233	108	707	345	94	23.3
2007	412	191	418	217	82	25.1
2008	227	68	198	62	24	44.3
Non-spawning line fishery						
1998	608	73	2 763	395	34	23.1
1999	3 3 1 6	214	7 535	428	136	18.3
2001	674	103	2 040	235	58	25.3
2003	304	128	611	273	43	29.3
2005	413	114	716	307	113	25.9
2009	165	61	454	196	49	28.0

Fable 11: Numbers of measured and aged male and female ling, and the number of sampled sets and
estimated mean weighted c.v. (%) by age, for the Sub-Antarctic spawning and non-spawning
longline fisheries.

All estimated proportion at age distributions from the spawning and non-spawning Sub-Antarctic longline fisheries are presented in Appendix B (Figures B2 and B3).

3.3.3 Cook Strait

The line fishery data from Cook Strait are analysed using a single area stratum (i.e., those parts of FMAs 2, 7, and 8 between 41° and 42° S and 174° and 175.4° E, equating approximately to Statistical Areas 16 and 17), and a time stratum of 1 June to 30 September.

Table 12 summarises the quantities of data used each year to produce the catch-at-age distributions, and also lists the resulting mean weighted c.v.s. There was no observer sampling of Cook Strait line-caught ling in the 2008–09 fishing year. All estimated proportion at age distributions from the Cook Strait longline fishery are presented in Appendix B (Figure B4).

Table 12: Numbers of measured and aged male and female ling, and the number of sampled sets and estimated mean weighted c.v. (%) by age, for the Cook Strait longline fishery.

		Males		Females		Mean c.v.
Year	Measured	Aged	Measured	Aged	Sets	
2006 2007	607 238	319 125	538 180	275 92	116 43	19.3 33.8

3.3.4 Bounty Plateau

The line fishery data from the Bounty Plateau are analysed using a single area stratum (i.e., that part of FMA 6 east of 176° E), and a time stratum of 1 November to 31 March.

Table 13 summarises the quantities of data used each year to produce the catch-at-age distributions, and also lists the resulting mean weighted c.v.s. The details of the estimated catch-at-age distribution for Bounty Plateau line-caught ling in the 2008–09 fishing year are given in Table 14. The mean weighted c.v. of 37.3% did not meet the target value of 30%. However, this value cannot be improved as all available length data and otoliths were used in the analysis. All estimated proportion at age distributions from the Bounty Plateau longline fishery are presented in Appendix B (Figure B5).

 Table 13: Numbers of measured and aged male and female ling, and the number of sampled sets and estimated mean weighted c.v. (%) by age, for the Bounty Plateau longline fishery.

		Males		Females		Mean c.v.
Year	Measured	Aged	Measured	Aged	Sets	
1993	201	52	237	69	24	50.4
2000	1 102	106	2 184	185	41	26.9
2001	405	50	713	66	20	43.6
2004	1 155	200	1 628	300	272	20.0
2008	308	156	562	271	86	25.3
2009	262	116	213	88	42	37.3

Table 14: Calculated numbers at age, separately by sex, with c.v.s, for ling caught during commercial longline operations on the Bounty Plateau during November 2008–March 2009. Summary statistics for the sample are also presented.

Bounty Plate							
Age	Male	c.v.	Female	c.v.			
10	87	1.724	0	_			
11	311	0.903	0	-			
12	0	_	454	0.877			
13	407	0.752	727	0.472			
14	1 283	0.427	834	0.597			
15	1 437	0.422	2 203	0.304			
16	2 664	0.301	1 014	0.473			
17	1 919	0.351	1 898	0.404			
18	1 587	0.365	853	0.470			
19	2 2 3 2	0.342	1 303	0.436			
20	1 445	0.387	383	0.634			
21	838	0.585	277	1.023			
22	489	0.624	264	1.077			
23	769	0.598	836	0.497			
24	1 089	0.518	203	0.905			
25	310	0.913	325	0.827			
26	219	0.933	115	1.572			
37	102	1.276	0	-			
38	0	_	732	0.689			
39	252	1.147	256	1.435			
Measur	ed males			262			
	ed female	s		213			
Aged n		5		116			
Aged fo	88						
	sets sampl	ed		42			
	veighted c		pooled)	37.3			

3.4 Observer catch-at-age data from ling trawl fisheries

3.4.1 Chatham Rise

Trawl fishery data from the Chatham Rise were used if they were collected between 1 October and 31 May in each fishing year, and were stratified using the following four strata:

- Coast (longitude $\leq 174^{\circ}$ E, target not scampi)
- Scampi (all tows targeting scampi)
- North Rise (latitude < 43.55° S, longitude > 174° E, target not scampi)
- South Rise (latitude \geq 43.55° S, longitude > 174° E, target not scampi)

Table 15 summarises the quantities of data used each year to produce the catch-at-age distributions, and also lists the resulting mean weighted c.v.s. The details of the estimated catch-at-age distribution for trawl-caught ling in the 2008–09 fishing year are given in Table 16. The mean weighted c.v. of 32% was just higher than the value of 30% that is usually used as a target for ling catch-at-age distributions.

All estimated proportion at age distributions from the Chatham Rise trawl fishery are presented in Appendix B (Figure B6).

		Males		Females		Mean c.v.
Source	Measured	Aged	Measured	Aged	Tows	
1991–92	2 151	252	2 653	281	143	27.0
1993–94	1 127	302	768	302	126	32.9
1994–95	359	236	302	201	59	45.1
1995–96	453	306	399	284	87	30.0
1996–97	162	317	240	242	31	41.1
1997–98	3 463	348	3 117	280	497	18.7
1998–99	3 306	336	2 469	318	312	20.0
1999–2000	887	322	1 013	326	161	24.8
2000-01	1 000	312	988	341	188	21.0
2001-02	642	294	708	334	129	23.8
2002-03	694	317	764	347	114	24.3
2003-04	356	303	600	302	99	30.1
2004-05	869	310	666	326	194	27.9
2005-06	251	328	291	330	54	34.5
2006–07	699	310	687	330	135	22.9
2007–08	2 755	317	2 070	325	276	20.9
2008–09	1 034	323	1 1 2 0	298	141	32.4

Table 15: Numbers of measured and aged male and female ling, and the number of sampled tows and							
estimated mean weighted c.v. $(\%)$ by age, for the Chatham Rise trawl fishery.							

Table 16: Calculated numbers at age, separately by sex, with c.v.s, for ling caught during commercial trawl operations on the Chatham Rise during October 2008–May 2009, and in the Sub-Antarctic during September 2008–April 2009. Summary statistics for the samples are also presented.

			Chath	am Rise				Sub-A	<u>Intarctic</u>
Age	Male	c.v.	Female	c.v.	Age	Male	c.v.	Female	c.v.
2	0	_	0	_	2	1 171	1.500	120	2.828
3	3 755	1.136	11 107	0.839	3	7 932	0.547	11 654	0.458
4	7 334	1.016	3 934	0.864	4	30 878	0.370	19 692	0.398
5	18 245	0.417	7 353	0.565	5	66 737	0.319	44 082	0.271
6	16 315	0.502	15 569	0.400	6	117 225	0.201	76 309	0.251
7	18 597	0.523	24 044	0.289	7	77 540	0.245	109 741	0.191
8	21 708	0.311	20 207	0.280	8	68 609	0.249	113 223	0.181
9	15 756	0.348	15 623	0.292	9	79 547	0.216	83 763	0.220
10	9 444	0.363	23 359	0.267	10	34 512	0.332	76 526	0.225
11	12 090	0.288	12 284	0.357	11	56 249	0.249	44 744	0.249
12	13 555	0.221	8 886	0.403	12	34 597	0.340	66 509	0.210
13	7 337	0.309	7 883	0.420	13	64 479	0.229	36 846	0.301
14	5 993	0.322	11 809	0.358	14	43 677	0.280	32 406	0.272
15	2 0 2 8	0.579	10 613	0.390	15	22 551	0.377	29 402	0.265
16	5 588	0.394	3 957	0.560	16	12 080	0.460	15 625	0.408
17	2 247	0.468	2 127	0.822	17	3 478	0.925	6 845	0.498
18	1 561	0.703	2 787	0.633	18	16 273	0.422	10 337	0.400
19	1 442	0.674	431	0.814	19	4 090	0.797	8 105	0.643
20	1 615	0.887	121	1.266	20	0	-	1 106	1.219
21	821	0.937	1 438	0.732	21	1 481	1.346	12 401	0.346
22	544	1.170	344	0.750	22	6 191	0.691	1 943	0.918
23	50	1.500	24	2.158	23	169	2.100	0	_
24	513	0.954	19	2.081	24	0	-	0	_
25	1 947	1.257	19	2.044	25	0	-	321	1.096
26	1 096	0.772	0	-	26	0	-	459	1.338
27	0	-	0	-	27	0	-	303	1.308
28	0	-	0	-					
29	0	-	196	1.163					
30	0	-	0	-					
31	702	0.943	91	1.630					
Measu	ired males			1 034					2 877
Measu	ired females			1 1 2 0					3 803
Aged	males			323					245
	females			298					324
	tows sampl	ed		141					184
	weighted c.		pooled)	32.4					19.4
	C	` I							

3.4.2 Sub-Antarctic

Trawl fishery data from the Sub-Antarctic were used if they were collected between 1 September and 30 April in each fishing year, and were stratified using the following three strata:

- 1. Scampi (all tows targeting scampi)
- 2. Shallow (bottom depth \leq 450 m, and target not scampi)
- 3. Deep (bottom depth > 450 m, and target not scampi)

Table 17 summarises the quantities of data used each year to produce the catch-at-age distributions, and also lists the resulting mean weighted c.v.s. The details of the estimated catch-at-age distribution for trawl-caught ling in the 2008–09 fishing year are given in Table 16. The mean weighted c.v. of

19% was better then the value of 30% that is usually used as a target for ling catch-at-age distributions.

All estimated proportion at age distributions from the Sub-Antarctic trawl fishery are presented in Appendix B (Figure B7).

Source	Measured	Males Aged	Measured	Females Aged	Tows	Mean c.v.
		-		-		
1991–92	1 466	437	1 652	667	141	22.0
1992–93	1 337	235	1 615	363	164	28.3
1993–94	686	256	1 059	357	129	29.2
1995–96	881	366	779	297	83	24.5
1997–98	1 408	274	1 717	302	218	29.0
2000-01	2 192	247	1 947	351	267	28.1
2001-02	1 887	264	2 579	327	424	24.8
2002-03	1 164	434	1 828	625	263	20.9
2003-04	853	246	1 397	337	202	22.9
2004–05	2 324	254	2 415	339	218	21.5
2005-06	2 739	288	2 618	305	252	20.4
2006–07	1 644	225	1 446	382	191	24.3
2007-08	4 104	229	3 258	353	183	23.3
2008–09	2 877	245	3 803	324	184	19.4

Table 17: Numbers of measured and aged male and female ling, and the number of sampled tows and
estimated mean weighted c.v. $(\%)$ by age, for the Sub-Antarctic trawl fishery.

3.4.3 West coast South Island

Trawl fishery data off WCSI were used if they were collected between 1 June and 30 September each year, and were stratified using the following three strata:

- Deep (bottom depth \ge 498 m)
- North shallow (bottom depth < 498 m, latitude < 42.42° S)
- South shallow (bottom depth < 498 m, latitude \ge 42.42° S)

Table 18 summarises the quantities of data used each year to produce the catch-at-age distributions, and also lists the resulting mean weighted c.v.s. There were insufficient data collected to estimate the catch-at-age distribution for trawl-caught ling in the 2008–09 fishing year (i.e., 311 length measurements and 95 otoliths).

All estimated proportion at age distributions from the WCSI trawl fishery are presented in Appendix B (Figure B8).

		Males		Females		Mean c.v.
Year	Measured	Aged	Measured	Aged	Tows	
1991	563	176	440	220	65	34.8
1994	873	172	1 096	221	141	27.9
1995	1 051	238	794	268	111	24.3
1996	485	247	448	201	83	28.0
1997	1 532	442	901	399	173	19.5
1998	1 063	349	700	279	155	23.6
1999	1 862	285	1 126	263	221	23.7
2000	829	269	783	264	168	26.8
2001	1 106	256	924	307	178	29.6
2002	1 401	283	1 405	321	332	21.4
2003	1 157	293	1 290	302	286	23.3
2004	1 003	243	1 540	352	334	21.4
2005	908	282	899	355	184	24.9
2006	763	276	844	361	154	29.0
2007	228	148	258	158	65	38.7
2008	805	209	824	251	98	24.1

 Table 18: Numbers of measured and aged male and female ling, and the number of sampled tows and estimated mean weighted c.v. (%) by age, for the WCSI trawl fishery.

3.4.4 Cook Strait

The trawl fishery in Cook Strait is analysed using a single area stratum (i.e., those parts of FMAs 2, 7, and 8 between 41° and 42° S and 174° and 175.4° E, equating approximately to Statistical Areas 16 and 17), and a time stratum of 1 June to 30 September.

Table 19 summarises the quantities of data used each year to produce the catch-at-age distributions, and also lists the resulting mean weighted c.v.s. The details of the estimated catch-at-age distribution for Cook Strait trawl-caught ling in the 2008–09 fishing year are given in Table 20. The mean weighted c.v. of 33.4% was higher than the target value of 30%. However, this value cannot be improved as all available length data and otoliths were used in the analysis.

All estimated proportion at age distributions from the Cook Strait trawl fishery are presented in Appendix B (Figure B9).

Table 19: Numbers of measured and aged male and female ling, and the number of sampled tows and
estimated mean weighted c.v. (%) by age, for the Cook Strait trawl fishery.

		Males		Females		Mean c.v.
Year	Measured	Aged	Measured	Aged	Tows	
1999	226	75	189	54	59	47.9
2000	197	95	191	93	62	40.9
2001	610	205	550	208	72	24.5
2002	583	219	644	241	58	27.9
2003	430	282	437	308	56	24.2
2004	609	269	645	241	48	27.2
2005	617	272	561	264	75	26.4
2006	729	248	539	226	26	26.4
2007	327	143	300	137	19	42.0
2008	569	280	470	226	44	27.0
2009	241	180	219	164	62	33.4

	Cook Strait					
Age	Male	c.v.	Female	c.v.		
3	67	1.915	61	1.814		
4	1 056	0.544	1 148	0.377		
5	1 517	0.350	1 085	0.381		
6	1 079	0.397	1 602	0.331		
7	857	0.447	1 516	0.302		
8	1 485	0.301	1 784	0.274		
9	1 738	0.288	667	0.518		
10	856	0.425	823	0.427		
11	535	0.499	970	0.428		
12	638	0.616	697	0.429		
13	665	0.479	482	0.565		
14	655	0.530	383	0.537		
15	692	0.435	309	0.675		
16	587	0.505	305	0.660		
17	241	0.684	82	1.257		
18	350	0.539	124	1.021		
19	294	0.623	273	0.747		
20	178	0.892	0	_		
21	162	0.954	63	1.559		
22	0	-	0	_		
23	97	0.951	0	_		
24	0	-	0	_		
25	63	1.447	0	_		
31	63	1.549	0	-		
Measured males Measured females Aged males Aged females No. of tows sampled				241 219 180 164 62		
Mean w	eighted c.	v. (sexes j	pooled)	33.4		

Table 20: Calculated numbers at age, separately by sex, with c.v.s, for ling caught during commercial trawl operations in Cook Strait during June–September 2009. Summary statistics for the sample are also presented.

3.5 Trawl survey catch-at-age data for ling

3.5.1 Chatham Rise

Trawl survey catch-at-age distributions are estimates of the numbers of ling, by sex and age, available to the trawl in the survey area between 200 and 800 m. In some years an additional deeper stratum (800–1000 m) on the north Rise is surveyed. However, to ensure comparability, the distributions presented here are for the 'core' strata only, i.e., 200–800 m.

Table 21 summarises the quantities of data used each year to produce the catch-at-age distributions, and also lists the resulting mean weighted c.v.s. The details of the estimated catch-at-age distribution for ling caught in the January 2010 trawl survey are given in Table 22. The mean weighted c.v. of 25% was well within the target of 30%, as it has been in all surveys in this series.

All estimated proportion at age distributions from the Chatham Rise trawl surveys are presented in Appendix B (Figure B10).

		Males		Females		Mean c.v.
Survey	Measured	Aged	Measured	Aged	Tows	
AEX8903	743	303	613	296	130	26.0
TAN9106	1 208	252	1 189	281	174	22.4
TAN9212	1 229	286	1 108	313	177	21.7
TAN9401	1 541	302	1 349	302	157	21.5
TAN9501	583	236	578	201	114	28.1
TAN9601	556	306	509	284	79	27.7
TAN9701	837	317	601	242	98	24.3
TAN9801	665	348	492	280	88	24.5
TAN9901	1 071	336	848	318	111	23.8
TAN0001	1 080	322	969	326	113	22.0
TAN0101	1 145	312	1 084	341	108	20.5
TAN0201	1 053	294	1 170	334	102	19.7
TAN0301	813	317	808	347	98	20.6
TAN0401	865	303	752	302	101	20.2
TAN0501	845	310	801	326	98	22.5
TAN0601	1 007	328	880	330	90	21.0
TAN0701	733	310	732	330	94	21.0
TAN0801	610	317	623	325	92	22.3
TAN0901	946	338	880	312	103	24.3
TAN1001	608	322	882	339	70	25.0

 Table 21: Numbers of measured and aged male and female ling, and the number of sampled tows and estimated mean weighted c.v. (%) by age, for the Chatham Rise trawl surveys.

Table 22: Calculated numbers at age in the survey area, separately by sex, with c.v.s, for ling caught during trawl surveys of the Chatham Rise in January 2010 (survey TAN1001) and the Sub-Antarctic in November-December 2009 (survey TAN0911). Summary statistics for the samples are also presented.

			T	AN1001				TA	<u>AN0911</u>
Age	Male	c.v.	Female	c.v.	Age	Male	c.v.	Female	c.v.
2	9 343	0.946	25 955	0.722	2	0	_	0	_
3	84 921	0.561	102 940	0.383	3	137 926	0.364	98 388	0.703
4	210 732	0.326	214 498	0.307	4	213 323	0.399	282 944	0.363
5	142 037	0.299	209 831	0.249	5	440 337	0.267	362 496	0.311
6	148 710	0.258	123 312	0.301	6	445 626	0.230	568 901	0.218
7	168 208	0.226	156 331	0.242	7	452 412	0.230	518 596	0.231
8	143 496	0.221	110 852	0.271	8	363 463	0.243	448 958	0.236
9	76 176	0.315	99 706	0.301	9	264 343	0.258	448 433	0.238
10	107 978	0.259	134 894	0.236	10	153 241	0.361	565 333	0.233
11	75 382	0.295	119 563	0.270	11	120 854	0.406	291 116	0.275
12	51 517	0.341	77 585	0.290	12	154 734	0.362	558 614	0.200
13	78 844	0.315	43 521	0.406	13	215 383	0.298	338 751	0.267
14	98 597	0.267	87 071	0.278	14	150 033	0.362	134 967	0.352
15	68 280	0.297	44 268	0.399	15	165 414	0.341	223 340	0.331
16	40 148	0.401	30 516	0.474	16	117 760	0.418	135 656	0.374
17	10 887	0.844	8 293	0.812	17	31 195	0.694	79 510	0.507
18	5 280	1.028	29 894	0.456	18	19 785	0.927	130 792	0.402
19	37 175	0.430	21 859	0.600	19	11 850	1.493	73 819	0.573
20	13 941	0.587	16 027	0.640	20	6 074	1.303	71 916	0.498
21	14 930	0.819	7 995	1.028	21	0	-	8 182	1.469
22	4 457	1.233	15 714	0.741	22	37 884	0.690	17 631	1.555
23	0	-	1 792	1.470	23	25 231	0.915	15 007	1.056
24	9 614	0.791	0	-	24	0	-	643	2.593
25	1 861	1.308	1 741	1.540	25	31 427	0.770	0	-
26	2 651	1.647	0	_	26	865	2.034	0	-
27	1 552	1.300	0	_	27	11 850	1.442	13 005	1.118
28	0	_	0	_	28	941	2.099	0	-
29	1 609	1.433	0	_					
30	3 057	1.548	0	_					
31	1 552	1.310	0	_					
Measu	ured males			608					830
	ured females			622					882
Aged				322					232
	females			320					339
	f tows sampl	ed		84					70
	weighted c.v		pooled)	25.0					22.8
	-		-						

3.5.2 Sub-Antarctic

Trawl survey catch-at-age distributions are estimates of the numbers of ling, by sex and age, available to the trawl in the survey. The main survey series has been conducted in summer. Those surveys have sampled depths from 300 to 800 m, plus an 800–1000 m stratum at Puysegur, and, in some years, other 800–1000 m strata off the Campbell Plateau. However, to ensure comparability, the distributions presented here are for the 'core' 300–800 m strata plus the deep Puysegur stratum only. The catch-at-age distributions from the autumn surveys are derived from the 'core' 300–800 m strata only.

Table 23 summarises the quantities of data used each year to produce the catch-at-age distributions, and also lists the resulting mean weighted c.v.s. The details of the estimated catch-at-age distribution for ling caught in the November–December 2009 trawl survey are given in Table 22. The mean weighted c.v. of 22.8% was well within the target of 30%, as it has been in all surveys in this series.

All estimated proportion at age distributions from the Sub-Antarctic trawl surveys are presented in Appendix B (Figure B12).

	cui weighteu erri	Males	8-,~~	Females		Mean c.v.
G	1		1		-	Mean C.V.
Survey	Measured	Aged	Measured	Aged	Tows	
Summer surveys						
AEX8902	760	160	1 067	234	133	29.0
TAN9105	1 563	213	2 079	348	151	19.6
TAN9211	1 249	227	1 668	354	146	21.1
TAN9310	1 520	254	1 894	351	127	22.3
TAN0012	1 761	244	1 696	351	85	18.8
TAN0118	1 316	268	1 290	326	95	19.6
TAN0219	1 661	224	1 606	350	88	20.6
TAN0317	1 270	243	1 156	333	70	22.1
TAN0414	1 433	256	1 146	339	79	27.0
TAN0515	1 095	279	988	300	82	22.0
TAN0617	969	250	1 011	355	80	23.1
TAN0714	1 014	229	1 288	353	79	21.7
TAN0813	1 162	250	994	327	80	26.8
TAN0911	830	232	882	339	70	22.8
Autumn surveys						
TAN9204	1 570	221	1 498	310	90	21.5
TAN9304	1 353	261	1 344	373	97	21.1
TAN9605	1 129	325	902	303	88	21.9
TAN9805	809	271	765	296	64	22.9

Table 23: Numbers of measured and aged male and female ling, and the number of sampled tows and
estimated mean weighted c.v. (%) by age, for the Sub-Antarctic trawl surveys.

4. **DISCUSSION**

4.1 Hake

For hake, sufficient otoliths and length-frequency data to produce catch-at-age distributions that met the target mean weighted c.v.s. were available from the HAK 7 fishery off WCSI, the HAK 1 fishery in the Sub-Antarctic, and the 'western' section of the HAK 1 and 4 fishery on the Chatham Rise. The target has almost always been met for samples in the WCSI fishery (see Table 4). The sampling intensity in the HAK 1 (Sub-Antarctic) commercial trawl fishery was good in 2008–09. Sampling intensity in the Sub-Antarctic has varied considerably between years, with consequent wide variation in the mean weighted c.v.s (see Table 3). Data from the Chatham Rise are analysed as two separate fisheries (see Table 1), but a catch-at-age distribution was able to be derived only for the 'western' fishery in 2008–09.

The Sub-Antarctic trawl survey produced a good sample of aged fish (600), but the Chatham Rise survey was less productive (249 age estimates). Catch-at-age distributions were produced for both the trawl surveys, and both of the estimated mean weighted c.v.s were above the target of 30% (36.3% for Sub-Antarctic, 39.7% for Chatham Rise). However, no improvements in the precision can be achieved, as all available data were included in the analyses.

On the Chatham Rise, younger hake tend to be concentrated in the west, with the population dominated by fish aged 2–10 years (see Appendix A, Figure A1). Middle-aged and older hake (i.e., 5–15 years old) tend to dominate catches in the eastern Rise (see Figure A2). Males and females appear to be about evenly abundant in all areas except Statistical Area 404, where males clearly dominate the catch (Horn & Sutton 2009). There is a clear year class progression apparent in the seven most recent Chatham Rise survey distributions (Figure A5). The 2001 year class (aged 2+ in January 2004) clearly progresses through to

age 7+ in 2009, for both males and females. It also appears likely that the two following year classes (2002 and 2003) are moderately strong.

In the Sub-Antarctic, there are some clear year class progressions, particularly in the male distributions. Figure A3 shows the progressions of hake aged 10 in 1990 through to age 16 in 1996, and aged 6 in 1998 through to age 12 in 2004. The two most recent trawl surveys indicate the possibility of some recent moderately strong recruitment (Figure A6).

The WCSI trawl catch is dominated by hake aged 6–12 years, with no clearly apparent year class progressions (see Figure A4). In some years, large numbers of 1- or 2-year-old fish are taken by the fishery, but these do not manifest as strong cohorts in later years. A characteristic of most of the WCSI distributions is that numbers of fish aged 3 and 4 are generally very low. It seems likely that fish of this age are much less vulnerable or available to the trawl during the winter months of the fishery than younger or older hake.

4.2 Ling

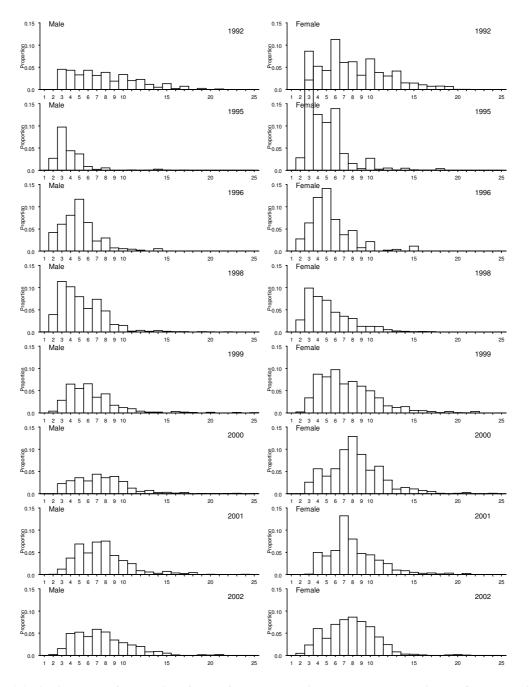
Catch-at-age distributions were produced for three commercial longline fisheries in 2008–09, and the target c.v.s were met for two of these (Chatham Rise and Sub-Antarctic non-spawning). The target was not met for the Bounty Plateau fishery owing to relatively light sampling; only part of one trip was observed in this fishery. A catch-at-age distribution was scheduled to be produced for the Sub-Antarctic spawning fishery, but it was not sampled by observers in 2008–09. The resources intended to be used to analyse the Sub-Antarctic spawning fishery were transferred to the Bounty Plateau fishery. Only three years of comprehensive sampling for catch-at-age were previously available for that fishery (see Table 13), so it was considered desirable to add to that series.

Catch-at-age distributions were produced for trawl fisheries catching ling in four areas. The Chatham Rise and Sub-Antarctic distributions used observer length data applied to age-length keys obtained from trawl surveys, e.g., Chatham Rise length data collected from October 2008 to May 2009 were applied to the age-length key from the January 2009 (TAN0901) trawl survey of the Chatham Rise. The estimated catch-at-age distributions from the Sub-Antarctic had a mean weighted c.v. well within the usual target of 30%, but the Chatham Rise c.v. was above the target despite being based on relatively large sample sizes. Most distributions calculated for both these fisheries in previous years had been within the target. An estimate of catch-at-age was also produced for the ling taken as bycatch in the Cook Strait hoki spawning fisheries; it was outside the target c.v. of 30% owing to sampling being at its lowest level since 2000 (see Table 19). An estimate of catch-at-age for the ling bycatch from the WCSI hoki spawning fishery could not be produced for 2009 as only 311 fish were measured, despite the total ling catch being in excess of 800 t. This was the lowest level of sampling in this fishery since 1990 (see Tables 18).

Sufficient ling otoliths and length-frequency data were available from the Sub-Antarctic and Chatham Rise trawl surveys to easily meet the mean weighted c.v. target. The target has been met in all surveys from these two areas.

The ling longline fisheries catch few fish younger than 7 years, and much of the catch is older than 12 years. Sex ratios of the longline catch are about 1:1 on the Chatham Rise and in Cook Strait, but tend to be biased towards females in the other fisheries. This is particularly apparent in the Sub-Antarctic non-spawning fishery (see Figure B3). No clear year class progressions are apparent in any of the longline series.

Recruitment to the trawl fisheries is generally about two years earlier than to the line fisheries (i.e., at about 5 years), and most of the catch is 13 years or younger. No clear year class progressions are apparent in any of the trawl series. The ling trawl catch-at-age distributions from the WCSI fishery often exhibit a trough at about age 6 or 7. This is consistent with an inflexion point in the length-frequency distributions at lengths of about 72 cm for males and 77 cm for females (see figure 3 of


Horn 2008). It seems likely that fish of this size are less vulnerable or available to the trawl during the winter months of the fishery.

5. ACKNOWLEDGMENTS

This work was funded by the Ministry of Fisheries under Project MID2007-01C. We thank Anna Bradley, Megan Carter, Dan Cairney, Caoimhghin Ó Maolagáin, and Mike Stevenson for assistance with otolith preparation.

6. **REFERENCES**

- Bull, B.; Dunn, A. (2002). Catch-at-age: User Manual v1.06.2002/09/12. NIWA Internal Report 114. 23 p. (Unpublished report held in NIWA Library, Wellington.)
- Devine, J. (2008). Descriptive analysis of the commercial catch and effort data for New Zealand hake (*Merluccius australis*) for the 1989–90 to 2004–05 fishing years. *New Zealand Fisheries Assessment Report 2008/60*. 73 p.
- Horn, P.L. (1993). Growth, age structure, and productivity of ling, *Genypterus blacodes* (Ophidiidae), in New Zealand waters. *New Zealand Journal of Marine and Freshwater Research* 27: 385–397.
- Horn, P.L. (1997). An ageing methodology, growth parameters, and estimates of mortality for hake (*Merluccius australis*) from around the South Island, New Zealand. *Marine and Freshwater Research* 48: 201–209.
- Horn, P.L. (2008). Stock assessment of ling (*Genypterus blacodes*) on the Chatham Rise, Campbell Plateau, and in Cook Strait for the 2007–08 fishing year. New Zealand Fisheries Assessment Report 2008/24. 76 p.
- Horn, P.L.; Dunn, A. (2007). Stock assessment of hake (*Merluccius australis*) on the Chatham Rise for the 2006–07 fishing year. *New Zealand Fisheries Assessment Report 2007/44*. 62 p.
- Horn, P.L.; Francis, R.I.C.C. (2010). Stock assessment of hake (*Merluccius australis*) on the Chatham Rise for the 2009–10 fishing year. *New Zealand Fisheries Assessment Report 2010/14*. 65 p.
- Horn, P.L.; Sutton, C.P. (2008). Catch-at-age for hake (*Merluccius australis*) and ling (*Genypterus blacodes*) in the 2006–07 fishing year and from trawl surveys in summer 2007–08, with a summary of all available data sets. *New Zealand Fisheries Assessment Report 2008/60*. 54 p.
- Horn, P.L.; Sutton, C.P. (2009). Catch-at-age for hake (*Merluccius australis*) and ling (*Genypterus blacodes*) in the 2007–08 fishing year and from trawl surveys in summer 2008–09, with a summary of all available data sets. *New Zealand Fisheries Assessment Report 2009/41*. 53 p.

Appendix A: Summaries of the proportions-at-age data for hake from resource surveys and trawl fishery observer sampling

Figure A1: Available age frequencies of hake from commercial catch-at-age data in the Chatham Rise (west) trawl fishery, 1992 to 2009.

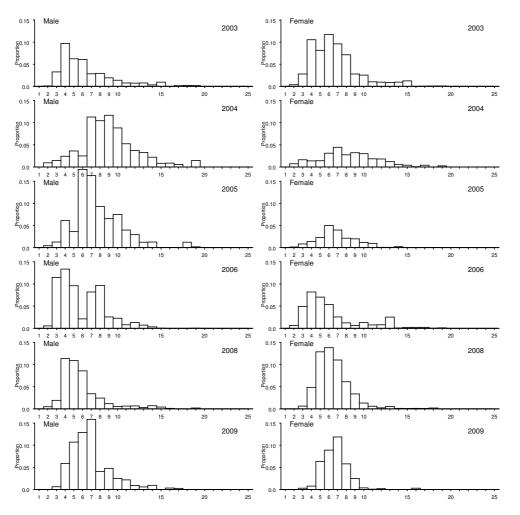


Figure A1 ctd.: Available age frequencies of hake from commercial catch-at-age data in the Chatham Rise (west) trawl fishery, 1992 to 2009.

Figure A2: Available age frequencies of hake from commercial catch-at-age data in the Chatham Rise (east) trawl fishery, 1992 to 2009.

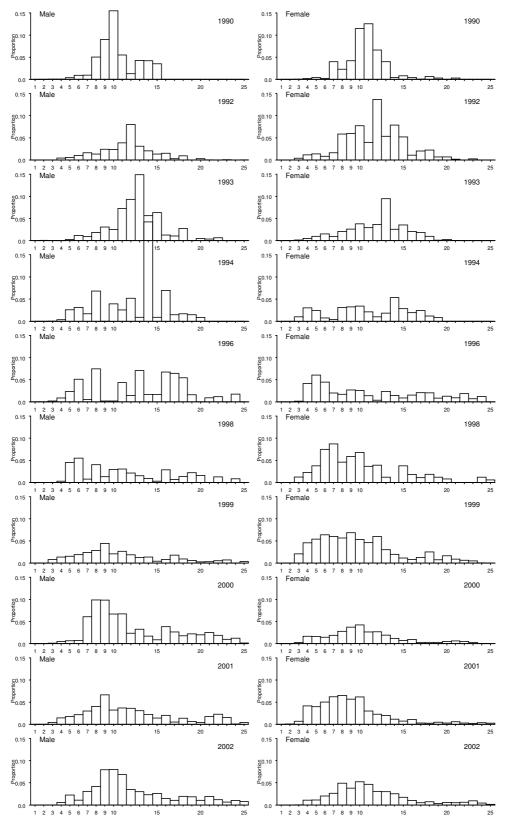


Figure A3: Available age frequencies of hake from commercial catch-at-age data in the Sub-Antarctic trawl fishery, 1990 to 2009.

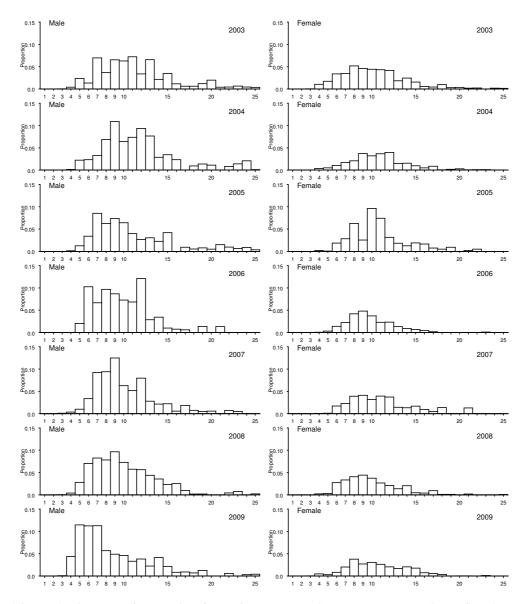


Figure A3 ctd.: Available age frequencies of hake from commercial catch-at-age data in the Sub-Antarctic trawl fishery, 1990 to 2009.

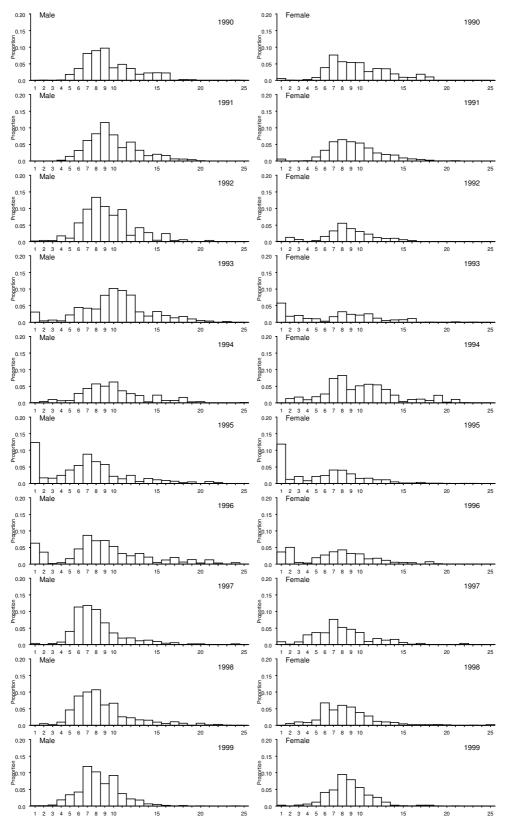


Figure A4: Available age frequencies of hake from commercial catch-at-age data in the WCSI trawl fishery, 1990 to 2010.

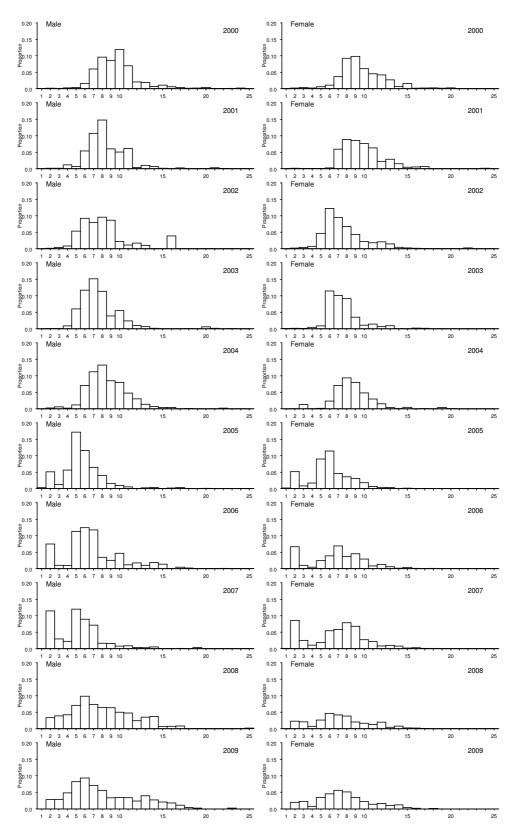


Figure A4 ctd.: Available age frequencies of hake from commercial catch-at-age data in the WCSI trawl fishery, 1990 to 2010.

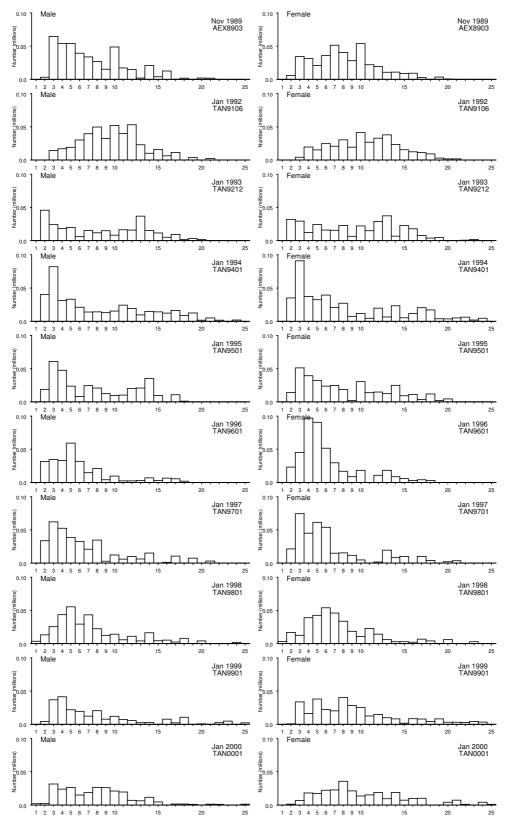


Figure A5: Available age frequencies of hake (ages 1 to 25) from resource surveys on the Chatham Rise, 1989–90 to 2009–10.

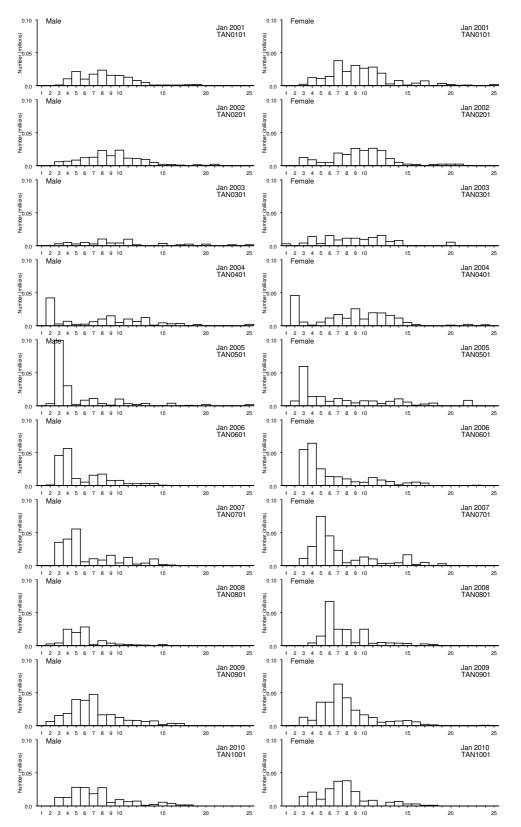


Figure A5 ctd.: Available age frequencies of hake (ages 1 to 25) from resource surveys on the Chatham Rise, 1989–90 to 2009–10.

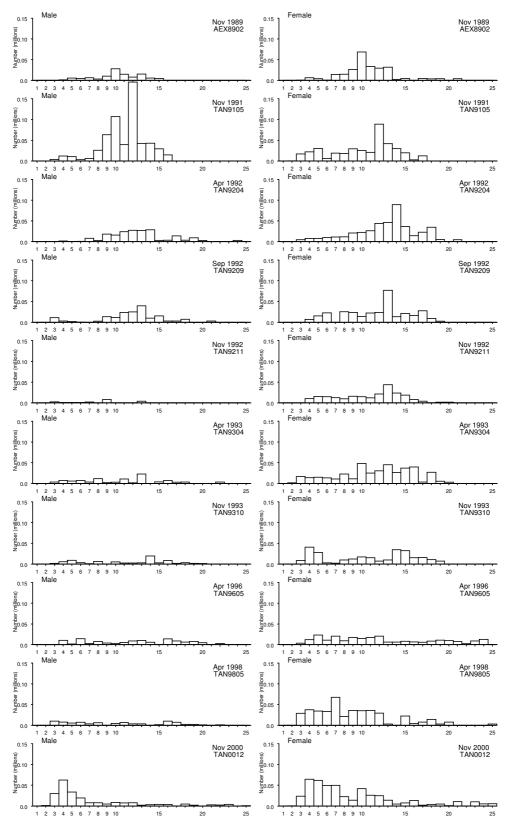


Figure A6: Available age frequencies of hake (ages 1 to 25) from resource surveys in the Sub-Antarctic, 1989 to 2010.

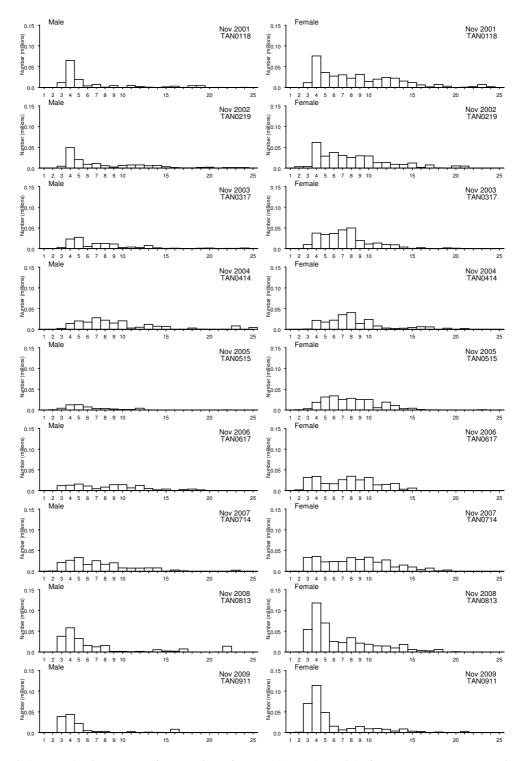


Figure A6 ctd.: Available age frequencies of hake (ages 1 to 25) from resource surveys in the Sub-Antarctic, 1989 to 2010.

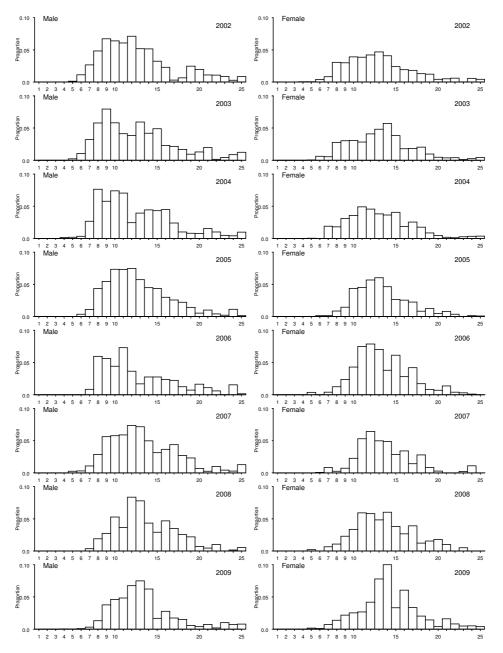


Figure B1: Available age frequencies of ling from commercial catch-at-age data in the Chatham Rise longline fishery, 2002 to 2009.

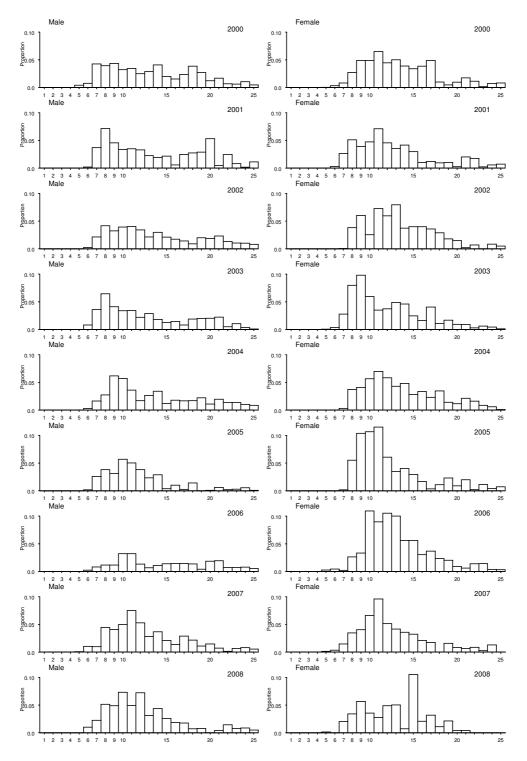


Figure B2: Available age frequencies of ling from commercial catch-at-age data in the Sub-Antarctic (spawning season) longline fishery, 2000 to 2009.

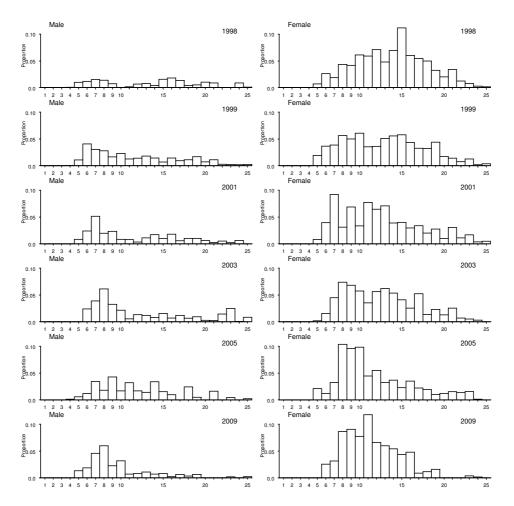


Figure B3: Available age frequencies of ling from commercial catch-at-age data in the Sub-Antarctic (non-spawning season) longline fishery, 1998 to 2009.

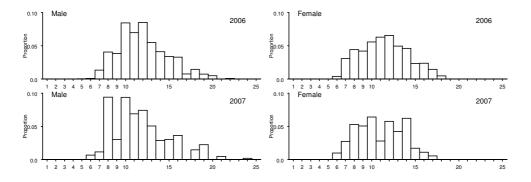


Figure B4: Available age frequencies of ling from commercial catch-at-age data in the Cook Strait longline fishery, 2006 to 2009.

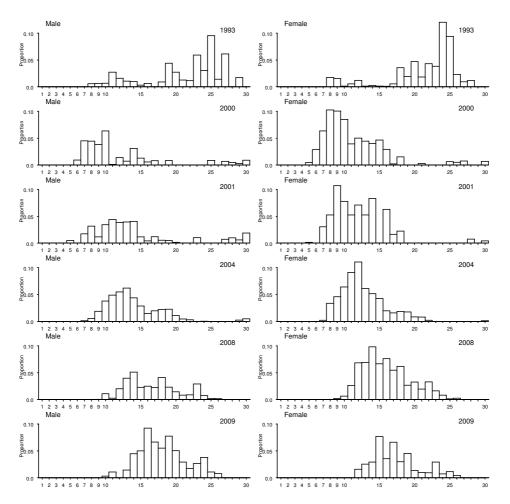


Figure B5: Available age frequencies of ling from commercial catch-at-age data in the Bounty Plateau longline fishery, 1993 to 2009.

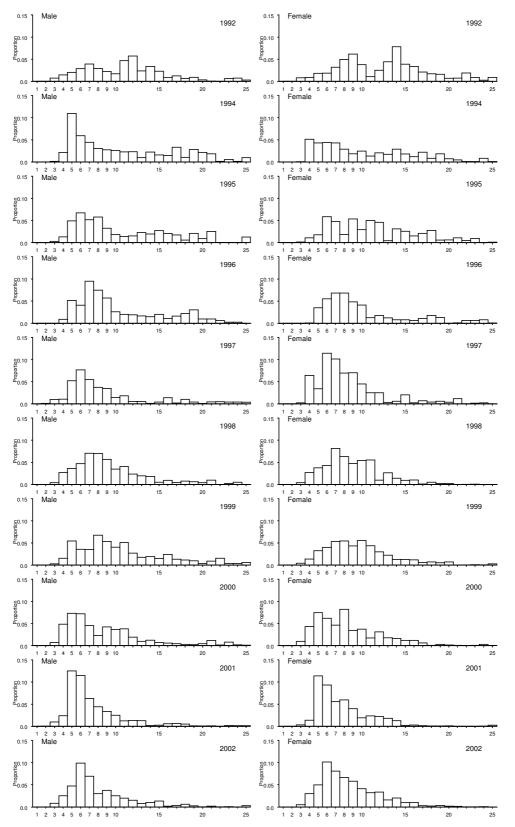


Figure B6: Available age frequencies of ling from commercial catch-at-age data in the Chatham Rise trawl fishery, 1992 to 2009.

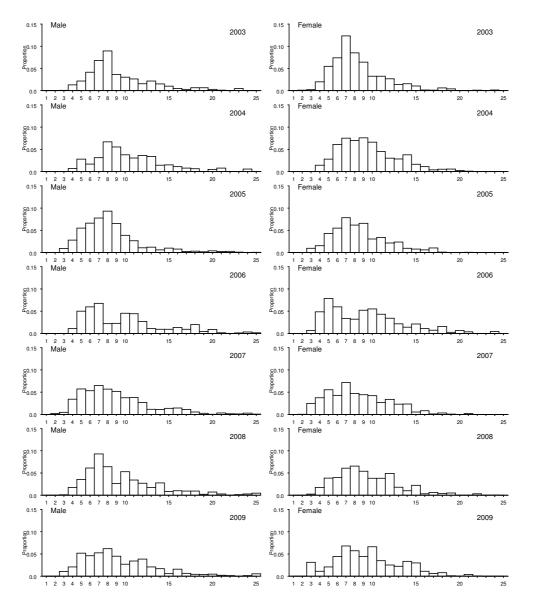


Figure B6 ctd.: Available age frequencies of ling from commercial catch-at-age data in the Chatham Rise trawl fishery, 1992 to 2009.

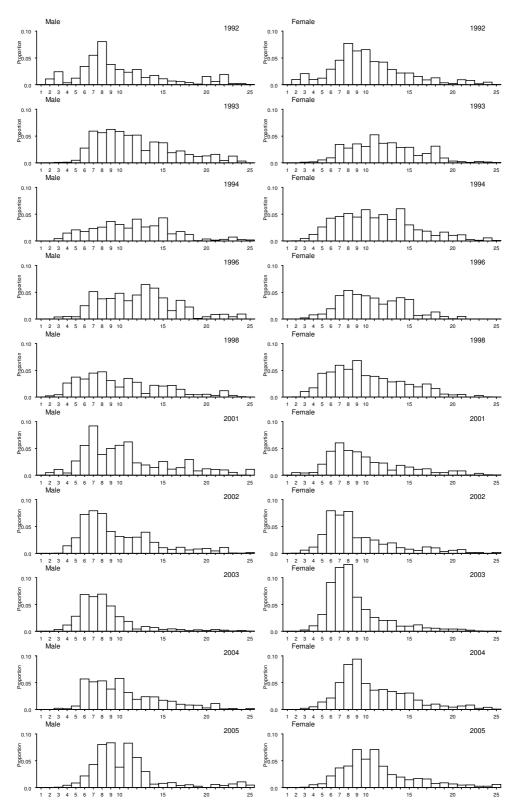


Figure B7: Available age frequencies of ling from commercial catch-at-age data in the Sub-Antarctic trawl fishery, 1992 to 2009.

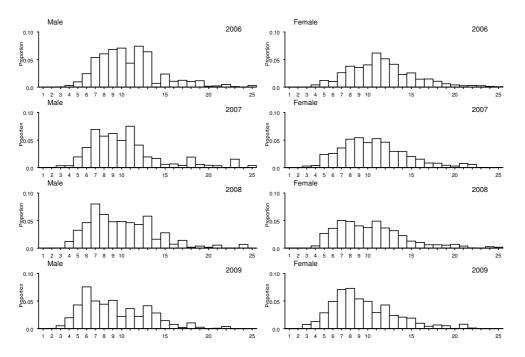


Figure B7 ctd.: Available age frequencies of ling from commercial catch-at-age data in the Sub-Antarctic trawl fishery, 1992 to 2009.

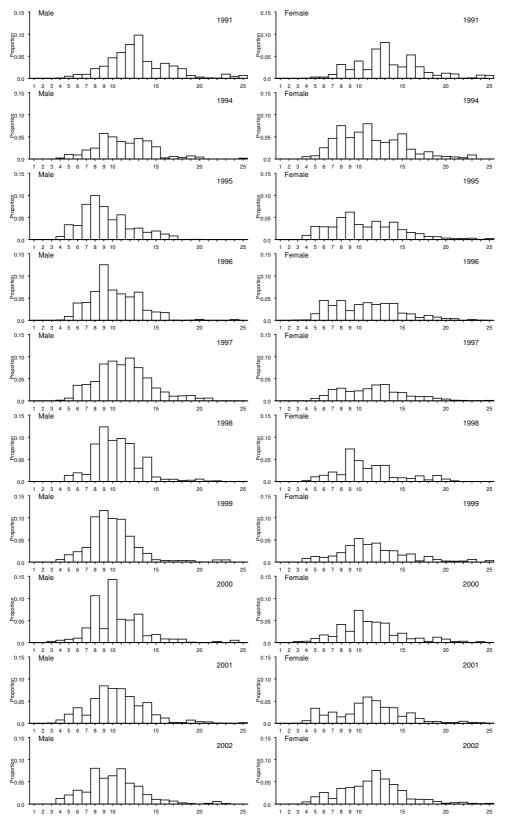


Figure B8: Available age frequencies of ling from commercial catch-at-age data in the WCSI trawl fishery, 1991 to 2009.

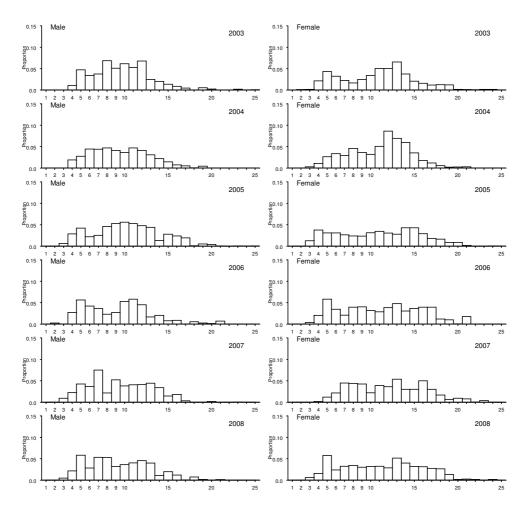


Figure B8 ctd.: Available age frequencies of ling from commercial catch-at-age data in the WCSI trawl fishery, 1991 to 2009.

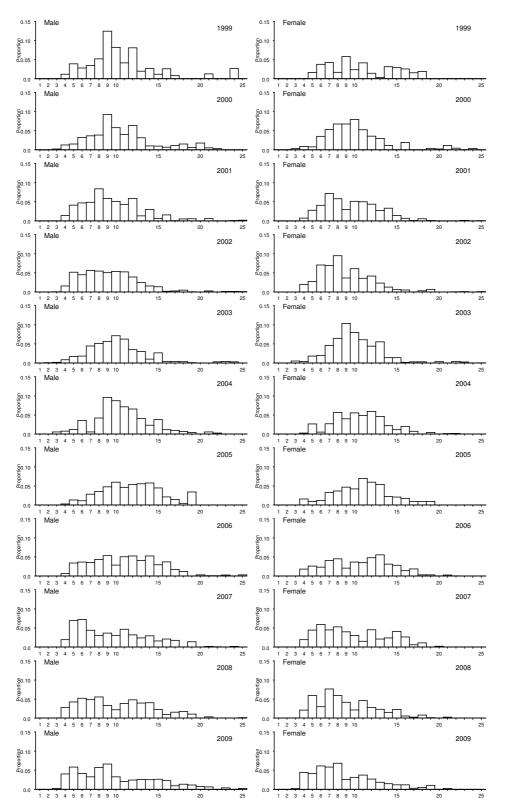


Figure B9: Available age frequencies of ling from commercial catch-at-age data in the Cook Strait trawl fishery, 1999 to 2009.

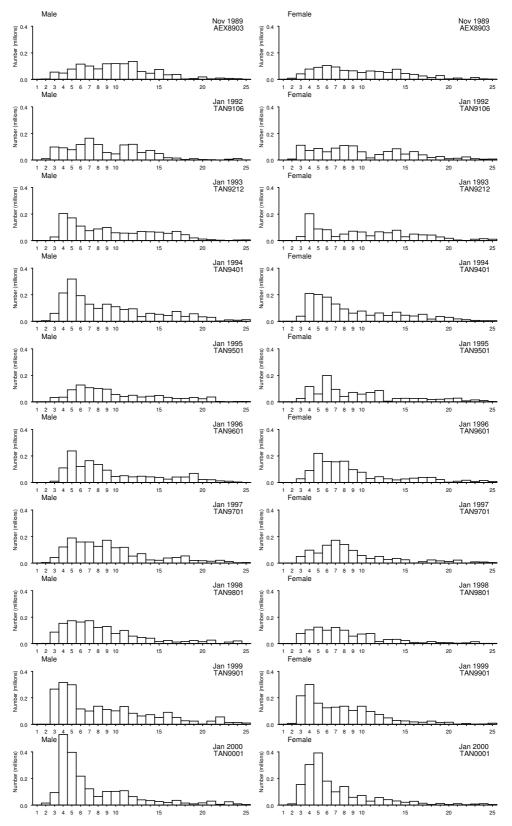


Figure B10: Available age frequencies of ling (ages 1 to 25) from resource surveys on the Chatham Rise, 1989–90 to 2009–10.

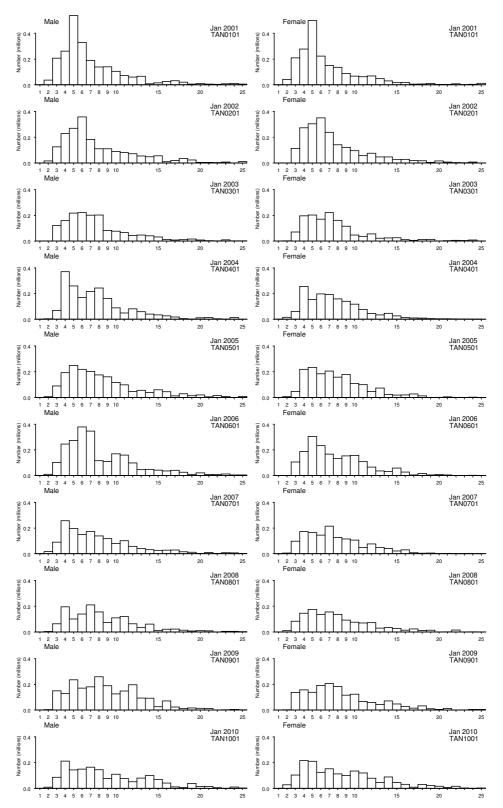


Figure B10 ctd.: Available age frequencies of ling (ages 1 to 25) from resource surveys on the Chatham Rise, 1989–90 to 2009–10.

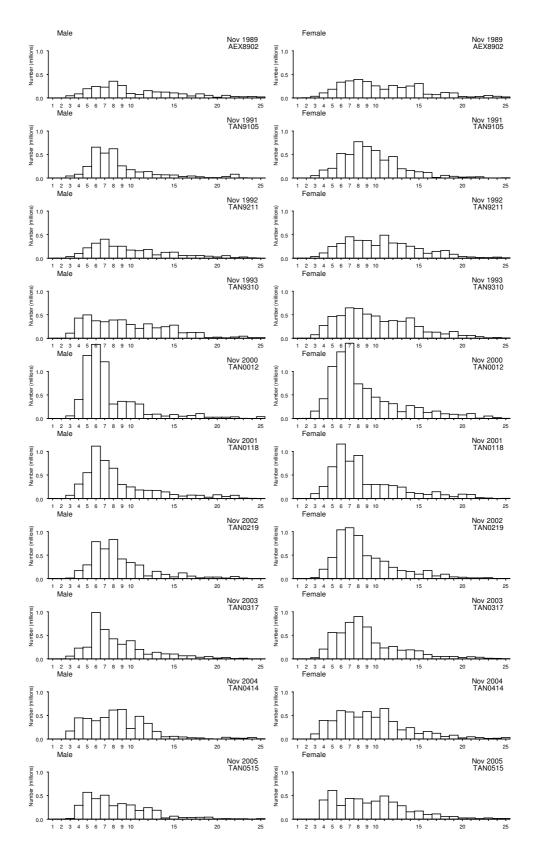


Figure B11: Available age frequencies of ling (ages 1 to 25) from summer resource surveys in the Sub-Antarctic, 1989 to 2009.

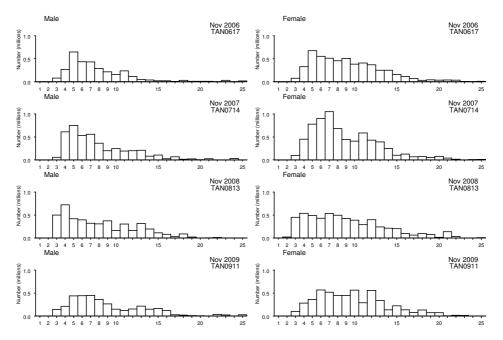


Figure B11 ctd.: Available age frequencies of ling (ages 1 to 25) from summer resource surveys in the Sub-Antarctic, 1989 to 2009.

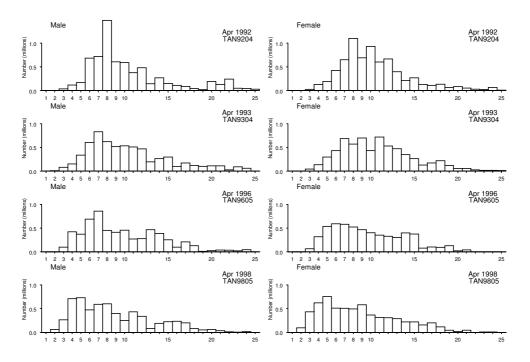


Figure B12: Available age frequencies of ling (ages 1 to 25) from autumn resource surveys in the Sub-Antarctic, 1992 to 1998.