

Science Poliz

Trawl survey of hoki and middle depth species on the Chatham Rise, January 1999

N.W. Bagley, M.E. Livingston

Final Research Report for Ministry of Fisheries Research Project HOK9802 Objectives 1 and 2

National Institute of Water and Atmospheric Research

September 1999

Final Research Report

Report Title:	Trawl survey of hoki and middle depth species on the Chatham Rise, January 1999.
Author:	N.W.Bagley and M.E.Livingston
1. Date :	30 September 1999
2. Contractor:	NIWA
3. Project Title:	Estimation of hoki and middle depth fish abundance on the Chatham Rise using trawl surveys
4. Project Code:	HOK9802
5. Project Leader:	Mary Livingston
6. Duration of Proj	ectStart date:1 October 1998Completion date:30 September 1999

7. Executive Summary:

Hoki (*Macruronus novaezelandiae*) year class strength (YCS) varies substantially from year to year, as evidenced by changes in the numbers of juvenile fish estimated from annual surveys of their nursery grounds on the Chatham Rise.

The hoki fishery is now strongly recruitment driven and therefore subject to large fluctuations in stock size. To manage the fishery and minimise potential risks, it is important to have some predictive power concerning recruitment into the fishery. Extensive sampling throughout the zone has shown that the Chatham Rise is the main nursery ground for hoki aged 2 to 4 years. Abundance estimation of 2+ hoki provides the best index of potential recruitment to the adult fisheries. The Chatham Rise is also the main home ground for adult eastern stock hoki, as well as a host of other commercially important species such as ling and hake. Abundance estimates of adult hoki, ling and hake are important components of stock assessment for these species.

The eighth in a series of trawl surveys carried out in hoki depths (200-800 m) during January on the Chatham Rise was completed in January 1999. In addition, acoustic studies were continued to improve understanding of the vertical and horizontal distribution of hoki, and their vulnerability to the trawl.

The results of the survey show that although total hoki biomass was up slightly (109 100 t from 86 700 t), most of this was from the 1+ and 2+ pre-recruits. The biomass of hoki 3+ and older had dropped to the lowest it has been since the surveys began (67 000 t). Hake biomass was also lower than previous years, particularly among larger fish. Concern about the low numbers of hake sampled under the current survey design was raised in the Middle Depths Working Group, and is currently under investigation (*see* draft FARD recently submitted by Brian Bull and Neil Bagley of NIWA, MFish Project MID9801). The results of the acoustic work (Objective 3)

suggest that acoustic marks on the seabed which contain moki, range in height from 40 to 100 m. There was some indication that hoki vulnerability to the trrawl may decrease at depths more than 60 m from the seabed. The acoustics work also found that hoki marks begin to move up off the bottom earlier than official sunset hours and the report makes some recommendations about the timing of the last tow of each day, which should be taken into account in the next survey.

The results of the trawl survey (Objectives 1 and 2) are contained in a NIWA Technical Report that is appended to this Final Research Report. The results of the acoustics study (Objective 3) are contained in a FARD that has been submitted in a separate Final Research Report.

9. Objectives

Programme Objectives:

1. To estimate the abundance of hoki (*Macruronus nuovaezelandiae*) and middle depth fish abundance on the Chatham Rise from trawl surveys.

Objectives for 1998/99 covered by this Report:

- 1. To determine the relative year class strengths of juve-nile hoki (1, 2 and 3 year olds) on the Chatham Rise, with target c.v. of 20 % for the number of 2 year olds.
- 2. To continue the time series of relative abundance indices of recruited hoki (eastern stock) and other middle depth species particularly hake and limg, on the Chatham Rise using trawl surveys. The target c.v. for recruited hoki is 15 %.

10. Methods, Results, Conclusions:

The methods, results and conclusions for the survey of 1999 are presented in the attached report which is in the form of a draft NIWA Technical Report. A short summary of the survey results since the series began in 1992 is given below, and it covers data presented to the Hoki Working Group and Hoki Review Committee during 1999.

Gear and survey design

The gear design and setup has remained constant throughout the time series, as reflected in Table 1, which summarises the gear parameters measured during each trip.

The survey has continued to follow a random station two-phase allocation design throughout the series. There has however been a reduction in the number of stations and the number of strata, as well as a shift to proportionally better sampling of shallower strata compared with deeper strata (Table 2). This is largely a result of trying to improve sampling efficiency by optimising the distribution of stations (on the basis of existing data) to reach target c.v.'s of selected species (2+ hoki, adult hoki, hake and ling;). Because allocation of stations has generally been driven by the distribution of 2+ hoki, which tend to be less evenly distributed within strata, the sampling in shallower strata has beem greatest, since juvenile hoki occur in the shallowest strata. The reduced sampling regime has resulted in lower comments with apparently little reduction in the quality of abundance data collected. There are, however, concerns that the changes may have reduced the sampling of hake to an unacceptable level (see MFish Project MID9801). We have also been endeavoring to improve the optimization programme to ensure that c.v. estimation is realistic. There is always the risk that firms distribution may be quite different from previous years, in response to some unknown environmental factor. The use of existing data to optimize for sampling therefore carries its own environment of risk.

Biomass of target species

The biomass totals of hoki, hake and ling (Table 3) nave undergone fluctuations since the surveys began. The changes in hoki biomass are largely a result of fluctuations in recruitment, as seen in the length frequency distribution (Fig. 1). The biomass of 3+ hoki and older is at its lowest since the series began (Table 3). Hake biomass has dropped steadily since 1996, while ling biomass is at its highest level within this time series.

11, Conclusions:

The Chatham Rise trawl survey continues to provuctine a valuable record of the relative abundance of hoki, hake, and ling, hoki recruitment ance if the population age structure of these three species, that is used in stock assessment. It is there only data set within the EEZ that is monitoring the recruitment of hoki, and because it is annual, provides a unique fisheryindependent time series for hoki and other middle-deputter species.

12. Data Storage:

The data are held in the Trawlsurvey Database at Gretaria Pt. Wellington.

13. References

- Bagley, N. W., Hurst, R. J. 1998: Trawl survey of __noki and middle depth species on the Chatham Rise, January 1998 (TAN9801). NIWA __Technical Report No 44. 54 p
- Ballara, S. L., Cordue, P. L., and Livingston, M. E. (Dizeraft ms.): A review of the 1997-98 hoki fishery and assessment of hoki stocks for 1999 N. Z. Fisheries Assessment Research Document
- Bull, B., Bagley, N. W. (Draft ms.): The effects of the 1995-96 Chatham Rise survey design change on abundance estimates for hake agent groups. N.Z. Fisheries Assessment Document.
- Francis, R. I. C. C. 1984: An adaptive strategy for stratmined random trawl surveys. N.Z. Journal of Marine and Freshwater Research 18: 59-71.
- Francis, R. I. C. C. 1989: A standard approach to biomanass estimation for bottom trawl surveys. N.Z. Fisheries Assessment Document 89/3. 3 p.
- Horn, P. L. 1994a: Trawl survey of hoki and middle depth species on the Chatham Rise, December 1991-January 1992 (TAN9106). N.Z. Fisheries Data Report No. 43. 38 p.
- Horn, P. L. 1994b: Trawl survey of hoki and middlesse depth species on the Chatham Rise, December 1992-February 1993 (TAN9219). N. Fisheries Data Report No. 44, 43 p.

Hurst, R. J., Bagley, N., Chatterton, T., Hanchet, S., Schofield, K., & Vignaux, M. 1992: Standardisation of hoki/middle depth time series trawl surveys. MAF Fisheries Greta Point Internal Report No. 194. 89 p. (Draft report meld in NIWA library, Wellington.)

Livingston, M.E., Schofield, K.A. 1996. Annual changes in the abundance of hoki year classes on the Chatham Rise (January 1992–95) and the Spouthern Plateau (December 1991–93). *N.Z. Fisheries Assessment Research Document 90–14*. 35p.

Schofield, K.A., Livingston, M.E. 1997: Trawl survey of hoki and middle depth species on the Chatham Rise, January 1997 (TAN9701). NIWA Technical Report 6. 52 p.

Schofield, K.A., Livingston, M.E. 1996: Trawl survey of hoki and middle depth species on the Chatham Rise, January 1996 (TAN9601). N.Z. Fisheries Data Report No. 71. 50 p.

Schofield, K.A., Livingston, M.E. 1995: Trawl survey of hoki and middle depth species on the Chatham Rise, January 1995 (TAN9501). N.Z. Fisheries Data Report No.59. 53 p.

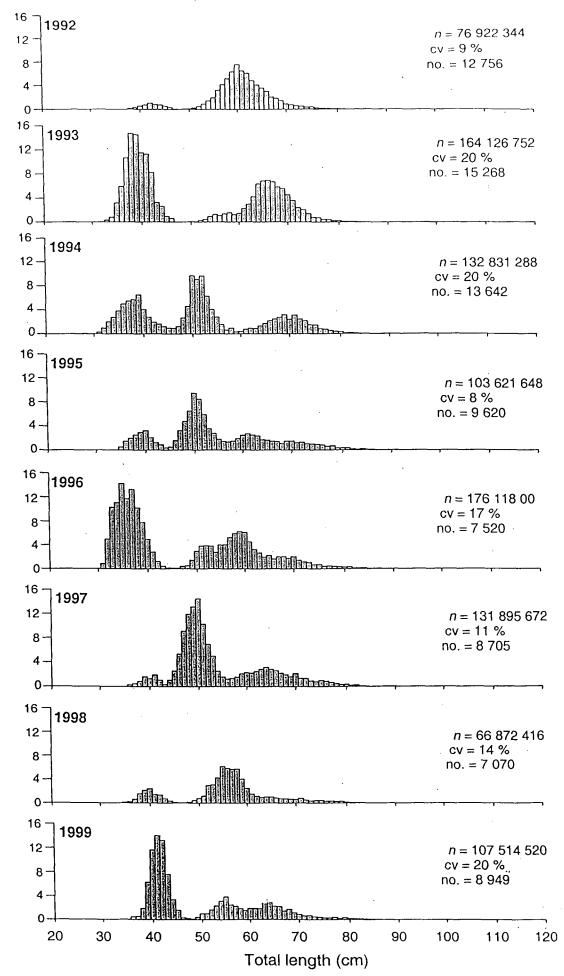
Vignaux, M. 1994: Documentation of Trawlsurvey Analysis Program. MAF Fisheries Greta Point Internal Report No. 225. 44 p. (Draft report held in NIWA library, Wellington.) Table 1. Summary of gear parameters as recorded during the Chatham Rise trawl surveys 1992-99. (HLHT = headline height; mn = mean; s.d. = standard deviation; n = number of measurements made in each depth range).

year of survey	1992	1993	1994	1995	1996	1997	1998	1999
tow speed mn. knots	3.5	3.52	3.6	3.5	3.5	3.5	3.5	3.5
tow speed s.d.	0.05	0.12	0.12	0.04	0.09	0.08	0.11	0.07
tow length (nml) mn	3	3	2.96	2.98	2.91	2.98	2.96	2.91
tow length s.d.	-	-	0.2	0.19	0.26	0.15	0.2	0.26
HLHt 200-400 mn	6.6	6.4	6.5	6.9	7.2	6.8	6.9	6.2
HLHt 200-400 s.d.	0.4	0.5	0.5	0.5	0.4	0.3	0.3	0.25
HLHt 400-600 mn	6.6	6.5	6.5	6.8	6.8	6.8	6.9	6.3
HLHt 400-600 s.d.	0.4	0.33	0.4	0.5	0.4	0.3	0.3	0.28
HLHt 600-800 mn	6.7	6.7	6.5	7	7.1	6.8	6.8	6.4
HLHt 600-800 s.d.	0.4	0.39	0.3	0.4	0.3	0.4	0.3	0.31
doorspr. 200-400 mn	116.6	121.4	114	114.3	114.3	118,8	115.2	114.5
doorspr 200-400 s.d.	6.7	7.7	5.8	5.6	-	6.4	6.6	6.01
doorspr 400-600 mn	121.8	122.5	118.5	117.5	117.5	122,4	118.8	117.9
doorspr 400-600 s.d.	5.9	7.9	4.1	5.3	-	5.6	7.9	4.17
doorspr 600-800 mn	120.7	121.7	120.5	119.3	119.3	120.8	122.5	120.4
doorspr 600-800 s.d.	6.4	9.6	4.9	6.1	-	3.3	6.3	5.83
n 200-400 m	46	71	57	33	30	33	27	34
n 400-600 m	103	94	84	66	44	52	45	43
n 600-800 m	35	30	24	23	13	16	14	15

year	1992	1993	1994	1995	strata changes	new strata	1996	1997	1998	1999
code	TAN9106	TAN9212	TAN9401	TÁN9501			TAN9601	TAN9701	TAN9801	TAN9901
area (km²)	135 843	139 879	139 938	139 584			139 598	139 528	139 528	139 527
Total stn.	184	194	165	122			89	103	91	100
Phase 1	146	149	149	112			80	96	90	90
Phase 2	38	46	16	10			9	7	1	10
Stn. Density	738	721	848	1144			1569	1355	1533	1395
strat 1	3	3	3	3		strat 1	3	3	3	3
strat 2	6	6	3	3	2 & 3	strat 2	. 3	4	3	4
strat 3	6	4	4	6	21	strat 3	3	3	3	4
strat 4	4	3	-4	3	4 & 5	strat 4	4	5	4	4
strat 5	. 9	7	4	4	22	strat 5	5	6	4	5
strat 6	7	7	6	3		strat 6	4	4	4	4
strat 7	9	7	11	12		strat 7	8	7.		9
strat 8	· 7	5	5	3	8&9	strat 8	5	7	.7	6
strat 9	7	9	7	4	23	strat 9	3	4	3	6
strat 10	10	7	5	6		strat 10	3	. 6	3	4
strat 11	9	5	5	9	11 &/or 25	strat 11	5	5	3	4
strat 12	9	6	4	7		strat 12	. 4	5	3	3
strat 13	7	6	4	6		strat 13	4	6	4	4
strat 14	8	6	5			strat 14	4	5	3	3
strat 15	12	12	12	3		strat 15	4	4	5	6
strat 16	12	10	10	3	16 & 17	strat 16	7	8	9	7
strat 17	13	14	11	4	24	strat 17	3	3	3	3
strat 18	9	17	23	3		strat 18	5	4	5	4
strat 19	16	25	10	3		strat 19	8	4	4	10
strat 20	8	12	7			strat 20	4	10	7	7
strat 21	3	6	6	3	25	strat 21*	-	-	4	• -
strat 22	3	4	4							
strat 23	4	3								
strat 24	3	3								
strat 25	-	7	5	4						

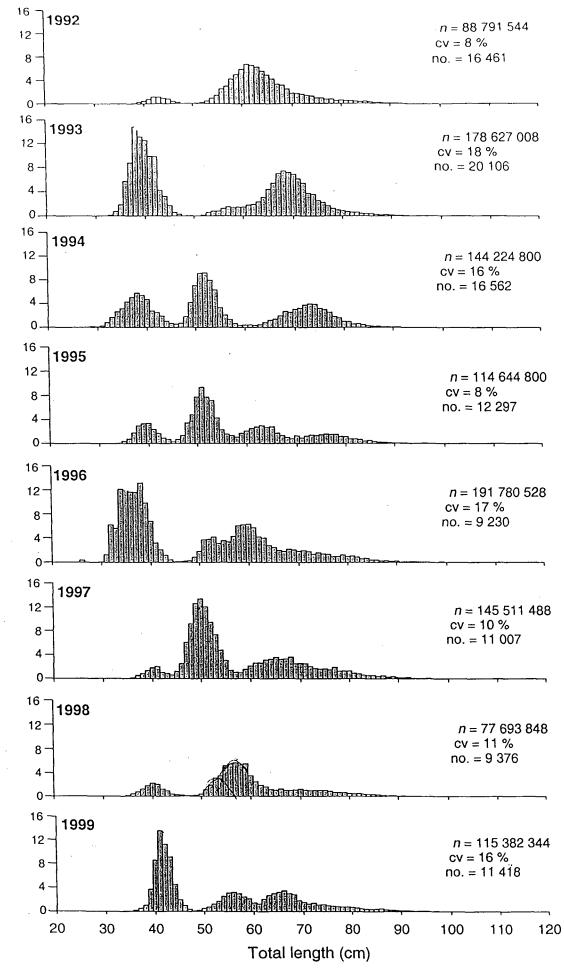
Table 2. Station and stratum coverage in the hoki and middle depths Chatham Rise surveys, January 1992-99

* Stratum 21 is a sub-division of stratum 11 used in years where hake biomass estimation is given more weight


Year	1992	1993	1994	1995	1996	1997	1998	1999
Total hoki	120.2	185.6	145.6	120.4	152.8	157.9	86.7	109.3
C.V.	7.7	10.3	9.8	7.6	9.8	8.4	10.9	11.6
Male hoki	50.8	80.6	62.1	52.8	66.8	66.2	36.6	45.9
с. у.	8. <i>5</i>	11.9	11.0	8.0	10.6	8.9	12.9	13.6
Female hoki	68.4	104.9	83.5	67.7	86	91.8	50.1	63.3
С.У.	7.4	9.8	9.4	7.8	9.4	<i>8.2</i>	9.7	10.4
2 + hoki	25.7*	41.6*	45.0	44.8	15.0	62.7	6.9	16.5
с. у.	-	-	18.0	11.0	13	12.0	18.0	18.9
3 + and older	93.5	143.8	86.3	68.9	106.6	92.1	75.6	67.2
с. у.	-	-	9.0	9.0	10.0	8.0	11.0	9.9
Ling	8.9	9.3	10.1	7.4	8.4	8.5	7.3	12.1
С. У.	5.8	7.9	6.5	7.9	8.2	9.8	8.3	23.4
Hake	4.2	3.0	3.4	3.3	2.5	2.8	2.9	2.3
С.У.	14.9	17.2	9.6	22.7	13.3	16.7	18.4	11.8

3

Table 3. Biomass estimates of hoki, hake and ling from trawl surveys of the Chatham Rise, January 1992-99


* includes 1+ hoki

.

Scaled length frequencies for male hoki from Chatham Rise Tangaroa time series.

Numbers of fish (millions)

Scaled length frequencies for female hoki from Chatham Rise Tangaroa time series.

Numbers of fish (millions)

Trawl survey of hoki and middle depth species on the Chatham Rise, January 1999 (TAN9901)

chield.

and the second second

N. W. Bagley M. E. Livingston

NIWA Technical Report XX ISSN xxxx XXXX Published by NIWA Wellington xxxx

Inquiries to: Publication Services, NIWA PO Box 14-901, Wellington, New Zealand.

Contents

Page

Introduction	•									5
Survey objectives 19	99					•••	••			5
Timetable and person	nnel	••				••				5
Methods	•	••				••	••			6
Survey area and desig	gn	••		••	••		••	••	••	6
Vessel specifications	6	•••		••	••	••	••	••		6
Gear specifications					••					6
Trawling procedure			••							6
Hydrology	•		••	••			[.]	••		7
Catch sampling .	•		••		••		••			7
Data analysis .	•			••		••				8
Results								••		8
Survey coverage .					••	••		••	••	8
Gear performance .			••	••	••			••		8
Hydrology			••	••	••			••	••	9
Catch composition			••					••		9
Biomass estimation						••		••		9
Species distribution			••	••		••	••	••	••	10
Biological data				•••	••	••			••	10
Disquasion	••				••	••			••	11
Acknowledgements .	••	••			••					11
References	••	••	••	·••						12

してないです。これになっていることで

· · · · · · ·

:

Introduction

In January 1999, the eighth random trawl survey in a time series of annual surveys, initiated in January 1992, was completed on the Chatham Rise. The surveys, designed to sample hoki, hake, and ling provided relative abundance indices of these and other middle depth species occurring in 200–800 m depths on the Chatham Rise.

The survey was part of an ongoing research programme to estimate the abundance of hoki and other middle depth species for stock assessment. It also provided information of the age structure of a range of species, as well as their distribution across the Chatham Rise.

This reports summarises the catch, distribution, length, and biomass estimates of the important species caught in the January 1999 survey (*see* objectives 1 and 2 below). Other work regarding acoustics, explanation of the species composition of fish marks in midwater (*see* objective 3 below) is not covered.

Survey objectives 1999

- 1. To determine the relative year class strengths of [hoki] juveniles (1, 2 and 3 year olds) on the Chatham Rise, with a target coefficient of variation (c.v.) of 20% for the number of 2 year olds.
- 2. To continue the time series of relative abundance indices of recruited hoki (eastern stock) and other middle depth species particularly hake and ling, on the Chatham Rise using trawl surveys. The target c.v. for recruited hoki is 15%.
- 3. To study the vertical and horizontal distribution of hoki juveniles and adults using acoustic methods to determine the validity of the trawl survey methodology.

Additional survey objectives included; collection of biological data and otoliths from hoki and other middle depth species for studies on ageing, growth and stock separation and the definition of major water mass characteristics by measuring surface and bottom temperature within the survey area.

Survey timetable and personnel

The survey was carried out from 3 January to 26 January 1999 using the R. V. *Tangaroa*. N. Bagley (NIWA, Wellington) led the voyage and was responsible for data collection and the final database editing. M. Livingston (NIWA, Wellington) led the project.

Methods

Survey area and design

As in previous years, the survey followed a two-phase random design (*after* Francis 1984). The survey area (Figure 1) was divided into the same 20 strata used in 1997 and excluded the additional subdivision of stratum 11 used in 1998 (Bagley & Hurst, 1998). Phase 1 station allocation was optimised to achieve the target c.v.s of 15% for recruited hoki and 20% for 2+ hoki. Data used to simulate optimal allocation were stratum areas and catch rates from the seven previous *Tangaroa* trawl surveys. Optimisation used bootstrap simulation to allocate stations to strata with high catch rates, based on the same principle as the phase 2 station allocation of Francis (1984). Ninety stations were planned for phase 1. Additional stations for phase 2 were allocated after the completion of phase 1 to improve the c.v. for target species or hoki age classes as required.

All station positions were selected randomly using the NIWA Random Stations Generation Program (version 1.6). Mid-tow positions were always separated by a minimum of 3 n. miles.

Vessel specifications

したが特別な行うなどの情報の情報になっていた。

RV *Tangaroa* is a purpose-built research stern trawler with the following specifications: length overall, 70 m; beam, 14 m; gross tonnage, 2282 t; power, 3000 kW (4000 hp).

Gear specifications

The trawl gear used was the same as that used on previous *Tangaroa* surveys in this series, i.e., an eight seam hoki bottom trawl with a 58.8 m groundrope, 45 m headrope (*see* Hurst and Bagley 1994 for the net plan and rigging details) and a codend mesh size of 60 mm. It was rigged with 100 m long sweeps, 50 m bridles, and 12 m backstrops. The trawl doors were Super Vee type with an area of 6.1 m^2 . The doorspread and headline height were recorded every 5 minutes during each tow (from the Scanmar system and either the Kaijo Denki or Furuno net monitor, respectively) and an average calculated. Doorspread readings were recorded from 86 tows. Missing values were calculated from an average for the appropriate depth range from doorspread data collected during the survey.

Trawling procedure

Trawling was carried out during daylight i.e., between sunrise and sunset. If time was running short at the end of the day, the vessel steamed towards the last station and the trawl was shot on that transect line in time to ensure completion of the tow by sunset, as long as 50% or more of the distance between stations had been completed. At each station it was planned to tow for 3 n. miles at a speed of 3.5 knots over the ground. If a station occurred in an area of foul ground, then the area within 3 n. miles of that position was searched for trawlable bottom. If suitable ground was not found, the station was abandoned and another random position chosen. If foul

ground was encountered during trawling, the tow was considered invalid if less than 2 n.miles of the tow had been covered in total. Tows less than 2 n. miles long were replaced with another random station in the same stratum. The average speed over the ground was calculated at the end of each tow.

Gear configuration was maintained as constant as possible during the survey and within the ranges described as desirable by Hurst *et al.* (1992).

Hydrology

Surface temperatures were obtained at the start of each tow from a temperature sensor mounted on the hull at a depth of about 5 m. Bottom temperatures were obtained from the average of recordings taken every 5 minutes from the Furuno net monitor or from temperature recorded from the CTD datalogger. Both monitors are mounted on the trawl headline about 6.5 m above the seabed during trawling.

The CTD datalogger averaged differences of -0.3 °C at the surface (n = 35) and +0.3 °C (near the bottom, n = 34), compared with the ships equipment. No adjustment for this difference was made.

Catch sampling

The catch at each station was sorted into species and weighed on motion-compensated electronic scales accurate to within ± 0.3 kg. For large catches of mixed rattails, the weights of individual species were estimated by sub-sampling, i.e., a sub-sample was sorted and weighed by species and the total catch was scaled according to the percentage weight of each species in the sub-sample.

Samples of up to 200 hoki and 50–200 of other commercial species were randomly selected from the catch to measure length and determine sex. At almost every station they occurred, up to 20 specimens of hoki, ling, hake, ribaldo, silver warehou, and white warehou were selected from the length frequency sample for detailed biological analysis and otolith removal. Data collected were fish length (total, fork, mantle (squid), and chimera (tip of snout to posterior end of dorsal fin)), weight, sex, gonad stage and weight, and also included stomach fullness, stomach contents, and prey condition.

Length, weight, and sex data were also collected from samples of alfonsino, barracouta, dark and pale ghost shark, longfinned beryx, lookdown dory, rough and smooth skates, scampi, shovelnose dogfish, sea perch, slender mackerel, spiky oreo and giant stargazer for calculation of length-weight relationships to enable more accurate scaling of the length frequencies for these species.

7

Data analysis

11. A. A. A.

というなないないないないないというと

Doorspread biomass was estimated by the area-swept method of Francis (1984), the standardised approach being adopted (Francis 1989). The (c.v.) is a measure of the precision of the biomass estimate, and is calculated by:

$$c.v.(\%) = S_{\rm B} / B \ge 100$$

where S_B is the standard error of the biomass (B).

The catchability coefficient (an estimate of the proportion of fish in the survey area available to be caught in the net) is the product of vulnerability (v), vertical availability (u_v) , and areal availability (u_a) as defined by Francis (1989). These factors were all set to 1 in these analyses, the assumptions being that fish were randomly distributed over the bottom within a stratum; fish distribution did not extend above the headline height of the net; all fish in the path of the doors were caught; and the herding effect of the doors, sweeps, and bridles was constant.

Data from all stations with satisfactory gear performance (code 1 only) and categories matching RD (research daylight) were used to estimate biomass. This excluded acoustic trawl stations from the analysis.

Scaled length frequencies were calculated for the main species with the Trawlsurvey Analysis Program version 3.2 Vignaux, (1994). The data from each station were scaled by the percentage of the catch sampled (to represent each catch) and by the ratio of the area swept to stratum area (to represent the total population). A further correction (usually minor) was made to ensure that the biomass calculated from the scaled length frequencies equates to the biomass calculated from catch data. Total biomass and biomass by stratum for 1+, 2+, and 3+ and older hoki were also calculated using the Trawlsurvey Analysis Programme.

Results

Survey coverage

Ninety phase 1 stations were successfully completed (Table 1). Ten additional phase 2 stations were put into strata 2, 9, 15 and 19 in an attempt to improve the c.v. for hoki and ling. The station density in individual strata ranged from 1 : 288 in stratum 17 to 1 : 2 940 km² in stratum 11 (*see* Table 1). Mean station density over the whole survey area was 1 : 1 395 km². The positions of all trawl survey stations successfully completed are in Figure 1, and individual station data, foul shots and acoustic trawls are in Appendix 1.

Gear performance

Gear parameters by depth zone are summarised in Table 2. Gear configuration remained relatively constant over the 200–800 m depth range. Mean doorspread measurements by 200 m depth interval ranged from 114.5 to 120.4 m and headline height from 6.2 to 6.4 m, all falling

within the accepted range (Hurst *et al.* 1992). The mean doorspread of individual tows ranged from 100.0 to 130.8 m and the desirable range (100–130 m) was exceeded only slightly on 1 of the 86 occasions. Stations 19, 29, 52, 76, 87 and 125 were given a poor gear performance code (i.e. came fast; catch affected by a large quantity of sponge; tow hauled early due to foul ground) and were excluded from all analyses.

Hydrology

Surface temperatures from the hull mounted sensor were recorded on the 100 biomass stations and ranged from 13.8 to 19.2 °C (Figure 2). Bottom temperatures were recorded from 95 biomass stations from the Furuno net monitor and ranged from 5.7 to 10.5 °C (*see* Figure 2).

Warmer surface temperatures were recorded from strata in the north western part of the survey area with the coldest temperatures (below 14° C) from the south-west in strata 6 and 16. Cooler surface temperatures, below 16 °C were recorded along the southern most strata and around the Chatham Islands. Higher bottom temperatures were generally associated with shallower depths. Areas of warmer (9.5 to 10.5 °C) were found to the east of Mernoo Bank (stratum 19), as in previous years, and to the west and east of the Chatham Islands.

Catch composition

One hundred and forty four species were recorded: 26 elasmobranchs, 94 teleosts, 9 cephalopods, 6 crustaceans and 1 agnathan, the remainder consisting of assorted benthic and pelagic organisms. A full list of species caught, and the number of stations at which they occurred, is in Appendix 2.

The total catch was 141.0 t, of which 62.8 t (44.5%) was hoki, 13.4 t (9.5%) was dark ghost shark, 6.4 t (4.5%) was bigeyed rattail and 5.2 t (3.7%) was ling (Table 3).

. 16

Biomass estimation

Estimates of the biomass of the major commercial and non-commercial species are given in Table 3 and biomass by stratum for hoki in the 1+, 2+, and adult cohorts in Table 4. Estimates of biomass by stratum of the 18 next most abundant species are presented in Table 5. Parameters of length-weight relationships used in the Trawlsurvey Analysis Program to scale length frequencies and to calculate hoki biomass by cohort are given in Table 6.

Hoki was the most abundant species with 39% of the biomass being smaller sized fish in the 1+ and 2+ age groups. Black oreo, dark ghost shark, ling, silver warehou, sea perch, alfonsino, spiky oreo, white warehou, hake and giant stargazer were other commercial Individual Transferable Quota (ITQ) species with a biomass greater than 1 500 t. Most of the alfonsino and oreos caught were pre-recruits. The most abundant commercial non-ITQ species were spiny dogfish, lookdown dory and pale ghost shark (Table 3). A substantial biomass of non-commercial species, primarily rattails were also estimated from the survey (Table 3).

9

Species distribution

a the state with the second states as

Catch rates for hoki from the 1+, 2+ and 3+ and greater cohorts are given in Figure 3. Catch rates for the 20 next most abundant species are given by stratum in Table 7 and distribution by station in Figure 4.

Hoki were caught at 95 of the 100 successful biomass stations. The largest single catch of hoki $(13\ 820\ \text{kg.km}^2)$ was caught in stratum 17 and mostly consisted of 1+ and 2+ fish. Stratum 19 (to the east of Mernoo Bank) recorded the highest catch rates of 1+ hoki and contributed to 62% of the biomass of this age group. Two year old hoki were also most abundant at 200–400 m to the west in strata 15, 16, 17 and 19. Larger catches of 3+ and older hoki were taken in southern strata in the western part of the survey area and to the south west of the Chatham Islands between 200–600 m.

Catches of hake were small, with the largest haul of 87 kg.km⁻² taken north of the Chatham Islands in stratum 2. Few hake were taken at depths of 200–400 m. One unusually large catch of ling 1 786 kg.km⁻² was taken in stratum 9. The sex composition was 80% males. Other ling catches were evenly distributed across the Chatham Rise at depths between 200 to 600 metres.

Lookdown dory, seaperch, big eyed rattail, and javelinfish were widely distributed across the survey area and taken in larger quantities at depths between 200–600 m. Black oreo and Baxter's dogfish were taken from 600–800 m strata on the south Chatham Rise while spiky oreo and shovelnose dogfish were taken at the same depth range on the north Chatham Rise. Dark ghost shark occurred mainly in the 200–400 m strata with 1 large catch (10 692 kg.km⁻²) taken in stratum 17, while pale ghost shark were mostly taken at depths greater than 400 m. Silver warehou and white warehou were patchily distributed and predominantly taken at depths between 200–400 m with the largest catches taken in stratum 3 and 20 respectively. Occasional catches of alfonsino and orange perch were made in shallower strata east of Mernoo Bank and around the Chatham Islands.

Biological data

The numbers of fish of each species from which length or more detailed biological data were collected are given in Table 8. Length frequencies for all hoki by sex and depth (200–400 m, 400–600 m and 600–800 m) are given in Figure 5a and by sex, depth and area in Figure 5b. Length frequencies of hoki by stratum are given in Appendix 3. Length frequencies for all fish by sex and by depth range (200–400 m, 400–600 m and 600–800 m) are given for hake (Figure 6), and ling (Figure 7). Scaled length frequency histograms, by sex of the other major commercial species are presented in Figure 8. These length frequencies represent the population structure for the survey area as sampled by bottom trawl.

Scaled length frequencies and calculated numbers at age for hoki are dominated by a relatively strong 1+ cohort with a mode at 41 cm total length (TL). The 1+ cohort was mostly caught in the 200–400 m depth range on the western side of the survey area. No 1+ and few 2+ hoki were caught deeper than 600 m. Overall sex ratios were 0.9:1 (males to females) with more females

Sex ratios were about even for most other species except for spiny dogfish where there were fewer males than females (sex ratios exceeded 1:1.5 M:F) and ribaldo, scampi, silver warehou, slender jack mackerel, southern blue whiting, spiky oreo, and white warehou which were predominantly male (sex ratio exceeded 1.5:1).

Gonad stages of hake, hoki, ling, giant stargazer, silver warehou, and white warehou are summarised in Table 9. Hoki and white warehou were either resting or immature; adult silver warehou were mostly resting or spent; adult hake were in active reproduction stages (77 % of the males and 42 % of the females) ripening to partially spent: stages 3–6; adult ling showed 70% of the males and 2% of the females with active spawning reproduction stages. Occasional observations on other species indicated ribaldo as resting to maturing, and barracouta, and frostfish in active reproduction stages and spiky oreos mature or spent.

Discussion

The allocation of phase 1 stations and phase 2 effort achieved the target precision levels of 20% (final c.v. 18.9%) for 2+ hoki and 15% (final c.v. 9.9%) for adult hoki. Phase 2 was directed at 2+ hoki and ling. Hoki phase 2 stations were primarily in stratum 19 and had the overall effect of lowering the c.v. for 2+ hoki from 25% to 18.9%. Years where a strong year class of 2+ hoki may be expected may require additional effort to achieve target c.v below 20%.

Two additional stations were put into stratum 9 (200–400 m) around the Chatham Islands during phase 1 of the survey in an attempt to lower the c.v. for ling. Given the steaming distance to return to this area after the completion of phase 1, additional stations were completed while in the area and had the effect of lowering the c.v. from 21 % to 16 %.

The 1+ hoki cohort dominated the hoki length frequency and accounted for 52% of hoki from the calculated numbers at length and 23 % of the biomass.

Kj,

Earlier surveys in this time series were documented by Horn (1994a, 1994b), Schofield & Horn (1994), Schofield & Livingston (1995, 1996, 1997), and Bagley & Hurst (1998). These surveys began in late December or early January. Comparisons with the first four surveys in the time series (1992 to 1995) are given in Livingston and Schofield (1996). Surveys of the Chatham Rise that took place prior to the current time series species are given by Schofield & Livingston (1995).

Acknowledgements

Thanks to all the participating scientific staff and the Master, officers and crew of *Tangaroa* whom contributed to the success of this voyage. Thanks also to Peter McMillian for providing constructive comments on an earlier draft of this manuscript. This work was carried out by NIWA under contract to the Ministry of Fisheries (Contract No. HOK9802).

References

Second Contraction of the Second S

- Annala, J. H. (Comp.) 1993: Report from the Fishery Assessment Plenary, May 1993: stock assessments and yield estimates. 241 p. (Unpublished report held in NIWA library, Wellington.)
- Bagley, N. W. and Hurst, R. J. (1996): Trawl survey of hoki and middle depth and inshore species off Southland, February-March 1996 (TAN9604).). N.Z. Fisheries Data Report No. 77. 51 p.
- Bagley, N. W. and Hurst, R. J. (1998): Trawl survey of hoki and middle depth species on the Chatham Rise, January 1998 (TAN9801). NIWA Technical Report 44. 54 p.
- Beentjes, M. 1992: Assessment of red cod based on recent trawl survey and catch sampling data. N.Z. Fisheries Assessment Research Document 92/16. 40 p. (Draft report held in NIWA library, Wellington.)
- Francis, R. I. C. C. 1984: An adaptive strategy for stratified random trawl surveys. N.Z. Journal of Marine and Freshwater Research 18: 59-71.
- Francis, R. I. C. C. 1989: A standard approach to biomass estimation from bottom trawl surveys. N.Z. Fisheries Assessment Research Document 89/3. 3 p. (Draft report held in NIWA library, Wellington.)
- Hatanaka, H., Uozumi, Y., Fukui, J., Aizawa, M., & Hurst, R. J. 1989: Japan-New Zealand trawl survey off southern New Zealand, October-November 1983. N.Z. Fisheries Technical Report 9 52 p.
- Horn, P. L. 1988: Age and growth of bluenose, Hyperoglyphe antarctica (Pisces: Stromateoidei) from the lower east coast, North Island, New Zealand. N.Z. Journal of Marine and Freshwater Research 22: 369–378.
- Horn, P. L. 1994a: Trawl survey of hoki and middle depth species on the Chatham Rise, December 1991-January 1992 (TAN9106). N.Z. Fisheries Data Report No. 43. 38 p.
- Horn, P. L. 1994b: Trawl survey of hoki and middle depth species on the Chatham Rise, December 1992-January 1993 (TAN9212). N.Z. Fisheries Data Report No. 44. 43 p.
- Hurst, R. J. & Bagley, N. W. 1994: Trawl survey of middle depth and inshore bottom species off Southland, February-March 1993 (TAN9301). N.Z. Fisheries Data Report No. 52. 58 p.
- Hurst, R. J., Bagley, N., Chatterton, T., Hanchet, S., Schofield, K., & Vignaux, M. 1992: Standardisation of hoki/middle depth time series trawl surveys. MAF Fisheries Greta Point Internal Report No. 194. 89 p. (Draft report held in NIWA library, Wellington.)
- Johnston, A. D. 1983: The southern Cook Strait groper fishery. Fisheries Technical Report No. 159. 33 p.
- Livingston, M. E. & Schofield, K. A. (1996): Annual changes in the abundance of hoki year classes on the Chatham Rise (January 1992–95) and the Southern Plateau (December 1991–93).
 N.Z. Fisheries Assessment Research Document 96/14. 35 p.
- Schofield, K. A. & Horn, P. L. 1994: Trawl survey of hoki and middle depth species on the Chatham Rise January 1994 (TAN9401). *N.Z. Fisheries Data Report No. 53.* 54 p.
- Schofield, K. A. & Livingston, M. E. 1995: Trawl survey of hoki and middle depth species on the Chatham Rise, January 1995 (TAN9501). N.Z. Fisheries Data Report No. 59. 53 p.
- Schofield, K. A. & Livingston, M. E. 1996: Trawl survey of hoki and middle depth species on the Chatham Rise, January 1996 (TAN9601). N.Z. Fisheries Data Report No. 71. 50 p.
- Schofield, K. A. & Livingston, M. E. 1997: Trawl survey of hoki and middle depth species on the Chatham Rise, January 1997 (TAN9701). NIWA Technical Report 6. 51 p.

Stevenson, M. L., Beentjes, M. P. 1999: Inshore trawl survey of the Canterbury Bight and Pegasus Bay December 1998–January 1999 (KAH9809). NIWA Technical Report 63. 66p.
Vignaux, M. 1994: Documentation of Trawlsurvey Analysis Program. MAF Fisheries Greta Point Internal Report No. 225. 44 p. (Draft report held in NIWA library, Wellington.)

13

Table 1: Stratum description and station allocation . (Tan9901)

Interior ...

した うちょう ちょうちょうちょう ちょう アンド・シート

	Pre-1996	Area	Numb	er of sta	tions	Station density	Depth range
Stratum	strata	(km ²)	PI	Cl	C2	(km ² per station)	(m)
1	1	2 439	3	3	0	813	600-800
2 ·	2 & 3	11 756	3	3	l	2 939	600-800
3	21	3 499	4	4	0	875	200-400
4	4&5	11 315	. 4	4	0	2 829	600-800
5	22	4 076	5	5	0	815	200-400
6	6	8 266	4	4	0	2 067	600-800
7	7	5 233	9	9	0	581	400-600
8	8&9	9 008	6	6	0	1 501	400-600
9	23	5 136	4	4	2	856	200-400
10	10	6 321	4	4	0	1 580	400-600
11	11 & 25	11 758	4	4	0	2 940	400-600
12	12	6 578	3	3	0	2 193	400-600
13	13	6 684	4	4	0	1 671	400-600
14	14	5 928	3	3	0	1 976	400-600
15	15	5 840	5	5	1	973	400-600
16	16 & 17	11 522	7	7	0	1 646	400-600
17	24	865	3	3	0	288	200-400
18	18	4 704	4	4	0	1 176	200-400
19	19	9 013	4	4	6	901	200-400
20	20	9 586	7	7	0	1 369	200-400
Total		139 527	90	90	10	1 395	

* Number of stations; P1, proposed phase 1 stations; C1, completed phase 1 stations; C2, completed phase 2 stations.

Table 2: Tow and gear parameters by depth range. Values shown are sample size (n), and for each parameter the mean, standard deviation (s.d.), and range. (Tan9901)

	n	Mean	s.d.	Range
Tow parameters				
Tow length (n. mile)	100	2.91	0.26	2.00-3.11
Tow speed (knots)	100	3.5	0.07	3.3-3.7
Gear parameters (m)				
200-400 m				
Headline height	39	6.2	0.25	5.8-6.7
Doorspread	32	114.5	6.01	100.0–128.1
400-600 m				
Headline height	46	6.3	0.28	5.7-6.8
Doorspread	40	117.9	4.17	108.4117.9
600-800 m				
Headline height	15	6.4	0.31	6.1-7.3
Doorspread	14	120.4	5.83	108.4–130.8
Total depth range				
Headline height	100	6.3	0.28	5.7-7.3
Doorspread	86	117.0	5.47	100.0-130.8

Table 3: Estimated biomass, with c.v. in parentheses, and catch of all ITQ species, important commercial non-ITQ species, and major non-commercial species. Dashes indicate that the fish were not sexed. (Tan9901)

· · · · ·	Species			·		Total bior	nass (t) ·		
	code	Ā	II fish*	F	emales		Males	Cat	tch (kg)
ITQ species									(16)
Hoki	HOK	109 336	(11.6)	63 283	(10.4)	45 884	(13.6)		62 758
Black oreo	BOE	16 863	(31.7)	8 535	(30.9)	8328	(33.3)		4 575
Dark ghost shark	GSH	12 125	(23.4)	7 514	(25.4)	4 610	(20.6)		13 366
Ling	LIN	10 309	(16.1)	5 190	(10.7)	5 1 1 6	(24.7)		5 225
Silver warehou	SWA	6 760	(34.2)	2 953	(27.9)	3 823	(40.1)		4 5 1 7
Sea perch	SPE	4 842	(8.7)	2 2 1 5	(9.4)	2 481	(9.2)		2 557
Alfonsino	BYS	4 2 1 6	(50.8)	2 047	(53.5)	2 169	(48.7)		2 621
Spiky oreo	SOR	3 745	(29.8)	1 492	(25.6)	2 253	(32.9)		844
White warehou	WWA	3 136	(40.7)	1 205	(42.8)	1 930	(39.9)		1 486
Hake	HAK	2 302	(11.8)	1 686	(17.3)	616	(14.5)		945
Giant stargazer	STA	1 903	(12.7)	1 404	(16.1)	498	(12.9)		1 186
Red cod	RCO	1 227	(64.5)	634	(71.1)	. 562	(57.4)		925
Arrow squid	NOS	756	(36.1)	372	(39.9)	380	(33.4)		467
Barracouta	BAR	601	(75.2)	356	(82.0)	246	(65.7)		424
Ribaldo	RIB		(18.0)	204	(20.0)	192	(23.6)		158
Smooth oreo	SSO	385	(50.0)	169	(51.8)	213	(49.4)		.93
School shark	SCH	344	(34.3)	45	(54.8)	299	(39.2)		237
Slender mackerel	JMM	312	(46.7)	113	(44.5)	198	(49.4)		193
Bluenose	BNS	105	(65.0)	85	(77.7)	19	(76.3)		29
Longfinned beryx	BYD	162	(100)	28	(100)	133	(100)		35
Tarakihi	TAR	91	(41.1)	46	(47.2)	46	(48.0)		65
Hapuku	HAP	63	(43.4)	41	(62.0)	22	(58.0)		38
Lemon sole	LSO	58	(22.0)	25	(25.1)	32	(29.9)		40
Frostfish	FRO	16	(100)		(23.1)	52	(2).))		11
Black cardinalfish	EPT	15	(49.2)	_					9
Jack mackerel	JMD	7	(73.2)	2	(100)	5	(100)		4
Orange roughy	ORH	12	(69.6)	12	(69.6)	0	(100)	÷.	3
Red gurnard	GUR		(100)	2	(100)	0			1
Rubyfish	RBY	2	(100)	0	(100)	1	(100)		1
Rubynsn	KD I	1	(100)	· . •		1	(100)		1
Commercial non-ITQ sp	ecies (whe	ere biomas	s > 30 ton	nes)					
Spiny dogfish	SPD	8 551	(12.7)	7 672	(13.1)	. 845	(18.7)		4 776
Lookdown dory	LDO	7 417	(8.2)	5 124	(8.2)	2 274	(10.5)		3 516
Pale ghost shark	GSP	5 272	(9.7)	2 527	(10.0)	2 745	(11.4)		2 2 1 3
Shovelnose dogfish	SND	4 121	(26.4)	2362		1 653	•		1 443
Smooth skate	SSK		(19.8)	897	(23.5)	478			821
Ray's bream	RBM	405	(27.4)	179	(24.0)	221			213
Southern blue whiting	SBW	214	(93.1)	67	(91.8)	147	(93.7)		446
Scampi	SCI	42	(17.1)	10	(22.9)	32	(18.1)		21
Rough skate	RSK		(60.1)	27	(71.0)	52 7	(100)		22
riougii situto		¢.	(0011)		(,,		()		
Non-commercial species	(where bi	omass > 8	00 tonnes)	1	•				
Bigeyed rattail	CBO	13 621	(13.2)	-		-			6 402
Javelinfish	JAV	10 799	(11.7)	-		-			4 609
Orange perch	OPE	2 673	(49.8)			-			1 612
Longenose velvet dogfish		2 671	(77.4)	-		-			788
Baxter's dogfish	ETB	2 078	(31.7)	-		-			597
Oblique-banded rattail	CAS	1 746	(11.1)	-		-			1 409
Oliver's rattail	COL	1 168	(18.2)	-		-		•	525
Longnose chimaera	LCH	1 091	(21.9)	-		-			369
Rudderfish	RUD	894	(30.3)	-		-			246
Banded bellow fish	BBE	858	(13.0)	-					301
Silver dory	SDO	802	(30.6)	-		-			572
-			. ,						

* Differences between the total biomass and the sum of males and females are juvenile fish unable to be sexed.

Table 4: Estimated biomass (and % c.v.) of hoki by cohort and stratum. (Tan9901)

s estimat

the second state of the second state of the

Stratum	То	tal hoki		cohort 47 cm)		2+ cohort (48-57 cm)	3+ cot	nort and older (> 58 cm)
	050	(49)	0		5	(70)	055	(40)
1	959 5 052	(48)	0		5 0	(79)	955	(48)
2	5 953	(19)	0	((0)		(20)	5 953	(19)
3	693	(40)	4	(60)	50	(38)	639	(40)
4	2 959	(34)	0		26	(71)	2 933	(34)
5	1 653	(27)	307	(37)	470	(34)	876	(27)
6	1 641	(23)	0		2	(100)	1 640	(23)
7	2 598	(36)	872	(97)	325	(42)	1 401	(19)
8	4914	(13)	247	(65)	734	(42)	3 934	(14)
9	3 594	(67)	2 530	(95)	644	(84)	. 420	(56)
10	2 535	(12)	249	(51)	388	(33)	1 898	(7)
11	3 741	(9)	46	(91)	717	(39)	. 2978	(5)
12	10 372	(20)	112	(100)	569	(89)	9 691	(16)
13	3 108	(16)	60	(65)	399	(58)	2 650	(26)
14	3 036	(23)	1	(100)	338	(42)	2 697	(25)
15	9 265	(24)	405	(80) ·	1 755	(33)	7 105	(21)
16	15 443	(47)	442	(66)	2 854	(57)	12 146	(45)
17	4 482	(84)	1 685	(100)	1 884	(97)	913	(33)
18	5 025	(79)	2 296	(97)	1 189	(84)	1 540	(53)
19	22 553	(33)	16 005	(43)	3 019	(39)	3 529	(53)
20	4 814	(34)	377	(33)	1 128	(36)	3 309	(36)
Total	109 336	(11.6)	25 637	(30.4)	16 494	(18.9)	67 206	(9.9)

	_									T 137		000				CIII A	Spe	cies code GSP
Stratum		BOE		СВО		GSH		JAV		LIN		SPD		LDO		SWA		GSP
1	0		185	(44)	0		137	(34)	93	(48)	. 0		30	(10)	0		199	(30)
2	0		161	(35)	0		1 097	(39)	728	(22)	16	(100)	147	(31)	0		482	(39)
3	0		191	(55)	941	(23)	143	(90)	167	(38)	645	(32)	270	(38)	2 123	(97)	8	(100)
4	6 603	(61)	104	(39)	0		810	(20)	461	(61)	3	(100)	79	(47)	0		345	(14)
5	0	. ,	132	(39)	787	(31)	101	(45)	272	(25)	1 363	(38)	402	(18)	196	(41)	0	
6	10 261	(34)	202	(33)	0		290	(18)	354	(61)	0		30	(80)	0		602	(27)
7	0		394	(26)	29	(83)	439	(29)	669	(16)	103	(53)	109	(14)	272	(54)	336	(16)
8	0		1 235	(49)	16	(50)	1 416	(57)	736	(22)	263	(51)	900	(32)	32	(65)	426	(24)
9	0		18	(100)	1 000	(33)	77	(53)	1 600	(95)	464	(43)	179	(43)	1 663	(44)	0	
10	0		423	(52)	201	(73)	756	(45)	240	(18)	228	(82)	384	(29)	27	(100)	132	(23)
11	0		491	(28)	325	(66)	628	(38)	544	(18)	286	(67)	599	(22)	360	(89)	67	(58)
12	0		1 182	(36)	17	(100)	1 1 1 3	(27)	550	(23)	550	(71)	830	(37)	29	(58)	357	(45)
13	0		836	(32)	2	(100)	318	(34)	523	(17)	478	(35)	700	(12)	45	(67)	428	(48)
14	0		720	(68)	10	(50)	381	(23)	364	(33)	730	(82)	508	(36)	103	(56)	. 646	(34)
15	0		1 920	(40)	5	(75)	1 080	(49)	805	(28)	391	(43)	475	(25)	119	(53)	394	(10)
16	0		2 913	(38)	0		1 123	(19)	1 093	(28)	466	(56)	357	(38)	176	(60)	717	(32)
17	0		13	(100)	4 002	(68)	+	(100)	28	(61)	53	(3)	49	(39)	69	(89)	0	
- 18	0		185	(51)	581	(18)	141	(81)	165	(31)	792	(16)	252	(74)	168	(61)	0	
19	0		419	(74)	2 197	(15)	187	(59)	150	(58)	809	(13)	261	(39)	1 261	(47)	6	(100)
20	0		1 898	(31)	2 012	(25)	564	(44)	769	(28)	913	(25)	756	(11)	115	(50)	126	(65)
Total	16 863	(32)	13 621	(13)	12 125	(23)	10 799	(12)	10 309	(16)	8 551	(13)	7 417	(8)	6 760	(34)	5 272	(10)

Table 5: Estimated biomass and c.v. (%) of the 18 most abundant species, other than hoki, by stratum*. (Tan9901)

•

.

۰.

.

. . .

Table 5 — continued

																	Specie	<u>es code</u>
Stratum	-	SPE		BYS		SND		SOR		WWA		OPE		СҮР		HAK		ETB
1	12	(52)	0		920	(53)	91	(57)	0		0		556	(93)	25	(57)	39	(99)
2	117	(19)	0		2 636	(36)	2 303	(29)	- 0		0		2 000	(100)	522	(36)	0	
3	276	(33)	827	(100)	0		0	-	135	(71)	121	(88)	0		15	(65)	0	
4	47	(54)	· 0		245	(87)	310	(84)	0		0		45	(66)	73	(34)	567	(81)
5	111	(56)	150	(56)	0		+	(100)	164	(33)	55	(95)	0		0		0	
6	18	(74)	· 0		32	(48)	2	(100)	10	(100)	0		70	(89)	130	(41)	1 075	(38)
7	85	(24)	0		41	(54)	0		57	(72)	+	(100)	+	(100)	203	(17)	0	
8	413	(30)	9,	(45)	53	(100)	10	(100)	3	(75)	0		0		186	(31)	0	
9	84	(76)	198	(54)	0		5	(100)	90	(61)	834	(70)	0		0		0	
10	97	(20)	278	(88)	29	(100)	0		. 9	(100)	1	(100)	0		202	(26)	0	
11	205	(25)	616	(89)	116	(100)	838	(100)	906	(77)	20	(61)	0		244	(35)	0	
12	261	(62)	8	(100)	37	(57)	184	(97)	24	(66)	5	(100)	0	•	88	(75)	0	
13	58	(25)	0		0		0		80	(46)	0		0		104	(44)	0	
14	241	(50)	0		0		0		4	(100)	0		0		74	(100)	131	(100)
15	290	(29)	0	•	3	(100)	0		67	(51)	0		• 0		135	(31)	10	(100)
16	216	(24)	0		10	(100)	0		163	(48)	0		0		198	(37)	255	(79)
17	+	(100)	0		0		0		11	(90)	0		0		0	(50)	0	
18	476	(13)	+	(100)	0		0		46	(80)	+	(100)	0		18	(58)	0	
19	914	(28)	2 1 1 2	(89)	0		0		166	(48)	457	(63)	0		44	(68)	0	(100)
20	922	(16)	18	(83)	0		0		1 202	(88)	1 180	(98)	0		41	(49)	3	(100)
Total	4 842	(9)	4 216	(51)	4 121	(26)	3 745	(30)	3 136	(41)	2 673	(50)	2 671	(77)	2 302	(12)	2 078	(32)

* Species codes are given in Table 3.

.

+ Biomass less then 0.5 tonnes.

Table 6: Length-weight relationship parameters a and b used in the Trawlsurvey Analysis Program to calculate biomass by sex and length frequencies'. (Tan9901)

	а	b	· n	r^2	Range	Data source
Alfonsino	0.024253	2.982670	514	0.97	18-43	This survey
Barracouta	0.003929	3.026534	155	0.92	50-112	This survey
Dark ghost shark	0.002764	3.201944	429	0.98	28-71	This survey
Giant stargazer	0.008959	3.148286	266 .	0.99	19-81	This survey
Hake	0.002597	3.225967	264	0.98	40-122	This survey
Hoki	0.003788	2.940880	1 775	0.98	37-117	This survey
Longfinned beryx	0.015102	3.121924	36	0.98	27-41	This survey
Ling	0.001136	3.320987	996	0.99	25-164	This survey
Lookdown dory	0.028384	2.917760	551	0.99	12-55	This survey
Pale ghost shark	0.006195	2.994958	256	0.96	25-85	This survey
Ribaldo	0.002025	3.450293	58	0.98	30-70	This survey
Scampi	0.721579	2.749810	174	0.88	2.9-7.2	This survey
Sea perch	0.012720	3.091254	558	0.99	12-53	This survey
Shovelnose dogfish	0.001435	3.221695	343	0.99	31-126	This survey
Silver warehou	0.010953	3.143978	631	0.98	22-56	This survey
Spiky oreo	0.037289	2.854037	459	0.96	13-44	This survey
Spiny dogfish	0.001334	3.278974	368	0.96	51-103	This survey
Slender mackerel	0.139276	2.313501	48	0.73	45-55	This survey
White warehou	0.011986	3.168799	402	0.99	15-62	This survey
Arrow squid	0.0290	3.00	-	-	-	Annala (1993)
Banded stargazer	0.01300	3.25	143	0.98	22-69	Bagley & Hurst (1996)
Black oreo	0.0248	2.950	9 790	0.98	11-44	DB, Chat. Rise, Nov-Mar
Bluenose	0.00963	3.173	-		-	Horn (1988)
Hapuku	0.014230	2.998	1 644	-	50-130	Johnston (1983)
Jack mackerel	0.016500	2.93000	200	· -	15-53	DB, COR9001
Lemon sole	0.007990	3.127847	524	-	14-41	Stevenson & Beentjes (1999)
Orange roughy	0.0687	2.792	7 880	0.99	9-44	DB, Chat. Rise, Nov-Mar
Ray's bream	0.012004	3.107050	107	0.97	28-49	All records on DB
Red cod	0.0092	3.003	923	0.98	13-72	Beentjes (1992)
Red gurnard	0.001626	3.223728	846	-	13-54	Stevenson & Beentjes (1999)
Rough skate	0.033966	2.876666	336	-	14-70	Stevenson & Beentjes (1999)
Rubyfish	0.027018	2.906400	68	-	31-49	DB, WNK8503
School shark	0.00702	2.91	804	-	30-166	Seabrook-Davison, Unp.
Smooth oreo	0.0309	2.895	9 147	0.98	10-57	DB, Chat. Rise, Nov-Mar
Smooth skate	0.017677	3.024078	54	0.98	61-155	DB, TAN9701
Southern blue whiting	0.003	3.2	444	-	19-55	Hatanaka <i>et al</i> . (1989)
Tarakihi	0.02	2.98	-	-	-	Annala (1993)

. . .

* $W = aL^b$ where W is weight (g) and L is length (cm); n, sample number; r^2 is correlation coefficient; Range, length range of fish (cm); DB is the Ministry of Fisheries trawl survey database; Unp., Unpublished data.

Table 7: Catch rates $(kg.km^{-2})$ with standard deviations (in parentheses) by stratum for the 20 most abundant species *. (Tan9901)

									Specie	es code
Stratum	НОК	BOE	CBO	GSH	JAV	LIN	SPD	LDO	SWA	GSP
1	393	0	76	0	56	38	0	13	0	82
	(330)		(58)		(33)	(31)		(2)		(42)
2	506	0	14	0	93	62	1	13	0	41
	(188)		(10)		(73)	(28)	(3)	(8)		(32)
3	198	0	55	269	41	48	184	106	607	2
	(158)		(60)	(121)	(73)	(37)	(118)	(81)	(1 180)	(5)
4	261	584	9	0	72	41	0.3	7	0	30
	(177)	(709)	(7)		(29)	(50)	(0.6)	(7)		(8)
5	406	0	32	193	25	67	334	99	48	0
	(244)		(28)	(132)	(25)	(38)	(287)	(39)	(44)	
6	199	1 241	25	0	35	43	0	4	0	73
	(93)	(853)	(16)		(13)	(52)		(6)		(39)
7	496	0	75	6	84	128	20	21	52	64
	(537)		(59)	(14)	(73)	(60)	(31)	(9)	(84)	(31)
8	54 6	0	137	. 2	157	82	29	100	4	47
	(169)		(164)	(2)	(219)	(45)	(37)	(79)	(6)	(27)
9	700	0	4	195	15	312	90	35	324	0
	(1 155)		(9)	(160)	(20)	(723)	(96)	(37)	(351)	
10	401	0	67	32	120	38	36	61	4	21
	(99)		(69)	(46)	(109)	(14)	(59)	(35)	(9)	(10)
11	318	0	42	28	53	46	24	51	31	6
	(56)		(23)	(37)	(41)	(16)	(33)	(22)	(55)	(7)
12	1 577	0	180	3	169	84	84	126	4	54
	(552)		(113)	(5)	(80)	(34)	(103)	(81)	(4)	(43)
13	465	0	125	0.2	48	78	72	105	7	64
.,	(151)	_	(80)	(0.5)	(33)	(26)	(51)	(26)	(9)	(61)
14	512	0		2	64	61	123	86	17	109
16	(203)		(144)	(2)	(26)	(35)	(176)	(54)	(17)	(64)
15	1 586	0	329	1	185	138	67	81	20	68
16	(919)	•	(325)	(1)	(224)	(96)	(70)	(50)	(27)	(17)
16	1 340	0	253	0	98	95	41	31	15	62
17	(1677)	•	(255)		(48)	(70)	(60)	(31)	(24)	(52)
17	5 181	0	15	4 627	0.2	32	62	57	79	0
10	(7 496)	•	(26)	(5 442)	(0.4)	(34)	(3)	(38)	(122)	
18	1 068	0	39	123	30	35	168	54	36	0
10	(1 684)	~	(40)	(44)	(49)	(22)	(55)	(79)	(44)	~ ~
19	2 502	0	46	244	21	17	90	29	140	0.7
20	(2 607)	0	(109)	(113)	(39)	(30)	(36)	(36)	(208)	(2)
20	502	0	198	210	59 ((8)	80	95	79	12	13
	(457)		(163)	(137)	(68)	(60)	(64)	(22)	(16)	(23)

.

ţ,

		·							,	
									Specie	<u>es code</u>
Stratum	SPE	BYS	SND	SOR	WWA	OPE	СҮР	НАК	ETB	STA
1	5	0	377	37	0	0	228	10	16	10
	(5)		(345)	(37)			(367)	· (10)	(28)	(17)
2	10	0	224	196	0	0	170	44	0	0
	(4)		(160)	(113)		•	(340)	(32)		
3	79	236	0	0	39	35	0	4	0	19
	(52)	(472).			(55)	(61)		(6)		(9)
4	4	0	22	27	0	0	4	6	50	0
	(4)		(37)	(46)			(5)	(4)	(81)	
5	. 27	37	0	0.1	40	13	0	0	0	44
	(35)	(46)		(0.1)	(30)	(28)				(27)
6	2	0	4	0.3	1	0	8	16	130	0
	(3)		(4)	(0.6)	(2)		(15)	(13)	(99)	
7	16	0	8	0	11	0.1	0.1	39	0	5
	(12)		(13)	•	(24)	(0.1)	(0.2)	(19)		(9)
8	46	1	6	1	0.3	0	0	21	0	3
	(34)	(1)	(14)	(3)	(0.6)			(16)		(7)
9	16	39	0	0.9	17	162	0	0	0	76
	(31)	(51)		(2)	(26)	(277)				(42)
10	15	44	5	0	· 1	0.1	0	32	0	0.7
	(6)	(77)	(9)		. (3)	(0.3)		(17)		(2)
_ 11	17	52	10	71	77	2	0	21	0	12
	(9)	(93)	(20)	(143)	(119)	(2)		(15)		(8)
12	40	1	6	28	4	0.7	0	13	0	45
	(43)	(2)	(6)	(47)	(4)	(1)		(17)		(39)
13	9	0	0	0	12	0	0	16	0	12
	(4)				(11)			(14)		(14)
14	41	0	0	0	0.7	0	0	13	22	0
	(35)				(1)			(22)	(38)	
15	50	0	0.4	. 0	11	0	0	23	• 2	12
	(36)		(1)		(14)			(18)	(4)	(15)
16	19	0	0.8	0	14	0	0	17	22	4
. –	(12)	_	(2)		(18)			(17)	(46)	(6)
17	0.5	0	0	• 0	13	0	0	· 0	0	117
10	(0.8)	<u>.</u>	0		(20)	<u> </u>			-	(27)
18	101	0.1	0	0	10	0.1	0	4	0	36
10	(26)	(0.1)	0	0	(16)	(0.2)	0	(5)	0	(42)
19	101	234	0	0	18	51	0	5	0	20
20	(91)	(659)	0		(28)	(102)		(11)		(22)
20	96	2	0	0	125	123	0	• 4	0.3	10
	(40)	(4)	*		(291)	(319)		(6)	(0.9)	(16)

* Species codes are given in Table 3.

.

Table 8: Species measured or selected for length frequencies and biological analysis, showing numbers of samples and numbers of fish examined, - no data. (Tan9901)

Section and a section of the section of the

•

••••

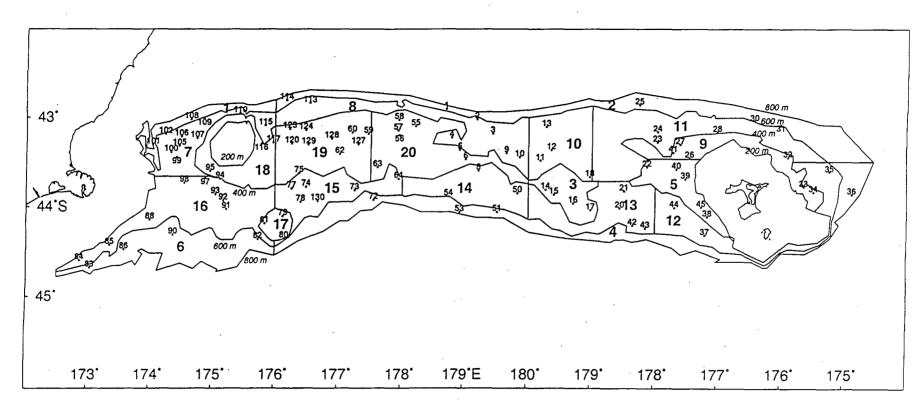
¢

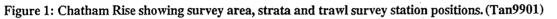
		<u> </u>	. Biological samples			
	<u> </u>	No. of fis	h measured	No. of	No. of	No. of
Species	Total†	Male	Female	samples	fish	samples
Alfonsino	1 326	766	560	36	517	* 10
Arrow squid	880	471	405	63	-	
Banded bellowsfish	1	-	-	1	-	_
Banded giant stargazer	2	0	2	ī	2	* 1
Barracouta	203	99	104	14	155	-
Black oreo	1 069	534	535	7	273	
Bluenose	4	2	2	4	3 :	
Bollons' rattail	115	2	2		5	5
	3 090	1 398	1 692	54	432	* 12
Dark ghost shark	23	1 598	8	54	432	
Deepsea cardinalfish Frostfish	23	2	0 1	1	3	5
	381		186	56	270	1
Giant stargazer		194	180		270	38
Hairy conger eel	2	-	-	1 62	-	-
Hake	236	94	142 4		236	62
Hapuku	8	4	•	8	1	
Hoki	20 384	8 949	11 418	95	1 777	. 79
Jack mackerel	3	2	1	2	2	* 1
Javelin fish	122	-	-	1	-'	-
Lemon sole	79	47	31	16	-	-
Ling	1 920	1 071	848	87	1 005	70
Longfinned beryx	36	32	4	1	36	* 1
Longnose chimera	2	-	2	1	-	-
Longnose velvet dogfish	169	140	29	1	-	-
Lookdown dory	4 444	1 929	2 410	89	553	* 12
Lucifer dogfish	2	-	2	1	-	-
Northern spiny dogfish	17	15	2	7	12	* 5
Oblique banded rattail	6		-	1	-	-
Olivers rattail	103	-	-	1	-	~
Orange perch	464	40	37	10	-	-
Orange roughy	3	-	3	3	-	-
Pale ghost shark	1 105	616	489	63	259	* 15
Pale toadfish	1	-	1	1	-	-
Prickly bluntnosed skate	4	2	2	2	4	_
Prickly dogfish	3	1	2	2	1	* 1
Ray's bream	141	72	67	34	11	* 1
Redbait	99	23	24	7	-	-
Red cod	525	308	207	31	-	-
Red gurnard	1	-	1	I	-	-
Ribaldo	77	37	40	27	58	18
Rough skate	3	1	2	3	3	* 3
Rubyfish	1	1	-	1	-	
Scampi	197	141	56	42	189	* 39
School shark	16	13	3	9	9	
Sea perch	3 151	1 376	1 232	90	567	* 17
Shovelnose dogfish	497	177	319	15	347	
Silver roughy	56	-	-	2	56	
Silverside	6	-	-	ī	-	-
Silver warehou	1 491	828	622	60	634	19
Sixgill shark	1	1		1	1	
Slender mackerel	190	119	71	14	. 48	
Smooth bluntnosed skate	16	9	7	11	16	
Smooth oreo	145	79	65	8	7	
Smooth skate	38	14	24	27	36	
	50					

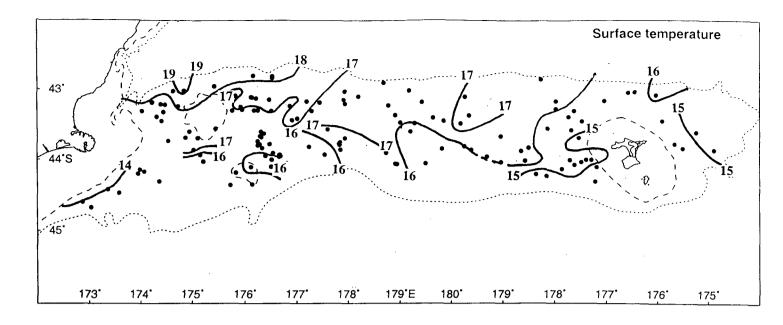
Table 8: (continued)

		Le	cy samples	Biological samples		
		No. of fish	measured	No. of	· No. of	No. of
Species	Total†	Male	Female	samples	fish	samples
						•
Southern blue whiting	118	84	34	4	-	
Spiky oreo	662	410	252	15	461 *	7
Spiny dogfish	1 892	284	1 605	73	370 *	14
Spiny flathead	1	-	· _	· 1	-	-
Tarakihi	42	23	19	8	15 *	I
White warehou	825	491	328	55	402	19

* Length, sex, and weight data only collected.


Total is sometimes greater than the sum of male and female fish due to the sex of some fish not recorded.


Table 9: Numbers	of male	and	female	hoki,	hake,	ling,	and	silver	warehou	at	each	reproductive	stage .
(Tan9901)													


		Hake		Hoki	-	Ling
Stage	Male	Female	Male	Female	Male	Female
1	37	47	284	315	205	239
2	12	52	430	736	99	213
3	8	31	0	0	36	0
4	17	3	0	0	186	4
5	15	0	0	0	6	0
6	1	5	0	0	0	0
7	0	1	0	0	0	0
Total	90	139	714	1051	532	456

Giant stargazer			S	ilver warehou	V	White warehou		
Stage	Male	Female	Male	Female	Male	Female		
I	12	8	6	3	19	11		
2	29	20	79	74	26	14		
3	0	5	0	0	0	0		
4	0	· 1	0	0	0	0		
5	0	0	1	0	0	0		
6	0	4	0	0	. 0	0		
7	0	4	1	12	0	0		
Total	41	42	86	89	45	25		

* Stage: 1, immature; 2, resting; 3, ripening; 4, ripe; 5, running ripe; 6, partially spent; 7, spent. Reproductive stages were described in detail by Hurst *et al.* (1992).

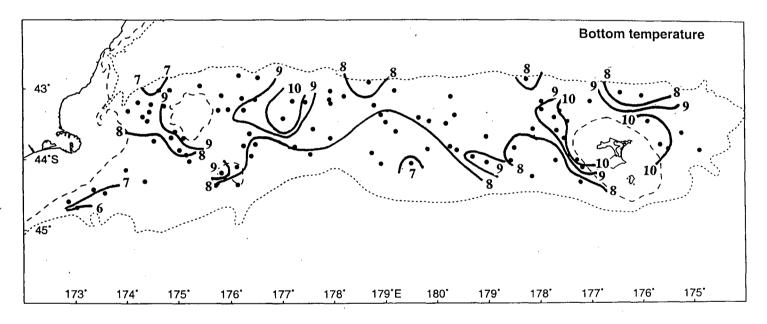
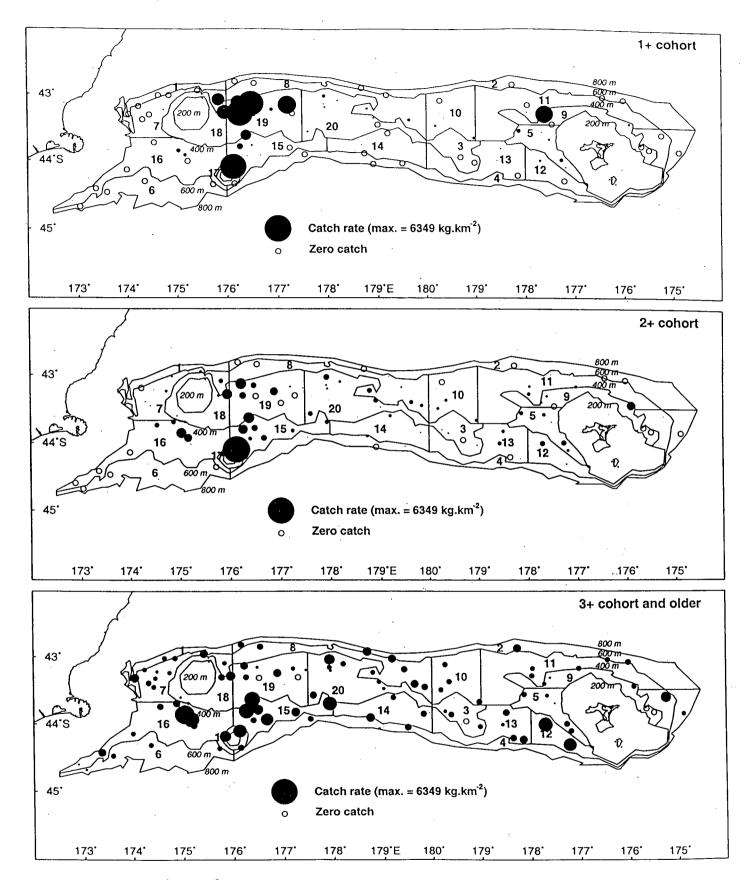
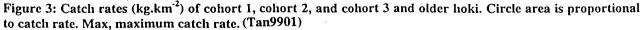




Figure 2: Positions of surface (top) and bottom temperature recordings and isotherms estimated from these data. (Tan9901)

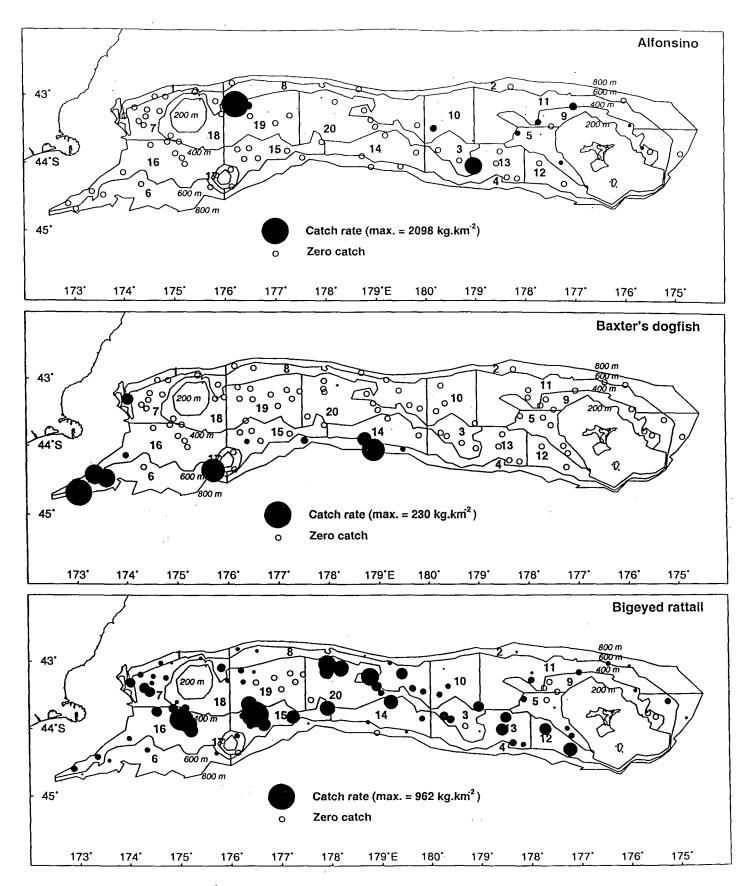


Figure 4: Catch rates (kg.km²) of the most abundant species. Circle area is proportional to catch rate. Max, maximum catch rate. (Tan9901)

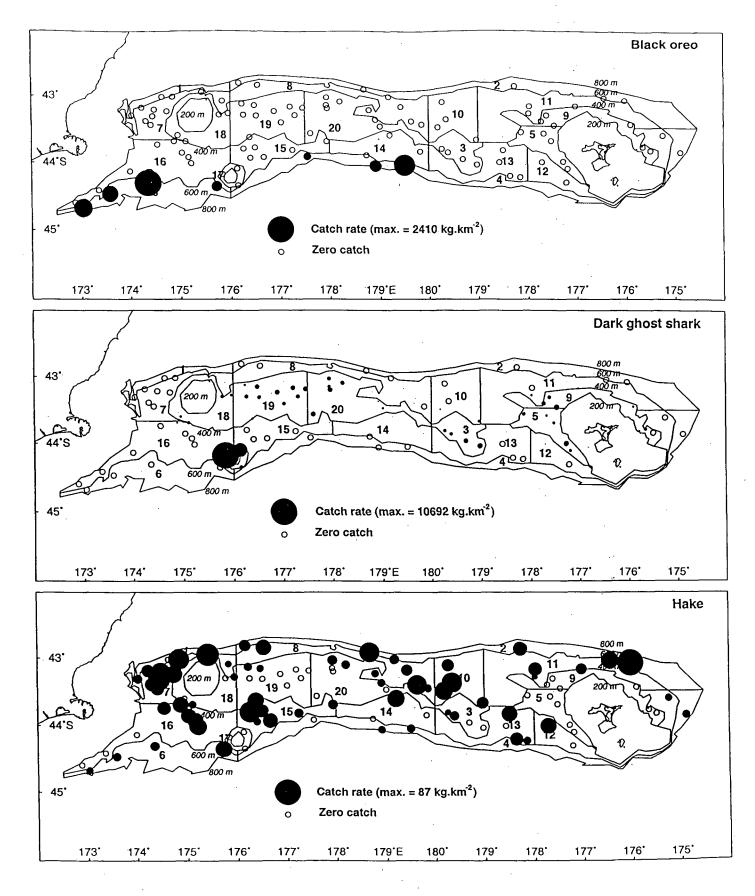


Figure 4 — continued

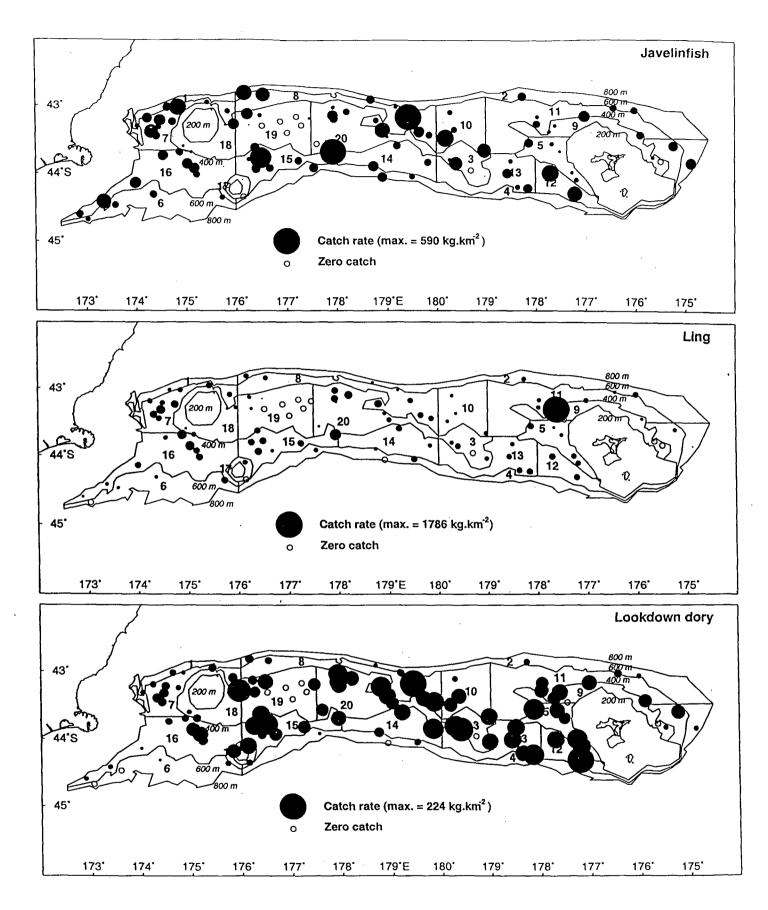
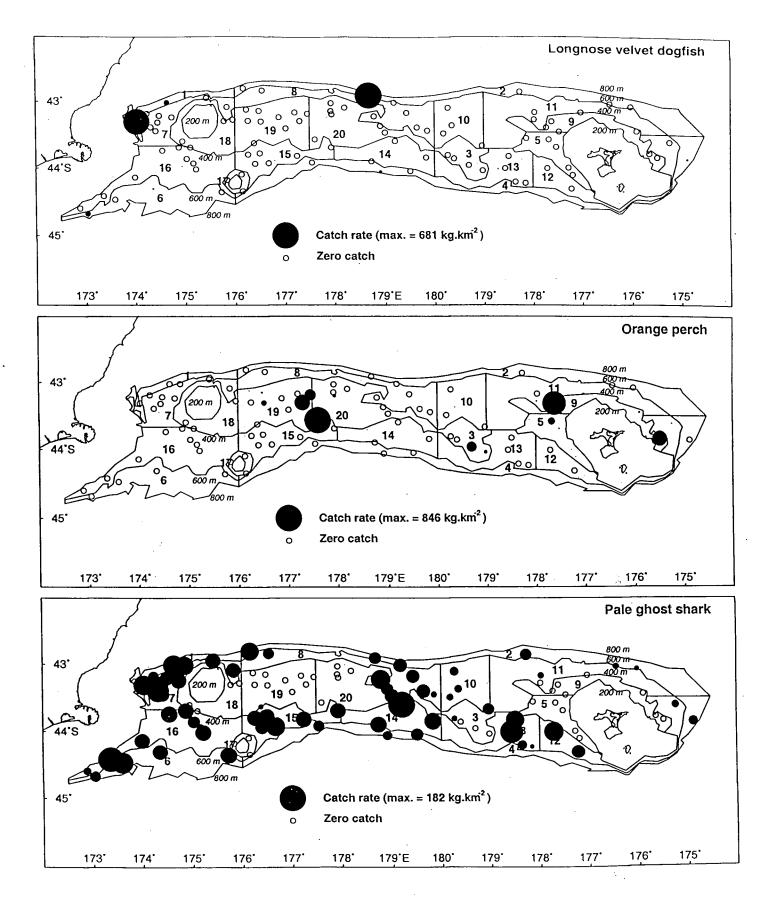
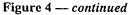




Figure 4 — continued

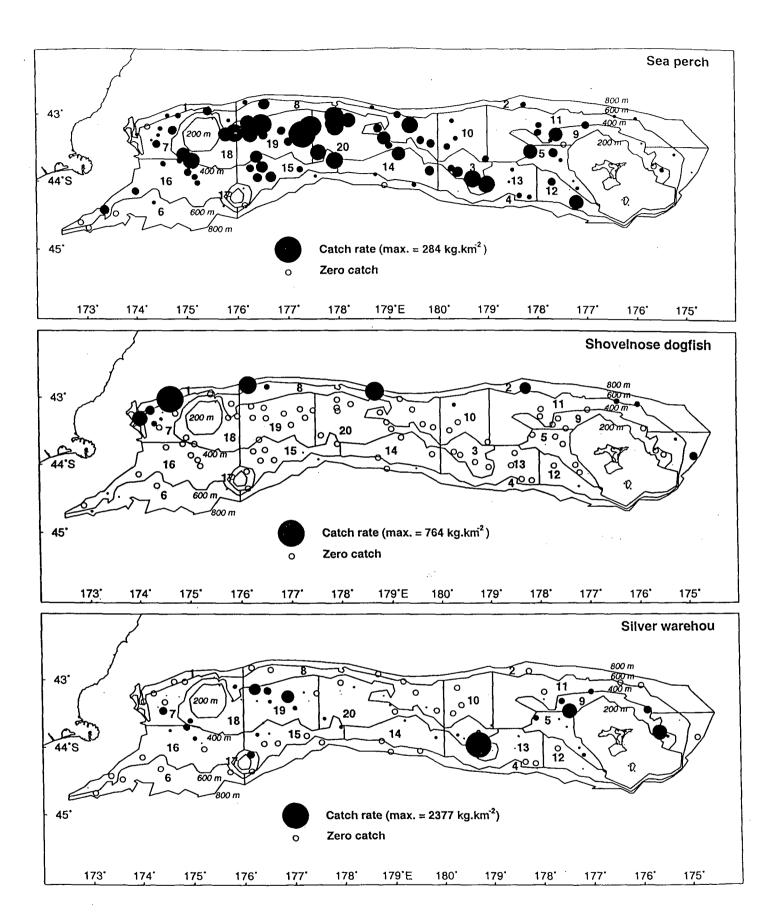
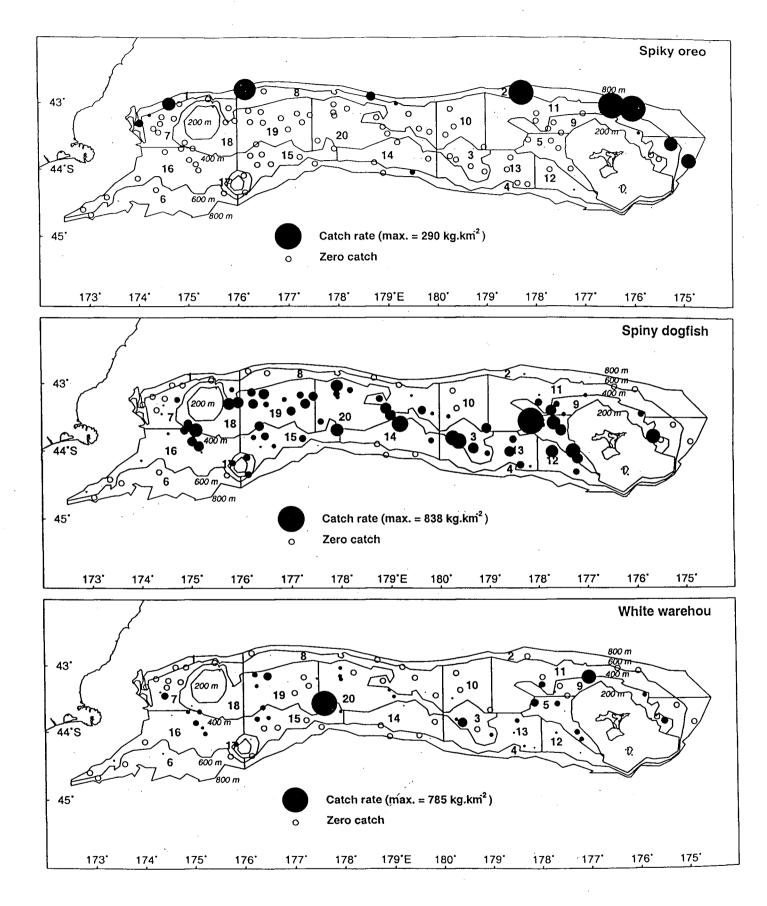
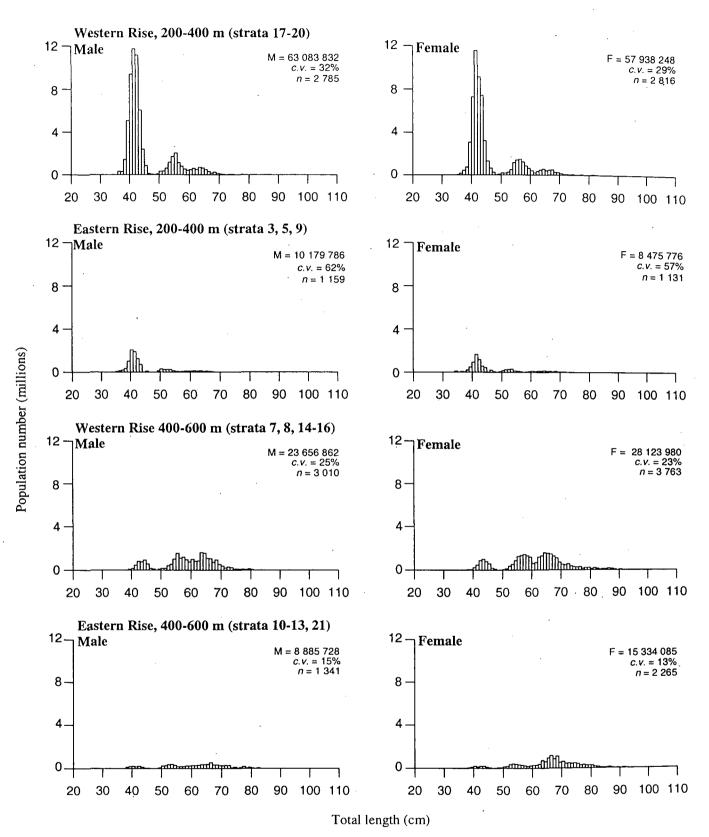
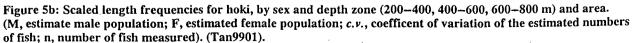
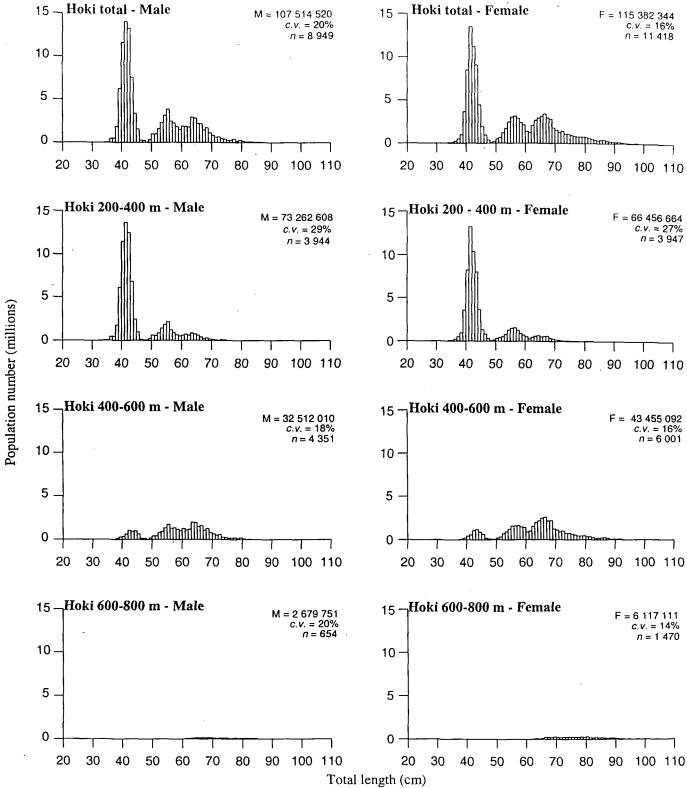
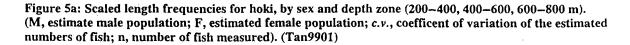
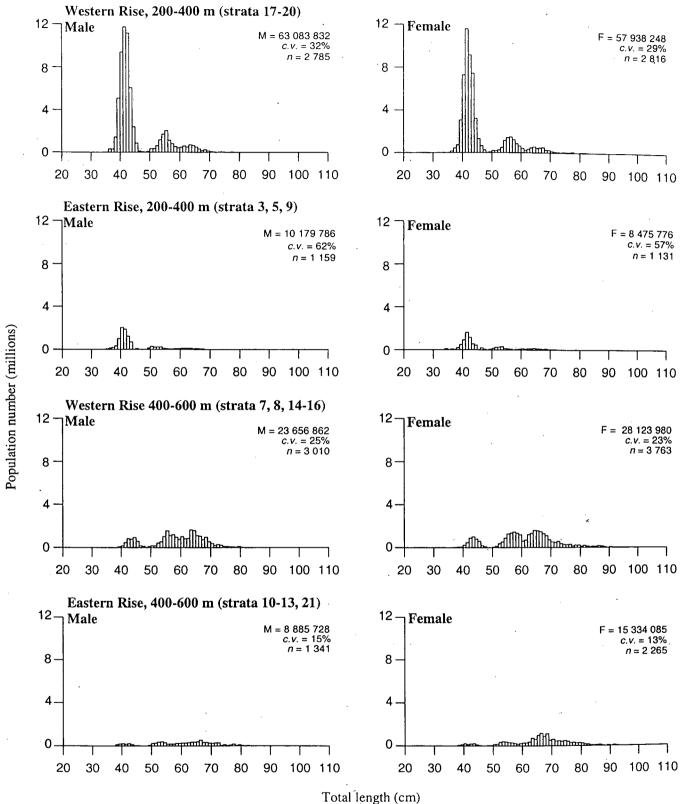


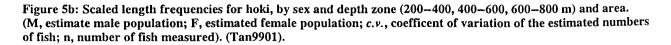
Figure 4 — continued

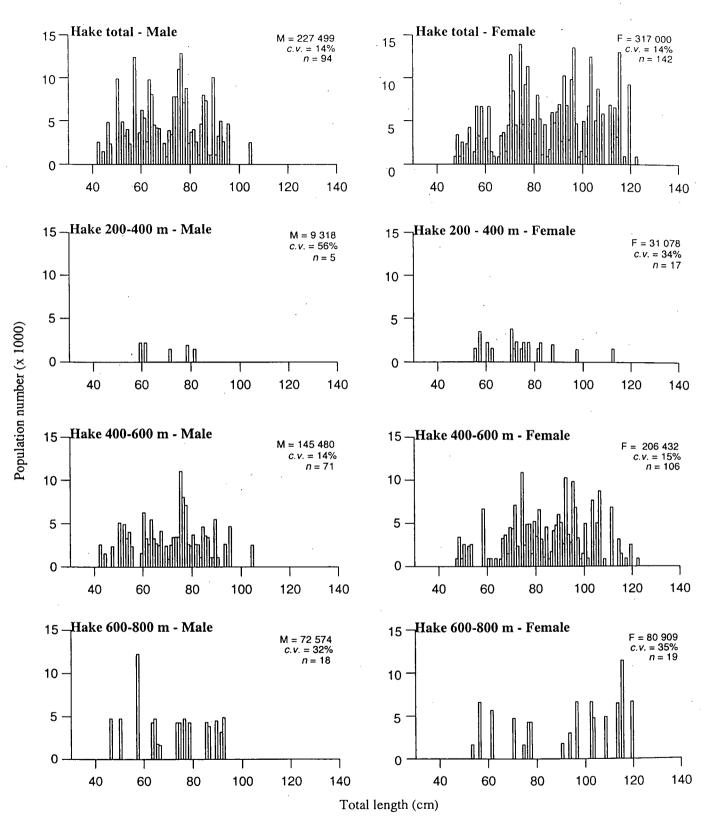




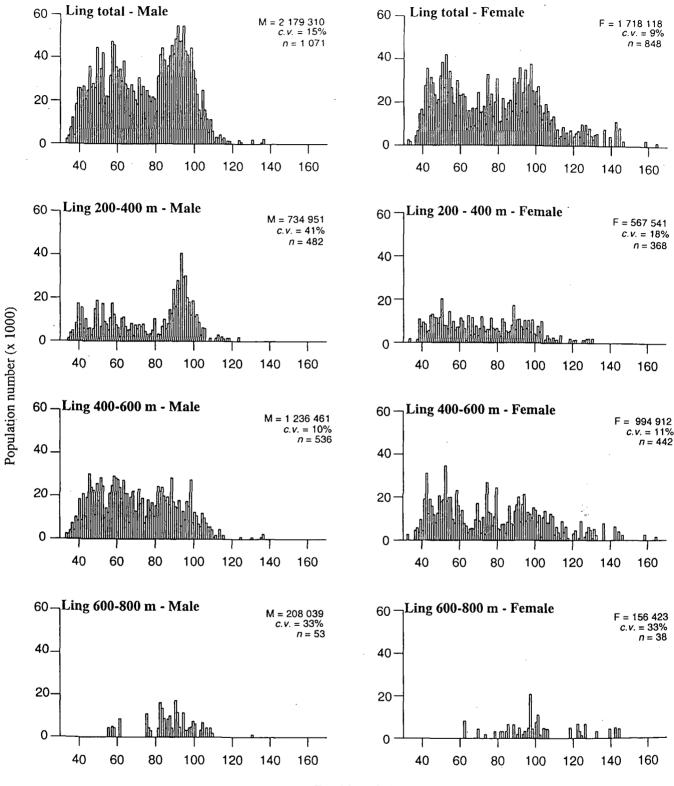

Figure 4 — continued




Figure 5a: Scaled length frequencies for hoki, by sex and depth zone (200-400, 400-600, 600-800 m). (M, estimate male population; F, estimated female population; c.v., coefficient of variation of the estimated numbers of fish; n, number of fish measured). (Tan9901)







1

Figure 6: Scaled length frequencies for hake, by sex and depth zone (200-400, 400-600, 600-800 m). (M, estimate male population; F, estimated female population; c.v., coefficient of variation of the estimated numbers of fish; n, number of fish measured). (Tan9901).

Total length (cm)

Figure 7: Scaled length frequencies for ling, by sex and depth zone (200-400, 400-600, 600-800 m). (M, estimate male population; F, estimated female population; c.v., coefficient of variation of the estimated numbers of fish; n, number of fish measured). (Tan9901)

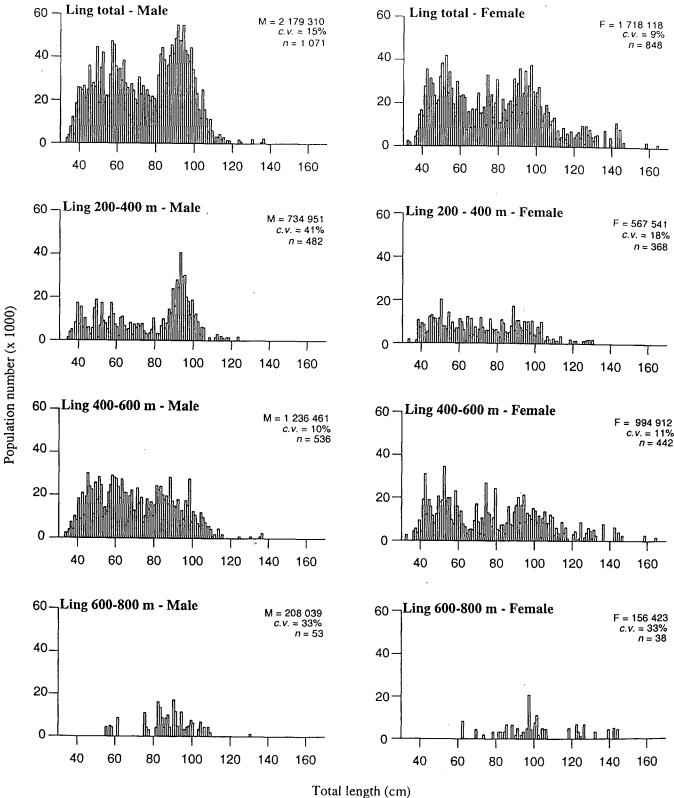
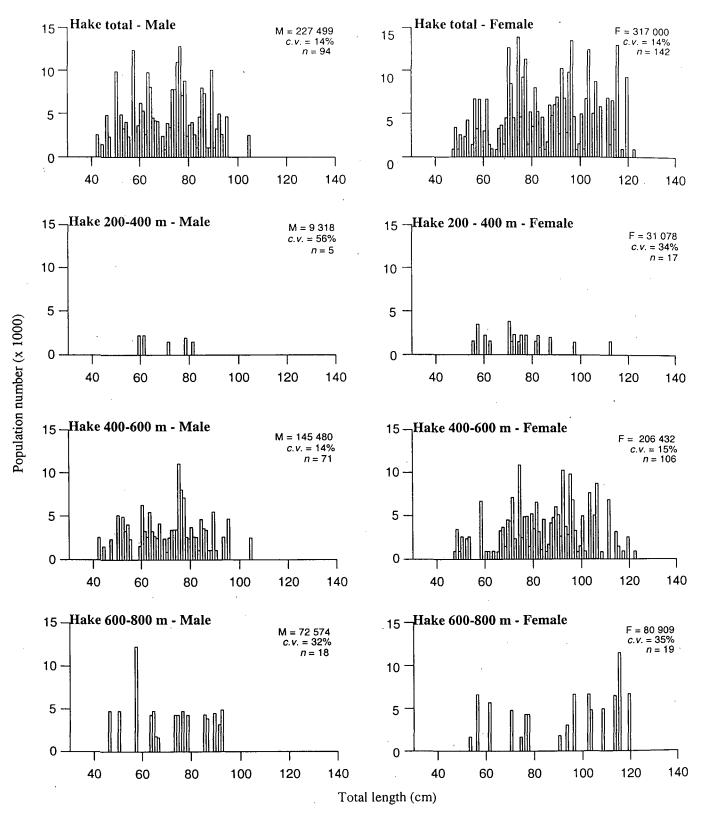
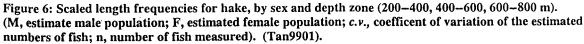




Figure 7: Scaled length frequencies for ling, by sex and depth zone (200-400, 400-600, 600-800 m). (M, estimate male population; F, estimated female population; c.v., coefficent of variation of the estimated numbers of fish; n, number of fish measured). (Tan9901)

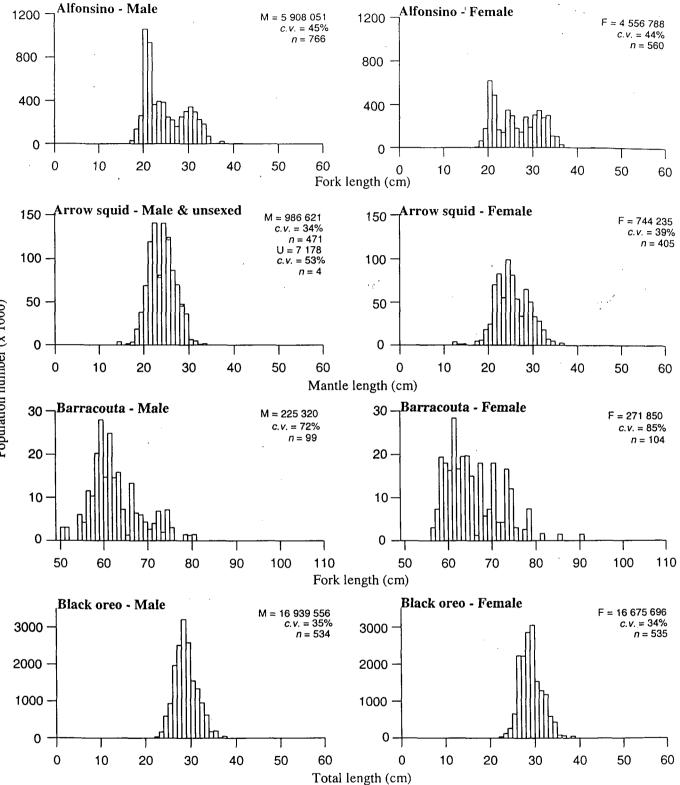


Figure 8: Scaled length frequencies for the major species, by sex. (M, estimated male population; F, estimated female population; U, estimated unsexed population (hatched bars); c.v. coefficient of variationof the estimated numbers of fish; n, number of fish measured). (Tan9901).

Population number (x 1000)

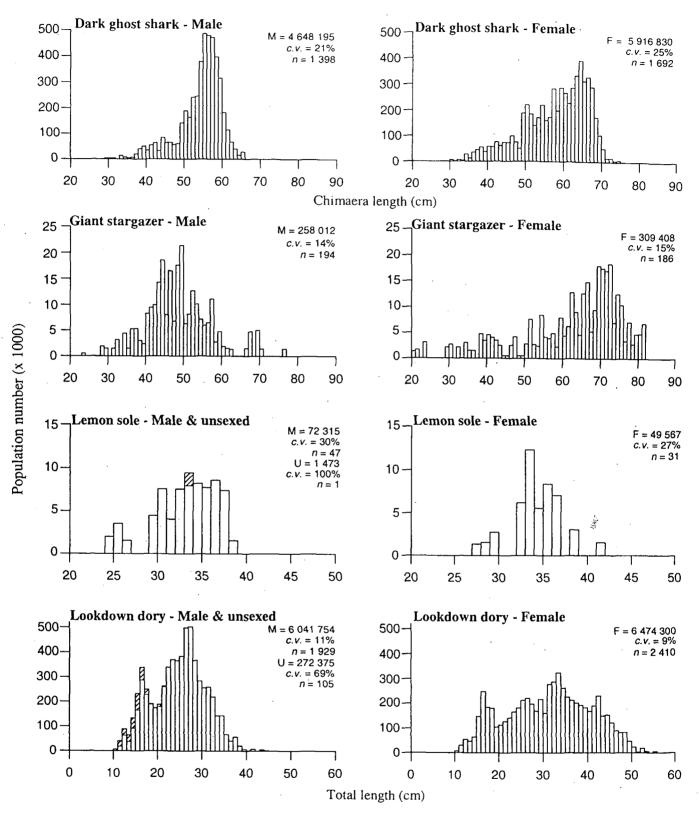


Figure 8 – continued

.

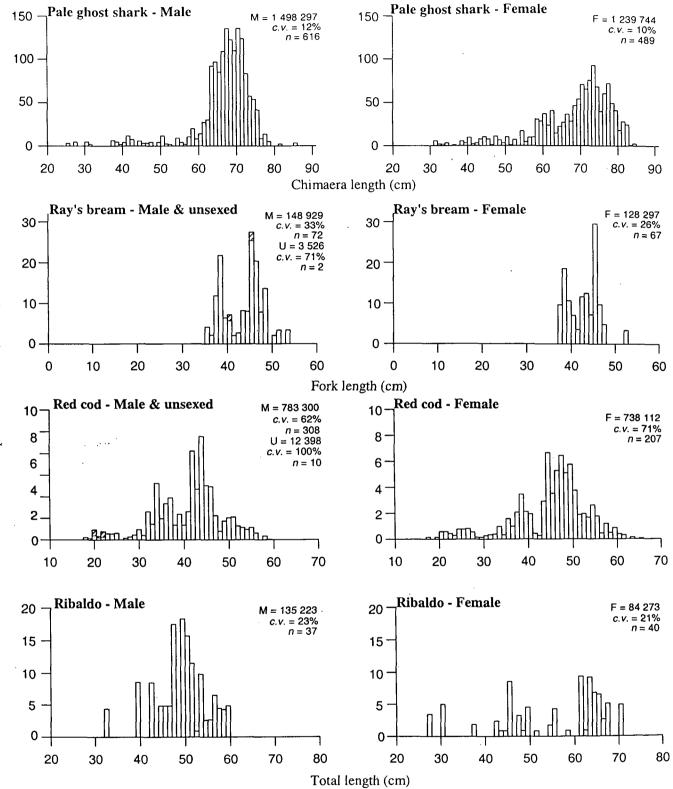


Figure 8 – *continued*

Population number (x 1000)

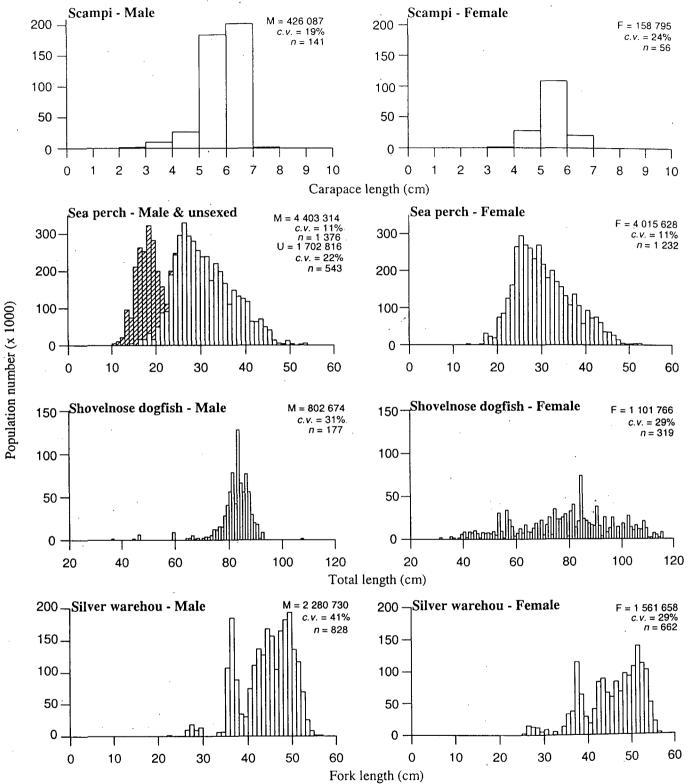


Figure 8 - continued

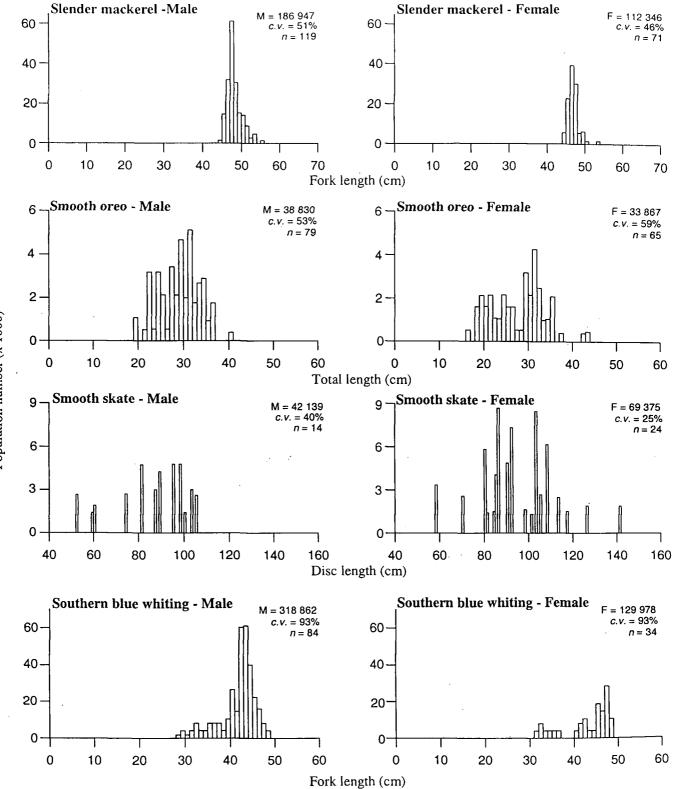


Figure 8 - continued

Population number (x 1000)

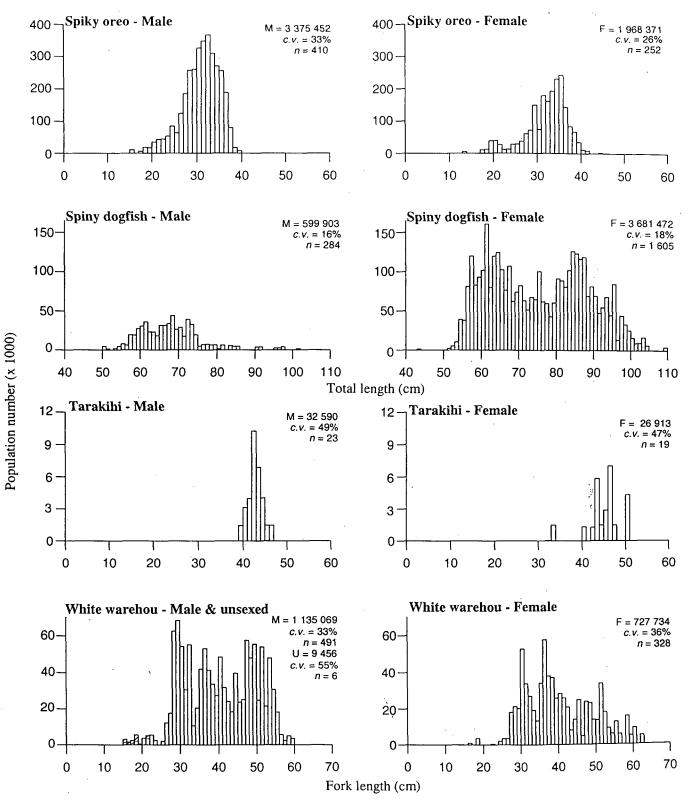


Figure 8 - continued

.

Appendix 1: Individual station data from all stations attempted during the survey. BIO, trawl survey biomass stations; AC, acoustic bottom or midwater trawl stations. (Tan9901)

ing ing or

								ow De	<u>pth (m)</u>				<u>:h (kg)</u>
T	<u>.</u>		D - 4	Time	Latitude	Longitude				towed		ling	hake
гуре	Stn. S	tratum	Date	NZDT	° ´S		E/W	min.	max. ((n.mile)			
BIO	ł	2	04-Jan-99	450	42 54.30	178 41.58	Е	715	758	2.9	438.3	14.3	30.3
BIO	2	8	04-Jan-99	823	43 01.39	179 11.31	Е	508	513	3.0	412.5	13	8
BIO	3	8	04-Jan-99	1114	43 10.97	179 26.39	E	436	448	3.0	289.7	54.3	10.9
BIO	4		04-Jan-99	1446	43 13.91	178 47.14	Е	414	414	3.0	296.1	99.2	4.8
BIO	5	20	04-Jan-99	1729	43 21.96	178 55.09	E	393	397	3.1	271.4	27.7	5.2
BIO	6	20	04-Jan-99	1927	43 28.28	179 00.78	Ε	367	377	2.0	42.3	27.3	0
AC	7		04-Jan-99	2344	43 28.90	179 17.48	Е	150	170	1.6	2.1	0	0
BIO	8	14	05-Jan-99	432	43 36.00	179 12.80	E	422	436	3.0	251.4	64.7	24
BIO	9	8	05-Jan-99	813	43 24.22	179 39.29	Ε	414	457	3.0	531.3	57.5	30.6
BIO	10	8	05-Jan-99	1027	43 26.98	179 51.64	E	424	429	3.0	338.6	50.7	5.8
BIO	11	10	05-Jan-99	1307	43 29.36	179 48.74	W	400	426	2.9	262.1	21.4	25.8
BIO	12	10	05-Jan-99	1505	43 22.25	179 38.59	W	461	476	2.8	237.8	15.1	31.6
BIO	13	10	05-Jan-99	1811	43 06.42	179 43.43	W	526	531	3.0	197	25.8	13.1
BIO	14	3	06-Jan-99	444	43 48.67	179 43.88	W	375	379	3.0	94.8	30.9	3.5
BIO	15	3	06-Jan-99	704	43 51.84	179 35.94	W	349	357	3.0	235.1	58.5	7 .7
BIO	16	3	06-Jan-99	929	43 57.52	179 17.91	W	208	227	3.0	0	0	0
BIO	17	3	06-Jan-99	1145	44 02.12	179 01.49	W	316	351	3.0	175.7	33	0
BIO	18	10	06-Jan-99	1517	43 40.31	179 02.02	W	404	425	3.0	334.2	36.3	11.1
BIO	*19	13	06-Jan-99	1901	43 52.54	178 37.95	W	456	468	2.0	0	0	0
BIO	20	13	07-Jan-99	439	44 00.72	178 33.63	W	446	457	3.0	171.4	48.7	0
BIO	21	13	07-Jan-99	705	43 49.77	178 29.23	W	438	449	3.0	373.8	29.6	20.6
BIO	22	5	07-Jan-99	1009	43 33.73	178 07.76	W	377	388	3.0	376.4	71.9	0
BIO	23	11	07-Jan-99	1306	43 16.82	177 57.96	W	416	451	3.0	256.3	29.6	3.2
BIO	24	11	07-Jan-99	1501	43 10.13	177 57.84	W	477	482	3.0	176.8	27	15.2
BIO	25	2	07-Jan-99	1845	42 51.40	178 15.45	W	611	631	2.5	372.2	37.9	15
BIO	26	9	08-Jan-99	441	43 27.40	177 27.48	W	269	272	3.0	2.5	0	0
BIO	27	9	08-Jan-99	721	43 18.39	177 36.60	W	338	348	3.0	1 768.1	1 078.0	0
BIO	28	11	08-Jan-99	1046	43.09.94	177 01.36	W	423	472	3.0	213.6	44	9.9
BIO	*29	11	08-Jan-99	1350	43 02.92	176 33.81	W	572	580	1.8	0	0	0
BIO	30	11	08-Jan-99	1536	43 02.40	176 26.28	W	570	582	3.0	183.6	19.8	26.2
BIO	31	2	08-Jan-99	1900	43 04.94	176 01.06	Ŵ	628	639	2.1	143.8	39.2	38.7
BIO	32	9	09-Jan-99	43 3	43 27.15	175 53.82	W	377	380	3.0	619.3	17.1	0
BIO	33	9	09-Jan-99	815	43 46.84	175 39.25	W	297	320	3.0	0	0	0
BIO	34	9	09-Jan-99	1000	43 50.42	175 29.63	W	260	314	2.4	0	0	0
BIO	35	12	09-Jan-99	1251	43 36.84	175 14.32	W	569	578	3.0	670	30.1	4.6
BIO	36	4	09-Jan-99	1618	43 51.70	174 52.86	W	709	723	3.0	143.8	3.8	6.2
BIO	37	12	10-Jan-99	851	44 18.83	177 12.41	W	466	475	3.0	1 083.5	64.3	0
BIO	38	5	10-Jan-99	1121	44 06.42	177 10.58	W	373	380	3.0	264.8	57.1	0
BIO	39	5	10-Jan-99	1456	43 41.54	177 31.27	W	350	366	3.0	55.5	23.8	0
BIO	40	5	10-Jan-99	1646	43 34.96	177 39.92	W	357	371	3.0	165.9	11.4	0
BIO	41	9	10-Jan-99	1856	43 23.81	177 42.99	W	353	373	2.2	136.4	26.1	0
BIO	42	13	11-Jan-99	438	44 12.38	178 21.11	W	504	512	3.0	284.3	57.9	14.6
BIO	43	13	11-Jan-99	643	44 14.05	178 08.90		524	536	3.0	396.4	69	5.8
BIO	44	12	11-Jan-99	952	44 00.42	177 41.79		427	445	3.0	1 346.7	70.3	20.9
BIO	45	5	11-Jan-99	1232	44 00.12	177 16.42		342	370	3.0	458.8	53.7	0
AC	46		12-Jan-99	1230	44 08.14	177 51.01	W	490	491	2.0	850.4	35.9	14.7
AC													
AC	47		12-Jan-99	1426	44 04.51	177 36.45	W	450	451	2.0	842.5	48.8	4.1
			12-Jan-99 12-Jan-99	1426 1605 1741	44 04.51 44 02.14 44 00.15	177 36.45 177 28.19 177 22.54	W	450 392 361	451 402 370	2.0 2.0 2.0	842.5 49 115.6	48.8 1 5.9	4.1 0 0

.

......

						Sta	rt of t	ow De	pth (m)) Dist		Cate	ch (kg)
				Time	Latitude	Longitud			_	towed		ling	
Туре	Stn. St	tratum	n Date	NZDT	° ′S		E/W	min.	max.	(n.mile) '	Ũ	
BIO	50	14	13-Jan-99	454	43 50.94	179 49.75	E	439	445	2.6	223.6	26.2	0
BIO	51	4	13-Jan-99	746	44 03.25	179 30.45	E	633	643	3.0	298.4	70.5	6.2
BIO	*52	4	13-Jan-99	1416	44 03.78	178 57.11	E	757	765	1.3	0	0	0
BIO	53	4	13-Jan-99	1553	44 03.52	178 55.08	E	760	771	3.0	30.5	. 0	4.9
BIO	54	14	13-Jan-99	1854	43 54.15	178 44.50		522	567	3.0	476.9	23.2	0
BIO	55	20	14-Jan-99	452	43 06.01	178 12.44		351	364	3.0	251.8	108.8	6.3
BIO	56	20	14-Jan-99	711	43 12.18	177 56.80		317	339	3.0	106.2	12	0
BIO	57	20	14-Jan-99	905	43 08.97	177 55.56		365	395	3.0	198.5	91.5	0
BIO	58	20	14-Jan-99	1120	43 01.63	177 56.36		353	378	3.0	964.1	79.9	8.4
BIO	59	19	14-Jan-99	1503	43 11.14	177 27.38		282	297	3.0	45.5	0	0
BIO	60	19	14-Jan-99	1750	43 10.26	177 12.07		238	246	3.0	2 082.6	0	0
AC	61		14-Jan-99	2237	43 26.08	176 55.24		198	216	2.2	90.1	0	0
BIO	62	19	15-Jan-99	508	43 24.85	177 01.12		244	248	2.1	1.7	0	0
BIO	63	20	15-Jan-99	816	43 33.97	177 36.58		283	310	3.0	518.5	10.7	0
BIO	64	15	15-Jan-99	1103	43 41.49	177 56.38		463	464	3.0	1 258.6	211.5	8
AC	65		15-Jan-99	1414	43 51.47	177 51.60		559	563	2.0	237.6	53.9	17.9
AC	66		15-Jan-99	1608	43 45.28	177 50.92		473	484	2.0	727	51.3	12.8
AC	67		15-Jan-99	1849	43 47.31	177 50.44		359	457	2.0	24.7	0	0
AC	68		15-Jan-99	2015	43 45.89	177 49.94		215	225	1.4	0	0	0
AC	69		15-Jan-99	2121	43 46.79	177 50.60		277	284	1.1	2.4	0	0
AC	70		15-Jan-99	2333	43 46.44	177 50.04		406	417	1.0	2.9	0	0
AC	71		15-Jan-99	2354	43 47.07	177 50.74		489	495	0.6	32.2	1.6	0
BIO	72	4	16-Jan-99	518	43 55.41	177 32.86		687	740	3.0	240.4	35.1	0
BIO	73	15	16-Jan-99	801	43 49.10	177 14.80		498	514	3.0	606.7	72.6	7.6
BIO	74	15	16-Jan-99	1207	43 46.86	176 29.41		451	462	3.0	873.4	75.9	14.9 21.6
BIO	75	19	16-Jan-99	1440	43 37.81	176 22.62		378	382	3.0	2 685.5	58.3 0	21.6 0
BIO	*76	15	16-Jan-99	1646	43 44.42	176 15.48		404	406	1.5 3.0	0	74.6	36.3
BIO	77	15	16-Jan-99	1849	43 47.94	176 15.70		437	462	3.0 3.0	2 065.3 311.9	74.0 89.4	50.5 5.2
BIO	78	15	17-Jan-99	516	43 56.67	176 24.24		509	527			69.4 43.1	0
BIO	79	17	17-Jan-99	749	44 06.03	176 07.67		342	359	3.0	8 791.8	45.1 0	0
BIO	80	17	17-Jan-99	1253	44 21.02	176 08.83		303	382 326	3.0 3.0	228.8 789.6	16.8	0
BIO	81	17	17-Jan-99	1545	44 10.98	175 50.20		295	520 694		151.8	76.4	22.3
BIO	82	6	17-Jan-99	1753	44 21.59	175 44.03		605 725		3.0 2.1	29.1	70.4 0	3.4
BIO	83	6	18-Jan-99	541	44 40.67	173 02.61		725 401	740 449	2.1	29.1	9.4	0
BIO	84 85	16	18-Jan-99	809 1200	44 35.85 44 25.44	172 52.50 173 21.62		401	534	2.8 3.0	435.1	20.1	ŏ
BIO BIO	85 86	16	18-Jan-99 18-Jan-99	1200	44 23.44	173 35.13		680	709	3.0	181.4	16.7	7
BIO	*87	6 16	18-Jan-99 18-Jan-99	1418	44 28.55	173 57.41		584	589	2.0	0	0	0
BIO	88	16	18-Jan-99	1912	44 08.56	173 59.80		547	560	2.0	97.3	41.8	0
AC	89	10	19-Jan-99	232	44 10.35	174 04.60		573	574	0.8	14	6.7	0
BIO	90	6	19-Jan-99 19-Jan-99	533	44 18.53	174 21.90		643	646	3.0	150.6	18.1	7
BIO	90 91	16	19-Jan-99	1030	44 01.42	175 13.07		483	488	3.0	323.3	88	24.7
BIO	92	16	19-Jan-99	1236	43 55.72	175 09.92		448	453	3.0	1 741.9	69.8	19.3
BIO	93	16	19-Jan-99	1422	43 51.72	175 02.19		445	448	3.0	2 927.6	142.6	18.6
BIO	93 94	18	19-Jan-99	1633	43 41.55	175 06.87		383	393	3.0	108.4	39.1	5.2
BIO	95	18	19-Jan-99 19-Jan-99	1822	43 36.24	175 00.87		354	369	3.0	44.4	11.2	0
AC	95 96	10	19-Jan-99	2322	43 33.23	175 27.38		158	185	2.0	3	0	0 0
BIO	97	7	20-Jan-99	531	43 41.21	174 52.76		432	445	3.0	462.3	144.9	20.3
BIO	98	16	20-Jan-99	800	43 44.15	174 32.74		528	569	3.0	373.2	31.9	14.2
BIO	99	7	20-Jan-99	1136	43 27.05	174 25.08		520	537	3.0	156.9	64.9	15.5
BIO	100	7	20-Jan-99	1346	43 23.47	174 19.4		575	580		203.6	91.9	15.6
510	100	,	at suit //				~	2.0	200	2.0	200.0		

.

 $\tau = -\tau + \varepsilon_{\rm s}$

			Start of tow Depth (m) Dist Catch (kg						h (kg)				
				Time	Latitude	Longitude				towed	hoki	ling	hake
Туре	Stn. St	rata	Date	NZDT	° ´S	°í	E/W	min.	max. (n.mile))		
BIO	101	1	20-Jan-99	1651	43 18.56	174 02.35	E	609	646	2.2	379.2	7 0	5.2
BIO	101	1	20-Jan-99 20-Jan-99	728	43 18.30	174 02.33	E	603	614	2.2	84.2	3.8	5.3
AC	102	I	20-Jan-99 20-Jan-99	2129	43 11.43 43 10.99	174 14.14	E	569	613	2.0		31.9	9.2
AC	103		20-Jan-99 21-Jan-99	2129	43 10.99	174 14.33	Е Е	550	560	2.0	39.3 34.6	5.4	15.7
BIO	104	7	21-Jan-99 21-Jan-99	532	43 12.80	174 24.44	E E	525	532	3.0		11.3	9.7
BIO	105	7	21-Jan-99 21-Jan-99	730	43 19.38	174 27.44	E E	525 548	552 558	3.0 3.0	118.4 63.1	149.9	39.8
BIO	100	7	21-Jan-99 21-Jan-99	1011	43 13.03	174 29.23	E	431	459	3.0 3.0	163.4	49.3	37.2
BIO	107	/ 1	21-Jan-99 21-Jan-99	1307	43 14.28	174 44.51	Ē	634	4 <i>59</i> 657	3.0		96.4 22.5	26.2
BIO	108	7	21-Jan-99 21-Jan-99	1522	43 01.33	174 58.57	Ē	542	560	3.0	145.1	23.5	0
	109	7	21-Jan-99 21-Jan-99	1902	43 00.99	174 31.11	E	494	521		186.1	45.3	34.9
BIO	111	1	21-Jan-99 21-Jan-99	2341	42 57.10	175 23.39	E E	494	420	2.5	359.3	68.2	37.6
AC AC	112		21-Jan-99 22-Jan-99		43 06.82	176 09.15	E E	417	420 428	1.0	121.3	30.2	2.9
	112	0		116		176 32.39	E E	420 497		1.0	13.3	0	0
BIO	113	8 2	22-Jan-99	519 804	42 50.18	176 10.44	ь Е	497 647	510 657	3.0	243.6	40.3	19.6
BIO BIO	114	2 7	22-Jan-99 22-Jan-99		42 48.35	175 50.22	E E	454	475	3.0	255	50.2	11.3
				1129	43 05.50		Е Е			3.0	1 216.4	50.3	3.6
BIO	116	18	22-Jan-99	1404	43 17.97	175 46.56		304	335	3.0	289.7	10.2	0
BIO	117	18	22-Jan-99	1610	43 17.07	175 57.72	E	371	382	3.0	2 377.8	30.5	5
AC	118		22-Jan-99	1838	43 16.56	175 57.83	E	371	374	3.0	1 320.9	19.6	12.3
AC	119	10	23-Jan-99	223	43 14.94	175 56.25	E	378	383	1.0	39.1	4.5	3.4
BIO	120	19	23-Jan-99	518	43 17.83	176 15.59	E	325	350	3.0	4 151.7	14.9	0
AC	121		23-Jan-99	738	43 17.58	176 15.62	E	325	351	3.0	2 293.6	5.9	0
AC	122	10	23-Jan-99	1501	43 17.96	176 11.56	E	310	331	2.5	425.8	0	0
BIO	123	19	23-Jan-99	1630	43 07.81	176 13.67	E	360	393	3.0	2 164.8	30	5.6
BIO	124	19	23-Jan-99	1841	43 08.81	176 28.80	E	316	320	3.0	4 040.5	3.2	4.6
AC	125		23-Jan-99	2142	43 54.32	176 33.20	E	456	456	0.4	0 70 c	0	0
AC	126	10	23-Jan-99	2358	42 48.82	176 32.30	E	532	534	0.7	72.5	9	3.8
BIO	127	19	24-Jan-99	515	43 18.21	177 18.00	E	210	226	3.0	0	0	0
BIO	128	19	24-Jan-99	750	43 14.43	176 52.98	E	266	273	3.0	829.3	0	0
BIO	*129	19	24-Jan-99	1010	43 18.40	176 31.14	E	266	273	3.0	0	0	0
BIO	130	15	24-Jan-99	1500	43 55.96	176 40.43	E	483	494	3.1	1 156.9	20.4	18.9
AC	131		25-Jan-99	108	43 55.89	176 40.96	E	492	503	1.5	66	9.8	0 5.5
AC	132		25-Jan-99	220	43 56.90	176 41.93	E	498	510	1.5	88.7	28.6	0.5
AC	133		25-Jan-99	341	43 57.36	176 40.30	E	500	508	1.5	31.5	14.6	0.3 6.9
AC	134		25-Jan-99	1148	43 35.98	176 19.09	E	375	378	2.0	1 405.3	59.1	
AC	*135		25-Jan-99	1327	43 39.96	176 18.09	E	381	383	1.0		0	0 4.1
AC	136		25-Jan-99	1438	43 40.76	176 19.48	E	383	389	2.0	903.3	10.3	4.1 22.7
AC	137		25-Jan-99	1627	43 47.10	176 17.99	E	429	434	2.0	2 925.0	42.7	
AC	138		25-Jan-99	1815	43 50.05	176 20.55	E	480	483	2.0	223.1	56.4	10.8
AC	139		25-Jan-99	2129	44 05.85	176 31.04	E	585	587	0.5	16.3	10	0
AC	140		25-Jan-99	2356	43 59.87	176 31.56	E	510	519	1.5	81.8	32.1	2
AC	141		26-Jan-99	741	44 03.07	176 49.12	E	586	591	2.0	234	43	3.4
AC	142		26-Jan-99	915	44 03.05	176 49.74	E	589	598	3.0	374.9	5.1	10.6

*

Foul trawl station Catch not recorded on foul trawl stations NR

Appendix 2: Scientific and common names, and species codes of fish, squid, and other organisms caught from successful biomass stations. The occurrence (Occ.) of each species in the 100 successful biomass tows is also shown. (Tan9901).

ŧ

Scientific name	Common name	Code	Occ.
Agnatha	•		
Myxinidae: hagfishes			
Eptatretus cirrhatus	hagfish	HAG	2
Chondrichthyes			
Chlamydoselachidae: frill shark			
Chlamydoselachus anguineus	frill shark	FRS	2
Hexanchidae: cow sharks			-
Hexanchus griseus	sixgill shark	HEX	1
Squalidae: dogfishes			•
Centrophorus squamosus	deepwater spiny dogfish	CSQ	4
Centroscymnus crepidater	longnose velvet dogfish	CYP	8
C. owstoni	Owston's dogfish	CYO	3
C. plunketi	Plunket's shark	PLS	8
Deania calcea	shovelnose dogfish	SND	24
Etmopterus baxteri	Baxter's dogfish	ETB ·	14
E. lucifer	Lucifer dogfish	ETL	60
Scymnorhinus licha	seal shark	BSH	22
Squalus acanthias	spiny dogfish	SPD .	22 74
S. mitsukurii	northern spiny dogfish	NSD	7
Oxynotidae: rough sharks	normern spirty dogrish	NSD	1
Oxynotus bruniensis	prickly dogfish	PDG	13
Scyliorhinidae: cat sharks	prickly dogital	r DO	15
-	daanaan aatabarka	APR	5
Apristurus spp	deepsea catsharks Dawson's catshark	DCS	1
Halaelurus dawsoni	Dawson's catsnark	DCS	I
Triakidae: smoothhounds		COLL	0
Galeorhinus galeus	school shark	SCH	9
Torpedinidae: electric rays	•		
Torpedo fairchildi	electric ray	ERA	1 ·
Rajidae: skates			10
Notoraja asperula	smooth bluntnosed skate	BTA	18
N. spinifera	prickly bluntnosed skate	BTS	5
Dipturus innominatus	smooth skate	SSK	34
D. nasutus	rough skate	RSK	3
Chimaeridae: chimaeras, ghost sharks		.	
Hydrolagus novaezelandiae	dark ghost shark	GSH	55
Hydrolagus sp. B	pale ghost shark	GSP	63
Rhinochimaeridae: longnosed chimaeras			
Chimaera sp.	brown chimaera	CHP	1
Harriotta raleighana	longnose chimaera	LCH	35
Rhinochimaera pacifica	widenose chimaera	RCH	2
Osteichthyes			
Notacanthidae: spiny eels		,	•
Notacanthus sexspinis	spineback	SBK	38
Nemichthyidae: snipe eels	•		
Nemichthys curvirostris	snipe eel	NCU	1
Congridae: conger eels	•		
Bassanago bulbiceps	swollenheaded conger	SCO	36
B. hirsutus	hairy conger	HCO	26
Gonorynchidae: sandfish			
Gonorynchus spp	sandfish	GON	1
Argentinidae: silversides		`	
Argentina elongata	silverside	SSI	60
0	· · · · · · ·		

ربيان

¢

٠

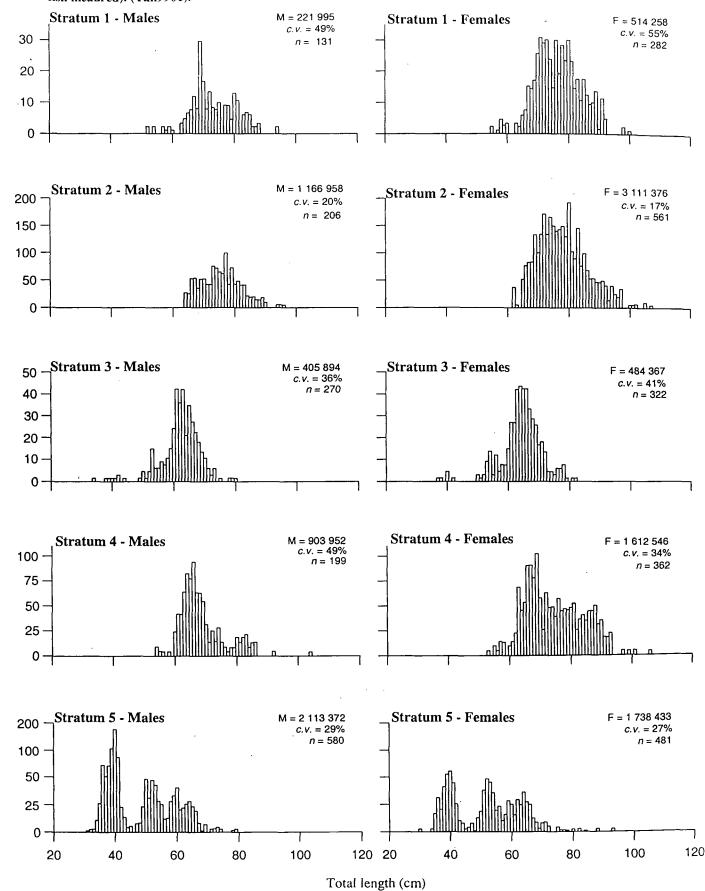
Scientific name	Common name	Code	Occ.	
Alepocephalidae: slickheads		-		
Rouleina sp.	large headed slickhead	BAT	1	
Xenodermichthys socialis	black slickhead	BSL	1	
Sternoptychidae: hatchetfishes				
Maurolicus australis	pearlside	MMU	1	
Photichthyidae: lighthouse fishes				
Photichthys argenteus	lighthouse fish	PHO	4	
Malacosteidae	loosejaws	MAL	1	
Scopelarchidae: pearleyes				
Scopelarchus sp.		SCP	I	
Paralepididae: barracudinas				
Magnisudis prionosa	barracudina	BCA	2	
Paralepididae	barracudinas	PAL	3	
Myctophidae: lanternfishes				
Species not identified	lanternfish	LAN	2	
Lampanyctus spp	lanternfish	LPA	1	
Moridae: morid cods				
Austrophycis marginata	dwarf cod	DCO	4	
Halargyreus johnsoni	slender cod	HJO	5	
Lepidion microcephalus	small headed cod	SMC	1	
Mora moro	ribaldo	RIB	28	
Pseudophycis bachus	red cod	RCO	31	
Gadidae: true cods				
Micromesistius australis	southern blue whiting	SBW	4	
Merlucciidae: hakes				
Macruronus novaezelandiae	hoki	HOK	95	
Merluccius australis	hake	HAK	62	
Macrouridae: rattails, grenadiers				
Caelorinchus aspercephalus	oblique banded rattail	CAS	72	
C. biclinozonalis	two saddle rattail	CBI	10	
C. bollonsi	bigeyed rattail	CBO	83	
C. fasciatus	banded rattail	CFA	29	
C. innotabilis	notable rattail	CIN	4	
C. matamua	Mahia rattail	CMA	4	
C. oliverianus	Oliver's rattail	COL	54	
C. parvifasciatus	small banded rattail	CCX	13	
Coryphaenoides serrulatus	serrulate rattail	CSE	3	
C. subserrulatus	four rayed rattail	CSU	4	
<i>C</i> . sp. B	long barbel rattail	CBA	4	
Lepidorhynchus denticulatus	javelinfish	JAV	90	
Macrourus carinatus	ridge scaled rattail	MCA	1	
Mesobius antipodum	black javelinfish	BJA	1	
Trachyrincus aphyodes	unicorn rattail	WHX	5	
Ventrifossa nigromaculata	blackspot rattail	VNI	10	
Ophidiidae: cusk eels			07	
Genypterus blacodes	ling	LIN	87	
Scomberesocidae: sauries		0 4 TT		
Scomberesox saurus	saury	SAU	1	
Trachichthyidae: roughies			-	
Hoplostethus atlanticus	orange roughy	ORH	2	
Hoplostethus mediterraneus	silver roughy	SRH	18	
	-			
Paratrachichthys trailli	common roughy	RHY	14	
Berycidae: alfonsinos				
	common roughy slender beryx longfinned beryx	RHY BYS BYD	14 36 1	

t

Scientific name	Common name	Code	Occ.
Zeidae: dories		• •	
Capromimus abbreviatus	capro dory	CDO	14
Cyttus novaezelandiae	silver dory	SDO	20
C. traversi	lookdown dory	LDO	89
Zenopsis nebulosus	mirror dory	MDO	1
Oreosomatidae: oreos	minter dery	WIDO	1
	black oreo	DOE	7
Allocyttus niger		BOE	7
Neocyttus rhomboidalis	spiky oreo	SOR	16
Pseudocyttus maculatus	smooth oreo	SSO	8
Macrorhamphosidae: snipefishes	· · · · · · · · · · · · · · · · · · ·		
Centriscops obliquus	banded bellowsfish	BBE	67
Notopogon lilliei	crested bellowsfish	CBE	2
Scorpaenidae: scorpionfishes			
Helicolenus spp.	sea perch	SPE	90
Congiopodidae: pigfishes			
Alertichthys blacki	alert pigfish	API	2
Congiopodus coriaceus	deepsea pigfish	DSP	2
Triglidea: gurnards			•
Chelidonichthys kumu	red gurnard	GUR	1
Lepidotrigla brachyoptera	scaly gurnard	SCG	9
Hoplichthyidae: ghostflatheads		500	,
Hoplichthys haswelli	deepsea flathead	FHD	36
Psychrolutidae: toadfishes	deepsea namead	m	50
Amblophthalmus angustus	pale toadfish	TOP	20
	pale toaunsh	TOP	39
Percichthyidae: temperate basses	h e marten	TTAD	0
Polyprion oxygeneios	hapuku	HAP	8
Serranidae: sea perches		0.77	• ·
Lepidoperca aurantia	orange perch	OPE	26
Apogonidae: cardinalfishes			
Epigonus lenimen	bigeye cardinalfish	EPL	7
E. robustus	cardinalfish	EPR	8
E. telescopus	black cardinalfish	EPT	7
Rosenblattia robusta		ROS	[^] 1
Carangidae: jacks, trevallies, kingfishes			
Trachurus symmetricus	slender mackerel	JMM	14
T. declivis	jack mackerel	JMD	2
Bramidae: pomfrets	3		
Brama brama	Ray's bream	RBM	34
Taraticththys longipinnis	Big scaled pomfret	BSP	1
Emmelichthyidae: bonnetmouths, rovers	Dig sould pointee	202	_
Emmelichthys nitidus	redbait	RBT	17
Plagiogeneion rubiginosus	rubyfish	RBY	1
Pentacerotidae: boarfishes, armourheads	rubynsn	KD I	•
Pseudopentaceros richardsoni	southern boarfish	SBO	1
•	southern boarnsn	300	1
Cheilodactylidae: tarakihi, morwongs	A 1 1		8
Nemadactylus macropterus	tarakihi	TAR	0
Uranoscopidae: armourhead stargazers			57
Kathetostoma giganteum	giant stargazer	STA	56
<i>K</i> . sp.	banded giant stargazer	BGZ	1
Percophidae: opalfishes			
Hemerocoetes spp.	Opalfish	OPA	2
Pinguipedidae: weavers			
Parapercis gilliesi	yellow weaver	YCO	1
Gempylidae: snake mackerels	-		
Thyrsites atun	barracouta	BAR	14

1

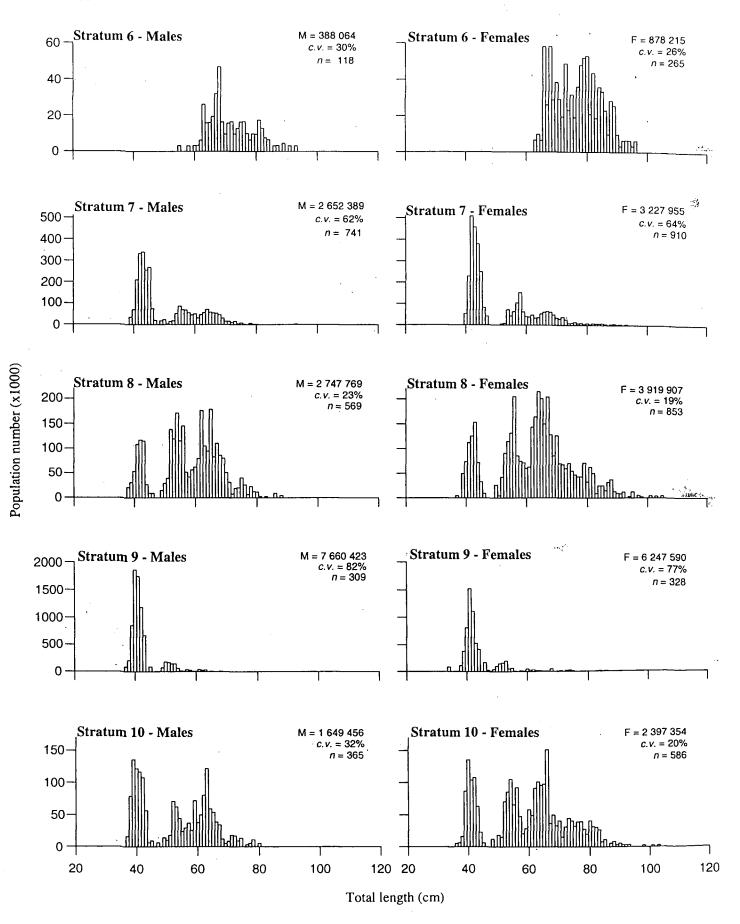
Common name	Code	Occ.
frostfish	FRO	1
rudderfish	RUD	21
bluenose	BNS	4
ragfish	RAG	4
white warehou	WWA	55
silver warehou	SWA	60
witch	WIT	18
finless flounder	MAN	2
spotted flounder	SDF	1
lemon sole	LSO	16
Cranchiid squid	CHO	1
*	<	-
violet squid	VSO	1
*	- x	-
arrow squid	NOS	64
-		3
	-	11
<i>y</i> 8 1	<	
warty souid	MIO	29
warty squid	MRQ	2
antlered crab	ATC	3
antiered erab	AIC	5
southern stone crab	NEB	1
		2
stone crao	1115	2
	SCI	45
		45
•		3
		5 1
prawn	UNU	1
sponges	ONG	16
		·
sea anemones	ANT	25
coral	COU	5
jellyfish	JFI	9
octopus	OCT	5
deepwater octopus	DWO	2
starfish	SFI	49
	frostfish rudderfish bluenose ragfish white warehou silver warehou witch finless flounder spotted flounder lemon sole Cranchiid squid violet squid arrow squid red squid Antarctic flying squid warty squid warty squid warty squid stone crab southern stone crab stone crab scampi Species not identified omega prawn prawn sponges sea anemones coral jellyfish	frostfishFROrudderfish bluenose ragfishRUD BNS RAGwhite warehouWWA SWAwitch finless flounderWIT MANspotted flounder lemon soleSDF LSOCranchiid squidCHQ violet squidviolet squidNOS RSQ Antarctic flying squidwarty squid warty squid mannerMIQ MRQantlered crab stone crabNEB PHSscampi Species not identified omega prawn prawnSCI CRB COU JFIoctopusOCT

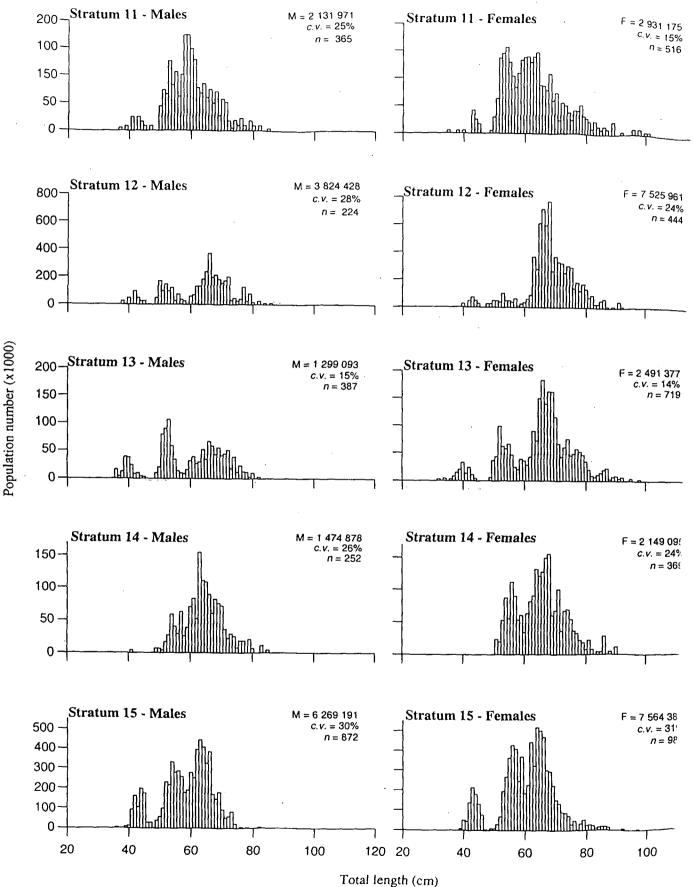

Scientific name	Common name	Code	Occ.
Echinidae Gracilechinus multidentatus	sea urchin	GRM	4
Echinothuriidae Araeosoma coriaceum	tam-o-shanter	ACO	· 2
Thaliacea Salpidae	Salps	SAL	16
	· ·		

· · · ·

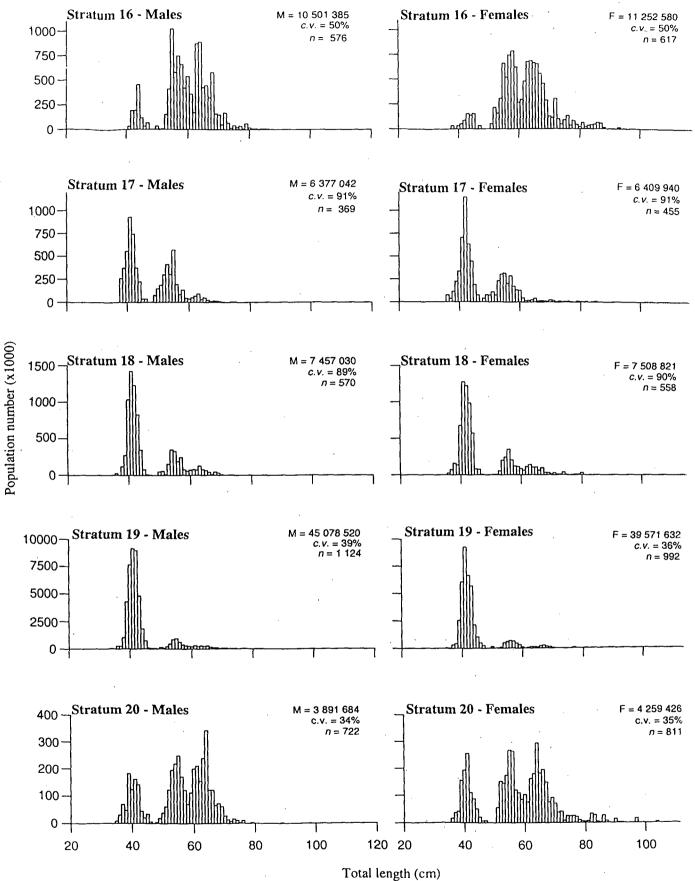
.

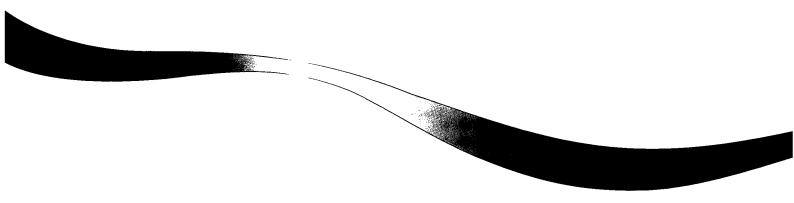
· · ·


.


Appendix 3: Scaled length frequencies of hoki, by stratum and sex. (M, estimated male population; F, estimated female population; c.v., coefficient of variation of the estimated numbers of fish; n, number of fish meaured). (Tan9901).

Population number (x1000)


Appendix 3 -- continued



Appendix 3 -- continued

Appendix 3 - continued

•