LING

(Genypterus blacodes)
Hoka

1. FISHERY SUMMARY

1.1 Commercial fisheries

Ling was introduced into the Quota Management System (QMS) on 1 October 1986. Ling are widely distributed through the middle depths $(200-800 \mathrm{~m})$ of the New Zealand EEZ, particularly to the south of latitude 40° S. From 1975 to 1980 there was a substantial longline fishery on the Chatham Rise (and to a lesser extent in other areas), carried out by Japanese and Korean longliners. Since 1980 ling have been caught by large trawlers, both domestic and foreign owned, and by small domestic longliners and trawlers. In the early 1990s the domestic fleet was increased by the addition of several larger longliners fitted with autoline equipment. This caused a large increase in the catches of ling off the east and south of the South Island (LIN 3, 4, 5 and 6). However, since about 2000 there has been a declining trend in catches taken by line vessels in most areas, offset, to some extent, by increased trawl landings.

The principal grounds for smaller domestic vessels are the west coast of the South Island (WCSI) and the east coast of both main islands south of East Cape. For the large trawlers the main sources of ling are Puysegur Bank and the slope of the Stewart-Snares shelf and waters in the Auckland Islands area. Longliners fish mainly in LIN 3, 4, 5 and 6. In 2011-12, landings from Fishstocks LIN 2, LIN 3, LIN 4 and LIN 6 were significantly under-caught relative to their TACCs by $49 \%, 37 \%, 45 \%$ and 76%, respectively. The LIN 5 and LIN 7 TACCs were slightly over-caught (by 2% and 10%, respectively. Reported landings by nation from 1975 to 1987-88 are shown in Table 1, and reported landings by Fishstock from 1983-84 to 2011-12 are shown in Table 2. Figure 1 shows the historical landings and TACC values for the main LIN stocks.

Under the Adaptive Management Programme (AMP), the TACC for LIN 1 was increased to 400 t from 1 October 2002, within an overall TAC of 463 t . All stocks including LIN 1 were removed from the AMP on $30^{\text {th }}$ September 2009. In an earlier proposal for the 1994-95 fishing year, TACCs for LIN 3 and 4 had been increased to 2810 and 5720 t, respectively. These stocks were removed from the AMP from 1 October 1998, with TACCs maintained at the increased level. However, from 1 October 2000, the TACCs for LIN 3 and 4 were reduced to 2060 and 4200 t, respectively. From 1 October 2004, the TACCs for LIN 5 and LIN 6 were increased by about 20% to 3595 t and 8505 t, respectively. From 1 October 2009, the TACC for LIN 7 was increased from 2225 t to 2474 t. All other TACC increases since 1986-87 in all stocks are the result of quota appeals.

Table 1: Reported landings (t) from 1975 to 1987-88. Data from 1975 to 1983 from MAF; data from 1983-84 to 1985-86 from FSU; data from 1986-87 to 1987-88 from QMS. -, no data available.

Fishing year	New Zealand						Foreign Licensed		Grand total
				$\begin{gathered} \text { Longline } \\ \text { (Japan + Korea) } \end{gathered}$			Trawl	Total	
	Domestic	Chartered	Total		Japan	Korea	USSR	Total	
1975*	486	0	486	9269	2180	0	0	11499	11935
1976*	447	0	447	19381	5108	0	1300	25789	26236
1977*	549	0	549	28633	5014	200	700	34547	35096
1978-79\#	657	24	681	8904	3151	133	452	12640	13321
1979-80\#	915	2598	3513	3501	3856	226	245	7828	11341
1980-81\#	1028	-	-	-	-	-	-	-	-
1981-82\#	1581	2423	4004	0	2087	56	247	2391	6395
1982-83\#	2135	2501	4636	0	1256	27	40	1322	5958
1983†	2695	1523	4218	0	982	33	48	1063	5281
1983-84§	2705	2500	5205	0	2145	173	174	2491	7696
1984-85§	2646	2166	4812	0	1934	77	130	2141	6953
1985-86§	2126	2948	5074	0	2050	48	33	2131	7205
1986-87§	2469	3177	5646	0	1261	13	21	1294	6940
1987-88§	2212	5030	7242	0	624	27	8	659	7901

* Reported by calendar year
\# Reported April 1 to March 31(except domestic vessels, which reported by calendar year).
\dagger Reported April 1 to Sept 30 (except domestic vessels, which reported by calendar year).
§ Reported Oct 1 to Sept 30.

Figure 1: Historical landings and TACC for the seven main LIN stocks. From top to bottom: LIN1 (Auckland East) and LIN2 (Central East). [Continued on next page].

Figure 1 [Continued]: Historical landings and TACC for the seven main LIN stocks. From top to bottom: LIN3 (South East Coast), LIN4 (South East Chatham Rise) and LIN5 (Southland). [Continued on next page].

Figure 1 [Continued]: Historical landings and TACC for the seven main LIN stocks. From top: LIN6 (SubAntarctic), and LIN7 (Challenger). Note that these figures do not show data prior to entry into the QMS.

1.2 Recreational fisheries

The 1993-94 North region recreational fishing survey (Bradford 1996) estimated the annual recreational catch from LIN 1 as 10000 fish (CV 0.23). With a mean weight likely to be in the range of 1.5 to 4 kg , this equates to a harvest of $15-40 \mathrm{t}$.

Recreational catch was recorded from LIN 1, 5, and 7 in the 1996 national diary survey. The estimated harvests (LIN 1, 3000 fish; LIN 5, < 500; LIN 7, < 500) were too low to provide reliable estimates.

1.3 Customary non-commercial fisheries

Quantitative information on the level of Maori customary non-commercial take is not available. Ling bones have been recovered from archaic middens throughout the South Island and southern North Island, and on Chatham Island (Leach \& Boocock 1993). In South and Chatham Islands, ling comprised about 4% (by number) of recovered fish remains.

1.4 Illegal catch

It is believed that up to the mid 1990s some ling bycatch from the west coast hoki fishery was not reported. Estimates of total catch including non-reported catch are given in Table 2 for LIN 7.

It is believed that in recent years, some catch from LIN 7 has been reported against other ling stocks (probably LIN 3, 5, and 6). The likely levels of misreporting are moderate, being about 250-400 t in each year from 1989-90 to 1991-92 (Dunn 2003).

1.5 Other sources of mortality

The extent of any other sources of mortality is unknown.
Table 2: Reported landings (\mathbf{t}) of ling by Fishstock from 1983-84 to 2011-12 and actual TACCs (\mathbf{t}) from 1986-87 to 2011-12. Estimated landings for LIN 7 from 1987-88 to 1992-93 include an adjustment for ling bycatch of hoki trawlers, based on records from vessels carrying observers. QMS data from 1986-present.

* FSU data.
§ Includes landings from unknown areas before 1986-87, and areas outside the EEZ since 1995-96.

2. BIOLOGY

Ling live to a maximum age of about 30 years; fewer than 0.2% of successfully aged ling have been older than 30 years. A growth study of ling from five areas (west coast South Island, Chatham Rise, Bounty Plateau, Campbell Plateau, Cook Strait) showed that females grew significantly faster and reached a greater size than males in all areas, and that growth rates were significantly different between areas. Ling grow fastest in Cook Strait and slowest on the Campbell Plateau (Horn 2005).
M was initially estimated from the equation $M=\log _{\mathrm{e}} 100 /$ maximum age, where maximum age is the age to which 1% of the population survives in an unexploited stock. The mean M calculated from 5 samples of age data was 0.18 (range $=0.17-0.20$). However, a recent review of M, and results of modelling conducted in 2007, suggests that this parameter may vary between stocks (Horn 2008b). The M for Chatham Rise ling appears to be lower than 0.18 , while for Cook Strait and west coast South Island the value is probably higher than 0.18 .

Ling in spawning condition have been reported in a number of localities throughout the EEZ (Horn 2005). Time of spawning appears to vary between areas: July to November on the Chatham Rise; September to December on Campbell Plateau and Puysegur Bank; September to February on the Bounty Plateau; July to September off west coast South Island and in Cook Strait. Little is known about the distribution of juveniles until they are about 40 cm total length, when they begin to appear in trawl samples over most of the adult range.

Ling appear to be mainly bottom dwellers, feeding on crustaceans such as Munida and scampi and also on fish, with commercial fishing discards being a significant dietary component (Dunn et al. 2010). However, they may at times be caught well above the bottom, for example when feeding on hoki during the hoki spawning season.

Biological parameters relevant to the stock assessment are shown in Table 3.
Table 3: Estimates of biological parameters from Horn (2005). See Section 3 for definitions of Fishstocks.

Fishstock		Estimate				
1. Natural mortality (M)						
All stocks average (both sexes)				$M=0.18$		
2. Weight $=\mathrm{a}$ (length) ${ }^{\text {b }}$ (Weight in g, length in cm total length $)$						
		Female			Male	Area
	a	b		a	b	
LIN 3\&4	0.00114	3.318		0.00100	3.354	Chatham Rise
LIN 5\&6	0.00128	3.303		0.00208	3.190	Southern Plateau
LIN 6B	0.00114	3.318		0.00100	3.354	Bounty Plateau
LIN 7WC	0.00094	3.366		0.00125	3.297	West Coast S.I.
LIN 7CK	0.00094	3.366		0.00125	3.297	Cook Strait
3. von Bertalanffy growth parameters						
		Female			Male	Area
K	t_{0}	L_{∞}	K	t_{0}	L_{∞}	
LIN 3\&4 0.083	-0.74	156.4	0.127	-0.70	113.9	Chatham Rise
LIN 5\&6 0.124	-1.26	115.1	0.188	-0.67	93.2	Southern Plateau
LIN 6B 0.101	-0.53	146.2	0.141	0.02	120.5	Bounty Plateau
LIN 7WC 0.078	-0.87	169.3	0.067	-2.37	159.9	West Coast S.I.
LIN 7CK 0.097	-0.54	163.6	0.080	-1.94	158.9	Cook Strait

3. STOCKS AND AREAS

A review of ling stock structure (Horn 2005) examined diverse information from studies of morphometrics, genetics, growth, population age structures, and reproductive biology and behavior, and indicated that there are at least five ling stocks, i.e., west coast South Island, Chatham Rise, Cook Strait, Bounty Plateau, and the Southern Plateau (including the Stewart-Snares shelf and Puysegur Bank). Stock affinities of ling north of Cook Strait are unknown, but spawning is known to occur off Northland, Cape Kidnappers, and in the Bay of Plenty.

4. STOCK ASSESSMENT

The stock assessments for two ling stocks (LIN 7WC, west coast South Island; LIN 7CK, Cook Strait) were updated in 2013. Assessments for other stocks were updated in 2007 (LIN 6B, Bounty Plateau), or 2012 (LIN 3\&4, Chatham Rise; LIN 5\&6, Sub-Antarctic). All assessments were updated using a Bayesian stock model implemented using the general-purpose stock assessment program CASAL (Bull et al. 2012).

4.1 Estimates of fishery parameters and abundance

Catch histories by stock and fishery are presented in Table 4, and other model input parameters are shown in Table 5. Estimates of relative abundance from standardised CPUE analyses (Table 6) and trawl surveys (Table 7) are also presented below.

Table 4: Estimated catch histories (t) for LIN 3\&4 (Chatham Rise), LIN 5\&6 (Campbell Plateau), LIN 6B (Bounty Platform), LIN 7WC (WCSI section of LIN 7), and LIN7CK (Cook Strait). Landings have been separated by fishing method (trawl or line), and, for the LIN 5\&6 line fishery, by pre-spawning (Pre) and spawning (Spn) season.

Year	LIN 3\&4		LIN 5\&6			$\frac{\text { LIN 6B }}{\text { line }}$	LIN 7WC		LIN 7CK	
	trawl	line	trawl	Line	Line		Trawl	line	trawl	Line
				Pre	Spn					
1972	0	0	0	0	0	0	0	0	0	0
1973	250	0	500	0	0	0	85	20	45	45
1974	382	0	1120	0	0	0	144	40	45	45
1975	953	8439	900	118	192	0	401	800	48	48
1976	2100	17436	3402	190	309	0	565	2100	58	58
1977	2055	23994	3100	301	490	0	715	4300	68	68
1978	1400	7577	1945	494	806	10	300	323	78	78
1979	2380	821	3707	1022	1668	0	539	360	83	83
1980	1340	360	5200	0	0	0	540	305	88	88
1981	673	160	4427	0	0	10	492	300	98	98
1982	1183	339	2402	0	0	0	675	400	103	103
1983	1210	326	2778	5	1	10	1040	710	97	97
1984	1366	406	3203	2	0	6	924	595	119	119
1985	1351	401	4480	25	3	2	1156	302	116	116
1986	1494	375	3182	2	0	0	1082	362	126	126
1987	1313	306	3962	0	0	0	1105	370	97	97
1988	1636	290	2065	6	0	0	1428	291	107	107
1989	1397	488	2923	10	2	9	1959	370	255	85
1990	1934	529	3199	9	4	12	2205	399	362	121
1991	2563	2228	4534	392	97	33	2163	364	488	163
1992	3451	3695	6237	566	518	908	1631	661	498	85
1993	2375	3971	7335	1238	474	969	1609	716	307	114
1994	1933	4159	5456	770	486	1149	1136	860	269	84
1995	2222	5530	5348	2355	338	396	1750	1032	344	70
1996	2725	4863	6769	2153	531	381	1838	1121	392	35
1997	3003	4047	6923	3412	614	340	1749	1077	417	89
1998	4707	3227	6032	4032	581	395	1887	1021	366	88
1999	3282	3818	5593	2721	489	563	2146	1069	316	216
2000	3739	2779	7089	1421	1161	991	2247	923	317	131
2001	3467	2724	6629	818	1007	1064	2304	977	258	80
2002	2979	2787	6970	426	1220	629	2250	810	230	171
2003	3375	2150	7205	183	892	922	1980	807	280	180
2004	2525	2082	7826	774	471	853	2013	814	241	227
2005	1913	2440	7870	276	894	49	1558	871	200	282
2006	1639	1840	6161	178	692	43	1753	666	129	220
2007	2322	1880	7504	34	651	236	1306	933	107	189
2008	2350	1810	6990	329	821	503	1067	1170	115	110
2009	1534	2217	5225	276	432	232	1089	1009	108	39
2010	1484	2257	4270	864	313	1	1346	1063	74	14
2011	1500	2200	4500	450	450	53	1597	1046	111	38
2012	-	-	-	-	-	2	1300	1050	100	40

Table 5: Input parameters for the assessed stocks.

*Proportion mature at age

Table 6: Standardised CPUE indices (with CVs) for the ling line and trawl fisheries. Year refers to calendar year.

	LIN 3\&4 line		LIN 5\&6 line		LIN 5\&6		LIN 7WC line		LIN 7CK line	
				awn)	line (no	awn)				
Year	CPUE	c.v.								
1990	-	-	-	-	-	-	0.90	0.07	1.29	0.15
1991	1.66	0.06	1.28	0.17	0.66	0.12	1.07	0.06	1.44	0.13
1992	2.15	0.05	1.75	0.14	1.01	0.09	1.25	0.05	1.43	0.11
1993	1.54	0.05	1.54	0.11	0.84	0.10	0.90	0.05	1.11	0.11
1994	1.54	0.05	1.33	0.11	0.74	0.09	0.88	0.05	0.90	0.11
1995	1.48	0.05	1.40	0.17	1.02	0.08	0.90	0.04	0.83	0.12
1996	1.19	0.04	1.28	0.11	0.85	0.08	0.68	0.04	0.97	0.13
1997	0.82	0.04	1.16	0.10	0.91	0.06	0.80	0.05	1.32	0.18
1998	0.89	0.04	0.99	0.11	0.79	0.06	0.92	0.05	0.83	0.15
1999	0.78	0.04	1.28	0.10	0.64	0.05	0.95	0.05	1.54	0.18
2000	0.92	0.04	1.32	0.10	0.76	0.07	0.96	0.04	1.45	0.19
2001	0.91	0.04	1.34	0.10	0.91	0.09	1.12	0.05	1.27	0.18
2002	0.74	0.04	1.55	0.10	0.79	0.10	1.06	0.05	2.04	0.11
2003	0.90	0.04	1.12	0.12	0.62	0.12	1.10	0.04	1.66	0.10
2004	0.74	0.04	1.03	0.09	0.57	0.09	1.10	0.05	1.45	0.09
2005	0.84	0.04	1.42	0.12	0.50	0.13	0.84	0.04	1.16	0.10
2006	0.71	0.04	1.29	0.12	0.61	0.14	0.84	0.05	0.97	0.15
2007	0.78	0.04	1.35	0.11	0.98	0.36	1.11	0.04	0.70	0.12
2008	0.99	0.05	1.02	0.14	1.05	0.12	1.13	0.05	0.82	0.22
2009	0.71	0.04	2.05	0.19	0.85	0.13	1.14	0.05	0.60	0.28
2010	0.88	0.04	0.69	0.18	0.85	0.09	1.39	0.05	0.35	0.30
2011	-	-	-	-	-	-	1.28	0.07	0.22	0.30
	LIN 7	trawl	LIN 71	rawl		line				
Year	CPUE	c.v.	CPUE	c.v.	CPUE	c.v.				
1987	-	-	0.49	0.07	-	-				
1988	-	-	0.92	0.06	-	-				
1989	-	-	1.33	0.06	-	-				
1990	-	-	1.27	0.06	-	-				
1991	-	-	0.81	0.06	-	-				
1992	-	-	0.76	0.07	1.80	0.13				
1993	-	-	1.04	0.06	1.58	0.11				
1994	1.25	0.05	0.91	0.05	1.07	0.13				
1995	1.16	0.04	1.31	0.06	1.13	0.13				
1996	1.12	0.04	1.73	0.05	1.05	0.12				
1997	1.00	0.04	1.40	0.06	0.85	0.13				
1998	1.01	0.04	1.36	0.05	1.03	0.12				
1999	1.02	0.03	1.59	0.05	1.04	0.11				
2000	1.27	0.04	1.23	0.04	0.95	0.10				
2001	1.46	0.04	0.94	0.04	0.81	0.10				
2002	1.27	0.05	1.27	0.04	0.72	0.10				
2003	1.27	0.04	0.71	0.05	0.78	0.09				
2004	1.13	0.04	1.12	0.04	0.71	0.14				
2005	1.18	0.04	0.79	0.04	-	-				
2006	1.10	0.05	0.73	0.04	0.97	0.36				
2007	0.73	0.06	0.55	0.06	1.12	0.12				
2008	0.90	0.06	0.54	0.06	1.12	0.10				
2009	0.44	0.07	0.48	0.06	0.80	0.11				
2010	0.44	0.07	0.63	0.06	-	-				
2011	0.23	0.09	1.06	0.06	-	-				

Chatham Rise, LIN 3 \& LIN 4

LIN 3

4.2 Biomass estimates

Biomass in the core strata ($30-400 \mathrm{~m}$) for the east coast South Island trawl survey is consistently lower in recent surveys compared to that in the 1990s (Figure 2). Coefficients of variation are also variable ranging from 17 to 35%, (mean 23%) and overall can be regarded as low. The additional biomass captured in the $10-30 \mathrm{~m}$ depth range is negligible.

Figure 2: Ling total biomass and $\mathbf{9 5 \%}$ confidence intervals for the all ECSI winter surveys in core strata ($\mathbf{3 0 - 4 0 0} \mathbf{~ m}$), and core plus shallow strata ($\mathbf{1 0 - 4 0 0 ~ m}$) in 2007 and 2012.

4.3 Length frequency distributions

The length distributions for the east coast South Island trawl survey show two distinct modes, particularly in the shallower depths, centred at about 50 cm and 90 cm (combined males, females, and unsexed) (Figure 3). Both modes will comprise multiple year classes. Plots of time series length frequency distributions are generally consistent among surveys with indications of fewer larger fish (mode around 90 cm) in recent years. The addition of the $10-30 \mathrm{~m}$ depth range has not changed the shape of the length frequency distribution.

Figure 3: Scaled length frequency distributions for ling in core strata ($30-400 \mathrm{~m}$) for all nine ECSI winter surveys. The length distribution is also shown in the $10-30 \mathrm{~m}$ depth strata for the 2007 and 2012 surveys overlaid in red for species with many length classes, otherwise in light grey (not stacked). Population estimates are for the core strata only. n, number of fish measured; no., population number; c.v., coefficient of variation.

Table 7: Biomass indices (\mathbf{t}) and estimated coefficients of variation (c.v.).

Fishstock	Area	Vessel	Trip code	Date	Biomass	c.v. (\%)
LIN 3	ECSI (winter)	Kaharoa	KAH9105	1991	1009	35
			KAH9205	1992	525	17
			KAH9306	1993	651	27
			KAH9406	1994	488	19
			KAH9606	1996	488	21
			KAH0705	2007	283	17
			KAH0806	2008	351	22
			KAH0905	2009	262	19
			KAH1207	2012	265	21
LIN 3 \& 4	Chatham Rise	Tangaroa	TAN9106	Jan-Feb 1992	8930	5.8
			TAN9212	Jan-Feb 1993	9360	7.9
			TAN9401	Jan 1994	10130	6.5
			TAN9501	Jan 1995	7360	7.9
			TAN9601	Jan 1996	8420	8.2
			TAN9701	Jan 1997	8540	9.8
			TAN9801	Jan 1998	7310	8.0
			TAN9901	Jan 1999	10310	16.1
			TAN0001	Jan 2000	8350	7.8
			TAN0101	Jan 2001	9350	7.5
			TAN0201	Jan 2002	9440	7.8
			TAN0301	Jan 2003	7260	9.9
			TAN0401	Jan 2004	8250	6.0
			TAN0501	Jan 2005	8930	9.4
			TAN0601	Jan 2006	9300	7.4
			TAN0701	Jan 2007	7800	7.2
			TAN0801	Jan 2008	7500	6.8
			TAN0901	Jan 2009	10620	11.5
			TAN1001	Jan 2010	8850	10.0
			TAN1101	Jan 2011	7030	13.8
			TAN1201	Jan 2012	8098	7.4
			TAN1301	Jan 2013	8714	15.3
LIN 5 \& 6	Southern Plateau	Amaltal Explorer	AEX8902	Oct-Nov 1989	17490	14.2
			AEX9002	Nov-Dec 1990	15850	7.5
LIN 5 \& 6	Southern Plateau	Tangaroa	TAN9105	Nov-Dec 1991	24090	6.8
	(summer)		TAN9211	Nov-Dec 1992	21370	6.2
			TAN9310	Nov-Dec 1993	29750	11.5
			TAN0012	Dec 2000	33020	6.9
			TAN0118	Dec 2001	25060	6.5
			TAN0219	Dec 2002	25630	10.0
			TAN0317	Nov-Dec 2003	22170	9.7
			TAN0414	Nov-Dec 2004	23770	12.2
			TAN0515	Nov-Dec 2005	19700	9.0
			TAN0617	Nov-Dec 2006	19640	12.0
			TAN0714	Nov-Dec 2007	26492	8.0
			TAN0813	Nov-Dec 2008	22840	9.5
			TAN0911	Nov-Dec 2009	22710	9.6
			TAN1117	Nov-Dec 2011	23178	11.8
			TAN1215	Nov-Dec 2012	27010	11.3
LIN 5 \& 6	Southern Plateau	Tangaroa	TAN9204	$\text { Mar-Apr } 1992$	42330	5.8
	(autumn)		TAN9304	Apr-May 1993	37550	5.4
			TAN9605	Mar-Apr 1996	32130	7.8
			TAN9805	Apr-May 1998	30780	8.8
LIN 7WC	WCSI	Kaharoa	KAH9204	Mar-Apr 1992	286	19
			KAH9404	Mar-Apr 1994	261	20
			KAH9504	Mar-Apr 1995	367	16
			KAH9701	Mar-Apr 1997	151	30
			KAH0004	Mar-Apr 2000	95	46
			KAH0304	Mar-Apr 2003	150	33
			KAH0503	Mar-Apr 2005	274	37
			KAH0704	Mar-Apr 2007	180	27
			KAH0904	Mar-Apr 2009	291	37
			KAH1104	Mar-Apr 2011	235	43

4.4.1 Model structure and inputs

The stock assessment for LIN 3\&4 (Chatham Rise) was updated in 2012. For final model runs, the full posterior distribution was sampled using Markov Chain Monte Carlo (MCMC) methods, based on the Metropolis-Hastings algorithm. Bounded estimates of spawning stock virgin (B_{0}) and current $\left(B_{2011}\right)$ biomass were obtained. Year class strengths and fishing selectivity ogives were estimated in the model. Trawl fishery and research survey selectivity ogives were fitted as double normal curves; line fishery ogives were fitted as logistic curves. MCMC chains were constructed using a burn-in length of 5×10^{5} iterations, with every $1000^{\text {th }}$ sample taken from the next 10^{6} iterations (i.e., a final sample of length 1000 was taken from the Bayesian posterior).

For LIN 3\&4, model input data included catch histories, biomass and sexed catch-at-age data from a summer trawl survey series, sexed catch-at-age from the trawl fishery, line fishery CPUE, unsexed catch-at-age and catch-at-length from the line fishery, and estimates of biological parameters. The catch history, biological input parameters, and estimates of relative abundance used in the model are shown in Tables $4-7$. The stock assessment model partitioned the population into two sexes, and age groups 3 to 25 with a plus group. The model's annual cycle is described in Table 8.

Table 8: LIN 3\&4 - Annual cycle of the stock model, showing the processes taking place at each time step, their sequence within each time step, and the available observations. Fishing and natural mortality that occur within a time step occur after all other processes, with half of the natural mortality for that time step occurring before and half after the fishing mortality.

Step					Observations	
	Period	Processes	M^{1}	Age ${ }^{2}$	Description	$\% \mathrm{Z}^{3}$
1	Dec-Aug	Recruitment	0.9	0.5	Trawl survey (summer)	0.2
		fisheries			Line CPUE	0.5
		(line \& trawl)			Line catch-at-age/length	
					Trawl catch-at-age	
2		Spawning and increment ages			-	
	Sep-Nov		0.1	0		
M is the proportion of natural mortality that was assumed to have occurred in that time step.						
Age is the age fraction, used for determining length-at-age, that was assumed to occur by the start of that time step.						
	entage of	tal mortality in	hat w	d to hav	ace at the time each obser	n was made.

Most priors were intended to be uninformed, and were specified with wide bounds. The exception was an informative prior for the trawl survey q. The prior on q for all the Tangaroa trawl surveys was estimated assuming that the catchability constant was a product of areal availability ($0.5-1.0$), vertical availability ($0.5-1.0$), and vulnerability between the trawl doors ($0.03-0.40$). The resulting (approximately lognormal) distribution had mean 0.13 and CV 0.70 , with bounds assumed to be 0.02 to 0.30 . Penalty functions were used to constrain the model so that any combination of parameters that did not allow the historical catch to be taken was strongly penalised. A penalty was applied to the estimates of year class strengths to encourage estimates that averaged to 1.

Investigative model runs identified a conflict between the line fishery CPUE and the trawl survey biomass index, where the line fishery biomass index declined between 1991 and 1997, but the trawl survey index remained relatively flat throughout. This difference could not be resolved in a single model run by assuming different selectivity ogives for each biomass index. Therefore, to remove this conflict, a base case model run (Base) used all the observational data except those from the line fishery; the trawl survey biomass index being preferred in the base case because these data were fishery independent. A sensitivity run (NoTrawl) then included the line fishery data, and excluded the trawl survey data.

The error distributions assumed were multinomial for the at-age and at-length data, and lognormal for all other data. The weight assigned to each data set was controlled by the error coefficient of variation (CV). The observation-error CVs were calculated using standard formulae. An additional process error CV of 0.2 was added to the trawl survey biomass index following Francis et al. (2001), and a process error CV for the line fishery CPUE was estimated at 0.15 following Francis (2011). The multinomial observation error CVs for the at-age and at-length data were then adjusted using the
reweighting procedure of Francis (2011). Reweighting of the at-age and at-length data was completed for the base and sensitivity runs separately.

4.4.2 Model estimates

The fits to the biomass indices, catch-at-age and catch-at-length data, were reasonable to good in all model runs, with generally balanced residuals. Posterior distributions of year class strength estimates from the base case model run are shown in Figure 4; the distribution from the NoTrawl run differed little from the base case. Since 1980, year class strengths were below average except for a period between 1994 and 1999, and in 2007. Estimated year class strengths were not widely variable, with all medians being between 0.5 and 2 . Ling were first caught by the trawl survey (mean selectivity A_{50} of 5.2 years), then the trawl fishery (mean A_{50} of 8.0 years), and then the line fishery (A_{50} of 11.0 years). Males were estimated to be less vulnerable than females to the trawl and line fisheries. The estimated median M was 0.15 .

The assessment is driven by the catch history, and by catch-at-age data, which contain information indicative of a stock decline during the 1990s. This is supported by a declining trend in the line fishery CPUE index during that time.

Year
Figure 4: LIN 3\&4 - Estimated posterior distributions of year class strength for the base model. The horizontal line indicates a year class strength of one. Individual distributions show the marginal posterior distribution, with horizontal lines indicating the median.

Although estimates of current and virgin stock size were imprecise, it was unlikely that B_{0} was lower than 110000 t for this stock, and very likely that biomass in 2011 was greater than 44% of B_{0} (Table 9).

Table 9: LIN 3\&4 - Bayesian median and 95% credible intervals (in parentheses) of B_{0} and B_{2011} (in tonnes), and \boldsymbol{B}_{2011} as a percentage of \boldsymbol{B}_{0} for both model runs.

Figure 5: LIN 3\&4 - Estimated posterior distributions of the biomass trajectory (in tonnes) from the base run. Broken lines show the 95% credible intervals and the solid line the median.

The model indicated an increasing biomass since 2004 (driven by a reduction in catch). Annual landings from the LIN $3 \& 4$ stock have been less than 4600 t since 2004, markedly lower than the $6000-8000 \mathrm{t}$ taken annually between 1992 and 2003. Biomass projections derived from this assessment are shown below (Section 4.9).

4.5 Sub-Antarctic, LIN 5 \& LIN 6 (excluding Bounty Plateau)

4.5.1 Model structure and inputs

The stock assessment for LIN 5\&6 (Sub-Antarctic) was updated in 2012. For final runs, the full posterior distribution was sampled using Markov Chain Monte Carlo (MCMC) methods, based on the Metropolis-Hastings algorithm. Bounded estimates of spawning stock virgin (B_{0}) and current (B_{2011}) biomass were obtained. Year class strengths and fishing selectivity ogives were also estimated in the model. Trawl fishery selectivity ogives were fitted as double normal curves; line fishery and research survey ogives were fitted as logistic curves. Selectivities were assumed constant over all years in each fishery/survey.

MCMC chains were constructed using a burn-in length of 5×10^{5} iterations, with every $2500^{\text {th }}$ sample taken from the next 2.5×10^{6} iterations (i.e., a final sample of length 1000 was taken from the Bayesian posterior).

For LIN 5\&6, model input data include catch histories, biomass and catch-at-age data from summer and autumn trawl survey series, two line fishery CPUE series (from the spawning and home ground fisheries), catch-at-age from the spawning ground and home ground line fisheries, catch-at-age data from the trawl fishery, and estimates of biological parameters. A base case model run that incorporated all the data except the CPUE series is presented, with a sensitivity run that included the CPUE series. The stock assessment model partitions the population into two sexes, and age groups 3 to 25 with a plus group. The model's annual cycle is described in Table 12.

Table 10: LIN 5\&6 - Annual cycle of the stock model, showing the processes taking place at each time step, their sequence within each time step, and the available observations. Fishing and natural mortality that occur within a time step occur after all other processes, with half of the natural mortality for that time step occurring before and half after the fishing mortality.

Step					Observations	
	Period	Processes	M^{1}	Age ${ }^{2}$	Description	\% ${ }^{3}$
1	Dec-Aug	Recruitment	0.75	0.4	Trawl survey (summer)	0.1
		Non-spawning fisheries (trawl			Trawl survey (autumn)	0.5
		\& line)			Line CPUE (non-spawn)	0.7
					Line (non-spawn) catch-at-age	
					Trawl catch-at-age	
2	Sep-Nov	Increment ages	0.25	0.0	Line CPUE (spawning)	0.5
		Spawning fishery (line)			Line (spawning) catch-at-age	

M is the proportion of natural mortality that was assumed to have occurred in that time step. Age is the age fraction, used for determining length-at-age, that was assumed to occur in that time step. $\% Z$ is the percentage of the total mortality in the step that was assumed to have taken place at the time each observation was made.

Lognormal errors, with known CVs, were assumed for all relative biomass, proportions-at-age, and proportions-at-length observations. The CVs available for those observations of relative abundance and catch data allow for sampling error only. However, additional variance, assumed to arise from differences between model simplifications and real world variation, was added to the sampling variance. The additional variance, termed process error, was estimated in MPD runs of the model (Table 13) and fixed in all subsequent runs.

The assumed prior distributions used in the assessment are given in Table 14. Most priors were intended to be relatively uninformed, and were specified with wide bounds. The exceptions were the choice of informative priors for the trawl survey q. The priors on q for all the Tangaroa trawl surveys were estimated assuming that the catchability constant was a product of areal availability ($0.5-1.0$), vertical availability ($0.5-1.0$), and vulnerability between the trawl doors ($0.03-0.40$). The resulting
(approximately lognormal) distribution had mean 0.13 and CV 0.70 , with bounds assumed to be 0.02 to 0.30 .

Table 11: LIN 5\&6 - Summary of the relative abundance series applied in the models, including source years (Years), and the estimated process error (c.v.) added to the observation error.

Data series
Trawl survey proportion at age (Amaltal Explorer, Nov)
Trawl survey biomass (Tangaroa, Nov-Dec)
Trawl survey proportion at age (Tangaroa, Nov-Dec)
Trawl survey biomass (Tangaroa, Mar-May)
Trawl survey proportion at age (Tangaroa, Mar-May)
CPUE (longline, spawning fishery)
CPUE (longline, non-spawning fishery)
Commercial longline proportion-at-age (spawning, Oct-Dec)
Commercial longline proportion-at-age (non-spawn, Feb-Jul)
Commercial trawl proportion-at-age (Sep-Apr)

| Years | | Process error c.v. |
| ---: | :--- | :--- | :--- |
| 1990 | | 0.15 |
| $1992-94,2001-10$ | | 0.01 |
| $1992-94,2001-10$ | | 0.15 |
| $1992-93,1996,1998$ | | 0.01 |
| $1992-93,1996,1998$ | | 0.01 |
| $1991-2010$ | | 0.18 |
| $1991-2010$ | | 0.18 |
| $2000-08,2010$ | | 0.3 |
| $1999,2001,2003,2005,2009,2010$ | | 0.3 |
| $1992-94,1996,1998,2001-10$ | | 0.3 |

Table 12: LIN 5\&6 - Assumed prior distributions and bounds for estimated parameters in the assessments. The parameters for lognormal priors are mean (in log space) and c.v.

Parameter description	Distribution		Parameters			Bounds
	Uniform-log	-	-	50000	800000	
B_{0}	Lognormal	1.0	0.70	0.01	100	
Year class strengths	Lognormal	0.13	0.70	0.02	0.3	
Trawl survey q	-	-	$1 \mathrm{e}-8$	0	$1 \mathrm{e}-3$	
CPUE q	Uniform-log	-	-	0.001	$20-200^{*}$	
Selectivities	Uniform	-	-	0	2	
Process error c.v.	Uniform-log	-	-	$3,0.01,0.01,0.01$	$15,0.6,1.0,1.0$	

* A range of maximum values were used for the upper bound

Penalty functions were used to constrain the model so that any combination of parameters that did not allow the historical catch to be taken was strongly penalised. A small penalty was applied to the estimates of year class strengths to encourage estimates that averaged to 1 .

The catch history, biological input parameters, and estimates of relative abundance used in the model are shown in Tables 4-7.

4.5.2 Model estimates

Descriptions of two model runs reported are as follows.

- Base case - catch history, all relative abundance series listed in Tables 4, 6, and 7, M estimated as an ogive independent of sex, double-normal selectivity ogives for the trawl fishery, logistic ogives for the line fisheries and the resource survey series.
- CPUE - the base case model, but incorporating the two line fishery CPUE series.

Three other sensitivities were investigated: (1) splitting the summer survey series into early (19922006) and recent (2007-09) series with independent qs, (2) excluding the 2001 survey biomass point, and (3) fitting the survey ogives as double-normal. These models all produced estimates of stock status that were little different to those from the reported models.

Posterior distributions of year class strength estimates from the base case model run are shown in Figure 4; the distribution from the CPUE model run differed little from the base case. Year classes were generally weak from 1982 to 1992, strong from 1993 to 1996, and average since then (although 2005 may be strong). Overall, estimated year class strengths were not widely variable, with all medians being between 0.5 and 2 . Consequently, biomass estimates for the stock declined through the 1990s, but have exhibited an upturn during the last 12 years (Figure 5). The biomass trajectory from the CPUE model was little different to that derived from the base case.

Biomass estimates for the stock appear very healthy, with estimated current biomass from the two reported models at about 89% of B_{0} (Figure 5, Table 15). Annual exploitation rates (catch over vulnerable biomass) were low (less than 0.06) in all years as a consequence of the high estimated stock size in relationship to the level of relative catches.

Figure 4: LIN 5\&6 - Estimated posterior distributions of year class strength from the base case run. The horizontal line indicates a year class strength of one. Individual distributions show the marginal posterior distribution, with horizontal lines indicating the median.

Figure 5: LIN 5\&6 - Estimated median trajectories (with 95\% credible intervals shown as dashed lines) for absolute biomass and biomass as a percentage of B_{0} from the base case model run.

Table 13: LIN 5\&6 - Bayesian median and 95\% credible intervals (in parentheses) of \boldsymbol{B}_{0} and \boldsymbol{B}_{2011} (in tonnes), and B_{2011} as a percentage of \boldsymbol{B}_{0} for both model runs.

Model run	B $_{0}$		B 2011		B $_{2011}\left(\% \mathrm{~B}_{0}\right.$)	
Base case	395660	(240 210-740 790)	355190	(195 430-689 960)	89.2	(69.8-100.6)
CPUE	442400	(258 010-763 190)	399260	(214 270-703 600)	89.8	(74.1-100.3)

Resource survey and fishery selectivity ogives were relatively tightly defined. The survey ogive suggested that ling were fully selected by the research gear at about age 7-9. Fishing selectivities indicated that ling were fully selected by the trawl fishery at about age 9 years, and by the line fisheries at about age 12-16.

The assessment relied on biomass data from the Sub-Antarctic trawl survey series. The summer survey series was not particularly well fitted and had clear patterns in the residuals (Figure 6). It was also apparent that there can be marked changes in catchability between adjacent pairs of surveys. Estimated trawl survey catchability constants were moderately low (about 4-15\% based on doorspread swept area estimates), but are consistent with the priors.

The assessments indicated a biomass trough about 1999, and some recovery since then. Although estimates of current and virgin stock size are very imprecise, it is most unlikely that B_{0} was lower than 200000 t for this stock, and it is very likely that current biomass is greater than 70% of B_{0}. Probabilities that current and projected biomass will drop below selected management reference points are shown in Table 16.

Figure 6: LIN 5\&6 - Observed relative biomass from the autumn (open squares) and summer (filled circles) research trawl surveys. Survey biomass trajectories estimated in the base case model are also shown for the autumn (grey line) and summer (black line) surveys.

Table 14: LIN 5\&6 - Probabilities that current (B_{2011}) and projected (B_{2016}) biomass will be less than $\mathbf{4 0 \%} \mathbf{2 0 \%}$ or 10% of B_{0}. Projected biomass probabilities are presented for the base case model using two scenarios of future annual catch (i.e., 5900 t , and 12100 t).

Biomass	Management reference points		
	$40 \% B_{0}$	$20 \% B_{0}$	$10 \% B_{0}$
B_{2011}	0.000	0.000	0.000
$B_{2016}, 5900$ t catch	0.000	0.000	0.000
$B_{2016}, 12100$ t catch	0.000	0.000	0.000

Estimates of biomass projections derived from this assessment are shown below (Section 4.9). The relatively high level of uncertainty in the model precluded any updated estimation of MCY and CAY (although an MCY was estimated in the 2007 assessment, as is reported below).

4.6 Bounty Plateau, LIN 6B (Bounty Plateau only)

4.6.1 Model structure and inputs

The stock assessment for the Bounty Plateau stock (part of LIN 6) was updated in 2007. For final runs, the full posterior distribution was sampled using Markov Chain Monte Carlo (MCMC) methods, based on the Metropolis-Hastings algorithm. Bounded estimates of spawning stock virgin (B_{0}) and current (B_{2007}) biomass were obtained. Year class strengths and fishing selectivity ogives were also estimated in the model. Line fishery ogives were fitted as logistic curves.

MCMC chains were constructed using a burn-in length of 5×10^{5} iterations, with every $1000^{\text {th }}$ sample taken from the next 10^{6} iterations (i.e., a final sample of length 1000 was taken from the Bayesian posterior).

For LIN 6B, model input data include catch histories, line fishery CPUE, catch-at-age and catch-atlength from the line fishery, and estimates of biological parameters. In the absence of sufficient stockspecific data, maturity ogives were assumed to be the same as for LIN 3\&4, a stock with comparable growth parameters to LIN 6B. Only a base case model run is presented. The stock assessment model partitions the population into two sexes, and age groups 3 to 35 with a plus group. There is one fishery (longline) in the stock. The model's annual cycle is described in Table 16.

Lognormal errors, with known CVs, were assumed for all relative biomass, proportions-at-age, and proportions-at-length observations. The CVs available for those observations of relative abundance and catch data allow for sampling error only. However, additional variance, assumed to arise from differences between model simplifications and real world variation, was added to the sampling variance. The additional variance, termed process error, was estimated in MPD runs of the model (Table 17) and fixed in all subsequent runs.

Table 15: LIN 6B - Annual cycle of the stock model, showing the processes taking place at each time step, their sequence within each time step, and the available observations. Fishing and natural mortality that occur within a time step occur after all other processes, with half of the natural mortality for that time step occurring before and half after the fishing mortality.

Step	Period	Processes	M^{1}	Age ${ }^{2}$	Observations	
					Description	$\% \mathbf{Z}^{3}$
1	Dec-Sep	recruitment	0.9	0.5	Line CPUE	0.5
		fisher y (line)			Line catch-at-age/length	0.5
2	Oct-Nov	increment ages	0.1	0	-	

1. $\quad M$ is the proportion of natural mortality that was assumed to have occurred in that time step.
2. Age is the age fraction, used for determining length-at-age, that was assumed to occur in that time step.
3. $\% Z$ is the percentage of the total mortality in the step that was assumed to have taken place at the time each observation was made.

Table 16: LIN 6B - Summary of the relative abundance series applied in the models, including source years (Years), and the estimated process error (c.v.) added to the observation error.

Data series
CPUE (longline, all year)
Commercial longline length-frequency (Nov-Feb)
Commercial longline proportion-at-age (Dec-Feb)

Years	Process error c.v.
$1992-2004$	0.15
$1996,2000-04$	0.5
$2000-01,2004$	0.4

The assumed prior distributions used in the assessment are given in Table 18. All priors were intended to be relatively uninformed, and were estimated with wide bounds.

Table 17: LIN 6B - Assumed prior distributions and bounds for estimated parameters for the assessments. The parameters are mean (in log space) and CV for lognormal.

Parameter description	Distribution uniform-log
B_{0}	lognormal
Year class strengths	uniform-log
CPUE q	uniform
Selectivities	uniform-log
Process error CV	A range of maximum values were used for the upper bound

Parameters			Bounds	
	-	5000	100000	
1.0	0.7	0.01	100	
-	-	$1 \mathrm{e}-8$	$1 \mathrm{e}-3$	
-	-	0	$20-200$	
-	-	0.001	2	

Penalty functions were used to constrain the model so that any combination of parameters that did not allow the historical catch to be taken was strongly penalised. A small penalty was applied to the estimates of year class strengths to encourage estimates that averaged to 1.

The catch history, biological input parameters, and estimates of relative abundance used in the model are shown in Tables 4-7.

4.6.2 Model estimates

Only a base case model run was completed.
Posterior distributions of year class strength estimates from the base case model run are shown in Figure 7.

Figure 7: LIN 6B - Estimated posterior distributions of year class strength from the base case run. The horizontal line indicates a year class strength of one. Individual distributions show the marginal posterior distribution, with horizontal lines indicating the median.

The assessment was driven largely by the catch-at-age and catch-at-length series from the line fishery; the first two years of CPUE data were not well fitted. Biomass estimates are listed in Table 19 and the biomass trajectory is shown in Figure 8. The assessment indicates a declining biomass throughout the history of the fishery. Estimates of current and virgin stock size are not well known, but current biomass is very likely to be above 50% of B_{0}.

Table 18: LIN 6B - Bayesian median and 95% credible intervals (in parentheses) of B_{0} and $B_{2006}\left(\right.$ in t), and B_{2006} as a percentage of \boldsymbol{B}_{0} for the base case model run.

Model run	B 0_{0}			B $_{2006}$		$\underline{B}_{2006}\left(\% \mathrm{~B}_{0}\right)$
Base case	13570	(10 850-19 030)	8330	(4 860-14 730)	61	1 (45-79)

Figure 8: LIN 6B - Estimated posterior distributions of biomass trajectories as a percentage of B_{0}, from the base case model run (including 5-year projections through to 2011 with assumed constant annual catch of 400 t). Distributions are the marginal posterior distribution, with horizontal lines indicating the median.

Estimates of MCY, CAY, and biomass projections derived from this assessment are shown below (Sections 4.7-4.9).

4.7 West coast South Island, LIN 7WC

4.7.1 Model structure and inputs

The stock assessment for LIN 7WC (west coast South Island) was updated in 2013. The assessment model partitions the population into age groups 3 to 28 with a plus group, with no sex in the partition. The model's annual cycle is described in Table 19.

The chosen base case was developed following the investigation of numerous previous models. It was found that the model could not reconcile some differences in sex ratios of the age-frequency data, so sex was removed from the partition.

Year class strengths and fishing selectivity ogives were also estimated in the model. Commercial trawl and research survey selectivities were fitted as double normal curves; the line fishery ogive was fitted as a logistic curve.

For final runs, the full posterior distribution was sampled using Markov Chain Monte Carlo (MCMC) methods, based on the Metropolis-Hastings algorithm. Bounded estimates of spawning stock virgin $\left(B_{0}\right)$ and current (B_{2008}) biomass were obtained. MCMC chains were constructed using a burn-in length of 2×10^{6} iterations, with every $4000^{\text {th }}$ sample taken from the next 4×10^{6} iterations (i.e., a final sample of length 1000 was taken from the Bayesian posterior). Single chain convergence tests were applied to resulting chains to determine evidence of non-convergence. No evidence of lack of convergence was found in the estimates of B_{0} or $B_{\text {current }} / B_{0}$ from the base case model run.

For LIN 7WC, model input data include catch histories, trawl fishery CPUE, extensive catch-at-age data from the trawl fishery, sparse catch-at-age data from the line fishery, biomass estimates and proportion at age from comparable Tangaroa surveys in 2000 and 2012, and estimates of biological parameters (Table 20). A line fishery CPUE series was available, but was rejected as unlikely to be indexing stock abundance. The base case estimated instantaneous natural mortality, M, as a constant.

Table 19: LIN 7WC - Annual cycle of the stock model, showing the processes taking place at each time step, their sequence within each time step, and the available observations. Fishing and natural mortality that occur within a time step occur after all other processes, with half of the natural mortality for that time step occurring before and half after the fishing mortality.

The error distributions assumed were multinomial for the proportions-at-age and lognormal for all other data. Biomass indices had assumed CVs set equal to the sampling CV, with additional process error of 0.2. The multinomial observation error effective sample sizes for the trawl fishery at-age data were adjusted using the reweighting procedure of Francis (2011). An ad hoc procedure was used for the at-age data from the line fishery and Tangaroa survey at-age data, giving the survey a relatively high weighting.

Table 20: LIN 7WC - Summary of the relative abundance series applied in the models, including source years (Years).

Data series	Years
CPUE (hoki trawl, Jun-Sep)	$1987-2011$
Commercial trawl proportion-at-age (Jun-Sep)	$1991,1994-2008$
Commercial longline proportion-at-age	2003,2012
Trawl survey biomass (Tangaroa, July)	2000,2012
Trawl survey age data	2000,2012

The assumed prior distributions used in the assessment are given in Table 21. Most priors were intended to be relatively uninformed, and were specified with wide bounds. The prior for the survey q was informative and was estimated using the Sub-Antarctic ling survey priors as a starting point (see section 4.3.1) because the survey series in both areas used the same vessel and fishing gear. However, the WCSI survey area in the 200-650 m depth range in strata $0004 \mathrm{~A}-\mathrm{C}$ and $0012 \mathrm{~A}-\mathrm{C}$ comprised $6619 \mathrm{~km}^{2}$; seabed area in that depth range in the entire LIN 7 WC biological stock area (excluding the Challenger Plateau) is estimated to be about $20100 \mathrm{~km}^{2}$. So, because biomass from only 33% of the WCSI ling habitat was included in the indices, the Sub-Antarctic prior on μ was modified accordingly (i.e., $0.13 \times 0.33=0.043$), and the bounds were also reduced from [0.02, 0.30] to [0.01, 0.20]. The prior for M was informed and based on expert opinion. Priors for all selectivity parameters were assumed to be uniform.

Table 21: LIN 7WC - Assumed prior distributions and bounds for parameters estimated in the models. For lognormal distributions the figures are the logspace mean and the CV, and for normal distributions the figures are the mean and standard deviation .

Parameter description	Distribution	Parameters		Bounds	
B_{0}	uniform-log	-	-	10000	500000
Year class strengths	lognormal	1.0	0.7	0.01	100
Tangaroa survey q	lognormal	0.043	0.70	0.01	0.2
CPUE q	uniform-log	-	-	1e-8	1e-3
Selectivities	uniform	-	-	0	20-200*
M	normal	0.20	0.025	0.1	0.3

* A range of maximum values was used for the upper bound.

Penalty functions were used to constrain the model so that any combination of parameters that did not allow the historical catch to be taken was strongly penalised. A small penalty was applied to the estimates of year class strengths to encourage estimates that averaged to 1 .

The catch history, biological input parameters, and estimates of relative abundance used in the model are shown in Tables 4-7.

4.7.2 Model estimates

MCMC runs of the base case and one sensitivity (where M was fixed at 0.18) were conducted.
Posterior distributions of year class strength estimates from the base case model run are shown in Figure 9. The YCS distribution from the sensitivity run was not visually different and is not shown.

Figure 9: LIN 7WC - Estimated posterior distributions of year class strength. The horizontal line indicates a year class strength of one. Individual distributions show the marginal posterior distribution, with horizontal lines indicating the median.

Both model runs were indicative of a B_{0} greater than about 50000 t . The upper bound on B_{0} is highly uncertain and dependent on the priors on the survey q and M. Both model runs also indicated a biomass decline from 2000-2012 (Table 22, Figure 10). The model fit to the CPUE series was poor (Figure 11). Model estimates suggest a period of higher recruitment from 1978 to 1990 followed by lower recruitment since 1992. There was also some evidence for stronger recruitment in the most recent year for which an estimate can be made but this is highly uncertain (Figure 9).

Table 22: LIN 7WC - Bayesian median and 95% credible intervals (in parentheses) of B_{0} and B_{2011} (in tonnes), and B_{2012} as a percentage of B_{0} for all model runs. The base case estimates M.

Model run	B $_{0}$		B_{2012}		$\mathrm{B}_{2012}\left(\% \mathrm{~B}_{0}\right)$	
Base case	99200	(58 400-304 600)	70350	(33 000-248 400)	71	(56-85)
$M=0.18$	66100	(50 300-142 900)	39580	(23 600-109 200)	59	(46-79)

Figure 10: LIN 7WC - Estimated posterior distributions of the biomass (t) trajectory and \% B_{0} for the base case. The solid lines are the median values and the dashed lines are the $\mathbf{9 5 \%}$ CIs.

Figure 11: LIN 7WC - The fit of the base case model (MPD) to the commercial trawl CPUE index. The CPUE index has been scaled to the biomass using the estimated q.

4.8 Cook Strait, LIN 7CK

4.8.1 Model structure and inputs

A stock assessment of ling in Cook Strait (LIN 7CK) was completed in 2013. Because it is believed that the true M for the Cook Strait stock is higher than the 'default' value of 0.18 , it was considered desirable to estimate M in the model, and so incorporate the effect of this uncertainty in M in the assessment. However, the simultaneous estimation of B_{0} and M was not successful owing to the adoption of a multinomial likelihood (rather than lognormal) for proportions-at-age. Consequently, models with fixed M values were run, and although the age data were reasonably well fitted, the model failed to accurately represent declines in resource abundance that appear evident from CPUE values, which have been declining since 2001. As a consequence the model was considered unsuitable for the provision of management advice.

The last stock assessment for LIN 7CK (Cook Strait) accepted by the Working Group was completed in 2010, and it is reported here. The stock assessment model partitions the population into two sexes, and age groups 3 to 25 with a plus group. The model's annual cycle is described in Table 24. Year class strengths and fishing selectivity ogives were also estimated in the model. Commercial trawl selectivity was fitted as double normal curves; line fishery ogives were fitted as logistic curves.

For final runs, the full posterior distribution was sampled using Markov Chain Monte Carlo (MCMC) methods, based on the Metropolis-Hastings algorithm. Bounded estimates of spawning stock virgin (B_{0}) and current (B_{2008}) biomass were obtained. MCMC chains were constructed using a burn-in length of 4×10^{6} iterations, with every $2000^{\text {th }}$ sample taken from the next 20×10^{6} iterations (i.e., a final sample of length 1000 was taken from the Bayesian posterior).

For LIN 7CK, model input data include catch histories, trawl and line fishery CPUE, extensive catch-at-age data from the trawl fishery, sparse catch-at-age data from the line fishery, and estimates of biological parameters. Initial modelling investigations found that the line CPUE produced implausible results; this series was rejected as a useful index. The base case used all catch-at-age data from the fisheries, and the trawl CPUE series. Instantaneous natural mortality was estimated in the model

Lognormal errors, with known CVs, were assumed for all CPUE and proportions-at-age observations. The CVs available for those observations allow for sampling error only. However, additional variance (termed process error), assumed to arise from differences between model simplifications and real world variation, was added to the sampling variance (Table 25).

Table 23: LIN 7CK - Annual cycle of the stock model, showing the processes taking place at each time step, their sequence within each time step, and the available observations. Fishing and natural mortality that occur within a time step occur after all other processes, with half of the natural mortality for that time step occurring before and half after the fishing mortality.

M is the proportion of natural mortality that was assumed to have occurred in that time step.
Age is the age fraction, used for determining length-at-age, that was assumed to occur in that time step.
$\% Z$ is the percentage of the total mortality in the step that was assumed to have taken place at the time each observation was made.

Table 24: LIN 7CK - Summary of the available data including source years (Years), and the estimated process error (c.v.) added to the observation error.

Data series	Years	Process error c.v.
CPUE (hoki trawl, Jun-Sep)	$1994-2009$	0.2
Commercial trawl proportion-at-age (Jun-Sep)	$1999-2009$	1.1
Commercial longline proportion-at-age	$2006-7$	1.1

The assumed prior distributions used in the assessment are given in Table 26. Most priors were intended to be relatively uninformed, and were specified with wide bounds.

Table 25: LIN 7CK - Assumed prior distributions and bounds for estimated parameters in the assessments. The parameters are mean (in log space) and c.v. for lognormal, and mean and standard deviation for normal.

Parameter description	Distribution	Parameters			Bounds	
	uniform-log		-	2000	60000	
B_{0}	lognormal	-	-9	0.01	100	
Year class strengths	uniform-log	-	-		$1 \mathrm{e}-8$	
CPUE q	uniform	-	-	0	$20-200^{*}$	
Selectivities	lognormal	0.18	0.16	0.1	0.3	

* A range of maximum values was used for the upper bound

Penalty functions were used to constrain the model so that any combination of parameters that did not allow the historical catch to be taken was strongly penalised. A small penalty was applied to the estimates of year class strengths to encourage estimates that averaged to 1 .

The catch history, biological input parameters, and estimates of relative abundance used in the model are shown in Tables 4-7.

4.8.2 Model estimates

A single model was presented incorporating a catch history, trawl and line fishery catch-at-age, trawl CPUE series, with double-normal ogives for the trawl fishery and logistic ogives for the line fishery, and M estimated in the model.

Posterior distributions of LIN 7CK year class strength estimates from the base case model run are shown in Figure 12.

Figure 12: LIN 7CK - Estimated posterior distributions of year class strength. The horizontal line indicates a year class strength of one. Individual distributions show the marginal posterior distribution, with horizontal lines indicating the median.

The assessment is driven by the trawl fishery catch-at-age data and tuned by the trawl CPUE. Both input series contain information indicative of an overall stock decline in the last two decades. The confidence bounds around biomass estimates are wide (Table 27, Figure 13). Probabilities that current and projected biomass will drop below selected management reference points are shown in Table 28. Median M was estimated to be 0.24 (95% confidence interval $0.16-0.30$). Estimates of biomass are very sensitive to small changes in M, but clearly there is information in the model encouraging an M higher than the 'default' value of 0.18 . The model indicated a slight overall biomass decline to about 2000, followed by a much steeper decline from 2000 to 2010. Exploitation rates (catch over vulnerable biomass) were very low up to the late 1980s, and have been low to moderate (up to about $0.12 \mathrm{yr}^{-1}$) since then (Figure 14). Since the early 1990s, trawl fishing pressure has generally declined, while line pressure has generally increased.

Table 26: LIN 7CK - Bayesian median and 95\% credible intervals (in parentheses) of B_{0} and B_{2010} (in tonnes), and B_{2010} as a percentage of B_{0} for all model runs.

Model run													
Base case	\boldsymbol{B}_{0}							\boldsymbol{B}_{2010}	$\boldsymbol{B}_{2010} \frac{\left(\% \boldsymbol{B}_{0}\right)}{(5290-53080)}$	4370	$(1250-40490)$	54	$(23-80)$

Table 27: LIN 7CK - Probabilities that current (B_{2010}) and projected (B_{2015}) biomass will be less than $\mathbf{4 0 \%}$, 20% or 10% of B_{0}. Projected biomass probabilities are presented for two scenarios of future annual catch (i.e., 220 t, and 420 t).

Biomass	Management reference points		
	$40 \% B_{0}$	$20 \% B_{0}$	$10 \% B_{0}$
$\mathrm{~B}_{2010}$	0.248	0.006	0.000
$\mathrm{~B}_{2015}, 220 \mathrm{t}$ catch	0.179	0.010	0.000
$\mathrm{~B}_{2015}, 420$ t catch	0.328	0.094	0.019

Figure 13: LIN 7CK - Estimated median trajectories (with $\mathbf{9 5 \%}$ credible intervals shown as dashed lines) for absolute biomass and biomass as a percentage of B_{0}.

Figure 14: LIN 7CK - Estimated median trajectories (with 95\% credible intervals shown as dashed lines) of fishery exploitation rates.

Estimates of biomass projections derived from this assessment are shown below (Section 4.9). The relatively high level of uncertainty in the model precluded any updated estimation of MCY and CAY (although an MCY was estimated in the 2007 assessment, as is reported below).

4.9 Yield estimates and projections

No estimate for MCY or CAY
Projections for LIN 6B from the 2006 assessment are shown in Table 28. The LIN 6B stock (Bounty Plateau) is likely to decline out to 2011, but probably will still be higher than 50% of B_{0}. Projections out to 2015 for LIN 7CK indicate that biomass is likely to increase with future catches equal to recent catch levels, or decline slightly if catches are equal to the mean since 1990 (Table 29). New projections made in 2011 out to 2016 for LIN $3 \& 4$ and 5\&6, assuming future annual catches equal to recent catch levels, are shown in Table 30. For LIN 3\&4, stock size is likely to remain about the same. For LIN 5\&6, stock size is likely to increase slightly. For LIN 7 WC the Working Group did not consider that projections using either run were reliable and so no projections are shown.

Table 28: LIN 6B Bayesian median and 95% credible intervals (in parentheses) of projected B_{2011}, B_{2011} as a percentage of B_{0}, and $B_{2011} / B_{2006}(\%)$ for the base case.

Stock and model run	Future catch (t)	B $_{2011}$		$\mathrm{B}_{2011}\left(\% \mathrm{~B}_{0}\right)$		\boldsymbol{B}_{2011} B $_{2006}(\%)$	
LIN 6B Base case	600	7460	(2 950-18 520)	53	(26-116)	86	(51-168)

Table 29: LIN 7CK Bayesian median and 95\% credible intervals (in parentheses) of projected $\boldsymbol{B}_{2015}, \boldsymbol{B}_{2015}$ as a percentage of B_{0}, and $B_{2015} / B_{2010}(\%)$ for the base case.

Stock and model run		Future catch (t)	B $_{2015}$		$\mathrm{B}_{2015}\left(\% \mathrm{~B}_{0}\right)$		B $_{2015} / \underline{B}_{2010}(\%)$	
LIN 7CK	Base case	220	5030	(1 310-43 340)	59	(24-97)	110	(82-158)
		420	4320	(590-42 910)	52	(11-92)	95	(45-136)

Table 30: LIN 3\&4 and 5\&6 Bayesian median and 95% credible intervals (in parentheses) of projected B_{2016}, B_{2016} as a percentage of B_{0}, and $B_{2016} / B_{2011}(\%)$ for the base case and sensitivity run.

Stock and model run		Future catch (t)	\underline{B}_{2016}		$\mathrm{B}_{2016}\left(\% \mathrm{~B}_{0}\right)$		$\boldsymbol{B}_{2016} \underline{B}_{2011}(\%)$	
LIN 3\&4	Base	3900	69900	(45 500-122 000)	55	(41-72)	98	(87-111)
LIN 5\&6	Base case	5900	409400	(210 350-963 680)	103	(84-149)	114	(94-211)
	CPUE	5900	464310	(213 840-973 870)	104	(85-141)	114	(94-181)

5. ANALYSIS OF ADAPTIVE MANAGEMENT PROGRAMMES (AMP)

The Ministry of Fisheries revised the AMP framework in December 2000. The AMP framework is intended to apply to all proposals for a TAC or TACC increase, with the exception of fisheries for which there is a robust stock assessment. In March 2002, the first meeting of the new Adaptive Management Programme Working Group was held. Two changes to the AMP were adopted:

- a new checklist was implemented with more attention being made to the environmental impacts of any new proposal;
- the annual review process was replaced with an annual review of the monitoring requirements only. Full analysis of information is required a minimum of twice during the 5 year AMP.

LIN 1

In October 2002, the TACC for LIN 1 was increased from 265 t to 400 t within the AMP. A full-term review of the LIN 1 AMP was carried out in 2007.

Mid-term Review 2009 (AMP WG/09/09).

Fishery Characterization

- LIN1 entered the QMS in 1986-87 at a TACC of 200 t , which was increased to 238 t in 1988-89 and 265 t in 1989-90, probably due to the quota appeal process. LIN 1 catches remained slightly under the TACC up to 1994-94, but then exceeded the TACC, reaching ~300 t over most of the period 1996-97 to 2001-02. LIN 1 entered the AMP programme in 2002-03, with a TACC increase from 265 t to 400 t .
- After implementation of the AMP, catches dropped back to the previous TACC level for two years, and then increased to 364 t by 2005-06, dipped to 201 t in 2006-07, and increased to 381 t in 2007-08, the highest catch level over the data series.
- 53% of LIN 1 landings come from the bottom trawl fishery and a further 46% by bottom longline since 1989-90. The remaining methods account for $<2 \%$ of the total landings.
- Most BT and BLL landings come from the Bay of Plenty. The majority of bottom trawl catches are taken in Statistical Areas 008 to 010, although there have been significant bottom trawl catches of ling on the west coast of the North Island in some years in Areas 046 to 048. There were substantial ling by-catches made by trawl on the North Island west coast from 1996-97 to 2000-01 in the gemfish fishery (which has since ceased), and longline catches have increased from the East Northland area.
- Ling are caught in small quantities across many fisheries. The distribution of BT effort is broader than the distribution of catch, with effort taking some LIN 1 in East Northland and the west coast in most years. Bottom longline landings of LIN 1 have a wider distribution and are more sporadic, with the Bay of Plenty landings coming primarily from Areas 009 and 010. Bottom longline landings increased after about 2000 in East Northland Area 002, but have fallen off considerably in 2007-08.
- There is a small targeted ling trawl fishery, while trawl catches of LIN1 are mainly made in the scampi and gemfish targeted fisheries. The gemfish fishery mainly contributed catches from 1996-97 to 2000-01 and has since considerably diminished with the reduction of the SKI 1 TACC. The Bay of Plenty scampi fishery has also changed considerably during this period, particularly after SCI entered the QMS, moving from a competitive fishery requiring multiple vessels to a more rationalised fishery requiring only a single vessel. In contrast, $\sim 75 \%$ of the ling longline catch is taken in a targeted ling fishery, with only minor by-catches coming from bluenose, ribaldo and hapuku targeted longline fisheries.
- The bottom longline landings of LIN 1 are taken mainly in the final two months of the fishing year, probably due to the economics of the vessels switching from tuna longlining to cleaning up available quota at the end of the fishing year. Bottom trawl catches of ling tend to be more evenly distributed across the year and reflect the fishing patterns of the diverse trawl targets, such as scampi which is also a consistent fishery over the entire year. Both of the major fishing methods which take ling have sporadic seasonal patterns, reflecting the small landings in most years and the by-catch nature of many of the fisheries.

CPUE Analysis

Figure 15: LIN 1 CPUE analysis based on target ling bottom longline data stratified by trip, target species and statistical area for Statistical Areas 002, 003, 004, 008, 009 and 010 standardised with respect to fishing year, number of hooks, vessel, month and number of lines set. Indices from two unstandardised analyses are presented for comparison: a) "arithmetic", the annual sum of landings divided by the total annual number of hooks; and b) "unstandardised", the geometric mean of landings per hook by trip-stratum.

- The depth distribution of ling catches in the trawl fisheries shows two main depths associated with the target species. Most ling are caught in the scampi / hoki / ling fishery at $\sim 400 \mathrm{~m}$ depth, but some are taken in the tarakihi / snapper / barracouta / trevally fisheries around 100 m depth. Bottom longline depth records indicate that target ling fishing (as well as target bluenose fishing) takes place at even deeper depths, with most of the records lying between 500 and 600 m .
- The WG has previously noted substantial problems with the quality of LIN 1 data. Estimated catches tend to be less than landed greenweight (the median landed greenweight is about 25% greater than the estimated catch in the same trip), but only 4% of trips by weight neglect to report estimated catches of ling when there are landings. The biggest problem with this data set is the confusion, largely confined to the period prior to about 1995-96, where the FMA has been reported as the statistical area of capture rather than the true statistical area. This is a problem for a LIN 1 analysis because (for instance) FMA 4 (Chatham Rise) will be included in this dataset because statistical area 004 is valid for LIN 1. It is not possible to independently validate such a report because the CELR reporting form used by these vessels does not require a noon position or some other corroborating evidence of location. This problem is further exacerbated because many trips which apparently are legitimately fishing in FMAs 1 and 9 (the two LIN 1 FMAs) also tend to range widely, circumnavigate the entire North Island and venture into South Island waters. There is a large amount of landings made to the intermediate destination code R (retained on board) which further confounds the analysis because this breaks the continuity of the landings with the effort section of the form, resulting in much of the data being excluded and severely limiting the amount of data available for CPUE analyses.
- The diverse nature and broad geographic range of the LIN 1 fisheries has further complicated the selection of representative CPUE indices. Eight potential fisheries were previously identified as potential CPUE indices, but none of the analyses were considered to be robust due to the diverse
nature of the fisheries and relative paucity of data. The AMP WG concluded in 2007, when it last reviewed the LIN 1 fishery, that landed catch data were particularly unreliable, and recommended that estimated catch data should be used instead.
- The 2007 review of the LIN 1 CPUE indices concluded that the LIN bycatch fishery in the target scampi bottom trawl fishery in the Bay of Plenty and the target ling bottom longline fishery in the Bay of Plenty and East Northland had sufficient information to warrant attempting standardised CPUE analyses (Starr et al. 2007).
- These two candidate CPUE analyses were updated for this review. However, noting that there is now only one vessel in the scampi fishery, and that the amount of LIN catch data from the scampi bycatch fishery continues to decrease, the WG concluded that the only candidate index of LIN 1 abundance worth considering in this review was the BLL(LIN) index (target ling fishing using bottom longline). The WG recommended that future analyses which included mixed target species bottom trawl effort should be investigated to replace the BT(SCI) index.
- In 2009, the BLL(LIN) index was updated to exclude vessels which only fished in a single year, and calculated alternately using estimated and landed catches. The updated BLL index essentially remains unchanged from the one presented in 2007, consisting of two periods of slowly declining CPUE from 1990-91 to 1996-97 and 1999-00 to 2005-06, separated by a strong, highly uncertain and likely anomalous peak in 1998-99.
- In 2007, the WG noted that BLL reporting rates greatly exceed landed catch weights, reaching 700% in 1998-99. The high CPUE peak in 1998-99 appeared to result from landings which occurred in a single month by two vessels which typically had high catch rates. Many new participants have entered and left this fishery and the vessel effect needs to be investigated further.
- The WG made a number of recommendations for additional data selection procedures and analyses to investigate vessel effects on the BLL(LIN) index (see below).

Status of the Stock

Analysis Recommendations

The following analyses were conducted or recommended during the 2009 review:

- The WG requested that the vessels which only fished in one year be removed from the analysis. This was done and updated analyses were presented to the review.
- At the next review, BLL index standardisations need to further explore the reasons for the peak in 1998-99 (which resulted only from 2 vessels which fished only 2 and 4 trip strata respectively). The linkage of core fleet vessels across this and the effect of inclusion of large autoliners in the BLL index also needs to be investigated.
- Other options should be explored for excluding autoliners or vessels which do not belong in FMA 1 during data extraction, and then modifying grooming procedures to retain a higher proportion of data for the remaining vessels.
- For future analyses, a mixed target $\mathrm{BT}(\mathrm{HOK}, \mathrm{LIN}, \mathrm{SKI})$ index should be calculated to replace the BT(SCI) index.

Abundance Indices

The WG concluded that the BT(SCI) index was not an appropriate index for LIN 1 , and had numerous shortcomings related to limited number of vessels, particularly in the most recent 4 years and poor linkage across years. The BLL(LIN) target index appears to have more potential as an index for LIN 1, but shows an apparently anomalous peak in 1998-99 and also has a relatively small amount of data. If this anomalous peak is excluded, the BLL(LIN) index has been stable without trend since 1995/96. However, until the reasons for the peak in BLL CPUE are understood, the WG concluded that the CPUE indices from this series are not reliable indices of LIN 1 abundance.

Sustainability of Current Catches

In the absence of a representative index of abundance, it is not known whether current LIN 1 catches or the TACC are sustainable.

Stock Status

The state of the stock in relation to $B_{\text {MSY }}$ is unknown.

6. STATUS OF THE STOCKS

Stock Structure Assumptions

Ling are assessed as six independent biological stocks, based on the presence of spawning areas and some differences in biological parameters between areas (Horn 2005).

The Chatham Rise biological stock comprises all of Fishstock LIN 4, and LIN 3 north of the Otago Peninsula. The Sub-Antarctic biological stock comprises all of Fishstock LIN 5, all of LIN 6 excluding the Bounty Plateau, and LIN 3 south of the Otago Peninsula. The Bounty Plateau (part of Fishstock LIN 6) holds another distinct biological stock. The WCSI biological stock occurs in Fishstock LIN 7 west of Cape Farewell. The Cook Strait biological stock includes those parts of Fishstocks LIN 7 and LIN 2 between the northern Marlborough Sounds and Cape Palliser. Ling around the northern North Island (Fishstock LIN 1) are assumed to comprise another biological stock, but there is no information to support this assumption. The stock affinity of ling in LIN 2 between Cape Palliser and East Cape is unknown.

- LIN 1 Stock

Stock Status	
Year of Most Recent Assessment	2009
Assessment Runs Presented	None. Fishstock LIN 1 has been managed under an AMP programme since 2003.
Reference Points	Management Target: $40 \% B_{0}$ Soft Limit: 20\% B_{0} Hard Limit: $10 \% B_{0}$
Status in relation to Target	Unknown
Status in relation to Limits	Unknown
Historical Stock Status Trajectory and Current Status	-

Fishery and Stock Trends	
Recent Trend in Biomass or Proxy	Unknown
Recent Trend in Fishing Mortality or Proxy	Unknown
Other Abundance Indices	Two CPUE series have been estimated (scampi-targeted bottom trawl, and a ling targeted bottom longline), but neither are considered reliable.
Trends in Other Relevant Indicators or Variables	-

Projections and Prognosis

Stock Projections or Prognosis
Probability of Current Catch or
TACC causing decline below Limits
Unknown
Soft Limit: Unknown
Hard Limit: Unknown

Assessment Methodology	
Assessment Type	Level 3 - Qualitative evaluation
Assessment Method	Evaluation of fishery trends.
Main data inputs	- CPUE series
Period of Assessment	Latest assessment: 2009
Changes to Model Structure and Assumptions	No modeling completed.
Major Sources of Uncertainty	Only fishery dependent abundance series were available (CPUE), and these were not considered reliable.

Qualifying Comments

In the absence of a representative and useful index of abundance, it is not known whether current LIN 1 catches or the TACC can be maintained without reducing the stock size. Current stock status is unknown.

Fishery Interactions

Ling are often taken as a bycatch in hoki target trawl fisheries, and scampi target trawl fisheries off northern New Zealand. Target line fisheries for ling have the main bycatch species of spiny dogfish, sea perch, sharks and skates and ribaldo. Bycatch species of concern include sharks, skates, fur seals and seabirds (trawl fisheries), and sharks, skates and seabirds (longline fisheries).

- Chatham Rise (LIN 3 \& 4)

Stock Status	
Year of Most Recent Assessment	2011
Assessment Runs Presented	A base case and one sensitivity run.
Reference Points	Management Target: $40 \% B_{0}$ Soft Limit: $20 \% B_{0}$ Hard Limit: $10 \% B_{0}$
Status in relation to Target	B_{2011} was estimated to be about $55 \% B_{0}$; Very Likely (> 90\%) to be above the target
Status in relation to Limits	B_{2011} is Exceptionally Unlikely ($<1 \%$) to be below the Soft Limit and Exceptionally Unlikely ($<1 \%$) to be below the Hard Limit.
Historical Stock Status Trajectory	y and Current Status
Trajectory over time of spawning biomass (absolute, and $\% B_{0}$, with 95% credible intervals shown as broken lines) for the Chatham Rise ling stock from the start of the assessment period in 1972 to the most recent assessment in 2011. Years on the \mathbf{x}-axis are fishing year with "1995" representing the 1994-95 fishing year. Biomass estimates are based on MCMC results.	
Fishery and Stock Trends	
Recent Trend in Biomass or Proxy	Biomass is very unlikely to have been below $40 \% B_{0}$. Biomass is estimated to have been increasing since 2003.
Recent Trend in Fishing Mortality or Proxy	Fishing pressure is estimated to have been declining since 1999.
Other Abundance Indices	-
Trends in Other Relevant Indicators or Variables	Recruitment since the early 1990s is estimated to have been fluctuating slightly around the long-term average for this stock.

Projections and Prognosis (2011)

Stock Projections or Prognosis

	Catches at level of the TACC have unknown prognosis.
Probability of Current Catch or	Soft Limit: Exceptionally Unlikely $(<1 \%)$ at current catch
TACC causing decline below	Hard Limit: Exceptionally Unlikely $(<1 \%)$ at current catch
Limits	

Assessment Methodology		
Assessment Type	Level 1 - Quantitative stock assessment	
Assessment Method	Age-structured CASAL model with Bayesian estimation of posterior distributions.	
Main data inputs	- Summer research trawl survey series, annually since 1992. - Proportions-at-age data from the commercial fisheries and trawl survey. - Line fishery CPUE series (annual indices since 1990). - Estimates of biological parameters	
Period of Assessment	Latest assessment: 2011 Next assessment: 2014	
Changes to Model Structure and Assumptions	No significant changes since the previous assessment, except that the line fishery CPUE index and composition data were excluded from the base case run.	
Major Sources of Uncertainty	Estimates of current and virgin stock size are very imprecise.	

Qualifying Comments

Fishery Interactions

Ling are often taken as a bycatch in hoki target trawl fisheries. Target line fisheries for ling have the main bycatch species of spiny dogfish, sea perch, sharks and skates and ribaldo. Bycatch species of concern include sharks, skates, fur seals and seabirds (trawl fisheries), and sharks, skates and seabirds (longline fisheries).

- Sub-Antarctic (LIN 5 \& 6)

Stock Status	
Year of Most Recent Assessment	2011
Assessment Runs Presented	A base case and one sensitivity run.
Reference Points	Management Target: $40 \% B_{0}$ Soft Limit: $20 \% B_{0}$ Hard Limit: $10 \% B_{0}$
Status in relation to Target	B_{2011} was estimated to be between 70\% and 101\% $B_{0} ;$ Virtually Certain (> 99\%) to be at or above the target
Status in relation to Limits	B_{2011} is Exceptionally Unlikely ($<1 \%$) to be below the Soft Limit and Exceptionally Unlikely $(<1 \%)$ to be below the Hard Limit

Trajectory over time of spawning biomass (absolute, and $\% B_{0}$, with 95% credible intervals shown as broken lines) for the Sub-Antarctic ling stock from the start of the assessment period in 1972 to the most recent assessment in 2007, for the base case model run. Years on the x-axis are fishing year with "1995" representing the 1994-95 fishing year. Biomass estimates are based on MCMC results.

Fishery and Stock Trends	Biomass appears to have been increasing since 2000.
Recent Trend in Biomass or Proxy	Fishing pressure is estimated to have always been low, and declining since 1998.
Recent Trend in Fishing Mortality or Proxy	-
Other Abundance Indices	Recruitment throughout the 1980s was low relative to the long- term average for this stock, but has been average or better since 1993.
Trends in Other Relevant Indicators or Variables	

Projections and Prognosis	
Stock Projections or Prognosis	Stock status is predicted to improve over the next 5 years at catch levels equivalent to that from recent years (i.e., 5900 t per year) or equivalent to the TACC (i.e., 12 100 t).
Probability of Current Catch or TACC causing decline below Limits	Soft Limit: Hard Limit: Exceptionally Unlikely ($<1 \%$) at current catch

Assessment Methodology	
Assessment Type	Level 1 - Quantitative stock assessment Assessment Method Main data inputs posterior distributions.
- Summer and autumn Tangaroa trawl survey series. - Proportions-at-age data from the commercial fisheries and trawl surveys. -Line fishery CPUE series (annual indices since 1991). - Estimates of biological parameters (but note that M was estimated in the models)	
Period of Assessment	Latest assessment: 2011 \quad Next assessment: 2014
Changes to Model Structure and Assumptions	No significant changes since the previous assessment, except that M was estimated as an ogive rather than being fixed at 0.18.
Major Sources of Uncertainty	The summer trawl survey biomass estimates are variable and catchability clearly varies between surveys. The general lack of contrast in this series (the main relative abundance series) makes it difficult to accurately estimate past and current biomass. The assumption of a single Sub-Antarctic stock (including the Puysegur Bank), independent of ling in all other areas, is the most parsimonious interpretation of available information. However,

	this assumption may not be correct. Although the catch history used in the assessment has been corrected for some misreported catch (see section 1.4), it is possible that additional misreporting exists.

Qualifying Comments

Although estimates of absolute current and reference biomass are unreliable, B_{0} was probably over 200000 t . The stock has probably only been lightly fished.

Fishery Interactions

Ling are often taken as a bycatch in hoki target trawl fisheries. Target line fisheries for ling have the main bycatch species of spiny dogfish, sea perch, sharks and skates and ribaldo. Bycatch species of concern include sharks, skates, fur seals and seabirds (trawl fisheries), and sharks, skates and seabirds (longline fisheries).

- Bounty Plateau (part of LIN 6)

Stock Status

Year of Most Recent Assessment	2006

Assessment Runs Presented	A single model run

Reference Points	Management Target: $40 \% B_{0}$ Soft Limit: $20 \% B_{0}$ Hard Limit: $10 \% B_{0}$
Status in relation to Target	B_{2006} was estimated to be 61\% B_{0}; Very Likely ($>90 \%$) to be at or above the target
Status in relation to Limits	B_{2006} is Very Unlikely ($<10 \%$) to be below the Soft Limit and Exceptionally Unlikely ($<1 \%$) to be below the Hard Limit.

Historical Stock Status Trajectory and Current Status

Trajectory over time of spawning biomass (absolute, and $\% B_{0}$, with 95% credible intervals shown as broken lines) for the Bounty Plateau ling stock from the start of the assessment period in 1980 to the most recent assessment in 2006. Years on the x-axis are fishing year with "1995" representing the 1994-95 fishing year. Biomass estimates are based on MCMC results.

Fishery and Stock Trends	
Recent Trend in Biomass or	Median estimates of biomass are unlikely to have been below Proxy
Recent Trend in Fishing	Fishing pressure is estimated to have been declining since 1999. Mortality or Proxy
Other Abundance Indices	-
Trends in Other Relevant Indicators or Variables	Recruitment was above average in the early 1990 but erratic, since average in the late 1990s. No estimates of recruitment since 1999 are available.

Projections and Prognosis (2006)	
Stock Projections or Prognosis	Stock status is predicted to continue declining slightly over the next 5 years at a catch level equivalent to the average since 1991 (i.e., 600 t per year).
Probability of Current Catch or TACC causing decline below Limits	Note that there is no specific TACC for the Bounty Plateau stock. Soft Limit: Very Unlikely ($<10 \%$) Hard Limit: Very Unlikely ($<10 \%)$

Assessment Methodology	Level 1 - Quantitative stock assessment
Assessment Type	Age-structured CASAL model with Bayesian estimation of posterior distributions.
Assessment Method	- Proportions-at-age data from the commercial line fishery. -Line fishery CPUE series (annual indices since 1992). - Estimates of biological parameters.
Main data inputs	Latest assessment: 2006 Next assessment: Unknown
Period of Assessment	No significant changes since the previous assessment.
Changes to Model Structure and Assumptions	There are no fishery-independent indices of relative abundance, so the assessment is driven largely by the line fishery CPUE series. Stock projections are based on a constant future catch of 600 t per year. However, historic catches from this fishery have fluctuated widely, so future catches could be markedly different from 600 t per year.
Major Sources of Uncertainty	

Qualifying Comments

There is no separate TACC for this stock; it is part of the LIN 6 Fishstock that has a TACC of 8505 t .

Fishery Interactions

Target line fisheries for ling have the main bycatch species of spiny dogfish, sharks and skates and ribaldo. Bycatch species of concern include sharks, skates and seabirds.

- West coast South Island (LIN 7)

Stock Status	
Year of Most Recent Assessment	2013
Assessment Runs Presented	A base case and one sensitivity model run.
Reference Points	Target: $40 \% B_{0}$. Soft Limit: $20 \% B_{0}$. Hard Limit: $10 \% B_{0}$. Overfishing threshold: F corresponding to $40 \% B_{0}$ Status in relation to Target Status in relation to Limits Status in relation to Overfishing be at or above abtimated to be about $71 \% B_{0} ;$ Very Likely (> 90\%) toB_{2012} is Exceptionally Unlikely ($<1 \%$) to be below the Soft Limit and Exceptionally Unlikely ($<1 \%$) to be below the Hard Limit.
Unknown	

Historical Stock Status Trajectory and Current Status

Trajectory over time of spawning biomass (absolute, and $\% B_{0}$, with 95% credible intervals shown as broken lines) for the WCSI ling stock from the start of the assessment period in 1972 to the most recent assessment in 2013. Years on the x-axis are fishing year with "1995" representing the 1994-95 fishing year. Biomass estimates are based on MCMC results.

Fishery and Stock Trends

Recent Trend in Biomass or Proxy	Biomass is estimated to have been declining
Recent Trend in Fishing Intensity or Proxy	Unknown
Other Abundance Indices	A CPUE index was available from the line (target) fishery but was not considered reliable. The time series of the inshore Kaharoa survey does not adequately cover the distribution of ling on the west coast.
Trends in Other Relevant Indicators or Variables	The age structures of both the commercial catch and trawl survey catch are broad, indicating a low exploitation rate.

Projections and Prognosis	
Stock Projections or Prognosis	No projections were reported
Probability of Current Catch or	Soft Limit: Unknown
TACC causing Biomass to	
remain below or to decline below	Hard Limit: Unknown
Limits	
Probability of Current Catch or	Unknown
TACC causing Overfishing to continue or to commence	

Assessment Methodology	ion	
Assessment Type	Level 1 - Full quantitative stock assessment	
Assessment Method	Age-structured CASAL model with Bayesian estimation of posterior distributions	
Assessment Dates	Latest assessment: 2013 Next assessment: 2016	
Overall assessment quality rank	1-High Quality	
Main data inputs (rank)	- Catch history - Abundance index from two WCSI trawl surveys $(2000,2012)$ - Abundance index from the commercial trawl hoki-hake-ling target fishery CPUE - Proportions at age data from the commercial fisheries and trawl surveys - Estimates of fixed biological parameters	1 - High Quality 1 - High Quality
Data not used (rank)	Commercial line 3 - Low Quality:	es not track stock

	fishery CPUE Kaharoa trawl survey abundance index	biomass 3- Low Quality: inadequate spatial coverage of the stock distribution
Changes to Model Structure and Assumptions	Single sex model M estimated in the base case with an informed prior Reweighted sample sizes for age frequency data Inclusion of a relative trawl survey index with an informed prior on q.	
Major Sources of Uncertainty	There is inadequate contrast in the biomass indices to inform on the magnitude of the biomass. Although the catch history used in the assessment has been corrected for some misreported catch (see section 1.4), it is possible that additional misreporting exists. It is assumed in the assessment models that natural mortality is constant over all ages. Trawl survey selectivity. YCS estimation for recent year classes is highly uncertain because it is based on only one survey.	

Fishery Interactions

Ling are often taken as a bycatch in hoki target trawl fisheries. Target line fisheries for ling have the main bycatch species of spiny dogfish, sea perch, sharks and skates and ribaldo. Low productivity species taken as incidental bycatch include sharks and skates. Protected species interactions are reported for seabirds and fur seals.

- Cook Strait (LIN 2 \& 7)

Stock Status	
Year of Most Recent Assessmen	20
Assessment Runs Presented	A base case.
Reference Points	Target: $40 \% B_{0}$. Soft Limit: $20 \% B_{0}$. Hard Limit: $10 \% B_{0}$. Overfishing threshold: F corresponding to $40 \% B_{0}$
Status in relation to Target	B_{2010} was estimated to be $54 \% B_{0}$; Likely ($>60 \%$) to be at or above the target.
Status in relation to Limits	B_{2010} is Exceptionally Unlikely ($<1 \%$) to be below the Soft Limit and Exceptionally Unlikely ($<1 \%$) to be below the Hard Limit.
Status in relation to Overfishing	Overfishing is Very Unlikely ($<10 \%$) to be occurring.
Historical Stock Status Trajectory and Current Status	
Trajectory over time of spawning bio for the Cook Strait ling stock from the Years on the x-axis are fishing year with on MCMC results.	ss (absolute, and $\% B_{0}$, with 95% credible intervals shown as broken lines) tart of the assessment period in 1972 to the most recent assessment in 2010. "1995" representing the 1994-95 fishing year. Biomass estimates are based

Fishery and Stock Trends	
Recent Trend in Biomass or Proxy	Biomass is estimated to have been declining since 1999, but is unlikely to have dropped below $30 \% B_{0}$.
Recent Trend in Fishing Intensity or Proxy	Overall fishing pressure is estimated to have been relatively constant since the mid 1990s, but has trended down for trawl and up for line.
Other Abundance Indices	-
Trends in Other Relevant Indicators or Variables	Recruitment from 1995 to 2006 was low relative to the long-term average for this stock. There are no estimates for the more recent year classes.
Projections and Prognosis	
Stock Projections or Prognosis	Stock status is predicted to improve slightly over the next 5 years at a catch level equivalent to that since 2006 (i.e., 220 t per year), or remain relatively constant at a catch equivalent to the mean since 1990 (i.e., 420 t per year).
Probability of Current Catch or TACC causing Biomass to remain below or to decline below Limits	Note that there is no specific TACC for the Cook Strait stock. Soft Limit: Catch 220 t , Very Unlikely ($<10 \%$); Catch 420 t , Very Unlikely ($<10 \%$). Hard Limit: Catch 220 t, Exceptionally Unlikely ($<1 \%$); Catch 420 t , Very Unlikely ($<10 \%$).
Probability of Current Catch or TACC causing Overfishing to continue or to commence	Very Unlikely ($<10 \%$).

Assessment Methodology and Evaluation			
Assessment Type	Level 1 - Full quantitative stock assessment.		
Assessment Method	Age-structured CASAL model with Bayesian estimation of posterior distributions.		
Assessment Dates	Latest assessment: 2010 \quad Next assessment: 2015		
Overall assessment quality rank	3- Low Quality: The only accepted relative abundance series (trawl fishery CPUE) was not well fitted. A subsequent assessment in 2013 was rejected by the Working Group.		
Main data inputs (rank)	- Proportions-at-age data from the commercial trawl fishery. - Proportions-at-age data from the commercial line fishery. -Trawl fishery CPUE series (annual indices since 1994). -Estimates of biological parameters.	1- High Quality 3- Low Quality 2- Medium Quality biomass quality: does not track stock	
Data not used (rank)	Line fishery CPUE		
Changes to Model Structure and Assumptions	No significant changes since the previous assessment.		
Major Sources of Uncertainty	There are no fishery-independent indices of relative abundance. It is not known if the trawl CPUE series is a reliable abundance index. The stock structure of Cook Strait ling is uncertain. While ling in this area are almost certainly biologically distinct from the WCSI and Chatham Rise stocks, their association with ling off the lower east coast of the North Island is unknown. It is possible that trawl selectivity has varied over time, resulting in poor fits to some age classes in some years. Line fishery selectivity is based on only two years of catch-at-age data from the autoline fishery. No information is available from the 'hand-baiting' line fishery.		

The model is moderately sensitive to small changes in M, and M is poorly estimated.

Qualifying Comments

There is no separate TACC for this stock; it comprises parts of Fishstocks LIN 7 and LIN 2.

Fishery Interactions

Ling are often taken as a bycatch in hoki target trawl fisheries. Target line fisheries for ling have the main bycatch species of spiny dogfish, sea perch, sharks and skates. Low productivity species taken as incidental bycatch include sharks and skates. Protected species interactions are reported for seabirds and fur seals.

Table 32: Summary of TACCs (t), and reported landings (t) for the most recent fishing year.

Fishstock	QMA	TACC	Landings	
LIN 1	Auckland	$1 \& 9$	400	384
LIN 2	Central (East)	2	982	504
LIN 3	South-East (Coast)	3	2060	1292
LIN 4	South-East (Chatham	4	4200	2305
	Rise)			
LIN 5	Southland	5	3595	3649
LIN 6	Sub-Antarctic	6	8505	2047
LIN 7	Challenger, Central	$7 \& 8$	2474	2771
	(West)			10
LIN 10	Kermadec	10		0
Total			22226	12953

7. FOR FURTHER INFORMATION

Bull B., Francis R.I.C.C., Dunn A., McKenzie A., Gilbert D.J., Smith M.H., Bian R. 2012. CASAL (C++ algorithmic stock assessment laboratory): CASAL user manual v2.30-2012/03/21. NIWA Technical Report 135. 280 p.
Bradford E. 1996. Marine recreational fishery survey in the Ministry of Fisheries North region, 1993-94. NZ Fisheries Data Report No. 80. 83 p.
Dunn A. 2003. Investigation of evidence of area misreporting of landings of ling in LIN 3, 4, 5, 6, and 7 from TCEPR records in the fishing years 1989-90 to 2000-01. Final Research Report. (Unpublished document held by Ministry of Fisheries, Wellington.)
Dunn M.R., Connell A., Forman J., Stevens D.W., Horn P.L. 2010. Diet of two large sympatric teleosts, the ling (Genypterus blacodes) and hake (Merluccius australis). PLoS ONE 5(10): e13647. doi:10.1371/journal.pone. 0013647
Francis, R.I.C.C. 2011. Data weighting in statistical fisheries stock assessment models. Canadian Journal of Fisheries and Aquatic Sciences 68: 1124-1138.
Horn P.L. 1993. Growth, age structure, and productivity of ling, Genypterus blacodes (Ophidiidae), in New Zealand waters. New Zealand Journal of Marine and Freshwater Research 27: 385-397.
Horn P.L. 2004. A review of the auto-longline fishery for ling (Genypterus blacodes) based on data collected by observers from 1993 to 2003. New Zealand Fisheries Assessment Report 2004/47. 28 p.
Horn P.L. 2005. A review of the stock structure of ling (Genypterus blacodes) in New Zealand waters. New Zealand Fisheries Assessment Report 2005/59. 41 p.
Horn P.L. 2006. Stock assessment of ling (Genypterus blacodes) off the west coast of the South Island (LIN 7) for the 2005-06 fishing year. New Zealand Fisheries Assessment Report 2006/24. 47 p.
Horn P.L. 2007a. A descriptive analysis of commercial catch and effort data for ling from New Zealand waters in Fishstocks LIN 2, 3, 4, 5, 6, and 7. New Zealand Fisheries Assessment Report 2007/22. 71 p.

Horn P.L. 2007b. Stock assessment of ling (Genypterus blacodes) on the Bounty Plateau and in Cook Strait for the 2006-07 fishing year. Final Research Report for Ministry of Fisheries Research Project LIN2005-01, Objective 3.51 p. (Unpublished document held by Ministry of Fisheries, Wellington.)
Horn P.L. 2008a. CPUE from commercial fisheries for ling (Genypterus blacodes) in Fishstocks LIN 3, 4, 5, 6, and 7 from 1990 to 2006, and a descriptive analysis update. New Zealand Fisheries Assessment Report 2008/2. 43 p.
Horn P.L. 2008b. Stock assessment of ling (Genypterus blacodes) on the Chatham Rise, Campbell Plateau, and in Cook Strait for the 2007-08 fishing year. New Zealand Fisheries Assessment Report 2008/24. 76 p.
Horn P.L. 2009a. CPUE from commercial fisheries for ling (Genypterus blacodes) in Fishstocks LIN 3, 4, 5, 6, and 7 from 1990 to 2007, and a descriptive analysis update. New Zealand Fisheries Assessment Report 2009/1. 52 p
Horn P.L. 2009b. Stock assessment of ling (Genypterus blacodes) off the west coast of South Island for the 2008-09 fishing year. New Zealand Fisheries Assessment Report 2009/16. 42 p.
Horn P.L. 2010. CPUE from commercial fisheries for ling (Genypterus blacodes) in Fishstocks LIN 3, 4, 5, 6, and 7 from 1990 to 2008, and a descriptive analysis update. New Zealand Fisheries Assessment Report 2010/25. 54 p.
Horn P.L., Dunn A. 2003. Stock assessment of ling (Genypterus blacodes) around the South Island (Fishstocks LIN 3, 4, 5, 6, and 7) for the 2002-03 fishing year. New Zealand Fisheries Assessment Report 2003/47. 59 p.
Horn, P.L.; Dunn, M.R.; Ballara, S.L. 2013. Stock assessment of ling (Genypterus blacodes) on the Chatham Rise (LIN 3\&4) and in the SubAntarctic (LIN 5\&6) for the 2011-12 fishing year. New Zealand Fisheries Assessment Report 2013/6. 87 p.
Horn P.L., Francis R.I.C.C. 2013. Stock assessment of ling (Genypterus blacodes) in Cook Strait for the 2010-11 fishing year. New Zealand Fisheries Assessment Report 2013/7. 35 p.
Leach B.F., Boocock A.S. 1993. Prehistoric fish catches in New Zealand. British Archaeological Reports International Series 584. 38 p.

