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EXECUTIVE SUMMARY

An :ndividual-based model is described and used to test the bias and precision of the stock assessment
model used for paua (Haliotis iris). The individual-based model system consists of a data simulator
and the estimation model, where the simulator and estimation model use the same method for
calculating population dynamics based on model parameters.

A shell program runs the data simulator, which simulates the lives of many individual paua for each
of a large number of years, and writes data files with the catch time series, abundance indices and
length frequencies. Then it runs the estimation model, which simulates a simple assessment based on
the data and the mode of the joint posterior distribution of parameters. The “real” and estimated
values for parameters and biomass are written to a file for comparison, the random number seed is
changed for the simulator, and this procedure is repeated in a loop for 100 times.

Comparison of the estimated values with simulated values was done with three comparison indices.
One compared the mean values to assess bias. A second compared the distributions of values from
the estimator and simulator, and a third assessed the mean difference between the two sets of results.

When nearly-perfect data were simulated, with no observation error, no recruitment deviations, and
abundant data for every year of the simulated fishery, the estimator recovered the true values with
little bias and high precision. This suggests that the estimation model is coded correctly.

When the model was tested with much fewer data, observation error on the abundance indices and
recruitment variation, some bias was observed in some estimated parameters, but this was relatively
small. Precision was slightly less than in the actual assessment for PAU 7, but the results here are not
strictly comparable with the actual assessment, which uses Bayesian procedures and is based on
marginal posterior distributions.

We experimented with the model’s ability to estimate parameters correctly when the abundance index
was not directly proportional to abundance, and when recruitment had serial auto-correlation.
Although the model did not do well at estimating the non-linearity and autocorrelation parameters,
other parameters were well estimated. Bias and precision both declined slightly when the model was
forced to assume linearity in the abundance index, or that auto-correlation was absent.

When we simulated other mis-specifications - density-dependent growth and size-dependent natural
mortality, both absent from the estimation model, bias and precision were both affected but the effect
was minor.



1. Introduction

Paua supports a valuable fishery in New Zealand, with total annual landings of about 1200 t.
Legislation requires that New Zealand fisheries be managed so that stocks are maintained at or above
By, the biomass associated with the maximum sustainable yield (MSY). However, Bysy is not
defined, and Francis (1999) suggested that By varies among different harvest strategies, which are
usually undefined. There is current discussion over how to estimate Bysy.

Virgin biomass, B0, has also been used as a reference point, but in the paua stock assessment for
2001(Breen et al. 2001) “reference biomasses”, B,.srand S, were introduced to replace Bysy and B.
These biomass reference points are the average recruited and spawning biomass in some period, or
reference years, where the stock was stable. In PAU 7 (Breen et al. 2001), PAU 5B (Breen et al.
2002a) and PAU 5D (Breen et al. 2002b), the years 1985-1987 were used as reference years. The
reference biomass concept was also used in the rock lobster stock assessment (Breen et al. 2002c).

Stock assessment of paua (Haliotis iris) in New Zealand has been described by a variety of authors
(Schiel, 1989; McShane et al., 1994, 1996; Breen et al., 2000a, 2000b, 2001, 2002a, 2002b). A
length-based model, implemented in AD Model Builder™, has been used since 1999. It is similar to
length-based models developed for abalone by Worthington (1998, see Andrew et al. 1996 for
application to the NSW ‘abalone fishery), and for rock lobsters by Punt & Kennedy (1997) and
Bentley et al. (2001). This model is driven by reported commercial catches from 1974 through the
current year and is fitted to five sets of data: standardised CPUE, a research diver survey index
(Andrew et al. 2002), length frequency data from commercial catch sampling and from research diver
surveys (Andrew et al. 2002), and a set of growth increment data.

The assessment model has been fitted to data using robust techniques to specify likelihood and to
describe prior distribution (see Chen et al. 2001), although the newest version has dropped some of
the robust techniques. The model population is initialised and then driven by observed catches.
Outputs are the present and projected future states of the stock, estimated using Bayesian methods.
The assessment is based on the marginal posterior distributions of the parameters and derived
parameters of interest, in turn based on Markov chain - Monte Carlo (McMC) simulations. The
model was described by Breen et al (2001) for the 2001 stock assessment for PAU 7 and the current
version of the model is described in Breen et al. (2002a, 2002b).

Between the 2001 and 2002 paua assessments, we developed an individual-based model to test the
precision and bias of the assessment model (Breen et al. 2001). The individual-based model has two
programs run by a shell program in a loop: a data simulator and a version of the estimation model.

The simulator simulates the life of individual paua, from recruitment until death. It uses the same
method of calculating the growth curve, selectivity ‘of divers and recruitment as in the estimation
model. Parameters estimated by the estimation model, such as mortality, selectivity, growth rate and
the asymptotic length, are input to the simulator. Output is in the five datasets required by the
estimation model, plus annual catches.

The estimation model estimates parameters of the simulated datasets; these are then compared with
the parameter values used for the simulation of the datasets.

The use of a simulator, which is also called an operating model (Punt 1990, 1992), to generate data
addresses problems in the use of real data such as bias in observation and missing information. An
operating model was used with an estimation model in the southern African hake fishery to compare
the model estimation procedures and management procedures (Punt, 1992), and was used alone to
construct population dynamics in other fisheries (Rose et al. 1999, Beard & Essington, 2000).

Several tests are done with this individual-based model to investigate the effect of datasets with
different amounts of information, explore the effects of serial auto-correlations in recruitment, and



non-linear CPUE, and test the effects of mis-specifications of reality, such as density-dependent
growth and size-dependent mortality on the estimated parameters and assessment results.

2. Estimation model

The estimation model used for paua stock assessments is implemented in AD Model Builder™ and
was described by Breen et al. (2002a). The estimation model used in this study is a model upgraded
from the model used in the 2001 stock assessment (Breen et al. 2001), but was not upgraded as fully
as the 2002 stock assessment model. Thus this estimation model has several differences from that
described by Breen et al. (2002a).

First, the estimation model does not have the global standard deviation of observation error, & , that
was added to weight datasets more effectively. In the model used here, the relative weights of
datasets were adjusted through the assumed standard deviations for the CPUE and research diver

" survey indices (both were assumed to be 0.25). For the length frequencies, the relative weight could
be adjusted by multiplying each of the effective sample sizes by a constant, which was set to 1 in this
study. Thus, the effective sample sizes were the square roots of the numbers of paua in the sample, as
in the 2001 assessment.

Second, the estimation model uses different likelihood from the 2002 assessment (Breen et al., 2002)
when it fits the data sets. It uses the old likelihood, used in 2001 assessment (Breen et al., 2001). The
estimation model calculates likelihoods for the proportion-at-length fits using the robust normal
likelihood, which is calculated as:
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where the 7, is the effective sample size, ﬁs_, and p,, are predicted and observed proportion at

length s in year t, Q is the number of size bins. For the CPUE and RDSI fits, the estimation model
uses fat tail likelihood, which is calculated as:
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where the /, and I , are observed and predicted CPUE( or RDSI) index of year t, respectively and o
is the assumed standard deviation, 0.25. A normal likelihood is used to fit the tag data set,
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where the A/, and Al ; "are observed and predicted increment of jth tag-recapture data, respectively

and o ; is standard deviation of jth tag-recapture data.

Third, the model estimates auto-correlation of the recruitment deviations, a parameter dropped from
the 2002 assessment model.

Parameters estimated by the model are:

In(R0) the natural logarithm of the base annual recruitment,
M the instantaneous rate of natural mortality, assumed to be constant over time and size,



K the instantaneous rate of approach to Lo,

Lo asymptotic length,

(4 CV of the expected growth increments,

Ovan the minimum standard deviation of the expected growth increment,

Rdev a vector of recruitment deviations (in arithmetic space) modifying the actual model
recruitment in each year from 1984 onwards,

S50 the paua size at which research survey divers are 50% effective,

S95 the paua size at which research survey divers are 95% effective,

h the coefficient for the exponent of the relation between CPUE and the recruited
biomass, and

P the parameter describing auto-correlation of the recruitment deviations.

The model is fitted to five data sets: catch per unit effort (CPUE), research diver survey index (RDSI),
proportions-at-length from commercial catch sampling, proportions-at-length from research diver
surveys, and tag-recapture size data.

Paua assessments are based on the marginal posterior distributions obtained from Markov chain
Monte Carlo simulations. We did not simulate this procedure; instead we simply ran the estimation
model to minimise the objective function, producing the mode of the joint posterior distribution
(MPD) for parameters.

3. Data simulator
3.1 Overview

The data simulator is an individual-based model (IBM); it simulates the life of an individual paua
from recruitment (to the 70-80 mm size bins) to death. The life of a paua includes its growth in
length, the onset of maturity, and death by fishing or natural causes.

The simulator consists of a part that simulates data and a part that writes data. The first part simulates
lives of individual paua from specified parameters, such as the initial number of recruited animals for
each year, natural mortality rate, exploitation rates, research divers’ selectivity, variance of
observation errors and process errors. The second part generates and then writes datasets for the
estimation model, such as catch, CPUE and RDSI indices, length frequency data from research survey
and catch sampling, and the tag-recapture data.

3.2 Input

The simulator has three types of data inputs. The first type of input determines the dimensions of the
simulation and provides fixed values. These include the years when the simulation begins and ends
(1914 and 2001), the year that fishing starts (1974), minimum length and maximum length (70 and
170 mm), length at 50% and 95% maturity (91 and 105 mm), the bin width for the proportion-at-
length datasets (2 mm), and length-weight coefficients (as in Breen et al. 2001), etc. These are data
that are also specified for the estimation model, and they remain constant for all trials. The start year,
1914, was chosen to obtain equilibrium before fishing starts in 1974.

The second data type specifies the population parameters (Table 1) that will be estimated by the
estimation model. These are the parameters listed in the table in section 2. Different values were
used in different trials, and these will be shown in tables discussing the results. The standard
deviation of observation errors is specified here. A time series of exploitation rates is also specified in
this section.



The third data type specifies how much data will be produced for the estimation model. This includes
the specific years for which proportion-at-length data are produced, the number of tag-recapture data
and the maximum number of tag-recapture data in each length bin. This data section also includes the
initial random number seed (this is changed after every run so that the data generated by the simulator
is different for every run).

3.3 Mechanics

In each year the specified number of paua are recruited, one at a time. For each recruited paua, the
simulator assigns an initial length, chosen randomly from a uniform distribution between 70 and 80
mm. Then the model simulates life for this paua. For every year, it examines whether the paua has
died from natural causes; if the animal is alive the model examines whether the paua is been caught.
If the paua is not caught, it grows, and if greater than 90 mm may be tagged in a tag-recapture
experiment. The tag-recapture data are recorded here by writing the growth increment of this animal,
and its length before it grew. The time-at-liberty is assumed as 365 days. Then the model moves to
the paua’s next year, adds its length to the population length frequency for that year and does the same
step as described above (Figure 1).

If the animal is dead or caught, the simulator moves to the next recruited animal and does the same.
When the animal is caught, its length is added to the catch length frequency for that year.
3.4 Dynamics

3.4.1 Recruitment

The recruitment for each year is simulated from a base level modified by annual deviations that act
lognormally (Breen et al. 2001):

4) R,=R0 exp(Rdevy )CXP("‘ 0.50,° )

where

(5) Rdev, = \/;Rdevy_l +yl-pe,,

where R0 is the base recruitment, £, is a normally distributed random number (mean 0) for year y, o,
is the standard deviation of the £, and p determines the serial auto-correlation. The o, were set to

0.4 except for case 1, which has €, setto 0 for all years (Table 2), and p was chosen to be 0.0001

except where otherwise stated (see Table 2), to give minimal auto-correlation in recruitment. Hence
the Rdevs have the same standard deviation as €,. Recruitment in the model is calculated as a vector

from the start year to the end year.

3.4.2 Mortality

3.4.2.1 Natural mortality

For each year in the life of each paua, the natural mortality rate (fixed for all lengths and years) is
compared with m,,, a uniformly distributed random number between 0 and 1, to determine whether



the paua survives. The individual is dead from natural causes if the m,, is less than or equal to the
probability of death from natural mortality in a year:

(6) Animal is dead if m, , <1—exp(~ M)
(7) Animal is alive if m, , >1-exp(- M)

where M is the instantaneous rate of annual natural mortality.

The model is able to simulate data with a size-dependent mortality, M(1), specific to size /. To do this,
we replace the constant M with a function that calculates M for an animal with size /.

@ M ()= exp(-0.0141 —0.64),

where 0.014 and 0.64 are arbitrary constants chosen to give M= 0.20 for small (70 mm) paua and M=
0.05 for large (170 mm) pauva. This arbitrary M function is shown in Figure 2.

3.4.2.2 Fishing mortality
The simulation for fishing mortality is similar to that for the natural mortality. If the paua is at or
above the minimum legal size (MLS, 125 mm), a uniformly distributed random number between 0

and 1, c,,, is compared with the probability of being caught, which is the exploitation rate in year y.

The exploitation rates U, are specified to the simulator. If an animal is greater than or equal to 125
mm and

) if ¢, , U, : the animal is caught,
(10) ife,, >U,: the animal is not caught,

3.4.3 Growth

From the von Bertalanffy growth parameters L, and K, the expected annual growth increment for

length / is:
an  Al=(L, -1 1-exp(-K)) for I<L

and
(12) Al=0 for [>L

Then the increment is simulated as a normally distributed random variable with mean A/ and
standard deviation o, :

(13) Al =Al+8,.0, where o, =max(c,,, aAl)

where &, is the normally distributed random increment error, &, is the standard deviation of the

growth increment, o, 4, is a minimum standard deviation, 1 is assumed for this, and ais a c.v. of the
growth increment.



The model is able to simulate density-dependent growth by replacing the constant K with X, the
growth parameter K for animals recruited in year y, which is relative to the recruitment deviation,
Rdev,. A function relating K, to_Rdev, is:

(14) K, =-0.085 exp(Rdevy )exp(— 0.50’52 )+ 0.28.

The gradient (-0.085) and the intercept (0.28) were chosen to produce a X value of 0.25 when Rdev, is
one standard deviation less than the mean and 0.12 when Rdev, is one standard deviation greater than
the mean. This K function gives less growth when there are more recruited animals (Figure 3).

3.5 Output

The simulated data is written for the estimation model. There are three data files: for abundance data,
length frequency data and the tag-recapture data. The abundance data include catch, CPUE and RDSI
data; the length frequency dataset includes the research survey and the catch sample length
frequencies. The derived parameters from the simulator, such as biomass (Table 1), are written for
later comparison with results from the estimation model.

3.5.1 Length frequency data

The population length frequency data is calculated at the beginning of the year before mortality
occurs. After every calculation of length (including the first length calculation), the length / of the
individual is rounded down and added to the appropriate 2-mm bin for the length frequency for that
year. The population length frequency data matrix has columns of length bin from 70 to 168 and rows
- of year from 1914 to 2001.

At the end of the simulation, the research diver survey length frequency data are sampled from the
population length frequency data using the research divers’ selectivity:

(15) Jok =k % SIS,

where fy’ ¢ is the frequency of paua in bin £ for the research diver survey for year y, fy" . isthe

frequency of paua in bin & of the population length frequency data for year y, and SISy is the research
diver selectivity for paua in bin k. The last is a logistic curve defined by two selectivity parameters -
lengths with at 50% and 95% diver effectiveness (Breen et al. 2002).

The effective sample size of research diver survey length frequency data for each year is the square
root of the sum of the length frequencies greater than 90 mm (the estimation model ignores paua less
than 90 mm length).

The catch length frequency data are recorded if the individual is caught. Again, the length / of the
individual is rounded down and added to the appropriate 2-mm bin for the catch length frequency for
that year. The effective sample size of the catch length frequency data for each year is the square
root of the sum of the length frequencies greater than the minimum legal size, 125 mm.

For both the research diver survey and catch length frequency data, the sample size (i.e. total number
of fish in the length frequency data within a year) was not specified for the simulation. With the
recruitment values specified, the length frequency sample sizes were comparable to the actual dataset
sizes, without the need for a re-sampling process.



3.5.2 Biomass

The biomass for each year is calculated as the sum of the product of the length frequency and weight
at each length. The weight, wy of an individual in length class /; can be calculated as in Schiel &
Breen (1991):

(16) w, =2.59x107%1 %,

Then the recruited biomass is the sum of these weights of legal-sized paua:

W) B, =2 fiw
k
and similarly the spawning biomass is the sum of the weight of mature paua

(18) Sy=nyfk dyw; -
x

The maturity, di is calculated from the constants Mat50 and Mar95, which the lengths at 50% and
95% maturity respectively:

1

1+exp| —In(19)x Jy — Mat30
Mat95 — Mat50

(19 dy =

3.5.3 Population catch series, CPUE and RDSI data

The input to the simulator specifies the series of annual exploitation rates, U,. The simulator
calculates biomass as described above, so catch is calculated as:

(20) c,=U,B,.

This is an estimated catch, because the biomass is estimated in the simulation with some sampling
error. In the real world, catch is also estimated with observation error, so this was thought to be
realistic.

The CPUE index is based on the abundance of paua greater than the MLS and is calculated from the
population length frequency data matrix and some observation error. CPUE in year y is calculated as

21 CPUE y = (Byy' exp(5 y,cPUEO cPUE 0.5 (GCPUE )2)

where &, py; is @ normally distributed random number (mean 0, standard deviation of 1) and O'¢cpyz

is the specified standard deviation of the observation error. The power % is 1 for most runs (see
below) which specifies a linear relationship between CPUE and recruited biomass.

The RDSI is based on the number of paua sampled from the population by research survey divers:
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22) RDSI, = 2, expl6, apsiTross —0-5(0 a0 )
k

where &, ppg is a normally distributed random number (mean 0, standard deviation of 1) and & gy
is the specified standard deviation of the observation error.

3.5.4 Tag-recapture data

The tagging simulation is done for animals greater than 90mm of length. The model checks to see
whether the paua has been recaptured in earlier years, whether the paua’s length-class has been filled
with enough tagged animals and whether the specified total number of recaptures has been filled. The
increment of the recaptured animal is recorded by subtracting the length in a year before from the
length at the time of recapturing. The days at liberty are recorded as 365 assuming there is no leap
year.

In the data input to the simulator, the total number of tagged animals and the number of tagged
animals in each length class is given. The smaller length-classes are filled first.

4, Study designs

A simple shell program runs the simulator and then the estimation model, and repeats this loop 100
times for each run in this study. At the end of every loop, the simulator writes an output file of seeds
that will be used by the simulator in the next loop. Estimates from the estimation model are collated
for comparison with the parameter file from the simulator.

Most runs of the estimation model converged to an apparently reasonable parameter set.
Occasionally, the estimation would not converge - this was apparent from the estimated M hitting the
upper bound of 0.50 or the lower bound of 0.01 - and such runs were discarded. Their frequency
ranged among sets of runs from 0-4%.

4.1 Cases

The general data and parameter of inputs for the simulator were changed so that we could compare
two extremes. The first extreme (Table 2, case 1) used exploitation rates that ascend for the first half
of the series from 1974 then descend for the last half. This case has neither recruitment deviations nor
errors for the CPUE and RDSI datasets, and the simulator produced 10 000 tag-recaptures, with a
maximum of 250 data from each initial length greater than 90mm. Both abundance indices and length
frequency data were produced for all years from 1974.

The second extreme case (case 2 in Table 2) used continuously descending exploitation rate from
1974. This case used recruitment deviations with a CV of 0.4 in log space and observation errors on
both CPUE and RDSI dataset with CVs of 0.25. The tag-recapture dataset size was more realistic and
similar to the PAU7 stock assessment in 2001: 713 data with maximum of 13 data from each initial
length greater than 90mm. The commercial catch sampling and research survey diver length
frequency datasets were similar to those in the 2001 assessment, with eight years of catch sampling
data, (from 1990-94 and 1999-2001) and five years of research diver survey data (from 1990, 1993,
1996, 1999 and 2001). We used indices from all years from 1974 for both indices.

More experiments were done on case 2 with some other options. First, we examined the effect of
having h different from 1. By fixing h = 0.5 in the simulator, we compared the result from the
estimation model: in case 3, we estimated h in the estimation and in case 4 we fixed h to 1 in the
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estimation model. When we simulated data for cases 3 and 4 we used other inputs as for case 2
except for the h.

Second, in case 2, the auto-correlation parameter p in the simulator and the estimation model was
fixed as 0.0001 (no auto-correlation). In cases 5 and 6 we examined estimation of p when there was
serial auto-correlation. For cases 5 and 6, we fixed p= 0.5 in the simulator to give autocorrelation in
the recruitment deviations. In case 5, we estimated p in the estimation model and in case 6 we fixed p
as 0.0001. The same parameter values and data inputs were used as in case 2 except for the p.

Third, density-dependent growth was simulated in case 7, and size-dependent mortality was simulated
in case 8. The estimation model was not changed; it assumes no density- or size-dependence.

Because there were big differences between case 1 and case 2, we increased the number of tag-
recapture data to 2500 from 713 in case 9 to examine whether the number of tagging data has any
influence on the degrees of variability and precision of the estimates. We also examined the effect of
increasing the years of length frequency data in case 10 by adding 8 sample years to the commercial
catch sampling data: 1974, 1976, 1978, 1980, 1982, 1984 and 1988, and 10 years to the research diver
survey length frequency data: 1970, 1972, 1974, 1976, 1978, 1980, 1982, 1984 and 1988.

4.2 Comparison method

Two performance measures were used to compare the results from the simulator and estimation
model. These are based on the average (PB) and the standard deviation (CI2) of the ratio of
difference between the estimated valued and the simulated values to the simulated values of each run.
They are calculated as:

i

> E,

(23) . PB(#)=100x—— and
n
2
2
2(E) -t
(24) CI2(8)=100x |- .
n
EST SIM
where E,.=ﬂ—"ﬂf;Mé'—.

The ,B,.m is the ith value of parameter £ from the estimation model, 3™ is the ith value of

parameter £ from the simulator, and # is the number of runs used in each case (usually 100).

Then, the standard errors for PB and CI2 can be calculated to show the significance of the
performance measures (Sukhatme & Sukhatme 1970):

(25) s.e(PB)~ %

n

(26) s.e.(CI 2) & E\/I;z— ,

2n
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where 7 is the number of runs used in each case (usually 100).

5 Results ) -
5.1 Case 1

Most parameters were estimated very well (Table 4). The minimum observed standard deviation,
O, Was slightly underestimated (mean of 0.89 vs the real value of 1.0, giving a bias of -10%).

Most biomass estimates were very slight over-estimates; the extreme was S,.;, where the bias was
2.31%. Sy was overestimated by 1.87%; all the other parameter estimates had bias of less than 1%.
The distributions of biomass (Figure 4) are very similar between 100 runs of simulator and estimation
model.

The CI2 indicator reflects the distribution of the differences between individual runs from the
simulator and the estimation model. The largest was ciqy, which showed an average deviation of
7.4% from the true value. The next largest were U, By; and Bo,/B.y, all near 5% all others were 3%
or less.

Figure S shows the fit to the CPUE index, RDSI, and growth increment data, and Figure 6 shows the
fit to the proportions-at-length from catch sampling and research diver surveys. These fits are almost
perfect for the CPUE and RDSI, and very good for the growth increment data. Standardised residuals
from both CPUE (Figure 5B) and RDSI (Figure 5D) were small and the standardised residuals for tag-
recapture data (Figure 5F) lie between —4.0 and 4.0. There are no observed data greater than 140 mm
length for the tag-recapture data (Figure 5E), but the fit is good. Figure 7 shows that the standardised
residuals from proportions-at-length from the commercial catch sample and the research diver survey
are small (between —-0.06 and 0.08) and there are no signs of pattern. Figure 8 shows the distributions
of standardised residuals from proportions-at-length and the tag-recapture data. The distributions for
proportions-at-length are very narrow, but all residuals are distributed with a mean near zero.

Figure 9A shows the exploitation rate from the simulator and the estimation model. Both exploitation
rates are similar in shape, increasing for the first decade then decreasing for the next decade. The
estimation model over-estimated exploitation rate at the end of the simulated period. Figure 9B
shows the recruitment from the simulator and the estimation model. The simulated recruitment was
constant, and estimated recruitments were constant at very close to the simulated level.

5.2 Case 2

One extreme run from the estimation model was taken out because it hit the upper bounds for M and
S951S and had very high /n(R0) (11.3), giving very high biomass. This run was probably not
converged properly. This run had a large influence on calculation of the PB, which uses the average
value of percentage difference from 100 runs. The comparison indicators (Table 5) were calculated
after this extreme run was taken out.

Most parameters were estimated well (Table 5) although some are slightly overestimated. M was
over-estimated by about 10% (from 0.13 to 0.14) and this was accompanied by an over-estimate in
recruitment. Most biomasses and biomass indicators were slightly overestimated except for the virgin
recruited biomass (B0), but bias was small (less than 4% except for S, ).

Distributions of biomasses are similar between the simulator and estimation models (Figure 10).

The comparison indices CI2 show more variability than in case 1. Most have CI2 about 3 to 10 times
bigger than in case 1; most lie in the range 3-17%.
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Figure 11 shows the fit to the CPUE index, RDS index and growth increment data; Figure 12 shows
fits to the proportions-at-length. Generally, the fits are good despite the high observation error on the
abundance indices. Standardised residuals for CPUE (Figure 11B) and RDS indices (Figure 11D) are
between —3 and 3, and the standardised residuals for tagging data (Figure 11F) lie between —4 and 4.
There are no observed data greater than 150 mm length for the tagging data (Figure 11E), but the fit is
good. The residuals of proportions-at-length (Figure 13) show no signs of pattern. F igure 14 shows
the distributions of residuals, all of which have means around zero.

Figure 15A shows the exploitation rate from the simulator and the estimation model from one run.
Both exploitation rates have roughly similar shape, declining over time, but in this run the estimated
trajectory is under-estimated for part of the period. Figure 15B shows the recruitment from the
simulator and the estimation model. Estimated recruitment is smoother than the simulated
recruitment, which has lots of spikes, but the estimation model follows the trends of the recruitment
from the simulator.

5.3 Experiments based on Case 2
5.3.1 Cases 3 and 4: non-linear CPUE index

The same simulated data, with #= 0.5, were used for Cases 3 and 4. In Case 3, the estimation model
estimated / and in Case 4 the estimation model had # fixed to 1.0. Two runs from Case 3 and one run
from Case 4 showed high M, In(R0), and S50IS from the estimation model, and were eliminated
because of probable convergence failure.

Most parameters in case 3 were estimated well (Table 6) although some were slightly overestimated.
The S95IS hit the upper bound for some runs and slightly overestimated. The S50IS was also slightly
overestimated but never hit the upper bound in any of 100 runs. The median of # was 0.56, which is
close to the set value, 0.5. But the 90% range of the 100 runs showed that estimated 4 is highly
variable, ranging from 0.34 to 0.78 (Table 6).

Bias was present for recruitment M, L, o, h, S50IS, S95IS, Sy;, SO, Sres; and By, and higher bias was

present for M, h, So;, Sres, and B,p, but all bias were less than 11% (Table 6). Spawning biomass was
less well estimated than recruited biomass.

The CI2 indicators show that Case 3 has more variability, especially for biomass ratios, than Case 2.

In case 4, the parameters In(R0), M, S50IS and S951S were slightly overestimated, but the growth
parameters L and K were estimated with little bias.. The S95IS hit the upper bound for some runs as
it did for Case 3 (Table 7).

Biomasses were slightly overestimated except for the virgin recruited biomass (B0), but medians of
the simulated value are all in the 90% range of the estimated value. The B0 were underestimated in
both case 2 and case 3. ‘The ratios of biomass were larger in the estimation model if they used the
virgin biomass (B0 or S0) and smaller if they used the average biomass (B or S, (Table 7).

The PB was high for M (12.18%) but the real difference was not large (0.13 vs 0.14) (Table 7). For
other parameters, the PB was generally less than 15%. The PB for 4 is not shown because the
simulator used 0.5 but the estimation model was fixed at 1. The PB for the biomasses in the current
year and reference year was higher than the parameters and the virgin biomass. The PB of biomass
indicators in case 4 was always higher than in case 3 except for the S0.
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The CI2 shows that Case 4 has similar variability of distribution of differences for most parameters
and biomass indicators to Case 3.

5.3.2 Cases 5 and 6: serial auto-éorrelation factor in recruitment

The same simulated data, with p = 0.5, were used for Cases 5 and 6. In Case 5, the estimation model
estimated p and in Case 6 the estimation model had p fixed to 0.0001, a value giving no

autocorrelation. Four runs from Case 6, including two from Case 5, showed high M, In(R0), and
S50IS from the estimation model, and were eliminated because of probable convergence failure.

Most parameters in Case 5 were estimated well (Table 8) although some were slightly overestimated.
The S95IS hit the upper bound for some runs and was slightly overestimated. The median of p was

0.38, which is lower than the fixed value, 0.5, and the 90% range of the 100 runs showed that o is
mostly underestimated, ranging from 0.23 to 0.57.

Biomass as slightly overestimated except for the virgin recruited biomass (B0) and the current
recruited biomass (By;). The ratios of biomass are similar for those using the virgin biomass (Table 8)
but those using the average biomass were under-estimated in the estimation model. The PB was less
than 7% except for p (22.8%). Although PB of M is high (6.4%), the value is not significantly

different from zero. S, had the highest PB, over 5%.

Biomass was similar between 100 runs of simulator and estimation model. The indicator CI2 shows
that Case 5 has a similar degree of precision for most parameters and biomass indicators to those in

Case 2. The parameters In(R0), M, gy and ratios of current to virgin biomass have twice-higher CI2
than in Case 2.

In Case 6, parameters were estimated well (Table 9) although selectivity parameters for the research
diving survey were slightly overestimated. The S95IS hits the upper bound for some runs. The virgin
and current spawning biomasses were overestimated while the virgin and current recruited biomasses
were underestimated. The reference biomasses were estimated well. The ratios of biomass are
similar for those using the virgin biomass (Table 9) but those using the average biomass were lower in
the estimation model as for Case 5. The precision was slightly higher than in Case 5.

The PB was always less than 10% for the parameters, biomass and the ratios. M and S,.had the
highest PB, over 5%. Bias tended to be slightly higher in Case 6.

5.3.3 Case 7: density-dependent growth

All 100 runs appeared to have converged. Most parameters in Case 7 (Table 10) were estimated very
well. S95IS hit the upper bound for some runs but was estimated reasonably well. The median of X
was 0.2, which is similar to the average value set in the simulator. Although the estimation model
used constant K over the time, other parameters were estimated reasonably well.

Biomasses were slightly underestimated, but were similar to the values from the simulator. The ratios
of biomass from the estimation model are similar to those from the simulator (Table 10).

The PB shows that there is almost no bias, except for the M, &, 7,4, , and S95IS. The PB is generally
under 10% for the parameters, biomass and the ratios. Mand 0,4, had higher bias than other

parameters (more than 6%). The large PB of o,,, means that the growth parameters are not
estimated very well.,
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The CI2 show that Case 7 has less precision than in Case 2 except for the ratio between the current
spawning biomass and the spawning biomass in reference years. The CI2 is especially higher for the

biomasses in the reference years and in the current year and it is 5 times higher for L .

5.3.4. Case 8: size-dependent mortality

Thirteen runs from Case 8 showed high M, In(R0), and S50IS from the estimation model, and were
eliminated because of probable convergence failure.

Most parameters in case 8 were estimated well (Table 11). S95IS hit the upper bound for some runs
but was estimated reasonably well. The median of M was 0.07 from the estimation model; the value
in the simulator depends on the size structure. Although the estimation model used constant A for all
sizes, other parameters were estimated reasonably well.

All biomasses except for virgin biomasses were slightly underestimated but were similar to the values
from the simulator. Both spawning and recruited virgin biomasses were slightly overestimated. The
ratios of biomass from the estimation model are very similar to those from the simulator (Table 11).

The PB is generally under 10% for the parameters, biomass and the ratios. All parameters were
slightly biased. The minimum standard deviation of the growth increment error, &, , had very high

PB (about 20%), but the median ¢4, was similar to the real value (1.0 vs 0.99). The large PB of
0,4y Was influenced by the extremely low estimates (0.15 for the 5% tail, Table 11).

The CI2 show that Case 8 has less precision than Case 2 except for L_ . The CI2 is especially higher
for the recruited biomass in the reference years and it is 5 times as high as in Case 2.

5.3.5. Case 9: more tag-recapture data

Two runs from Case 9 showed high M, In(R0), and S50IS from the estimation model, and were
eliminated because of probable convergence failure.

Results from this case were generally similar to those from Case 2 (Table 12). The precision (CI2) of
estimated growth parameters improved except for o, , where they deteriorated to some extent. But
the PB of X shows that X is underestimated with 0.42% of bias despite the fact the K was not a biased

estimate in Case 2. Precision but not bias of some biomass estimates and ratios became slightly worse
with more tag-recapture data. Overall, there was relatively little difference.

5.3.6. Case 10: more length frequency data

One run from Case 10 showed low M from the estimation model, and was eliminated because of
probable convergence failure. Results from this case were generally similar to those from Case 2.
Bias generally improved slightly over Case 2, but increased for current exploitation rate and Sy,
biomass ratios. The CI2 indicator improved for M, o,,, and the selectivity parameters but got

worse for Sp;/S0 and By,/BO0.
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5.4. Comparison of PB and CIi2 of ratios by cases

Figure 16 and Figure 17 shows the PB and CI2 comparison indicators for four biomass ratios:
S01/Srefs S01/S0, Boi/Bres, and Bp;/B0:. Generally case 1 has least PB and CI2 for all four ratios,
and other cases have less bias and precision compared to Case 1. For ratios of current
biomass to virgin biomass, Case 2 has lower CI2 than cases 3 to 8. CI2 is higher in cases
with mis-specified parameters (Cases 4 and 6) than in cases with estimated parameters (Cases
3 and 5). Less PB is shown in ratios with the reference biomass for most cases, but for Cases
5 and 6, the bias of Sp;/Syis worse than the bias of Sp;/S0. Ratios involving recruited
biomass have less bias than those with spawning biomass. When parameters 4 and p were
mis-specified (Cases 4 and 6), bias was sometimes, not always, higher than when they were
estimated (Cases 3 and case 5). When the growth is density dependent (Case 7), bias was
small for all ratios compared to other cases, but CI2 was large.

6. Discussion

The individual-based model for paua examined whether the paua stock assessment model is biased or
not, and examined the expected degree of precision of estimation. Case 1 was a deliberately extreme
case, without observation error or recruitment deviations and with large amounts of tagging data. It
was designed to reveal coding errors, because the estimation model should have been able to make
accurate and precise estimates from this dataset. High and accuracy and precision (Table 4) suggest
(but do not prove) that the estimation model is correctly coded.

The case with much fewer data, Case 2, suggests that the model’s accuracy and precision are good,
even when observation error is substantial and data are limited.

The tag-recapture data appear to be very important. Because the estimation model depends heavily on
tagging data to estimate the growth parameters - L_, K, &, and oy, it is important to have observed

increments from the whole range of length in the tagging data, and especially lengths close to L .

When too few large paua are tagged, as in Case 1, cygy is biased. Increasing the number of tagging
data, as in Case 9, has almost no effect on the precision or bias in the estimation.

Spawning and recruited biomass were slightly overestimated in most cases. Recruited and spawning
biomass indicators appeared to be generally similar to each other in quality. The reference biomass
indicators tended to be slightly more precise than the virgin biomass indicators.

Precision of the estimates was slightly lower in these trials than the Bayesian results from the 2001
assessment (Breen et al. 2001) suggested. For instance, the 90% range of By,/B,s was 90-208% in
Case 2 (Table 5), but only 37-60% in the PAU 7 assessment. The assumed observation error used for
the simulator may have been higher than the real observation error in the assessment data. Further, in
this study we compared the results from 100 point-estimate fits to 100 different data sets; whereas in
the real assessment we use millions of Markov chain - Monte Carlo simulations based on one data set.

When simulated recruitments varied each year, the estimation model appeared to follow the trends but
could not follow the fine-scale of recruitment variation (Figure 15B). This arises from the stochastic
growth model - a strong year-class is “mushed out” as it grows, so that it appears as a series of several
good year-classes when the paua appear in the proportions-at-length data. The estimation model will
probably always under-estimate recruitment variability.

When recruitment variability contained auto-correlation (Cases 5 and 6), the estimation model did
poorly at estimating p(Table 8). When the estimation was mis-specified with respect to this
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parameter, bias and precision deteriorated slightly, but there was no substantial change in the
assessment results.

The standardised residuals (Figures 11 and 14) show different scales for different datasets. The
proportion-at-age residuals are very small, while those from the tag-recapture data are between -4 and
4. This reflects the different arbitrary weights given to the different datasets in this study. The new
procedure of Breen et al. (2002a) uses iterative re-weighting to balance the residuals from all datasets,
which avoids this problem and probably reflects true uncertainty more reasonably.

When we simulated non-linear CPUE, using the exponent A, this constant was estimated without
much bias, but with little precision: the range was 0.34 to 0.78 when the true value was 0.50. When
the model is mis-specified with respect to this parameter (we fixed 4 to 1 in the estimation model
when the simulated value was 0.50; Case 4), there was little real deterioration of the assessment
results.

We also mis-specified the model by simulating data with different assumptions: we used density-
dependent K and the size-dependent M. In these runs, precision and bias were both somewhat worse
than compared with Case 2, but the differences were not dramatic.

In many cases in this study, some runs showed probable convergence problems, whose symptoms
were very high M values. In a real assessment, these would probably disappear when the model was
given different starting values for parameters, allowing the model to converge.

Generally the stock assessment model performed well and the stock assessment indicators were
reliable. The model performs best when there is no mis-specification, but performs adequately even
when mis-specified. In most trials, precision was the major concern, and bias was a relatively minor
problem.

The estimation model used in this study is not the current paua assessment model. The assessment
model used in 2002 (Breen et al. 2002a) stock assessment could show different results, principally
because the relative dataset weighting has been made more defensible; we might have less variation
and bias if we used the new model.
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Table 1. Model parameters specified for the simulator (above the line) and derived parameters (below the

line).

In(R0) log of the base number of recruited animals

Rdev a vector of recruitment deviations modifying the actual model recruitment in each year

P a parameter determining serial auto-correlation used in Rdev calculation

h the exponent of the relation between CPUE and the recruited biomass

M the instantaneous rate of natural mortality, assumed to be constant over time and paua
sizes

L, the asymptotic length

K the instantaneous rate of approach to L_ over a year

a the CV of the growth increment error

Cran the minimum standard deviation of the growth increment error

o, standard deviation of the recruitment residuals in log space

S50IS the paua size at which research divers are 50% effective

S951S the paua size at which research divers are 95% effective

U, the exploitation rate for year y

B0 the virgin recruited biomass, Bz,

S0 the virgin spawning biomass, S;g74

By, the current recruited biomass, Bjgg;

Soi the current spawning biomass, Sgg;

B,y the average recruited biomass over Bjggs-Bjgs7

Shrer the average spawning biomass over S;gg5-S;9s7

Table 2. Description of cases.

Simulator Estimation
model
Cases observation error data others
1 No error As many as possible =0
2 With relevant CVs far fewer data £ estimated
3 As in case 2 Asincase 2 h=0.5 estimated A
4 As in case 2 As in case 2 h=05 k=1
5 Asin case 2 As in case 2 p=0.5 Estimated ©
6 As in case 2 As in case 2 p=0.5 £ =0.0001
7 As in case 2 As in case 2 density-dependent
growth
8 As in case 2 As in case 2 size-dependent
mortality
9 As in case 2 As in case 2, but more tag- As in case 2
recaptured data
10 As in case 2 As in case 2, but more length - As in case 2

frequency data
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Table 3. Parameters estimated in the model, their bounds and prior distributions. LB: lower bound; UB:
upper bound; prior types: U, uniform; N, normal; L, lognormal. For definitions of parameters see Table
1. Initial values in bold indicate a parameter held fixed in Case 2, also indicated by the negative value for
estimation phase. Dash indicates not applicable.

Paraneters
RO

+ €y is fixed at 0 for case 1.

Phase

LB
5
0.01

100
0.01
70
70

-2.3

0.00001

0

0
0

UB
50
0.5

250
0.8
125
125

23

0.99

1

10
2

Prior

cCC CccZ cocca cc

Mean

Ccv

Initial values

7
0.13

155.95
0.2
99.1

116.35

0
0.0001
04
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Table 4. Summary of parameter values from 100 runs of the simulator and the estimation model for Case
1, the comparison indices (CI2) and percentage of bias (PB). Negative PB indicates parameter has been
underestimated in the estimation model.

Estimation

Simulator . model Tests
0.05 median 0.95 0.05 median 0.95 PB (%) CI2 (%)
In(R0), 7.0 6.96 7.00 7.03 0.01 0.3
MI 0.13 0.13 0.13 0.13 0.13 1.9
K 0.2 0.19 0.20 0.20 -0.96* 1.0
L, 155.95 155.25 155.78 156.20) -0.12* 02
a 0.40 0.40 0.40 0.41 1.04* 0.8
O vy 1 0.78 0.89 1.00 -10.83* 7.4
S50IS 99.1 99.41 99.74 100.08 0.65* 0.2
S95IS 116.35 116.53 117.39 118.25 0.85* 0.4
Uy 047 0.43 047 0.51 -0.21 5.1
Sor 694.2 711.5 728.4 698.9 7244 749. 1.87* 2.6
By; 2727 286.5 299.3 268.9 285.9 305. 0.47 5.1
S0 21174 2148.7 2180.9 21199 2166.0 2207. 0.70* 1.0
B 1689.8 1725.0 1758.5 1676.5 1725.8 1770.1 0.05 1.3
S, 653.9 668.1 682.1 665.1 683.0 702. 231* 1.7
B,. 234.1 243.1 251.0 234.6 244.2 256. 1.00* 3.1
So/S 0.32 0.33 0.3 0.32 0.33 0.35 1.16* 2.5
B,/B 0.16 0.17 0.1 0.16 0.17 0.1 041 4.8
So/S:., 1.03 1.06 1.1 1.04. 1.06 1.0 -0.41 2.9
Byy/B,. 1.11 1.18 1.2 1.10 1.16 1.2 -0.41 6.3

Table S. Summary of parameter values from 99 runs of the simulator and the estimation model for Case

2, the comparison indices (CI2) and percentage of bias (PB).
Estimation
Simulator model Tests
0.05 median 0.95 0.05 median 0.95 PB (%) CI2 (%)
In(RO) 7.0 6.79 17.16 7.52 2.15* 29
0.13 0.11 0.14 0.18 10.94* 16.7
K 0.2 0.19 0.20 0.21 -0.01 34
L, 155.95 154.17 15542  156.45 -0.35* 0.5
o 0.40 038 041 0.43 1.32* 3.2
O rav 1 0.60 1.03 1.21 -0.28 19.9
S50IS 99.1 98.05 10042 103.13 1.30* 1.5
S95LS) 116.35 112.69 118.66  125.00] 1.69* 33
Up; 0.35 027 035 0.46 0.76 16.0
So 664.9 801.6 1049.1 647.0 8312 1128.6 3.46* 16.3
B, 281.0 370.7 478. 266.0 379.7 522.7 1.74 16.2
S 18703 21469 2452, 1891.0 2168.0 2515.84 . 1.53* 32
B 1437.8 17292  1978.0 1408.8 1683.9 2074.1 -1.75* 6.9
S, 557.2 690.8 915.0 5624 7341 10442 5.78* 6.2
B, 214.8 264.7 377.5 1952 2719 399.2 0.31 i1.6
So/S 0.28 0.38 0.51 027 038 0.52 1.83 15.0
B,/B 0.15 0.22 0.31 0.14 022 0.33 3.92% 17.1
So/S;, 0.79 1.20 1.60 0.83 1.14 1.SA| -2.22 14.0
B,/B,, 0.90 1.36 2.02] 0.90 1.37 2.08, 244 18.4
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Table 6. Summary of parameter values from 97 runs of the simulator and the estimation model for Case
3, non linear CPUE, #=0.5 in the simulator, estimating / in the estimation model, the comparison indices
(CI2) and percentage of bias (PB).

Estimation

Simulator model Tests
0.05 median 0.95 0.05 median 095 PB (%) CI2 (%)
In(RO) 7.0 676 17.12 7.51 1.87* 3.4
M 0.13 0.10 0.14 0.19 8.78* 19.5
K 0.2 0.19 0.20 0.21 -0.45 2.8
L, 155.95 15429 155.51 156.34 -031* 04
a 0.40 038 041 0.43 1.56* 34
Oran 1 049 1.07 1.21 -0.05 24.0
S50IS 99.1 98.16 100.00 103.32 1.24* 1.6
S951S 116.35 112.19 118.20  125.00 1.57* 33
Us; 0.35 026 034 0.46 -0.40 18.0
AY) 611.5 753.4 1026.9 598.6 8069 1118.9 6.03* 18.8
B, 273.2 356.5 476 4] 2644 368.7 498.3 3.74 19.2
S 1909.4 21425  2529.1 1965.0 2186.1 2503.4 2.71% 5.2
B 1523.3 17364  2011.9 14232 16953  2047.4] -1.10 9.1
S,. 543.8 692.9 897.1 546.8 740.2 990.2 6.28* 7.5
B,, 206.2 270.2 371.0 192.0 276.8 401.5 3.89* 13.0
So/S 0.28 0.35 0.50 027 037 0.54] 3.44 18.4
By/B 0.15 0.20 0.28 0.14 0.21 0.34 6.02* 22.8
So/S;. 0.79 1.10 1.50 0.84 1.09 1.47 -0.42 14.9
By/B,., 0.92 1.31 1.85! 093 127 1.82 1.10 214
h 0.50 0.34 0.56 0.78 10.83* 26.7

Table 7. Summary of parameter values from 97 runs of the simulator and the estimation model for Case
4, the same data as in Case 3 but fixed 4 (= 1) in the estimation model, the comparison indices (CI2) and

percentage of bias (PB). -
Estimation
Simulator model Tests
0.05  median 0.95 0.05 median 095 PB (%) CI2 (%)
In(R0O) 7.0 681 7.19 7.55 2.57* 33
0.13 0.11 0.14 0.19 12.18* 18.5
K 0.2 0.19  0.20 0.21 -0.50 2.9
Leo 155.95 15426 155.48 156.33 -0.33* 04
ad 0.40 038 041 0.43 1.61* 3.5
Oran 1 054 1.06 1.2 0.23 23.6
S50IS) 99.1 98.16 100.40 103.2 1.40* 1.5
S95IS) 116.35 11251 118.61 125.0 1.77* 3.1
Uy; 0.35 024 032 04 -4.58* 17.3
Soi 611.5 7534 1026.9 635.1 857.1 1162.5 11.43* 19.3
By 273.2 356.5 476. 282.7 391.0 525.3 8.26* 19.9
S 19094 21425 2529.1 2010.6 21834  2463. 2.44* 3.8
B 15233 17364  2011.9 14440 1686.8  2047. -2.54* 5.7
S, 543.8 692.9 897.1 580.3 7589 1018. 10.33* 7.6
B, 206.2 270.2 371.04 2324 300.7 417.3 13.89* 13.0
So/S 0.28 0.35 0.50] 028 0.39 0.55 8.72* 18.0
By/B 0.15 0.20 0.28 0.15 0.23 0.33 11.63* 223
So/S,. 0.79 1.10 1.50 0.86 1.12 1.4 0.82 14.8
ByW/B,. 0.92 1.31 1.85 0.95 1.23 1.63 -4,07* 19.0
h 0.50 1.00 - -
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Table 8. Summary of parameter values from 96 runs of the simulator and the estimation model for Case
5, auto-correlated recruitment deviations (o= 0.5) in the simulator and estlmated pin the estimation
model, the comparison index (CI2) and percentage of bias (PB).

Estimation

Simulator model Tests
0.05 median 0.95 0.05 median 0.95 PB (%) CI2 (%)
In(RO) 7.0 647  7.00 7.73 0.69 5.7
M 0.13 0.09 0.14 0.22) 6.39 32.8
K 0.2 0.19  0.20 0.21 -0.48 3.0
L, 155.95 15433 155.50  156.85 -0.27* 0.5
! 0.40 039 041 0.43 1.46* 33
O ran 1 020 1.05 1.28 -1.69 27.7
S50IS] 99.1 9740 99.68  103.89 1.03* 2.1
S9SIS| 116.35 111.59 117.44  125.00 1.44* 3.7
U, 0.35 0.28 0.36 0.49 4.82* 18.7
Sl 4849 7201 11969 4892 7224  1143.7 0.32 19.6
Byl 2190 3427  553.0 206.5 3413  540. -1.53 17.8
SO 16575 21154  2954.6 1745.1 2173.0  2888.5 2.43% 5.5
B 13084 17106 24403 1241.8 1673.1  2505. -1.03 10.1
S, 4270  661.9  1140.7 3963 6603  1374. 5.04*% 11.5
B,, 150.6  259.4  469.3 149.7 2606  531. 0.84 10.8
Soi/S 0.21 0.36 0.63 020 0.33 0.5 222 172
B,/B 0.12 0.20 0.35 0.10 0.19 0.4 0.58 21.3
So/S;. 0.59 1.12 221 055 1.06 1.81 4.42% 15.6
Bo/B,, 0.68 1.35 2.64 067 130 25 2.11 15.8
0.50 023 038 0.5 22.77* 23.6

Table 9. Summary of parameter values from 96 runs of the simulator and the estimation model for Case

6, the same data as Case 5, but fixed p (= 0.0001) in the estimation model, the comparison indices (CI2)

and percentage of bias (PB).

Estimation

- [Simulator model Tests
0.05 median 0.95 0.05 median 0.95 PB (%) CI2 (%)
zn(thzl 7.0 647  7.02 7.87 1.29* 6.3
0.13 008 0.14 0.23 9.50* 36.4
K 0.2 0.19  0.20 0.21 -0.45 3.0
L, 155.95 154.34 15548  156.86) -0.26* 0.5
9 0.40 039 041 0.43 1.43* 33
Oran 1 020 1.05 1.29 2.40 28.0
S5018 99.1 96.87 99.84  104.39 1.27* 23
S95IS 116.35 110.50 118.16  125.00) 1.72* 4.0
Uy, 0.35 027 035 0.50! 4.01 20.2
Sol 4849 7201 1196.9 496.0 755.0 1192.6 3.21 23.7
Byl 2190 3427  553.0 2146 3347 5229 -0.10 20.2
S 16575 21154  2954.6) 1777.1 21762  2906.4 3.26* 6.6
BO{ 13084 1710.6 24403 1231.0 16500  2505.6) -1.17 10.7
S.{ 4270 6619  1140.7 395.8 667.7 1413.5 6.35% 13.3
B.4 150.6 2594  469.3 1528 259.8  519.8 1.61 12.3
S,/S0 0.21 0.36 0.63 021 035 0.57 -0.39 19.9
B,/B0 0.12 0.20 0.35 0.11 020 0.38 2.28 24.1
So1/Sref 0.59 1.12 221 062 1.07 1.72 -3.03 17.6
Bo/B,f 0.68 1.35 2.64| 074 129 2.40 -1.35 17.8
A 0.50 0.0001 - -




Table 10. Summary of parameter values from 100 runs of the simulator and the estimation model for
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Case 7 (K from the simulator is fixed and density dependent, hence cannot be directly compared with the

K from the estimation model), the compariso

n indices (CI2) and percentage of bias (PB).

Estimation

Simulator model Tests
0.05 median 0.95 0.05 median 0.95] PB (%) CI2 (%)
in(RO) 7.0 6.71 7.01 7.49 0.56 35
A'J 0.13 0.11 0.14 0.17 6.81* 14.2
K - 0.12 0.20 0.24 - -
L, 155.95 152.26 155.66 164.63 0.34 2.6
o 0.40 0.38 041 0.43 1.43* 37
O van 1 065 1.10 1.39 6.79* 25.5
S50I8 99.1 96.18 99.45 104.62 0.65* 2.7
RYATAN 116.35 107.09 115.90 125.00 0.22 55
Uy 0.35 0.24 0.35 0.50 2.83 23.8
Sod 636.2 763.6 921.0 5574 7514 1053.0, 1.95 25.5
By 223.8 328.5 4222 243.8 3145 444.6 2.67 253
S0 1853.3 1991.7 2184.4 1769.1 1976.2  2298.2 0.10 8.7
B0 13344 1563.3 1739.4 13443 1523.8 1784.0 -0.89 8.5
Sief 529.9 660.9 835.6) 4544 654.8 1019.9 3.54 273
B, 189.4 2452 3203 1649 243.0 3454 -0.46 17.8
Sp/S 0.31 0.39 0.46) 0.29 0.38 0.49| 1.04 17.8
By/B 0.15 0.21 0.28} 0.16 0.21 0.30 3.79 24.5
So/S;. 0.87 1.16 1.53 0.84 1.13 1.49 -0.38 14.6
B,v/B,, 0.87 . 1.39 1.81 0.90 1.32 1.98] 425 22.6

Table 11. Summary of parameter values from 87 runs of the simulator and the estimation model for Case
8 (M in simulator is size dependent and fixed, hence cannot be compared directly with M from the

estimation model), the comparison indices (CI2) and percentage of bias (PB).

Estimation

Simulator model Tests
0.05 median 0.95 0.05 median 0.95 PB (%) CI2 (%)
In(Rﬂ 7.0 601  6.68 6.89 -4.92* 3.0
- 0.03 0.07 0.09 -- -
K 0.2 0.19 0.20 0.21 -0.74* 3.5
L, 155.95 154.24 155.63 156.67 -0.24* 0.5
q 0.40 0.39 0.41 0.44 2.31* 39
Orav 1 0.15 099 121  -19.08* 39.2
S501S) 99.1 9543 97.69 100.82 -1.37* 1.5
S95L. 116.35 105.49 113.33 120.63 -2.53* 3.6
UJ 0.35 0.28 0.36 0.51 5.50* 18.6
So] 605.3 - 762.0 1020.7 489.0 732.8 1005.4 -5.64* 15.7
B, 284.3 3833 493.9 2459 369.9 504.0 -2.50 16.0
S 35342 38262 4379.4] 3484.0 3869.2 4624.8 0.29 4.6
B 31704 34454  3963.6 3050.0 3464.8 4234.6 0.33 7.1
Ay 538.7 676.8 872.0 513.1 6559 858.0f -3.57* 35
B,. 211.0 278.4 376.3 204.8 279.0 399.8 -1.02 9.7
RYYAY 0.15 0.20 0.27 0.12 0.19 0.26 -5.55* 16.8
By/B 0.08 0.11 0.15 0.07 0.10 0.15 2,13 18.3
RYTA Y 0.83 1.12 1.53 0.78 1.10 1.55 -2.32 14.9
Boy/B,. 0.97 1.35 1.87 0.85 1.32 1.90 -0.75 18.1
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Table 12. Summary of parameter values from 98 runs of the simulator and the estimation model for Case
9 (upgrade version of case 2 with more tag recapture data), the comparison indices (CI2) and percentage
of bias (PB).

Estimation

Simulator model Tests
0.05 median 0.95 0.05 median 0.95] PB (%) CI2 (%)
In(RO) 7.0 6.77 7.17 7.50) 2.16* 2.9
M 0.13 0.11 0.14 0.18 11.02* 16.8
K 0.2 0.19 0.20 0.21 -0.42* 1.7
L, 155.95 154.76 15549  156.14]  -0.20* 0.3
o 0.40 0.39 0.41 0.42 1.54* 1.6
O ran 1 0.20 1.08 1.24] -1.83 276
SSOIS 99.1 98.00 100.35  103.19 1.36* 1.5
S95IS " 116.35 112.55 118.32  125.00 1.82* 33
U, 0.35 0.27 0.35 0.46] 0.92 16.0
AY) 664.6 800.4  1049.7 626.0 8345 1114.4 3.39* 16.1
B, 280.9 367.9 4823 263.6 374.7 519.6 1.57 16.2
S 1870.0 21432  2438.7 1907.3 21714  2490.8 1.52%* 32
B 1437.8 17257  1964.0 1403.1 16774 20612 -1.79* 6.9
S, 556.2 690.2 911.7 555.0 735.5 996.2] 5.86* 6.4
B, 214.6 262.6 376.1 1959 270.5 397.6) 0.10 11.5
So/S 0.28 0.38 0.51 0.27 0.38 0.51 1.79 15.0
Bo/B 0.15 0.22 0.31 0.14 0.22 0.32 3.81* 17.2
Soi/S. 0.79 1.20 1.60 0.83 1.14 1.54 -2.32 14.1
B,/B, 0.90 1.39 2.02 0.90 1.38 2.07 2.48 18.4

Table 13. Summary of parameter values from 100 runs of the simulator and the estimation model for
Case 10 (upgrade version of case 2 with more length frequency data), the comparison indices (CI2) and
percentage of bias (PB).

Estimation

Simulator . model Tests
0.05 median 0.95 0.05 median 0.95 PB (%) CI12 (%)
In(RO) 7.0 6.84 7.09 7.35 1.18* 2.1
M 0.13 0.11 0.14 0.16 5.87* 11.8
K 0.2 0.19 0.20 0.21 -0.79* 2.4
Lno 155.95 154.99 155.66 156.47 -0.17* 0.3
o 0.40 0.38 0.41 0.43 1.10* 32
O ran 1 072  1.03 1.22 0.88 14.3
S50LS 99.1 98.79 99.94 101.38 0.93* 0.8
S951S] 116.35 114.83 117.69 121.33 1.37* 1.9
U 0.35 0.27 0.36 0.47 4.99* 17.7
Sor 664.7 802.6 1049 .4 587.8 778.5 1033. -2.50 15.6
By; 280.9 372.7 480.6 2584 3603 484.6 -2.10 16.3
S0 1870.2 21441 2455.8 1905.3 2170.1 2475.9 1.33* 2.1
B0 1437.8 1727.3 1979.0 1460.5 1712.5 2024.0 -0.54 43
Sref 556.7 690.9 915.9 571.0 7219 945.9 3.93* 43
B, 214.7  265.1 377.7 214.0 272.1 390.6 0.61 43
RYYAY/ 0.28 0.38 0.51 0.28 0.36 0.46, -3.81* 15.1
By/B0 0.15 0.22 0.31 0.15 0.21 0.29 -1.66 15.1
So1/Sref 0.79 1.20 1.60 0.77 1.08 1.50 -6.12* 15.0
BW/B,,A 0.90 1.34 2.02 0.86 1.27 1.91 -2.49 17.0
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Figure 1: Flow diagram of the data simulator.
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Figure 2. Assumed relation between M and paua length in Case 8, with size-dependent M.
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Figure 3. Assumed relation between K and the recruitment deviation (Rdev) in Case 7, with density-
dependent K.



estimator

Figure 4. Scatter plot of biomass and biomass ratios from the estimator against the values from the

28

simulator of Case 1.
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Figure 5: Results from the fit for case 1. A: Observed (squares) and predicted (solid line) CPUE; B:
standardised CPUE residuals; C: observed (squares) and predicted (solid line) research diver
survey index; D: standardised research diver survey index residuals; E: observed (small
squares) and predicted (larger squares) length increments; F: standardised growth increment

residuals.
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Figure 6: Observed (bars) and predicted (lines) proportions-at-length from commercial catch sampling
(left) and research diver surveys (right) from case 1. The number under the year is the effective

sample size.
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Figure 7: Standardised residuals from proportions-at-length (top) and means of all standardised

Figure 8:

proportion-at-length residuals (bottom) vs observed length from commerecial catch sampling

(left) and research diver surveys (right) from case 1.
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catch sampling (upper left) and research diver surveys (upper right), and from growth
increment data (lower left) from case 1.

Frequency distributions of standardised residuals from proportion-at-length from commercial
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Figure 10. Scatter plot of biomass and biomass ratios from the estimator against the values from the
simulator of Case 2.
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Figure 11: Results from the fit for case 2. A: Observed (squares) and predicted (solid line) CPUE; B:
standardised CPUE residuals; C: observed (squares) and predicted (solid line) research diver
survey index; D: standardised research diver survey index residuals;E: observed (small
squares) and predicted (larger squares) length increments; F: standardised growth increment

residuals.
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Figure 12: Observed (bars) and predicted (lines) proportions-at-length from commercial catch sampling

(left) and research diver surveys (right) from case 2. The number under the year is the effective
sample size.
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Figure 13: Standardised residuals from proportions-at-length (top) and means of all proportion-at-length
residuals (bottom) vs observed length from commercial catch sampling (left) and research

diver surveys (right).
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Figure 14: Frequency distributions of standardised residuals from proportion-at-length from commercial
catch sampling (upper left) and research diver surveys (upper right), and from growth
increment data (lower left).
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Figure 15. Exploitation rate (panel A) and recruitment (panel B) from the simulator (thick line) and the
estimation model (thin line with squares) from case 2.
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Figure 16. Percentage of bias (PB) and 95% confidence error bars of four biomass ratios for each of cases

1to8.
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Figure 17. Comparison index (CI2) and 95% confidence error bars of four biomass ratios for each of

cases 1 to 8.



