LING

(Genypterus blacodes)
Hoka

1. FISHERY SUMMARY

Ling was introduced into the Quota Management System on 1 October 1986 with the following TACs, TACCs and allowances (Table 1).

Table 1: TACs (\mathbf{t}), TACCs (t) and allowances (t) for ling.

Fishstock	Recreational Allowance	Customary non-commercial Allowance	Other sources of mortality	TACC	TAC
LIN 1	40	20	3	400	463
LIN 2	-	-	-	982	-
LIN 3	0	0	0	2060	2060
LIN 4	0	0	0	4200	4200
LIN 5	1	1	79	3955	4036
LIN 6	0	0	85	8505	8590
LIN 7	1	1	62	3080	3144
Total	42	22		23182	22493

1.1 Commercial fisheries

Ling was introduced into the Quota Management System (QMS) on 1 October 1986. Ling are widely distributed through the middle depths ($200-800 \mathrm{~m}$) of the New Zealand EEZ, particularly south of latitude 40° S. From 1975 to 1980 there was a substantial longline fishery on the Chatham Rise (and to a lesser extent in other areas) carried out by Japanese and Korean longliners. Since 1980 ling have been caught by large trawlers, both domestic and foreign owned, and by small domestic longliners and trawlers. In the early 1990s the domestic fleet was increased by the addition of several larger longliners with autoline equipment, resulting in a large increase in the catches of ling off the east and south of South Island (LIN 3, 4, 5 and 6). However, since about 2000 there has been a declining trend in catches taken by line vessels in most areas, offset, to some extent, by increased trawl landings.

The principal grounds for smaller domestic vessels are the west coast of South Island (WCSI) and the east coast of both main islands south of East Cape. For the large trawlers the main sources of ling are Puysegur Bank and the slope of the Stewart-Snares shelf and waters in the Auckland Islands area, and the Chatham Rise, primarily as bycatch of target fisheries for hoki. Longliners fish mainly in LIN 3, 4, 5 and 6. In 2013-14, landings from Fishstocks LIN 2, LIN 3, LIN 4 and LIN 6 were significantly undercaught relative to their TACCs, and the LIN 7 TACCs was slightly over-caught. Reported landings by nation from 1975 to 1987-88 are shown in Table 1, and reported landings by Fishstock from 1983-84 to 2013-14 are shown in Table 2. Figure 1 shows the historical landings and TACC values for the main LIN stocks.

LING (LIN)

Under the Adaptive Management Programme (AMP), the TACC for LIN 1 was increased to 400 t from 1 October 2002, and it remained at this level when LIN 1 was removed from the AMP on 30 September 2009. In a proposal for the 1994-95 fishing year, TACCs for LIN 3 and 4 were increased to 2810 and 5720 t , respectively. These stocks were removed from the AMP from 1 October 1998, with TACCs maintained at the increased level. However, from 1 October 2000, the TACCs for LIN 3 and 4 were reduced to 2060 and 4200 t, respectively. From 1 October 2004, the TACCs for LIN 5 and LIN 6 were increased by about 20% to 3595 t and 8505 t , respectively, and the LIN 5 was increased by a further 10% (to 3955 t) from 1 October 2013. From 1 October 2009, the TACC for LIN 7 was increased from 2225 t to 2474 t , and further increased to 3080 t from 1 October 2013. All other TACC increases since 1986-87 in all stocks are the result of quota appeals.

Table 2: Reported landings (t) for the main QMAs from 1931 to 1982.

Year	LIN 1	LIN 2	LIN 3	LIN 4	Year	LIN 1	LIN 2	LIN 3	LIN 4
1931-32	0	0	11	0	1957	0	34	175	0
1932-33	0	63	14	0	1958	0	43	178	0
1933-34	0	146	59	0	1959	0	39	157	0
1934-35	0	217	70	0	1960	0	26	196	0
1935-36	0	146	124	0	1961	0	25	230	0
1936-37	0	133	103	0	1962	1	27	211	0
1937-38	0	91	320	0	1963	1	17	213	0
1938-39	0	66	280	0	1964	1	20	223	0
1939-40	0	40	320	0	1965	1	21	195	0
1940-41	1	85	286	0	1966	5	52	141	0
1941-42	0	64	308	0	1967	7	40	106	0
1942-43	0	54	254	0	1968	7	55	88	0
1943-44	0	83	264	0	1969	5	52	154	0
1944	0	103	224	0	1970	6	67	167	0
1945	1	122	199	0	1971	4	49	203	0
1946	0	153	348	0	1972	6	37	522	6
1947	0	203	474	0	1973	18	73	1425	0
1948	0	120	403	0	1974	9	102	575	42
1949	0	108	402	0	1975	3	70	1770	15
1950	0	84	352	0	1976	2	60	1567	14
1951	0	60	230	0	1977	9	100	1149	466
1952	0	69	235	0	1978	24	144	487	0
1953	0	62	212	0	1979	82	228	799	246
1954	0	75	208	0	1980	114	205	265	182
1955	0	48	160	0	1981	208	429	427	444
1956	0	27	155	0	1982	320	625	924	435
	Year	LIN 5	LIN 6	LIN 7	Year	LIN 5	LIN 6	LIN 7	
	1931-32	1	0	0	1957	8	0	19	
	1932-33	2	0	35	1958	15	0	28	
	1933-34	1	0	67	1959	13	0	27	
	1934-35	1	0	94	1960	21	0	19	
	1935-36	1	0	66	1961	20	0	19	
	1936-37	1	0	61	1962	13	0	16	
	1937-38	1	0	57	1963	14	0	11	
	1938-39	24	0	37	1964	16	0	13	
	1939-40	16	0	26	1965	24	0	13	
	1940-41	21	0	46	1966	16	0	17	
	1941-42	22	0	40	1967	14	0	36	
	1942-43	24	0	29	1968	11	0	42	
	1943-44	19	0	40	1969	10	0	23	
	1944	13	0	46	1970	14	0	51	
	1945	13	0	80	1971	20	1	37	
	1946	9	0	78	1972	22	0	33	
	1947	24	0	96	1973	23	0	41	
	1948	24	0	66	1974	335	44	82	
	1949	20	0	67	1975	1513	344	224	
	1950	29	0	61	1976	2630	0	1739	
	1951	16	0	34	1977	1683	0	2810	
	1952	16	0	36	1978	2515	391	240	
	1953	19	0	34	1979	4400	1431	454	
	1954	7	0	44	1980	4064	933	928	
	1955	6	0	27	1981	3576	636	1020	
	1956	4	0	15	1982	2109	317	1208	

Table 3: Reported landings (\mathbf{t}) from 1975 to 1987-88. Data from 1975 to 1983 from MAF; data from 1983-84 to 198586 from FSU; data from 1986-87 to 1987-88 from QMS. - , no data available.

Fishing year	New Zealand			Foreign Licensed					$\begin{array}{r} \text { Grand } \\ \text { total } \end{array}$
				Longline			Trawl	Total	
	Domestic	Chartered	Total	(Japan + Korea)	Japan	Korea	USSR	Total	
1975*	486	0	486	9269	2180	0	0	11499	11935
1976*	447	0	447	19381	5108	0	1300	25789	26236
1977*	549	0	549	28633	5014	200	700	34547	35096
1978-79\#	657	24	681	8904	3151	133	452	12640	13321
1979-80\#	915	2598	3513	3501	3856	226	245	7828	11341
1980-81\#	1028	-	-	-	-	-	-	-	-
1981-82\#	1581	2423	4004	0	2087	56	247	2391	6395
1982-83\#	2135	2501	4636	0	1256	27	40	1322	5958
1983†	2695	1523	4218	0	982	33	48	1063	5281
1983-84§	2705	2500	5205	0	2145	173	174	2491	7696
1984-85§	2646	2166	4812	0	1934	77	130	2141	6953
1985-86§	2126	2948	5074	0	2050	48	33	2131	7205
1986-87§	2469	3177	5646	0	1261	13	21	1294	6940
1987-88§	2212	5030	7242	0	624	27	8	659	7901

* Reported by calendar year
\# Reported April 1 to March 31(except domestic vessels, which reported by calendar year).
\dagger Reported April 1 to Sept 30 (except domestic vessels, which reported by calendar year).
§ Reported Oct 1 to Sept 30.

Figure 1: Reported commercial landings and TACC for the seven main LIN stocks. From top to bottom: LIN 1 (Auckland East) and LIN 2 (Central East) \{Continued on next page].
LIN3
Landings \square TACC \longleftrightarrow

Fishing Year

Fishing Year

Figure 1 (continued): Reported commercial landings and TACC for the seven main LIN stocks. From top to bottom: LIN 3 (South East Coast), LIN 4 (South East Chatham Rise) and LIN 5 (Southland). [Continued on next page].

Figure 1 (continued): Reported commercial landings and TACC for the seven main LIN stocks. From top to bottom: LIN 6 (Sub-Antarctic), and LIN 7 (Challenger)

1.2 Recreational fisheries

The 1993-94 North region recreational fishing survey (Bradford 1996) estimated the annual recreational catch from LIN 1 as 10000 fish (CV 0.23). With a mean weight likely to be in the range of 1.5 to 4 kg , this equates to a harvest of $15-40 \mathrm{t}$.

Recreational catch was recorded from LIN 1, 5, and 7 in the 1996 national diary survey. The estimated harvests (LIN 1, 3000 fish; LIN 5, less than 500; LIN 7, less than 500) were too low to provide reliable estimates.

1.3 Customary non-commercial fisheries

Quantitative information on the level of Maori customary non-commercial take is not available. Ling bones have been recovered from archaic middens throughout the South Island and southern North Island, and on Chatham Island (Leach \& Boocock 1993). In South and Chatham Islands, ling comprised about 4\% (by number) of recovered fish remains.

1.4 Illegal catch

It is believed that up to the mid-1990s some ling bycatch from the west coast hoki fishery was not reported. Estimates of total catch including non-reported catch are given in Table 4 for LIN 7. It is believed that in recent years, some catch from LIN 7 has been reported against other ling stocks

LING (LIN)

(probably LIN 3, 5, and 6). The likely levels of misreporting are moderate, being about 250-400 t in each year from 1989-90 to 1991-92 (Dunn 2003).

1.5 Other sources of mortality

The extent of any other sources of mortality is unknown.
Table 4: Reported landings (\mathbf{t}) of ling by Fishstock from 1983-84 to 2013-14 and actual TACCs (\mathbf{t}) from 1986-87 to 2013-14. Estimated landings for LIN 7 from 1987-88 to 1992-93 include an adjustment for ling bycatch of hoki trawlers, based on records from vessels carrying observers. QMS data from 1986-present.

[^0]§ Includes landings from unknown areas before 1986-87, and areas outside the EEZ since 1995-96.

2. BIOLOGY

The maximum age recorded for New Zealand ling is 46 years, although only 0.5% of successfully aged ling have been older than 30 years. A growth study of ling from five areas (west coast South Island, Chatham Rise, Bounty Plateau, Campbell Plateau, Cook Strait) showed that females grew significantly faster and reached a greater size than males in all areas, and that growth rates were significantly different between areas. Ling grow fastest in Cook Strait and slowest on the Campbell Plateau (Horn 2005).
M was initially estimated from the equation $M=\log _{\mathrm{e}} 100 /$ maximum age, where maximum age is the age to which 1% of the population survives in an unexploited stock. The mean M calculated from five samples of age data was 0.18 (range $=0.17-0.20$). However, a recent review of M, and results of modelling conducted in 2007, suggests that this parameter may vary between stocks (Horn 2008b). The M for Chatham Rise ling appears to be lower than 0.18 , while for Cook Strait and west coast South Island the value is probably higher than 0.18 . M has been estimated in assessment model runs for some stocks (see section 4).

Ling in spawning condition have been reported in a number of localities throughout the EEZ (Horn 2005, 2015). Time of spawning appears to vary between areas: August to October on the Chatham Rise; September to December on Campbell Plateau and Puysegur Bank; September to February on the Bounty Plateau; July to September off west coast South Island and in Cook Strait. Little is known about the distribution of juveniles until they are about 40 cm total length, when they begin to appear in trawl samples over most of the adult range.

Ling appear to be mainly bottom dwellers, feeding on crustaceans such as Munida and scampi and also on fish, with commercial fishing discards being a significant dietary component (Dunn et al. 2010). However, they may at times be caught well above the bottom, for example when feeding on hoki during the hoki spawning season.

Biological parameters relevant to the stock assessment are shown in Table 5.
Table 5: Estimates of biological parameters. See Section 3 for definitions of Fishstocks.

Fishstock							Estimate						
1. Natural mortality (M)													
All stocks average (both sexes)				$M=0.18$									
2. Weight $=\mathrm{a}(\text { length })^{\mathrm{b}}($ Weight in g , length in cm total length $)$													
	Female			Male			Combined			Area			
		a	b		a	b		a	b				
LIN 3\&4		0114	3.318		0100	3.354		-	-	Chatham Rise			
LIN 5\&6		0128	3.303		0208	3.190		-	-	Southern Plateau			
LIN 6B			3.318		0100	3.354		-	-	Bounty Plateau			
LIN 7WC	0.00	价	3.368	0.00	1146	3.318		040	3.318	West Coast S.I.			
LIN 7CK	0.00	934	3.368	0.00	146	3.318		-	-	Cook Strait			
3. von Bertalanffy growth parameters													
			Female			Male			bined	Area			
	K	t_{0}	L_{∞}	K	t_{0}	L_{∞}	K	t_{0}	Le				
LIN 3\&4	0.083	-0.74	156.4	0.127	-0.70	113.9	-	-	-	Chatham Rise			
LIN 5\&6	0.124	-1.26	115.1	0.188	-0.67	93.2	-	-	-	Southern Plateau			
LIN 6B	0.101	-0.53	146.2	0.141	0.02	120.5	-	-	-	Bounty Plateau			
LIN 7WC	0.078	-0.87	169.3	0.067	-2.37	159.9	0.077	-1.37	150.8	West Coast S.I.			
LIN 7CK	0.097	-0.54	163.6	0.080	-1.94	158.9	-	-	-	Cook Strait			

3. STOCKS AND AREAS

A review of ling stock structure (Horn 2005) examined diverse information from studies of morphometrics, genetics, growth, population age structures, and reproductive biology and behaviour, and indicated that there are at least five ling stocks, i.e., west coast South Island, Chatham Rise, Cook Strait, Bounty Plateau, and the Southern Plateau (including the Stewart-Snares shelf and Puysegur Bank). Stock affinities of ling north of Cook Strait are unknown, but spawning is known to occur off Northland, Cape Kidnappers, and in the Bay of Plenty.

LING (LIN)

4. STOCK ASSESSMENT

LIN 1 was previously managed and assessed under the Adaptive Management Program (see section 5). An updated CPUE analysis for the ling target bottom longline fishery in LIN 2 was conducted in 2014. The stock assessments for two ling stocks (LIN 3\&4, Chatham Rise; LIN 5\&6, Sub-Antarctic) were updated in 2015. Assessments for other stocks were updated in 2007 (LIN 6B, Bounty Plateau, with a CPUE update in 2014), or 2013 (LIN 7WC, west coast South Island; LIN 7CK, Cook Strait). All assessments (excluding LIN 1 and LIN 2) were updated using a Bayesian stock model implemented using the general-purpose stock assessment program CASAL (Bull et al. 2012).

4.1 Estimates of fishery parameters and abundance

Catch histories by stock and fishery are presented in Table 6, and other model input parameters are shown in Table 7. Estimates of relative abundance from standardised CPUE analyses (Table 8) and trawl surveys (Table 9) are also presented below.

Table 6: Estimated catch histories (t) for LIN 2 (ECNI), LIN 3\&4 (Chatham Rise), LIN $5 \& 6$ (Campbell Plateau), LIN 6B (Bounty Platform), LIN 7WC (WCSI section of LIN 7), and LIN 7CK (Cook Strait). Landings have been separated by fishing method (trawl or line), and, for the LIN 5\&6 line fishery, by pre-spawning (Pre) and spawning (Spn) season.

Year	LIN 2		LIN 3\&4		LIN 5\&6			$\frac{\text { LIN 6B }}{\text { line }}$	LIN 7WC		LIN 7CK	
	trawl	line	trawl	line	trawl	line	line		trawl	line	trawl	line
	-	-				Pre	Spn					
1972	-	-	0	0	0	0	0	0	0	0	0	0
1973	-	-	250	0	500	0	0	0	85	20	45	45
1974	-	-	382	0	1120	0	0	0	144	40	45	45
1975	-	-	953	8439	900	118	192	0	401	800	48	48
1976	-	-	2100	17436	3402	190	309	0	565	2100	58	58
1977	-	-	2055	23994	3100	301	490	0	715	4300	68	68
1978	-	-	1400	7577	1945	494	806	10	300	323	78	78
1979	-	-	2380	821	3707	1022	1668	0	539	360	83	83
1980	-	-	1340	360	5200	0	0	0	540	305	88	88
1981	-	-	673	160	4427	0	0	10	492	300	98	98
1982	-	-	1183	339	2402	0	0	0	675	400	103	103
1983	-	-	1210	326	2778	5	1	10	1040	710	97	97
1984	-	-	1366	406	3203	2	0	6	924	595	119	119
1985	-	-	1351	401	4480	25	3	2	1156	302	116	116
1986	-	-	1494	375	3182	2	0	0	1082	362	126	126
1987	-	-	1313	306	3962	0	0	0	1105	370	97	97
1988	-	-	1636	290	2065	6	0	0	1428	291	107	107
1989	-	-	1397	488	2923	10	2	9	1959	370	255	85
1990	134	85	1934	529	3199	9	4	12	2205	399	362	121
1991	185	162	2563	2228	4534	392	97	33	2163	364	488	163
1992	299	110	3451	3695	6237	566	518	908	1631	661	498	85
1993	381	97	2375	3971	7335	1238	474	969	1609	716	307	114
1994	397	96	1933	4159	5456	770	486	1149	1136	860	269	84
1995	398	97	2222	5530	5348	2355	338	396	1750	1032	344	70
1996	350	149	2725	4863	6769	2153	531	381	1838	1121	392	35
1997	269	168	3003	4047	6923	3412	614	340	1749	1077	417	89
1998	387	148	4707	3227	6032	4032	581	395	1887	1021	366	88
1999	257	169	3282	3818	5593	2721	489	563	2146	1069	316	216
2000	286	166	3739	2779	7089	1421	1161	991	2247	923	317	131
2001	344	216	3467	2724	6629	818	1007	1064	2304	977	258	80
2002	366	212	2979	2787	6970	426	1220	629	2250	810	230	171
2003	344	124	3375	2150	7205	183	892	922	1980	807	280	180
2004	420	82	2525	2082	7826	774	471	853	2013	814	241	227
2005	333	54	1913	2440	7870	276	894	49	1558	871	200	282
2006	365	45	1639	1840	6161	178	692	43	1753	666	129	220
2007	425	87	2322	1880	7504	34	651	236	1306	933	107	189
2008	457	37	2350	1810	6990	329	821	503	1067	1170	115	110
2009	394	49	1534	2217	5225	276	432	232	1089	1009	108	39
2010	409	37	1484	2257	4270	864	313	1	1346	1063	74	14
2011	426	51	1191	2046	4404	567	169	51	1733	1011	115	67
2012	288	57	1407	2190	4384	934	376	2	1744	976	96	47
2013	317	44	1113	2543	6234	135	340	3	1915	1045	104	106
2014	-	-	1340	2250	4900	550	330	-	-	-	-	

Table 7: Input parameters for the assessed stocks.

Parameter				LIN 3\&4		LIN 5\&6		LIN 6B	LIN 7WC		LIN 7CK		
Stock-recruitment steepness					0.84	0.84		0.9		0.84		0.9	
Recruitment variability CV					0.6	0.6		1.0		0.6		0.7	
Ageing error CV					0.05	0.06		0.05		0.05		0.07	
Proportion male at birth					0.5	0.5		0.5		0.5		0.5	
Proportion of mature that spawn					1.0	1.0		1.0		1.0		1.0	
Maximum exploitation rate ($U_{\max }$)					0.6	0.6		0.6		0.6		0.6	
Maturity ogives*													
Age	3	4	5	6	7	8	9	10	11	12	13	14	15
LIN 3\&4 (and assumed for LIN 6B)													
Male	0.0	0.027	0.063	0.14	0.28	0.48	0.69	0.85	0.93	0.97	0.99	1.00	1.0
Female	0.0	0.001	0.003	0.006	0.014	0.033	0.08	0.16	0.31	0.54	0.76	0.93	1.0
LIN 5\&6													
Male	0.0	0.00	0.10	0.30	0.50	0.80	1.00	1.00	1.00	1.0			
Female	0.0	0.00	0.05	0.10	0.30	0.50	0.80	1.00	1.00	1.0			
LIN 7WC (and assumed for LIN7CK)													
Male	0.0	0.015	0.095	0.39	0.77	0.94	1.00	1.00	1.00	1.0			
Female	0.0	0.004	0.017	0.06	0.18	0.39	0.65	0.85	0.94	1.0			
Combined	0.0	0.010	0.056	0.23	0.48	0.67	0.83	0.93	0.97	1.0			

*Proportion mature at age
Table 8: Standardised CPUE indices (with CVs) for the ling line and trawl fisheries. Year refers to calendar year; sp=spawning fishery; nsp=non-spawning fishery.

	LIN 2 line		LIN 3\&4 line		LIN 5\&6 line (sp)		LIN 5\&6 line (nsp)		LIN 6B line	
Year	CPUE	CV								
1991	-	-	1.67	0.06	1.39	0.17	0.67	0.12	-	-
1992	1.64	0.09	2.43	0.06	1.81	0.14	1.07	0.09	1.74	0.15
1993	1.40	0.08	1.73	0.05	1.78	0.11	1	0.10	1.41	0.13
1994	1.55	0.09	1.65	0.05	1.48	0.11	0.76	0.09	0.95	0.16
1995	1.54	0.07	1.68	0.05	1.48	0.17	1.10	0.08	1.24	0.13
1996	1.34	0.07	1.31	0.05	1.40	0.11	0.85	0.09	1.15	0.12
1997	1.29	0.07	0.88	0.04	1.22	0.11	0.96	0.06	0.92	0.14
1998	1.27	0.07	0.90	0.05	1.10	0.11	0.90	0.07	1.06	0.12
1999	1.13	0.07	0.80	0.04	1.25	0.10	0.64	0.05	1.07	0.11
2000	0.80	0.07	0.93	0.05	1.32	0.10	0.74	0.07	0.95	0.10
2001	0.60	0.08	0.93	0.04	1.27	0.09	0.90	0.08	0.76	0.11
2002	0.97	0.08	0.77	0.04	1.58	0.10	0.77	0.10	0.69	0.11
2003	0.88	0.07	0.85	0.05	1.14	0.12	0.60	0.12	0.78	0.10
2004	1.07	0.07	0.81	0.04	1.04	0.09	0.57	0.09	0.74	0.16
2005	1.00	0.08	0.85	0.04	1.47	0.12	0.52	0.13	-	-
2006	0.88	0.07	0.74	0.05	1.30	0.12	0.60	0.14	-	-
2007	0.95	0.07	0.81	0.04	1.39	0.11	0.74	0.26	-	-
2008	0.85	0.07	1.04	0.04	1.05	0.14	0.87	0.13	-	-
2009	0.89	0.08	0.73	0.04	2.09	0.19	0.76	0.13	-	-
2010	0.90	0.07	0.84	0.04	0.69	0.19	0.91	0.09	-	-
2011	0.82	0.06	0.65	0.04	1.04	0.15	0.58	0.09	-	-
2012	0.56	0.07	0.79	0.05	1.13	0.15	0.73	0.08	-	-
2013	0.65	0.08	0.80	0.07	-	-	-	-	-	-
	LIN 7WC line		LIN 7CK line		LIN 7CK trawl		LIN 7WC trawl			
Year	CPUE	CV	-	-	CPUE	CV		CV		
1987	-	-	-	-	- -	-		0.07		
1988	-	-	-	-	- -	-		0.06		
1989	-	-			-	-		0.06		
1990	0.90	0.07	1.29	0.15	-	-		0.06		
1991	1.07	0.06	1.44	0.13	-	-		0.06		
1992	1.25	0.05	1.43	0.11	-	-		0.07		
1993	0.90	0.05	1.11	0.11	-	-		0.06		
1994	0.88	0.05	0.90	0.11	1.25	0.05		0.05		
1995	0.90	0.04	0.83	0.12	1.16	0.04		0.06		
1996	0.68	0.04	0.97	0.13	1.12	0.04		0.05		
1997	0.80	0.05	1.32	0.18	1.00	0.04		0.06		
1998	0.92	0.05	0.83	0.15	1.01	0.04		0.05		
1999	0.95	0.05	1.54	0.18	1.02	0.03		0.05		
2000	0.96	0.04	1.45	0.19	1.27	0.04		0.04		
2001	1.12	0.05	1.27	0.18	1.46	0.04		0.04		
2002	1.06	0.05	2.04	0.11	1.27	0.05		0.04		
2003	1.10	0.04	1.66	0.10	1.27	0.04		0.05		
2004	1.10	0.05	1.45	0.09	1.13	0.04		0.04		
2005	0.84	0.04	1.16	0.10	1.18	0.04		0.04		
2006	0.84	0.05	0.97	0.15	1.10	0.05		0.04		
2007	1.11	0.04	0.70	0.12	- 0.73	0.06		0.06		
2008	1.13	0.05	0.82	0.22	- 0.90	0.06		0.06		
2009	1.14	0.05	0.60	0.28	- 0.44	0.07		0.06		
2010	1.39	0.05	0.35	0.30	0.44	0.07		0.06		
2011	1.28	0.07	0.22	0.30	0.23	0.09		0.06		

LING (LIN)

Table 9: Biomass indices (\mathbf{t}) and estimated coefficients of variation (CV).

Fishstock	Area	Vessel	Trip code	Date	Biomass	
LIN 3	ECSI (winter)	Kaharoa	KAH9105*	May-Jun 1991	1009	35
			KAH9205*	May-Jun 1992	525	17
			KAH9306*	May-Jun 1993	651	27
			KAH9406*	May-Jun 1994	488	19
			KAH9606*	May-Jun 1996	488	21
			KAH0705*	May-Jun 2007	283	17
			KAH0806*	May-Jun 2008	351	22
			KAH0905*	May-Jun 2009	262	19
			KAH1207*	May-Jun 2012	265	21
LIN 3 \& 4	Chatham Rise	Tangaroa	TAN9106	Jan-Feb 1992	8930	5.8
			TAN9212	Jan-Feb 1993	9360	7.9
			TAN9401	Jan 1994	10130	6.5
			TAN9501	Jan 1995	7360	7.9
			TAN9601	Jan 1996	8420	8.2
			TAN9701	Jan 1997	8540	9.8
			TAN9801	Jan 1998	7310	8.0
			TAN9901	Jan 1999	10310	16.1
			TAN0001	Jan 2000	8350	7.8
			TAN0101	Jan 2001	9350	7.5
			TAN0201	Jan 2002	9440	7.8
			TAN0301	Jan 2003	7260	9.9
			TAN0401	Jan 2004	8250	6.0
			TAN0501	Jan 2005	8930	9.4
			TAN0601	Jan 2006	9300	7.4
			TAN0701	Jan 2007	7800	7.2
			TAN0801	Jan 2008	7500	6.8
			TAN0901	Jan 2009	10620	11.5
			TAN1001	Jan 2010	8850	10.0
			TAN1101	Jan 2011	7030	13.8
			TAN1201	Jan 2012	8098	7.4
			TAN1301	Jan 2013	8714	10.1
			TAN1401	Jan 2014	7489	7.2
LIN 5 \& 6	Southern Plateau	Amaltal Explorer	AEX8902*	Oct-Nov 1989	17490	14.2
			AEX9002*	Nov-Dec 1990	15850	7.5
LIN 5 \& 6	Southern Plateau (summer)	Tangaroa	TAN9105	Nov-Dec 1991	24090	6.8
			TAN9211	Nov-Dec 1992	21370	6.2
			TAN9310	Nov-Dec 1993	29750	11.5
			TAN0012	Dec 2000	33020	6.9
			TAN0118	Dec 2001	25060	6.5
			TAN0219	Dec 2002	25630	10.0
			TAN0317	Nov-Dec 2003	22170	9.7
			TAN0414	Nov-Dec 2004	23770	12.2
			TAN0515	Nov-Dec 2005	19700	9.0
			TAN0617	Nov-Dec 2006	19640	12.0
			TAN0714	Nov-Dec 2007	26492	8.0
			TAN0813	Nov-Dec 2008	22840	9.5
			TAN0911	Nov-Dec 2009	22710	9.6
			TAN1117	Nov-Dec 2011	23178	11.8
			TAN1215	Nov-Dec 2012	27010	11.3
			TAN1412*	Nov-Dec 2014	30010	7.7
LIN 5 \& 6	Southern Plateau (autumn)	Tangaroa	TAN9204	Mar-Apr 1992	42330	5.8
			TAN9304	Apr-May 1993	37550	5.4
			TAN9605	Mar-Apr 1996	32130	7.8
			TAN9805	Apr-May 1998	30780	8.8
LIN 7WC	WCSI	Tangaroa	TAN0007	Aug 2000	1861	17
			TAN1210	Aug 2012	2169	18
			TAN1308*	Aug 2013	2000	15
LIN 7WC	WCSI	Kaharoa	KAH9204*	Mar-Apr 1992	286	19
			KAH9404*	Mar-Apr 1994	261	20
			KAH9504*	Mar-Apr 1995	367	16
			KAH9701*	Mar-Apr 1997	151	30
			KAH0004*	Mar-Apr 2000	95	46
			KAH0304*	Mar-Apr 2003	150	33
			KAH0503*	Mar-Apr 2005	274	37
			KAH0704*	Mar-Apr 2007	180	27
			KAH0904*	Mar-Apr 2009	291	37
			KAH1104*	Mar-Apr 2011	235	43
			KAH1305*	Mar-Apr 2013	405	44

[^1]
4.2 East Coast North Island, (LIN 2, statistical areas 11-15)

In 2014 a catch-per-unit-effort (CPUE) analysis was conducted on data from the LIN 2 fishery (Roux 2015). Estimated catch data and effort data from bottom longliners that fished in FMA 2 statistical areas 11-15 (ECNI) targeting ling where there was a positive catch were used. The estimated catch and effort data were rolled up by vessel/day/statistical area after a filter was applied to individual fishing events to retain estimated catch from the top five species together with all effort.

A GLM model (model 1) was fitted using a core vessel fleet where individual vessels had to have fished for four or more years in the fishery, and fished a minimum of 10 days per year. One auto-longlining vessel was excluded because it was an outlier in terms of numbers of hooks set, and created patterns in the residuals.

The sensitivity of the CPUE time series was tested for a range of alternative sets of input data: vessels using very large numbers of hooks per day (>10000) were either included or excluded; changes in fishing power and fleet were minimised by fitting only the most recent time series (2000-2013); data from statistical area 16 (Cook Strait) were either included or excluded; and fitting was carried out with/without the use of interaction terms. An all-target model using bottom longline data that targeted or caught ling was also developed with 'target species' included as an explanatory variable. The GLM trend was robust to all sensitivities investigated.

The standardized CPUE index for ling from the ECNI demonstrates an initial decline consistent with the previous assessment (Horn 2004), followed by a period of stability (2002-2010) with lower CPUE in 2011-12 and 2012-13 (Figure 2). This pattern was consistent across all GLM scenarios examined.

Fishing year
Figure 2. Estimated ling catch (bars) and standardized CPUE indices. Blue line and triangles from Horn (2004). Red line and circles for ECNI statistical areas 11-15 for core bottom longline vessels targeting ling, from Roux (2015). The two CPUE series were normalised to the overlapping fishing years (1992-2001).

4.3 Chatham Rise, LIN 3 \& LIN 4

4.3.1 Model structure and inputs

The stock assessment for LIN $3 \& 4$ (Chatham Rise) was updated in 2015 (McGregor 2015). For final model runs, the full posterior distribution was sampled using Markov Chain Monte Carlo (MCMC) methods, based on the Metropolis-Hastings algorithm. Bounded estimates of spawning stock virgin (B_{0}) and current (B_{2014}) biomass were obtained. Year class strengths and fishing selectivity ogives were estimated in the model. Trawl fishery and research survey selectivity ogives were fitted as double normal curves; line fishery ogives were fitted as logistic curves. Selectivities were assumed constant over all years in each fishery/survey. Instantaneous natural mortality (M) was estimated as a constant in the model. MCMCs were estimated using a burn-in length of 2×10^{5} iterations, with every $1000^{\text {th }}$ sample kept from the next 6×10^{6} iterations (i.e., a final sample of length 6000 was taken from the Bayesian posterior).

For LIN 3\&4, model input data included catch histories, biomass and sexed catch-at-age data from a summer trawl survey series, sexed catch-at-age from the trawl fishery, line fishery CPUE, unsexed catch-at-age and catch-at-length from the line fishery, and estimates of biological parameters (Table 10). The catch history, biological input parameters, and estimates of relative abundance used in the model are shown in Tables 5-9. The stock assessment model partitioned the population into two sexes, and age groups 3 to 25 with a plus group. The model's annual cycle is described in Table 9 .

Table 10: LIN 3\&4 - Summary of the relative abundance series applied in the models, including source years (Years).

Data series	Years
Trawl survey proportion at age (Amaltal Explorer, Dec)	1990
Trawl survey biomass (Tangaroa, Jan)	$1992-2014$
Trawl survey proportion at age (Tangaroa, Jan)	$1992-2014$
CPUE (longline, all year)	$1991-2013$
Commercial longline proportion-at-age (Jun-Oct)	$2002-09,2013$
Commercial longline length-frequency (Jun-Oct)	$1995-2002$
Commercial trawl proportion-at-age (Oct-May)	$1992,1994-2013$

Table 11: LIN 3\&4 - Annual cycle of the stock model, showing the processes taking place at each time step, their sequence within each time step, and the available observations. Fishing and natural mortality that occur within a time step occur after all other processes, with half of the natural mortality for that time step occurring before and half after the fishing mortality.

Step	Period	Processes	M^{1}	Age 2

The error distributions assumed were multinomial for the at-age and at-length data, and lognormal for all other data. The weight assigned to each data set was controlled by the error coefficient of variation (CV). The observation-error CVs were calculated using standard formulae. An additional process error CV of 0.15 was added to the trawl survey biomass index following Francis et al. (2001), and a process error CV for the line fishery CPUE was estimated at 0.15 following Francis (2011). The multinomial observation error CVs for the at-age and at-length data were adjusted using the reweighting procedure of Francis (2011).

Most priors were intended to be uninformed, and were specified with wide bounds. One exception was an informative prior for the trawl survey q. The prior on q for all the Tangaroa trawl surveys was estimated assuming that the catchability constant was a product of areal availability ($0.5-1.0$), vertical availability ($0.5-1.0$), and vulnerability between the trawl doors ($0.03-0.40$). The resulting
(approximately lognormal) distribution had mean 0.13 and CV 0.70 , with bounds assumed to be 0.02 to 0.30 . The other exception was the normal prior on p_male with $\mu=0.5, \mathrm{CV}=0.15$. Penalty functions were used to constrain the model so that any combination of parameters that did not allow the historical catch to be taken was strongly penalised. A penalty was applied to the estimates of year class strengths to encourage estimates that averaged to 1.

In all model runs, the catchability coefficients (q 's) were free, unless there were difficulties in convergence, in which case they were set as nuisance variables (they were integrated out). The runs that included the longline CPUE had difficulty converging.

There is a conflict between the line fishery CPUE and the trawl survey biomass index, where the line fishery biomass index declined between 1991 and 1997, but the trawl survey index remained relatively flat throughout. To remove this conflict, a base case model run (Base) used all the observational data except the line fishery CPUE. The trawl survey biomass index was preferred in the base case because these data were fishery independent, and there was evidence that the longline fishery q had changed over time as very large fish were removed from the population (Horn 2015). A sensitivity run (Longline) then included the line fishery CPUE, and excluded the trawl survey biomass series; this model is considered a likely 'worst case' scenario. Additional models included both biomass indices (All), tested logistic, rather than double normal, selectivity ogives for trawl survey and fishery (Selectivity), and estimated a separate natural mortality for each sex (M), but these models are not reported in detail here.

4.3.2 Model estimates

The fits to the biomass indices, catch-at-age and catch-at-length data, were all fairly good, and almost indistinguishable between model runs. Year class strength estimates (Figure 3) were generally average or below average since 1980, except for 1994 and 1995. Estimated year class strengths were not widely variable, with all medians being between 0.5 and 2 . Ling were first caught by the trawl survey (age at full selectivity 6 years), then the trawl fishery (age 8 years), and then the line fishery (age 16 years). Selectivities for the trawl fishery and survey tended towards a logistic distribution, although a double normal distribution was offered. Males were estimated to be less vulnerable than females to the trawl fishery. The estimated median M (for sexes combined) was 0.15 .

The assessment is driven by the catch history, and by catch-at-age data, which contain information indicative of a stock decline during the 1990s.

Figure 3: LIN 3\&4 - Estimated posterior distributions of year class strength for the base model. The horizontal line indicates a year class strength of one. Individual distributions show the marginal posterior distribution, with horizontal lines indicating the median.

Although estimates of current and virgin stock size were imprecise, it was unlikely that B_{0} was lower than 110000 t for this stock, or that biomass in 2014 was less than 44% of B_{0} (Table 12, Figure 4). Annual exploitation rates (catch over vulnerable biomass) were estimated to be lower than 0.15 (often much lower) since 1979 (Figure 5).

LING (LIN)

Table 12: LIN 3\&4 - Bayesian median and 95% credible intervals (in parentheses) of B_{0} and B_{2014} (in tonnes, and as a percentage of B_{0}) for the Base and Longline model runs, and the probability that B_{2014} is above 40% of B_{0} from the Base model run.

Model run	B_{0}		B_{2014}		$B_{2014}\left(\% B_{0}\right)$		$P\left(40 \% B_{0}\right)$
Base	126600	(110 700-165 100)	71800	(50 500-115 200)	57	(45-71)	0.003
Longline	107400	(98 700-122 700)	60900	(42 000-85 600)	40	(30-51)	-

Figure 4: LIN 3\&4 base model - Estimated median trajectories (with $\mathbf{9 5 \%}$ credible intervals shown as dashed lines) for absolute biomass and biomass as a percentage of \boldsymbol{B}_{0}.

Figure 5: LIN 3\&4 base model - Exploitation rates (catch over vulnerable biomass) with 95\% credible intervals shown as dashed lines.

The model indicated a relatively flat biomass trajectory since about 2006 (Figure 4). Annual landings from the LIN $3 \& 4$ stock have been less than 4600 t since 2004, markedly lower than the 6000-8000 t taken annually between 1992 and 2003. Biomass projections derived from this assessment are shown below (Section 4.9).

4.4 Sub-Antarctic, LIN 5 \& LIN 6 (excluding Bounty Plateau)

4.4.1 Model structure and inputs

The stock assessment for LIN 5\&6 (Sub-Antarctic) was updated in 2015 (Roberts in prep.). For final runs, the full posterior distribution was sampled using Markov Chain Monte Carlo (MCMC) methods, based on the Metropolis-Hastings algorithm. Bounded estimates of spawning stock virgin (B_{0}) and current (B_{2014}) biomass were obtained. Year class strengths and fishing selectivity ogives were also estimated in the model. Trawl fishery selectivity ogives were fitted as double normal curves; line fishery and research survey ogives were fitted as logistic curves. Selectivities were assumed constant over all years in each fishery/survey.

MCMC chains with a total length of 1×10^{7} iterations were constructed. A burn-in length of 2.5×10^{6} iterations was used, with every $2500^{\text {th }}$ sample taken from the final 7.5×10^{6} iterations (i.e., a final sample of length 3,000 was taken from the Bayesian posterior).

For LIN 5\&6, model input data include catch histories, biomass and catch-at-age data from summer and autumn trawl survey series, two line fishery CPUE series (from the spawning and home ground fisheries), catch-at-age from the spawning ground and home ground line fisheries, catch-at-age data from the trawl fishery, and estimates of biological parameters. A reference model run that incorporated all the data except the CPUE series and used nuisance- q 's for the trawl survey biomass series is presented, along with the base case run, which used free- q 's. The stock assessment model partitions the population into two sexes, and age groups 3 to 25 with a plus group. The model's annual cycle is described in Table 13.

Table 13: LIN 5\&6 - Annual cycle of the stock model, showing the processes taking place at each time step, their sequence within each time step, and the available observations. Fishing and natural mortality that occur within a time step occur after all other processes, with half of the natural mortality for that time step occurring before and half after the fishing mortality.

Step					Observations	
	Period	Processes	M^{1}	Age ${ }^{2}$	Description	\% ${ }^{3}$
1	Dec-Aug	Recruitment	0.75	0.4	Trawl survey (summer)	0.1
		Non-spawning fisheries (trawl			Trawl survey (autumn)	0.5
		\& line)			Line CPUE (non-spawn)	0.7
					Line (non-spawn) catch-at-age	
2	Sep-Nov	Increment ages	0.25	0.0	Line CPUE (spawning)	0.5
		Spawning fishery (line)			Line (spawning) catch-at-age	

M is the proportion of natural mortality that was assumed to have occurred in that time step.
Age is the age fraction, used for determining length-at-age, that was assumed to occur in that time step. $\% Z$ is the percentage of the total mortality in the step that was assumed to have taken place at the time each observation was made.

A summary of all observations used in this assessment and the associated time series is given in Table 14. Lognormal errors, with known CVs, were assumed for all relative biomass observations. The CVs available for those observations of relative abundance allow for sampling error only. However, additional variance, assumed to arise from differences between model simplifications and real world variation, was added to the sampling variance. The additional variance, termed process error was fixed to 0.15 in all model runs, following the recommendations of Francis (2011). Multinomial errors were assumed for all age composition observations. The effective sample sizes for the composition samples were estimated following method TA1.8 as described in Appendix A of Francis (2011) and values used in this assessment are given in Table 15.

Table 14: LIN 5\&6 - Summary of the relative abundance series applied in the models, including source years (Years). Data series Years

Trawl survey proportion at age (Amaltal Explorer, Nov)
Trawl survey biomass (Tangaroa, Nov-Dec)
Trawl survey proportion at age (Tangaroa, Nov-Dec)
Trawl survey biomass (Tangaroa, Mar-May)
Trawl survey proportion at age (Tangaroa, Mar-May)
CPUE (longline, spawning fishery)
CPUE (longline, non-spawning fishery)
Commercial longline proportion-at-age (spawning, Oct-Dec)
Commercial longline proportion-at-age (non-spawn, Feb-Jul)
Commercial trawl proportion-at-age (Sep-Apr)

1990
1992-94, 2001-10, 2012-13
1992-94, 2001-10, 2012-13
1992-93, 1996, 1998 1992-93, 1996, 1998

1991-2012
1991-2012
2000-08, 2010
1999, 2001, 2003, 2005, 2009-12
1992-94, 1996, 1998, 2001-13

Table 15: LIN 5\&6, multinomial effective sample sizes (EFS) assumed for the age composition data sets. The initial EFS are estimated from the sample data, and the reweighted EFS have been scaled following the technique of Francis (2011).

Summer trawl survey proportion-at-age		
Fishing	Initial EFS	Reweighted EFS
Year	277	50
1990	499	90
1992	450	82
1993	451	82
1994	510	92
2001	491	89
2002	469	85
2003	427	77
2004	398	72
2005	419	76
2006	386	70
2007	401	73
2008	352	64
2009	374	68
2010	415	75
2012	396	72
2013	Fishery trawl	
	proportion-at-age	

Autumn trawl survey proportion-at-age			
Fishing	Initial EFS	Reweighted YeFS	
Year	436		70
1992	473		76
1993	414	66	
1996	403	65	
1998	Fishery longline spawn		
proportion-at-age			
Fishing	Initial EFS	Reweighted	
Year	471	EFS	
2000	230		72
2001	357		35
2002	419		54
2003	439	64	
2004	170	67	
2005	315	26	
2006	271		48
2007	85	41	
2008	165		13
2010			25

Fishing Year	Initial EFS	Reweighted EFS
1992	442	39
1993	310	27
1994	221	20
1996	337	30
1998	254	23
2001	450	40
2002	320	28
2003	500	44
2004	334	30
2005	381	34
2006	428	38
2007	322	29
2008	335	30
2009	440	39
2010	424	38
2011	411	36
2012	368	33
2013	427	38

Fishery longline non-spawn
proportion-at-age

Fishing		
Year	Initial EFS	Reweighted EFS
1999	789	95
2001	302	36
2003	218	26
2005	272	33
2009	207	25
2010	179	22
2011	251	30
2012	321	39

The assumed prior distributions used in the assessment are given in Table 16. Most priors were intended to be relatively uninformed, and were specified with wide bounds. The exceptions were the choice of informative priors for the trawl survey q. The priors on q for all the Tangaroa trawl surveys were estimated assuming that the catchability constant was a product of areal availability ($0.5-1.0$), vertical availability ($0.5-1.0$), and vulnerability between the trawl doors ($0.03-0.40$). The resulting (approximately lognormal) distribution had mean 0.13 and CV 0.70 , with bounds assumed to be 0.02 to 0.30 .

Table 16: LIN 5\&6 - Assumed prior distributions and bounds for estimated parameters in the assessments. The parameters for lognormal priors are mean (in log space) and CV

Parameter description	Distribution	Parameters			Bounds
B_{0}	Uniform-log	-	-	50000	800000
Year class strengths	Lognormal	1.0	0.70	0.01	100
Trawl survey q	Lognormal	0.13	0.70	0.02	0.3
CPUE q	Uniform-log	-	-	$1 \mathrm{e}-8$	$1 \mathrm{e}-3$
Selectivities	Uniform	-	-	0	20-200*
$M\left(x_{0}, y_{0}, y_{1}, y_{2}\right)$	Uniform	-	-	$3,0.01,0.01,0.01$	15, 0.6, 1.0, 1.0

* A range of maximum values were used for the upper bound

Penalty functions were used to constrain the model so that any combination of parameters that did not allow the historical catch to be taken was strongly penalised. A small penalty was applied to the estimates of year class strengths to encourage estimates that averaged to 1. The catch history, biological input parameters, and estimates of relative abundance used in the model are shown in Tables 5-9.

4.4.2 Model estimates

Descriptions of two model runs reported are as follows:

- Reference model - catch history, all relative abundance series listed in Tables 8 and 9 , doubleexponential M estimated as an ogive independent of sex, double-normal selectivity ogives for the trawl fishery, logistic ogives for the line fisheries and the resource survey series, multinomial error associated with age composition estimates, nuisance q 's for the resource survey series.
- Base case - as the reference model, but using free q 's for the resource survey series.

Four other sensitivities were investigated: (1) estimating constant M with respect to age, (2) logistic selectivity ogive for longline spawn, (3) halved multinomial weightings associated with age composition estimates, and (4) fitted to spawning and non-spawning longline fishery CPUE. These models all produced estimates of stock status that were little different to those from the reported models.

Posterior distributions of year class strength estimates from the base case model run are shown in Figure 6; the distribution from the base case model (using free trawl survey q 's) differed little from the reference model (using nuisance trawl survey q 's). Year classes were generally weak from 1982 to 1992, strong from 1993 to 1996, and average since then (although 2005 may be strong). Overall, estimated year class strengths were not widely variable, with all medians being between 0.5 and 1.5 . Consequently, biomass estimates for the stock declined through the 1990s, but have exhibited an upturn during the last 15 years (Figure 7). The biomass trajectory from the base case model was little different to that derived from the reference model.

Biomass estimates for the stock appear very healthy, with estimated current biomass from the two reported models at $85-90 \%$ of B_{0} (Figure 7, Table 17). Annual exploitation rates (catch over vulnerable biomass) were low (less than 0.06) in all years as a consequence of the high estimated stock size in relationship to the level of relative catches (Figure 8).

Figure 6: LIN 5\&6 - Estimated posterior distributions of year class strength from the base case run. The horizontal line indicates a year class strength of one. Individual distributions show the marginal posterior distribution, with horizontal lines indicating the median.

Figure 7: LIN 5\&6 base model - Estimated median trajectories (with 95\% credible intervals shown as dashed lines) for absolute biomass and biomass as a percentage of $\boldsymbol{B} \boldsymbol{O}$.

Figure 8: LIN 5\&6 base model - Exploitation rates (catch over vulnerable biomass) with 95\% credible intervals shown as dashed lines.

Table 17: LIN 5\&6 - Bayesian median and 95% credible intervals (in parentheses) of B_{0} and \boldsymbol{B}_{2014} (in tonnes), and B_{2014} as a percentage of B_{0} for both model runs, and the probability that B_{2014} is above 40% of \boldsymbol{B}_{0} from the Base model.

Model run	B_{0}			B_{2014}		$2014\left(\% B_{0}\right)$	$P\left(40 \% B_{0}\right)$
Reference model	354000	(204 000-673 000)	317000	(155 000-655 000)	89	(72-104)	-
Base case model	289000	(179 000-665 000)	251000	(127 000-651 000)	86	(69-103)	0.000

Resource survey and fishery selectivity ogives were relatively tightly defined. The survey ogive suggested that ling were fully selected by the research gear at about age 7-9. Estimated fishing selectivities indicated that ling were fully selected by the trawl fishery at about age 9 years, and by the line fisheries at about age 12-16.

The assessments indicated a biomass trough about 1999, and some recovery since then. Although estimates of current and virgin stock size are very imprecise, it is most unlikely that B_{0} was lower than 200000 t for this stock, and it is very likely that current biomass is greater than 70% of B_{0}. Biomass projections derived from this assessment are shown below (Section 4.9).

4.5 Bounty Plateau, LIN 6B (Bounty Plateau only)

4.5.1 Model structure and inputs

The stock assessment for the Bounty Plateau stock (part of LIN 6) was updated in 2007 (Horn 2007b). For final runs, the full posterior distribution was sampled using Markov Chain Monte Carlo (MCMC) methods, based on the Metropolis-Hastings algorithm. Bounded estimates of spawning stock virgin (B_{0}) and current (B_{2006}) biomass were obtained. Year class strengths and fishing selectivity ogives were also estimated in the model. Line fishery ogives were fitted as logistic curves.

MCMC chains were constructed using a burn-in length of 5×10^{5} iterations, with every $1000^{\text {th }}$ sample taken from the next 10^{6} iterations (i.e., a final sample of length 1000 was taken from the Bayesian posterior).

For LIN 6B, model input data include catch histories, line fishery CPUE, catch-at-age and catch-atlength from the line fishery, and estimates of biological parameters. In the absence of sufficient stockspecific data, maturity ogives were assumed to be the same as for LIN $3 \& 4$, a stock with comparable growth parameters to LIN 6B. Only a base case model run is presented. The stock assessment model partitions the population into two sexes, and age groups 3 to 35 with a plus group. There is one fishery (longline) in the stock. The model's annual cycle is described in Table 18

Lognormal errors, with observation-error CVs, were assumed for all relative biomass, proportions-atage, and proportions-at-length observations. Additional process error was estimated in MPD runs of the model (Table 19) and fixed in all subsequent runs.

Table 18: LIN 6B - Annual cycle of the stock model, showing the processes taking place at each time step, their sequence within each time step, and the available observations. Fishing and natural mortality that occur within a time step occur after all other processes, with half of the natural mortality for that time step occurring before and half after the fishing mortality.

Step	Period	Processes	M^{1}	Age 2	Description	Observations
1	Dec-Sep	Recruitment fisher y (line)	0.9	0.5	Line CPUE	Line catch-at-age/length

M is the proportion of natural mortality that was assumed to have occurred in that time step.
Age is the age fraction, used for determining length-at-age, that was assumed to occur in that time step.
$\% Z$ is the percentage of the total mortality in the step that was assumed to have taken place at the time each observation was made.
Table 19: LIN 6B - Summary of the relative abundance series applied in the models, including source years (Years), and the estimated process error (CV) added to the observation error.

Data series

CPUE (longline, all year) $\quad 1992-2004 \quad 0.15$
Commercial longline length-frequency (Nov-Feb) 1996, 2000-04 0.50
$\begin{array}{lll}\text { Commercial longline proportion-at-age (Dec-Feb) } & \text { 2000-01, 2004 } & 0.40\end{array}$
The assumed prior distributions used in the assessment are given in Table 20. All priors were intended to be relatively uninformed, and were estimated with wide bounds.

Table 20: LIN 6B - Assumed prior distributions and bounds for estimated parameters for the assessments. The parameters are mean (in log space) and CV for lognormal.

Parameter description	Distribution B_{0}
uniform-log	

Parameters		Bounds	
-	-	5000	100000
1.0	0.7	0.01	100
-	-	$1 \mathrm{e}-8$	$1 \mathrm{e}-3$
-	-	0	$20-200$
-	-	0.001	2

* A range of maximum values were used for the upper bound

Penalty functions were used to constrain the model so that any combination of parameters that did not allow the historical catch to be taken was strongly penalised. A small penalty was applied to the estimates of year class strengths to encourage estimates that averaged to 1 .

The catch history, biological input parameters, and estimates of relative abundance used in the model are shown in Tables 5-9.

4.5.2 Model estimates

Only a base case model run was completed.
Posterior distributions of year class strength estimates from the base case model run are shown in Figure 9.

Figure 9: LIN 6 B - Estimated posterior distributions of year class strength from the base case run. The horizontal line indicates a year class strength of one. Individual distributions show the marginal posterior distribution, with horizontal lines indicating the median.

The assessment was driven largely by the catch-at-age and catch-at-length series from the line fishery; the first two years of CPUE data were not well fitted. Biomass estimates are listed in Table 21 and the biomass trajectory is shown in Figure 10. The assessment indicates a declining biomass throughout the history of the fishery. Estimates of current and virgin stock size are not well known, but current biomass is very likely to be above 50% of B_{0}.

Table 21: LIN 6B - Bayesian median and $\mathbf{9 5 \%}$ credible intervals (in parentheses) of B_{0} and $B_{2006}($ in $t)$, and B_{2006} as a percentage of B_{0} for the base case model run.

Model run
Base case

$$
\begin{array}{rr}
B_{2006}\left(\% B_{0}\right) \\
\hline 61 \quad(45-79)
\end{array}
$$

Figure 10: LIN 6B - Estimated posterior distributions of biomass trajectories as a percentage of B_{0}, from the base case model run (including 5-year projections through to 2011 with assumed constant annual catch of 400 t). Distributions are the marginal posterior distribution, with horizontal lines indicating the median.

Biomass projections derived from this assessment are shown below (Section 4.9).

4.6 West Coast South Island, LIN 7WC

4.6.1 Model structure and inputs

The stock assessment for LIN 7WC (west coast South Island) was updated in 2013 (Dunn et al. 2013). The assessment model partitions the population into age groups 3 to 28 with a plus group, with no sex in the partition. The model's annual cycle is described in Table 22.

Table 22: LIN 7WC - Annual cycle of the stock model, showing the processes taking place at each time step, their sequence within each time step, and the available observations. Fishing and natural mortality that occur within a time step occur after all other processes, with half of the natural mortality for that time step occurring before and half after the fishing mortality.

					Observations	
Step	Period	Processes	M^{1}	Age ${ }^{2}$	Description	\% ${ }^{3}$
1	Oct-May	Recruitment fishery (line)	0.75	0.5	Line catch-at-age	0.5
2	Jul-Sep	increment ages	0.25	0	Trawl survey biomass and catch at age	0.5
		fishery (trawl)			Trawl catch-at-age	
					Trawl CPUE	

M is the proportion of natural mortality that was assumed to have occurred in that time step.
Age is the age fraction, used for determining length-at-age, that was assumed to occur in that time step. $\% Z$ is the percentage of the total mortality in the step that was assumed to have taken place at the time each observation was made.

The chosen base case was developed following the investigation of numerous previous models. It was found that the model could not reconcile some differences in sex ratios of the age-frequency data, so sex was removed from the partition.

Year class strengths and fishing selectivity ogives were also estimated in the model. Commercial trawl and research survey selectivities were fitted as double normal curves; the line fishery ogive was fitted as a logistic curve.

For final runs, the full posterior distribution was sampled using Markov Chain Monte Carlo (MCMC) methods, based on the Metropolis-Hastings algorithm. Bounded estimates of spawning stock virgin (B_{0}) and current (B_{2012}) biomass were obtained. MCMC chains were constructed using a burn-in length of 2×10^{6} iterations, with every $4000^{\text {th }}$ sample taken from the next 4×10^{6} iterations (i.e., a final sample of length 1000 was taken from the Bayesian posterior). Single chain convergence tests were applied to resulting chains to determine evidence of non-convergence. No evidence of lack of convergence was found in the estimates of B_{0} or $B_{\text {current }} / B_{0}$ from the base case model run.

For LIN 7WC, model input data include catch histories, trawl fishery CPUE, extensive catch-at-age data from the trawl fishery, sparse catch-at-age data from the line fishery, biomass estimates and proportion-at-age from comparable Tangaroa surveys in 2000 and 2012, and estimates of biological parameters (Table 23). A line fishery CPUE series was available, but was rejected as unlikely to be indexing stock abundance. The base case estimated instantaneous natural mortality, M, as a constant.

The error distributions assumed were multinomial for the proportions-at-age and lognormal for all other data. Biomass indices had assumed CVs set equal to the sampling CV, with additional process error of 0.2. The multinomial observation error effective sample sizes for the trawl fishery at-age data were adjusted using the reweighting procedure of Francis (2011). An ad hoc procedure was used for the atage data from the line fishery and Tangaroa survey at-age data, giving the survey a relatively high weighting.

Table 23: LIN 7WC - Summary of the relative abundance series applied in the models, including source years (Years).
Data series
CPUE (hoki trawl, Jun-Sep)
Commercial trawl proportion-at-age (Jun-Sep)
Commercial longline proportion-at-age
Trawl survey biomass (Tangaroa, July)
Trawl survey age data
Years
$1987-2011$
$1991,1994-2008$
2003,2012
2000,2012
2000,2012

The assumed prior distributions used in the assessment are given in Table 24. Most priors were intended to be relatively uninformed, and were specified with wide bounds. The prior for the survey q was informative and was estimated using the Sub-Antarctic ling survey priors as a starting point (see Section 4.4.1) because the survey series in both areas used the same vessel and fishing gear. However, the WCSI survey area in the $200-650 \mathrm{~m}$ depth range in strata $0004 \mathrm{~A}-\mathrm{C}$ and $0012 \mathrm{~A}-\mathrm{C}$ comprised $6619 \mathrm{~km}^{2}$; seabed area in that depth range in the entire LIN 7 WC biological stock area (excluding the Challenger Plateau) is estimated to be about $20100 \mathrm{~km}^{2}$. So, because biomass from only 33% of the WCSI ling habitat was included in the indices, the Sub-Antarctic prior on μ was modified accordingly (i.e., $0.13 \times$ $0.33=0.043$), and the bounds were also reduced from [0.02, 0.30] to [0.01, 0.20]. The prior for M was informed and based on expert opinion. Priors for all selectivity parameters were assumed to be uniform.

Table 24: LIN 7WC - Assumed prior distributions and bounds for parameters estimated in the models. For lognormal distributions the figures are the logspace mean and the $\mathbf{C V}$, and for normal distributions the figures are the mean and standard deviation .

Parameter description	Distribution	Parameters		Bounds	
B_{0}	uniform-log	-	-	10000	500000
Year class strengths	lognormal	1.0	0.7	0.01	100
Tangaroa survey q	lognormal	0.043	0.70	0.01	0.2
CPUE q	uniform-log	-	-	$1 \mathrm{e}-8$	$1 \mathrm{e}-3$
Selectivities	uniform	-	-	0	20-200*
M	normal	0.20	0.025	0.1	0.3

* A range of maximum values was used for the upper bound.

Penalty functions were used to constrain the model so that any combination of parameters that did not allow the historical catch to be taken was strongly penalised. A small penalty was applied to the estimates of year class strengths to encourage estimates that averaged to 1 .

The catch history, biological input parameters, and estimates of relative abundance used in the model are shown in Tables 5-9.

4.6.2 Model estimates

MCMC runs of the base case and one sensitivity (where M was fixed at 0.18) were conducted.
Posterior distributions of year class strength estimates from the base case model run are shown in Figure 11. The YCS distribution from the sensitivity run was not visually different and is not shown.

Figure 11: LIN 7WC - Estimated posterior distributions of year class strength. The horizontal dashed line indicates a year class strength of one. Individual distributions show the marginal posterior distribution, with horizontal lines indicating the median.

Both model runs were indicative of a B_{0} greater than about 50000 t (Table 25). The upper bound on B_{0} is highly uncertain and dependent on the priors on the survey q and M. Both model runs also indicated a biomass decline from 2000-2012 (Figure 12). The model fit to the CPUE series was poor (Figure 13). Model estimates suggest a period of higher recruitment from 1978 to 1990 followed by lower recruitment since 1992. There was also some evidence for stronger recruitment in the most recent year for which an estimate can be made but this is highly uncertain (Figure 11).

Table 25: LIN 7WC - Bayesian median and 95% credible intervals (in parentheses) of B_{0} and B_{2012} (in tonnes), and B_{2012} as a percentage of B_{0} for all model runs. The base case estimates M.

Model run	B ${ }_{0}$		B_{2012}		$\mathrm{B}_{2012}\left(\% \mathrm{~B}_{0}\right)$	
Base case	99200	(58 400-304 600)	70350	(33 000-248 400)	71	(56-85)
$M=0.18$	66100	(50 300-142 900)	39580	(23 600-109 200)	59	(46-79)

Figure 12: LIN 7WC — Estimated posterior distributions of the biomass (\mathbf{t}) trajectory and $\% \boldsymbol{B}_{0}$ for the base case. The solid lines are the median values and the dashed lines are the $\mathbf{9 5 \%}$ CIs.

Figure 13: LIN 7WC - The fit of the base case model (MPD) to the commercial trawl CPUE index. The CPUE index has been scaled to the biomass using the estimated q.

4.7 Cook Strait, LIN 7CK

4.7.1 Model structure and inputs

A stock assessment of ling in Cook Strait (LIN 7CK) was completed in 2013 (Dunn et al. 2013). Because it is believed that the true M for the Cook Strait stock is higher than the 'default' value of 0.18 , it was considered desirable to estimate M in the model, and so incorporate the effect of this uncertainty in M in the assessment. However, the simultaneous estimation of B_{0} and M was not successful owing to the adoption of a multinomial likelihood (rather than lognormal) for proportions-at-age. Consequently, models with fixed M values were run, and although the age data were reasonably well fitted, the model failed to accurately represent declines in resource abundance that appear evident from CPUE values, which have been declining since 2001. As a consequence the model was considered unsuitable for the provision of management advice.

The last stock assessment for LIN 7CK (Cook Strait) accepted by the Working Group was completed in 2010 (Horn \& Francis 2013), and it is reported here. The stock assessment model partitions the population into two sexes, and age groups 3 to 25 with a plus group. The model's annual cycle is described in Table 26. Year class strengths and fishing selectivity ogives were also estimated in the model. Commercial trawl selectivity was fitted as double normal curves; line fishery ogives were fitted as logistic curves.

For final runs, the full posterior distribution was sampled using Markov Chain Monte Carlo (MCMC) methods, based on the Metropolis-Hastings algorithm. Bounded estimates of spawning stock virgin (B_{0}) and current (B_{2008}) biomass were obtained. MCMC chains were constructed using a burn-in length of 4×10^{6} iterations, with every $2000^{\text {th }}$ sample taken from the next 20×10^{6} iterations (i.e., a final sample of length 1000 was taken from the Bayesian posterior).

For LIN 7CK, model input data include catch histories, trawl and line fishery CPUE, extensive catch-at-age data from the trawl fishery, sparse catch-at-age data from the line fishery, and estimates of biological parameters. Initial modelling investigations found that the line CPUE produced implausible results; this series was rejected as a useful index. The base case used all catch-at-age data from the fisheries, and the trawl CPUE series. Instantaneous natural mortality was estimated in the model

Lognormal errors, with observation-error CVs, were assumed for all CPUE and proportions-at-age observations. Additional process error, assumed to arise from differences between model simplifications and real world variation, was added to the sampling variance (Table 26).

LING (LIN)

Table 26: LIN 7CK - Annual cycle of the stock model, showing the processes taking place at each time step, their sequence within each time step, and the available observations. Fishing and natural mortality that occur within a time step occur after all other processes, with half of the natural mortality for that time step occurring before and half after the fishing mortality.

Step	Period	Processes	M^{1}	Age 2	Description	$\%^{2}$
1	Oct-May	Recruitment fishery (line)	0.67	0.5	Line CPUE	Line catch-at-age

M is the proportion of natural mortality that was assumed to have occurred in that time step.
Age is the age fraction, used for determining length-at-age, that was assumed to occur in that time step.
$\% Z$ is the percentage of the total mortality in the step that was assumed to have taken place at the time each observation was made.
Table 27: LIN 7CK - Summary of the available data including source years (Years), and the estimated process error (CV) added to the observation error.

Data series	Years	Process error CV
CPUE (hoki trawl, Jun-Sep)	$1994-2009$	0.2
Commercial trawl proportion-at-age (Jun-Sep)	$1999-2009$	1.1
Commercial longline proportion-at-age	$2006-07$	1.1

The assumed prior distributions used in the assessment are given in Table 26. Most priors were intended to be relatively uninformed, and were specified with wide bounds.

Table 28: LIN 7CK - Assumed prior distributions and bounds for estimated parameters in the assessments. The parameters are mean (in log space) and CV for lognormal, and mean and standard deviation for normal.

Parameter description	Distribution	Parameters		Bounds	
B_{0}	uniform-log	-	-	2000	60000
Year class strengths	lognormal	1.0	0.9	0.01	100
CPUE q	uniform-log	-	-	$1 \mathrm{e}-8$	$1 \mathrm{e}-2$
Selectivities	uniform	-	-	0	20-200*
M	lognormal	0.18	0.16	0.1	0.3

* A range of maximum values was used for the upper bound

Penalty functions were used to constrain the model so that any combination of parameters that did not allow the historical catch to be taken was strongly penalised. A small penalty was applied to the estimates of year class strengths to encourage estimates that averaged to 1 .

The catch history, biological input parameters, and estimates of relative abundance used in the model are shown in Tables 5-9.

4.7.2 Model estimates

A single model was presented incorporating a catch history, trawl and line fishery catch-at-age, trawl CPUE series, with double-normal ogives for the trawl fishery and logistic ogives for the line fishery, and M estimated in the model.

Posterior distributions of LIN 7CK year class strength estimates from the base case model run are shown in Figure 14.

Figure 14: LIN 7CK — Estimated posterior distributions of year class strength. The horizontal line indicates a year class strength of one. Individual distributions show the marginal posterior distribution, with horizontal lines indicating the median.

The assessment is driven by the trawl fishery catch-at-age data and tuned by the trawl CPUE. Both input series contain information indicative of an overall stock decline in the last two decades. The confidence bounds around biomass estimates are wide (Table 29, Figure 15). Probabilities that current and projected biomass will drop below selected management reference points are shown in Table 28. Median M was estimated to be 0.24 (95% confidence interval $0.16-0.30$). Estimates of biomass are very sensitive to small changes in M, but clearly there is information in the model encouraging an M higher than the 'default' value of 0.18 . The model indicated a slight overall biomass decline to about 2000, followed by a much steeper decline from 2000 to 2010. Exploitation rates (catch over vulnerable biomass) were very low up to the late 1980 s, and have been low to moderate (up to about $0.12 \mathrm{yr}^{-1}$) since then. Since the early 1990s, trawl fishing pressure has generally declined, while line pressure has generally increased.

Table 29: LIN 7CK - Bayesian median and 95\% credible intervals (in parentheses) of \boldsymbol{B}_{0} and \boldsymbol{B}_{2010} (in tonnes), and B_{2010} as a percentage of B_{0} for all model runs.

Model run	B_{0}			B_{2010}		$B_{2010}\left(\% B_{0}\right)$
Base case	8070	(5 290-53 080)	4370	(1250-40 490)	54	(23-80)

Table 30: LIN 7CK - Probabilities that current (B_{2010}) and projected (B_{2015}) biomass will be less than $\mathbf{4 0 \%}$, $\mathbf{2 0 \%}$ or 10% of B_{0}. Projected biomass probabilities are presented for two scenarios of future annual catch (i.e., 220 t, and 420 t).

Biomass	Management reference points		
	$40 \% B_{0}$	$20 \% B_{0}$	$10 \% B_{0}$
$\mathrm{~B}_{2010}$	0.248	0.006	0.000
$\mathrm{~B}_{2015}, 220 \mathrm{t}$ catch	0.179	0.010	0.000
$\mathrm{~B}_{2015}, 420 \mathrm{t}$ catch	0.328	0.094	0.019

Figure 15: LIN 7CK - Estimated median trajectories (with 95% credible intervals shown as dashed lines) for absolute biomass and biomass as a percentage of B_{0}.

Estimates of biomass projections derived from this assessment are shown below (Section 4.9).

4.8 LIN 1

In October 2002, the TACC for LIN 1 was increased from 265 t to 400 t within an Adaptive Management Plan (AMP). Reviews of the LIN 1 AMP were carried out in 2007 and 2009. The AMP programme was discontinued by the Minister of Fisheries in 2009-10. An update of the LIN 1 CPUE analyses was commissioned by MPI in 2013, which is reported here.

4.8.1 Fishery Characterization

- 53% of LIN 1 landings come from the bottom trawl fishery and a further 46% by bottom longline since 1989-90. The remaining methods account for $<2 \%$ of the total landings.
- Most BT and BLL landings come from the Bay of Plenty. The majority of bottom trawl catches are taken in Statistical Areas 008 to 010, although there have been significant bottom trawl catches of ling on the west coast of the North Island in some years in Areas 046 to 048. There were substantial ling by-catches made by trawl on the North Island west coast from 1996-97 to 2000-01 in the
gemfish fishery (which has since ceased), and longline catches have increased from the East Northland area.
- Ling are caught in small quantities across many fisheries. The distribution of BT effort is broader than the distribution of catch, with effort taking some LIN 1 in East Northland and the west coast in most years. Bottom longline landings of LIN 1 have a wider distribution and are more sporadic, with the Bay of Plenty landings coming primarily from Areas 009 and 010 . Bottom longline landings increased after about 2000 in East Northland Area 002, but have fallen off considerably in 2007-08.
- There is a small targeted ling trawl fishery, while trawl catches of LIN1 are mainly made in the scampi and gemfish targeted fisheries. The gemfish fishery mainly contributed catches from 199697 to 2000-01 and has since considerably diminished with the reduction of the SKI 1 TACC. The Bay of Plenty scampi fishery has also changed considerably during this period, particularly after SCI entered the QMS, moving from a competitive fishery requiring multiple vessels to a more rationalised fishery requiring only a single vessel. In contrast, $\sim 75 \%$ of the ling longline catch is taken in a targeted ling fishery, with only minor by-catches coming from bluenose, ribaldo and hapuku targeted longline fisheries.
- The bottom longline landings of LIN 1 are taken mainly in the final two months of the fishing year, probably due to the economics of the vessels switching from tuna longlining to cleaning up available quota at the end of the fishing year. Bottom trawl catches of ling tend to be more evenly distributed across the year and reflect the fishing patterns of the diverse trawl targets, such as scampi which is also a consistent fishery over the entire year. Both of the major fishing methods which take ling have sporadic seasonal patterns, reflecting the small landings in most years and the by-catch nature of many of the fisheries.
- The depth distribution of ling catches in the trawl fisheries shows two main depths associated with the target species. Most ling are caught in the scampi / hoki / ling fishery at $\sim 400 \mathrm{~m}$ depth, but some are taken in the tarakihi / snapper / barracouta / trevally fisheries around 100 m depth. Bottom longline depth records indicate that target ling fishing (as well as target bluenose fishing) takes place at even deeper depths, with most of the records lying between 500 and 600 m .

Figure 16: LIN 1 CPUE analyses based on target ling bottom longline data stratified by trip, target species and statistical area for Statistical Areas 002, 003, 004, 008, 009 and 010 standardised with respect to fishing year, number of hooks, vessel, month and number of lines set. Three sets of standardised indices are presented: a) 2013 Weibull index using the distributional assumption with the best fit to the data; b) 2013 lognormal index provided for comparison to the 2009 index; c) 2009 lognormal index, including the anomalous 1998-99 index value omitted from the 2013 series.

4.8.2 Abundance Indices

In 2009, the WG concluded that the BT(SCI) index was not an appropriate index for LIN 1, and had numerous shortcomings related to limited number of vessels, particularly in the most recent 4 years and poor linkage across years. In 2013, the NINSWG agreed with these conclusions, which also applied to the alternative BT(LINHOK, TAR) series developed in response to a 2009 WG recommendation. Consequently the NINSWG agreed that neither BT series was adequate for monitoring LIN 1 CPUE and should be discarded. The WG requirement that CPUE index values should be determined by at least 3 vessels furthermore resulted the discarding of a large number of index values from both BT series.

In 2009, the WG concluded that the BLL(LIN) target index appeared to have more potential as an index for LIN 1, but thought that the anomalous peak in 1998-99 was troubling and was also concerned about the relatively small amount of data in this analysis. Closer examination of the data in 2013 has shown that the anomalous 1998-99 peak was caused by a small amount of very localised fishing by two experienced vessels. The NINSWG concluded that this pattern was extremely non-representative of the fishery and the standardisation model was unable to use these data to estimate a credible year index. While this solved the mystery of the "anomalous 1998-99 index", the problem of very small amount of data in this analysis remains. The NINSWG tentatively accepted the BLL(LIN) index with the 199899 index value removed (Fig. 16) as an index of LIN 1 abundance with a research credibility rating of "2".

4.9 Projections

Projections for LIN 6B from the 2006 assessment are shown in Table 31. The LIN 6B stock (Bounty Plateau) was projected to decline out to 2011 , but probably still be higher than 50% of B_{0}. Projections out to 2015 for LIN 7CK indicated that biomass was likely to increase with future catches equal to recent previous catch levels, or decline slightly if catches were equal to the mean since 1990 (Table 32). New projections made in 2014 out to 2019 for LIN $3 \& 4$ and $5 \& 6$ are shown in Table 32. For LIN 3\&4, stock size is likely to remain about the same assuming future catches equal to recent catch levels, or decrease to around 90% of the 2014 biomass by 2019 if catches reach the TACC. For LIN 5\&6, the probability of B_{2019} being below 40% of B_{0} is very small when assuming either one of two future annual catch scenarios (the recent catch level of 5700 t or the TACC of 12100 t). For LIN 7 WC the Working Group did not consider that projections using either run were reliable and so no projections are shown.

Table 31: LIN 6B Bayesian median and 95% credible intervals (in parentheses) of projected B_{2011}, B_{2011} as a percentage of B_{0}, and $B_{2011} / B_{2006}(\%)$ for the 2006 base case.

Stock and model run		Future catch (t)	\underline{B}_{2011}		$\underline{B}_{2011}\left(\% \underline{B}_{0}\right)$		$\underline{B}_{2011} \underline{B}_{2006}(\%)$	
LIN 6B	Base	600	7460	(2 950-18520)	53	(26-116)	86	(51-168)

Table 32: LIN 7CK Bayesian median and 95% credible intervals (in parentheses) of projected $\boldsymbol{B}_{2015}, B_{2015}$ as a percentage of B_{0}, and $B_{2015} / B_{2010}(\%)$ for the base case.

Stock and model run		Future catch (t)	B_{2015}		$B_{2015}\left(\% B_{0}\right)$		$\underline{B}_{2015} / \underline{B}_{2010}(\%)$	
LIN 7CK	Base	220	5030	(1310-43 340)	59	(24-97)	110	(82-158)
		420	4320	(590-42 910)	52	(11-92)	95	(45-136)

Table 33: LIN 3\&4 and LIN 5\&6 Bayesian median and 95\% credible intervals (in parentheses) of projected B_{2019}, B_{2019} as a percentage of B_{0}, and $B_{2019} / B_{2014}(\%)$ for the base case runs.

Stock and model run		Future catch (t)	B_{2019}		$\underline{B}_{2019}\left(\% B_{0}\right)$		$\underline{B}_{2019} / \underline{B}_{2014}(\%)$	
LIN 3\&4	Base	6260	64000	(38 900-112 100)	51	(35-69)	89	(73-106)
		3564	75200	(50 400-122 700)	59	(45-75)	104	(91-120)
LIN 5\&6	Base	5700	265500	(129 100-714 800)	91	(69-118)	104	(86-136)
		12100	240300	(104 000-697 300)	82	(56-113)	94	(73-127)

5. STATUS OF THE STOCKS

Stock Structure Assumptions

Ling are assessed as six independent biological stocks, based on the presence of spawning areas and some differences in biological parameters between areas (Horn 2005).

The Chatham Rise biological stock comprises all of Fishstock LIN 4, and LIN 3 north of the Otago Peninsula. The Sub-Antarctic biological stock comprises all of Fishstock LIN 5, all of LIN 6 excluding the Bounty Plateau, and LIN 3 south of the Otago Peninsula. The Bounty Plateau (part of Fishstock LIN 6) holds another distinct biological stock. The WCSI biological stock occurs in Fishstock LIN 7 west of Cape Farewell. The Cook Strait biological stock includes those parts of Fishstocks LIN 7 and LIN 2 between the northern Marlborough Sounds and Cape Palliser. Ling around the northern North Island (Fishstock LIN 1) are assumed to comprise another biological stock, but there is no information to support this assumption. The stock affinity of ling in LIN 2 between Cape Palliser and East Cape is unknown.

LIN 1 Stock

Comparison of the BLL(LIN) CPUE series with the LIN 1 QMR/MHR landings and the LIN 1 TACC. The dashed horizontal grey line shows the mean CPUE index from 1995-96 to 2011-12.

Fishery and Stock Trends	
Recent Trend in Biomass or Proxy	The BLL(LIN) CPUE series declined from 1991-92 to 2005- 06 and then increased to 2011-12.
Recent Trend in Fishing Intensity or Proxy	Unknown
Other Abundance Indices	-
Trends in Other Relevant Indicators or Variables	-

Projections and Prognosis			
Stock Projections or Prognosis	Not evaluated		
Probability of Current Catch or			
TACC causing Biomass to remain			
below or to decline below Limits		Soft Limit: Unknown	Hard Limit: Unknown
:---			
Probability of Current Catch or TACC causing Overfishing to continue or to commence			

Assessment Methodology and Evaluation		
Assessment Type	Level 2 - Partial Quantitative stock assessment	
Assessment Method	Evaluation of fishery trends.	
Assessment Dates	Latest assessment: 2013	Next assessment: unlmown
Overall assessment quality rank	2 - Medium or Mixed Quality	
Main data inputs (rank)	One bottom longline CPUE series, target LIN only, all LIN 1 statistical areas	2- - Medium or Mixed Quality
Data not used (rank)	Two bottom trawl CPUE series: - SCI target - combined LIN, HOK, TAR target	3- Low Quality: do not track stock biomass and lack data
Changes to Model Structure and Assumptions		
Major Sources of Uncertainty	The biological stock affinities of ling in LIN 1 are unknown.	

Qualifying Comments
Fishery Interactions
Ling are often taken as a bycatch in hoki target trawl fisheries, and scampi target trawl fisheries off northern New Zealand. Target line fisheries for ling have the main bycatch species of spiny dogfish, sea perch, sharks and skates and ribaldo. Bycatch species of concern include sharks, skates, fur seals and seabirds (trawl fisheries), and sharks, skates and seabirds (longline fisheries).

East coast North Island (part of LIN 2, statistical areas 11-15)

Stock Status	
Year of Most Recent Assessment	2014
Assessment Runs Presented	A CPUE time series based on bottom longline ling target fishing.
Reference Points	Target: $40 \% B_{0}$ Soft Limit: $20 \% B_{0}$ Hard Limit: $10 \% B_{0}$ Overfishing threshold: F corresponding to 40\% B_{0}
Status in relation to Target	Unknown. The CPUE has declined by between about 50-60\% since the start of the time series in 1992.

Standardized CPUE index ($\mathbf{\pm 9 5 \%}$ CI) for bottom longline vessels targeting ling from the ECNI statistical areas 1115 (1992-2013). The dashed horizontal line is the time series mean.

Fishery and Stock Trends	Biomass is estimated to have declined from 1992 by $50-60 \%$.
Recent Trend in Biomass or Proxy	Unknown
Recent Trend in Fishing Intensity or Proxy	-
Other Abundance Indices	-
Trends in Other Relevant Indicators or Variables	

Projections and Prognosis (2014)				
Stock Projections or Prognosis	Unknown			
Probability of Current Catch or	Soft Limit: Unknown			
TACC causing Biomass to				
remain below or to decline below				
Limits		\quad	Hard Limit: Unknown	
:---	:---			
Probability of Current Catch or	CPUE has declined while catches have been below the TACC. TACC causing Overfishing to There is some probability that fishing at the TACC or current coatch may lead to overfishing.			

Major Sources of Uncertainty	It is assumed that the longline CPUE time series tracks the entire biomass of ling in this stock. The boundaries of this biological stock, particularly towards the Cook Strait, are uncertain.

Qualifying Comments

-

Fishery Interactions

Ling are often taken as a bycatch in hoki target trawl fisheries. Target line fisheries for ling have the main bycatch species of spiny dogfish, sea perch, sharks and skates, and ribaldo. Low productivity species taken as incidental bycatch include sharks and skates. Incidental captures of protected species are reported for seabirds.

Chatham Rise (LIN 3 \& 4)

Stock Status	
Year of Most Recent Assessment	2014
Assessment Runs Presented	One base case
Reference Points	$\begin{aligned} & \text { Management Target: } 40 \% B_{0} \\ & \text { Soft Limit: } 20 \% B_{0} \\ & \text { Hard Limit: } 10 \% B_{0} \\ & \text { Overfishing threshold: } U_{40 \%} \end{aligned}$
Status in relation to Target	B_{2014} was estimated to be about $57 \% B_{0}$; Very Likely (> 90\%) to be above the target
Status in relation to Limits	B_{2014} is Exceptionally Unlikely ($<1 \%$) to be below the Soft Limit and Exceptionally Unlikely $(<1 \%)$ to be below the Hard Limit.
Status in relation to Overfishing	Overfishing is Very Unlikely ($<10 \%$) to be occurring.
Historical Stock Status Trajectory and Current Status	
Trajectory over time of spawning biomass (absolute, and \% B_{0}, with 95% credible intervals shown as broken lines) for the Chatham Rise ling stock from the start of the assessment period in 1972 to the most recent assessment in 2014, for the base case model run. Years on the \mathbf{x}-axis are fishing year with "1990" representing the 1989-90 fishing year. Years on the \mathbf{x}-axis are fishing year with " 2010 " representing the 2009-10 fishing year. Biomass estimates are based on MCMC results.	

Fishery and Stock Trends

Recent Trend in Biomass or Proxy	Biomass is very unlikely to have been below $40 \% B_{0}$. Biomass is estimated to have been increasing or stable since 2003.
Recent Trend in Fishing Mortality or Proxy	Fishing pressure is estimated to have been generally declining since 1999.
Other Abundance Indices	-

Trends in Other Relevant Indicators or Variables	Recruitment since 1996 is estimated to have been fluctuating around or slightly below the long-term average for this stock.
Projections and Prognosis (2014) Stock Projections or Prognosis Biomass is uncertain but current catch is unlikely to cause decline. Catches at level of the TACC are likely to cause the stock to decline by about 10% in 5 years. Probability of Current Catch or TACC causing decline below Limits Soft Limit: Exceptionally Unlikely $(<1 \%)$ at current catch Hard Limit: Exceptionally Unlikely $(<1 \%)$ at current catch Soft Limit: Exceptionally Unlikely $(<1 \%)$ at TACC Hard Limit: Exceptionally Unlikely $(<1 \%)$ at TACC Probability of Current Catch or TACC causing Overfishing to continue or commence Very Unlikely $(<10 \%)$	

Assessment Methodology			
Assessment Type	Level 1 - Quantitative stock assessment		
Assessment Method	Age-structured CASAL model with Bayesian estimation of posterior distributions.		
Assessment Dates	Latest assessment: 2014 Next assessment: 2017		
Main data inputs	- Summer research trawl survey series, annually since 1992. - Proportions-at-age data from the commercial fisheries and trawl survey. - Line fishery CPUE series (annual indices since 1991): series not used in the base assessment model. - Estimates of biological parameters (but note that M was estimated in the models)		1 - High Quality 1 - High Quality 2 - Medium Quality: likely change in q over time 1 - High Quality
Data not used (rank)	Kaharoa ECSI trawl survey abundance index	3- Low Quality: coverage of the	dequate spatial k distribution
Changes to Model Structure and Assumptions	No significant changes since the previous assessment.		
Major Sources of Uncertainty	Lack of contrast in survey indices; uncertain catchability of trawl survey		

Qualifying Comments
 -

Fishery Interactions

Ling are often taken as a bycatch in hoki target trawl fisheries. Target line fisheries for ling have the main bycatch species of spiny dogfish, sea perch, sharks and skates, and ribaldo. Bycatch species of concern include sharks, skates, fur seals and seabirds (trawl fisheries), and sharks, skates and seabirds (longline fisheries).

- Sub-Antarctic (LIN 5 \& 6, excluding the Bounty Plateau)

Stock Status	
Year of Most Recent Assessment	2014
Assessment Runs Presented	One base case
Reference Points	Management Target: $40 \% B_{0}$ Soft Limit: $20 \% B_{0}$ Hard Limit: $10 \% B_{0}$

	B_{2014} was estimated to be between 70\% and $101 \% B_{0} ;$ Virtually Certain $(>99 \%) ~ t o ~ b e ~ a b o v e ~ t h e ~ t a r g e t ~$ Status in relation to Target B_{2014} is Exceptionally Unlikely $(<1 \%)$ to be below the Soft Limit and Exceptionally Unlikely $(<1 \%)$ to be below the Hard Limit Status in relation to Limits Overfishing is Exceptionally Unlikely (<1\%) to be occurring
Historical Stock Status Trajectory and Current Status	

Trajectory over time of spawning biomass (absolute, and $\% B_{0}$, with 95% credible intervals shown as broken lines) for the Sub-Antarctic ling stock from the start of the assessment period in 1972 to the most recent assessment in 2014, for the base case model run. Years on the x-axis are fishing year with " 1990 " representing the $1989-90$ fishing year.
Biomass estimates are based on MCMC results.

Fishery and Stock Trends	Biomass appears to have been increasing since about 1999.
Recent Trend in Biomass or Proxy	Fishing pressure is estimated to have always been low, and declining since 1998.
Recent Trend in Fishing Mortality or Proxy	-
Other Abundance Indices	-
Trends in Other Relevant Indicators or Variables	-

Projections and Prognosis (2014)	
Stock Projections or Prognosis	Stock status is unlikely to change over the next 5 yearsat recent catch levels or the level of the TACC (i.e., 12 100 t).
Probability of Current Catch or TACC causing decline below Limits	Soft Limit: Exceptionally Unlikely ($(<1 \%)$ at current catch or TACC
Hard Limit: Exceptionally Unlikely ($<1 \%)$ at current catch or TACC	
TACC causing Overfishing to continue or commence	Exceptionally Unlikely $(<1 \%)$

Assessment Methodology			Level 1 - Quantitative stock assessment	
Assessment Type	Age-structured CASAL model with Bayesian estimation of posterior distributions.			
Assessment Method	Latest assessment: 2014	Next assessment: 2017		
Assessment Dates	- Summer and autumn Tangaroa trawl survey series. - Proportions-at-age data from the commercial fisheries and trawl surveys.	1 - High Quality		
Main data inputs	- Line fishery CPUE series (annual indices since 1991).			

	- Estimates of biological parameters (but note that M was estimated in the models)	2 - Medium Quality: possible changes in q over time $1-$ High Quality
Data not used (rank)	N/A	
Changes to Model Structure and Assumptions	No significant changes since the previous assessment, except that M was estimated (age specific) rather than being fixed at 0.18.	
Major Sources of Uncertainty	The summer trawl survey biomass estimates are variable and catchability appears to vary between surveys. The lack of contrast in this series (the main relative abundance series) makes it difficult to accurately estimate past and current biomass.	

Qualifying Comments

The current assessment assumes that LIN 5 and LIN 6 (except Bounty Islands LIN 6B) are a single stock.

Fishery Interactions

Ling are often taken as a bycatch in hoki target trawl fisheries. Target line fisheries for ling have the main bycatch species of spiny dogfish, sea perch, sharks and skates, and ribaldo. Bycatch species of concern include sharks, skates, fur seals and seabirds (trawl fisheries), and sharks, skates and seabirds (longline fisheries).

Bounty Plateau (part of LIN 6)

Stock Status	
Year of Most Recent Assessment	2006
Assessment Runs Presented	A single model run
Reference Points	Management Target: $40 \% B_{0}$ Soft Limit: $20 \% B_{0}$ Hard Limit: $10 \% B_{0}$
Status in relation to Target	B_{2006} was estimated to be $61 \% B_{0} ;$ Very Likely (>90\%) to be at or above the target
Status in relation to Limits	B_{2006} is Very Unlikely $(<10 \%)$ to be below the Soft Limit and Exceptionally Unlikely $(<1 \%)$ to be below the Hard Limit.

Fishery and Stock Trends	
Recent Trend in Biomass or Proxy	Median estimates of biomass are unlikely to have been below $61 \% B_{0}$. Biomass is estimated to have been declining since 1999.
Recent Trend in Fishing Mortality or Proxy	Fishing pressure is estimated to have been low, but erratic, since 1980.
Other Abundance Indices	-
Trends in Other Relevant Indicators or Variables	Recruitment was above average in the early 1990s, but below average in the late 1990s. No estimates of recruitment since 1999 are available.
Projections and Prognosis (2006)	
Stock Projections or Prognosis	Stock status is predicted to continue declining slightly over the next 5 years at a catch level equivalent to the average since 1991 (i.e., $600 t$ per year).
Probability of Current Catch or TACC causing decline below Limits	Note that there is no specific TACC for the Bounty Plateau stock. Soft Limit: Very Unlikely (< 10%) Hard Limit: Very Unlikely (< 10%)

Fishery Interactions

Target line fisheries for ling have the main bycatch species of spiny dogfish, sharks and skates, and ribaldo. Bycatch species of concern include sharks, skates and seabirds.

West coast South Island (LIN 7)

Stock Status	
Year of Most Recent Assessment	2013
Assessment Runs Presented	A base case and one sensitivity model run.
Reference Points	Target: $40 \% B_{0}$.
	Soft Limit: $20 \% B_{0}$.
	Hard Limit: $10 \% B_{0}$.
	Overfishing threshold: $F_{40 F_{B O}}$

Status in relation to Target	B_{2012} was estimated to be about $71 \% B_{0} ;$ Very Likely $(>90 \%)$ to be at or above the target
Status in relation to Limits	B_{2012} is Exceptionally Unlikely $(<1 \%)$ to be below the Soft Limit and Exceptionally Unlikely $(<1 \%)$ to be below the Hard Limit
Status in relation to Overfishing	Unknown

Historical Stock Status Trajectory and Current Status

Trajectory over time of spawning biomass (absolute, and $\% B_{0}$, with 95% credible intervals shown as broken lines) for the WCSI ling stock from the start of the assessment period in 1972 to the most recent assessment in 2013. Years on the \mathbf{x}-axis are fishing year with "1990" representing the 1989-90 fishing year. Biomass estimates are based on MCMC results.

Fishery and Stock Trends	Biomass is estimated to have been declining
Recent Trend in Biomass or Proxy	Unknown
Recent Trend in Fishing Intensity or Proxy	A CPUE index was available from the line (target) fishery but was not considered reliable. The time series of the inshore Kaharoa survey does not adequately cover the distribution of ling on the west coast.
Other Abundance Indices	The age structures of both the commercial catch and trawl survey catch are broad, indicating a low exploitation rate.
Trends in Other Relevant Indicators or Variables	
Projections and Prognosis	
Stock Projections or Prognosis	No projections were reported
Probability of Current Catch or TACC causing Biomass to remain below or to decline below Limits	Soft Limit: Unknown Hard Limit: Unknown
Probability of Current Catch or TACC causing Overfishing to continue or to commence	Unknown

Assessment Methodology and Evaluation			
Assessment Type	Level 1 - Full quantitative stock assessment		
Assessment Method	Age-structured CASAL model with Bayesian estimation of posterior distributions		
Assessment Dates	Latest assessment: 2013	Next assessment: 2016	
Overall assessment quality rank	1- High Quality	1 - High Quality	
Main data inputs (rank)	- Catch history		

	- Abundance index from two WCSI trawl surveys $(2000,2012)$ - Abundance index from the commercial trawl hoki-hake-ling target fishery CPUE - Proportions at age data from the commercial fisheries and trawl surveys - Estimates of fixed biological parameters		1 - High Quality 1 - High Quality 1 - High Quality 1 - High Quality
Data not used (rank)	- Commercial line fishery CPUE - Kaharoa trawl survey abundance index	3 - Low Quality: stock biomass 3- Low Quality: coverage of the s	oes not track adequate spatial ck distribution
Changes to Model Structure and Assumptions	Single sex model. M estimated in the base case with an informed prior. Reweighted sample sizes for age frequency data. Inclusion of a relative trawl survey index with an informed prior on q.		
Major Sources of Uncertainty	There is inadequate contrast in the biomass indices to inform on the magnitude of the biomass. Although the catch history used in the assessment has been corrected for some misreported catch (see Section 1.4), it is possible that additional misreporting exists. It is assumed in the assessment models that natural mortality is constant over all ages. Trawl survey selectivity. YCS estimation for recent year classes is highly uncertain because it is based on only one survey.		

Qualifying Comments

This assessment is very uncertain but it is highly probable that B_{2012} is greater than $40 \% B_{0}$ and it could be much higher.

Fishery Interactions

Ling are often taken as a bycatch in hoki target trawl fisheries. Target line fisheries for ling have the main bycatch species of spiny dogfish, sea perch, sharks and skates, and ribaldo. Low productivity species taken as incidental bycatch include sharks and skates. Protected species interactions are reported for seabirds and fur seals.

Cook Strait (LIN 2 [statistical area 16] \& part of LIN 7)

Stock Status	
Year of Most Recent Assessment	2010 (an assessment in 2013 was rejected)
Assessment Runs Presented	A base case.
Reference Points	Target: $40 \% B_{0}$. Soft Limit: $20 \% B_{0}$. Hard Limit: $10 \% B_{0}$. Overfishing threshold: F corresponding to $40 \% B_{0}$
Status in relation to Target	B_{2010} was estimated to be 54\% Bo; Likely (>60\%) to be at or above the target.
Status in relation to Limits	B_{2010} is Exceptionally Unlikely (< $\left.1 \%\right)$ to be below the Soft Limit and Exceptionally Unlikely (< 1\%) to be below the Hard Limit.
Status in relation to Overfishing	Overfishing is Very Unlikely (< 10\%) to be occurring.

Historical Stock Status Trajectory and Current Status

Trajectory over time of spawning biomass (absolute, and \% Bo, with 95% credible intervals shown as broken lines) for the Cook Strait ling stock from the start of the assessment period in 1972 to the most recent assessment in 2010. Years on the x -axis are fishing year with "1990" representing the 1989-90 fishing year. Biomass estimates are based on MCMC results.

Fishery and Stock Trends	Biomass is estimated to have been declining since 1999, but is unlikely to have dropped below 30\% Bo.
Recent Trend in Biomass or Proxy	Overall fishing pressure is estimated to have been relatively constant since the mid-1990s, but has trended down for trawl and up for line.
Recent Trend in Fishing Intensity or Proxy	-
Other Abundance Indices	Recruitment from 1995 to 2006 was low relative to the long- term average for this stock. There are no estimates for the more recent year classes.
Trends in Other Relevant Indicators or Variables	

Projections and Prognosis		
Stock Projections or Prognosis	Stock status is predicted to improve slightly over the next 5 years at a catch level equivalent to that since 2006 (i.e., 220 t per year), or remain relatively constant at a catch equivalent to the mean since 1990 (i.e., 420 t per year).	
Probability of Current Catch or TACC causing Biomass to remain below or to decline below Limits	Note that there is no specific TACC for the Cook Strait stock. Soft Limit: Catch 220 t , Very Unlikely ($<10 \%$); Catch 420 t , Very Unlikely (< 10%). Hard Limit: Catch 220 t , Exceptionally Unlikely (< 1%); Catch 420 t, Very Unlikely ($<10 \%$).	
Probability of Current Catch or TACC causing Overfishing to continue or to commence	Very Unlikely (< 10\%).	
Assessment Methodology and Evaluation		
Assessment Type	Level 1 - Full quantitative stock assessment.	
Assessment Method	Age-structured CASAL model with Bayesian estimation of posterior distributions.	
Assessment Dates	Latest assessment: 2010 Next assessment: 2016 3 - Low Quality: The only accepted relative abundance series (trawl fishery CPUE) was not well fitted. A subsequent assessment in 2013 was rejected by the Working Group.	
Overall assessment quality rank		
Main data inputs (rank)	- Proportions-at-age data from the commercial trawl fishery. - Proportions-at-age data from the commercial line fishery. - Trawl fishery CPUE series (annual indices since 1994). - Estimates of biological parameters.	$\begin{aligned} & 1-\text { High Quality } \\ & 3 \text { - Low Quality } \\ & 2 \text { - Medium Quality } \\ & 1 \text { - High Quality } \end{aligned}$

Data not used (rank)	Line fishery CPUE	3-Low quality: does not track stock biomass
Changes to Model Structure and Assumptions	No significant changes since the previous assessment.	
Major Sources of Uncertainty	There are no fishery-independent indices of relative abundance. It is not known if the trawl CPUE series is a reliable abundance index. The stock structure of Cook Strait ling is uncertain. While ling in this area are almost certainly biologically distinct from the WCSI and Chatham Rise stocks, their association with ling off the lower east coast of the North Island is unknown. It is possible that trawl selectivity has varied over time, resulting in poor fits to some age classes in some years. Line fishery selectivity is based on only two years of catch-at- age data from the autoline fishery. No information is available from the 'hand-baiting' line fishery. The model is moderately sensitive to small changes in M, and M is poorly estimated.	

Qualifying Comments

There is no separate TACC for this stock; it comprises parts of Fishstocks LIN 7 and LIN 2.

Fishery Interactions

Ling are often taken as a bycatch in hoki target trawl fisheries. Target line fisheries for ling have the main bycatch species of spiny dogfish, sea perch, sharks and skates. Low productivity species taken as incidental bycatch include sharks and skates. Protected species interactions are reported for seabirds and fur seals.

7. FUTURE RESEARCH

A review of the ling stock structure for LIN 2 should be completed before further assessments are conducted for this QMA.

8. FOR FURTHER INFORMATION

Ballara, S L; Horn, P L (2015) A descriptive analysis of all ling (Genypterus blacodes) fisheries, and CPUE for ling longline fisheries for LIN 3\&4 and LIN 5\&6, from 1990 to 2013. New Zealand Fisheries Assessment Report 2015/11. 55 p.
Bull, B; Francis, R I C C; Dunn, A; McKenzie, A; Gilbert, D J; Smith, M H; Bian, R (2012) CASAL (C++ algorithmic stock assessment laboratory): CASAL user manual v2.30-2012/03/21. NIWA Technical Report 135. 280 p.
Bradford, E (1996) Marine recreational fishery survey in the Ministry of Fisheries North region, 1993-94. NZ Fisheries Data Report No. 80. 83 p .
Dunn, A (2003) Investigation of evidence of area misreporting of landings of ling in LIN 3, 4, 5, 6, and 7 from TCEPR records in the fishing years 1989-90 to 2000-01. Final Research Report. (Unpublished document held by Ministry for Primary Industries, Wellington.)
Dunn, M R; Connell, A; Forman, J; Stevens, D W; Horn, P L (2010) Diet of two large sympatric teleosts, the ling (Genypterus blacodes) and hake (Merluccius australis). PLoS ONE 5(10): e13647. doi:10.1371/journal.pone. 0013647
Dunn, M R; Edwards, C T T; Ballara, S L; Horn, P L (2013) Stock assessment of ling (Genypterus blacodes) in Cook Strait and off the West Coast South Island (LIN 7), and a descriptive analysis of all ling fisheries, for the 2012-13 fishing year. New Zealand Fisheries Assessment Report 2013/63. 102 p.
Francis, R I C C (2011) Data weighting in statistical fisheries stock assessment models. Canadian Journal of Fisheries and Aquatic Sciences 68: 1124-1138.
Francis, R I C C; Hurst, R J; Renwick, J A (2001) An evaluation of catchability assumptions in New Zealand stock assessments. New Zealand Fisheries Assessment Report 2001/1. 37 p.
Horn, P L (1993) Growth, age structure, and productivity of ling, Genypterus blacodes (Ophidiidae), in New Zealand waters. New Zealand Journal of Marine and Freshwater Research 27: 385-397.
Horn, P L (2003) CPUE from commercial fisheries for ling (Genypterus blacodes) around the North Island, New Zealand: an evaluation of series for LIN 1, LIN2, and Cook Strait. New Zealand Fisheries Assessment Report 2003/13. 49 p.
Horn, P L (2004) CPUE from commercial fisheries for ling (Genypterus blacodes) in Fishstocks LIN 3,4,5,6, and 7 from 1990 to 2003. New Zealand Fisheries Assessment Report 2004/62.40 p.
Horn, P L (2004) A review of the auto-longline fishery for ling (Genypterus blacodes) based on data collected by observers from 1993 to 2003. New Zealand Fisheries Assessment Report 2004/47. 28 p.
Horn, P L (2005) A review of the stock structure of ling (Genypterus blacodes) in New Zealand waters. New Zealand Fisheries Assessment Report 2005/59. 41 p.

LING (LIN)

Horn, P L (2007a) A descriptive analysis of commercial catch and effort data for ling from New Zealand waters in Fishstocks LIN 2, 3, 4, 5, 6, and 7. New Zealand Fisheries Assessment Report 2007/22. 71 p.

Horn, P L (2007b) Stock assessment of ling (Genypterus blacodes) on the Bounty Plateau and in Cook Strait for the 2006-07 fishing year. Final Research Report for Ministry of Fisheries Research Project LIN2005-01, Objective 3.51 p. (Unpublished document held by Ministry for Primary Industries, Wellington.)
Horn, P L (2008) Stock assessment of ling (Genypterus blacodes) on the Chatham Rise, Campbell Plateau, and in Cook Strait for the 2007-08 fishing year. New Zealand Fisheries Assessment Report 2008/24. 76 p.
Horn, P L (2009) Stock assessment of ling (Genypterus blacodes) off the west coast of South Island for the 2008-09 fishing year. New Zealand Fisheries Assessment Report 2009/16. 42 p.
Horn, P L (2010) CPUE from commercial fisheries for ling (Genypterus blacodes) in Fishstocks LIN 3, 4, 5, 6, and 7 from 1990 to 2008, and a descriptive analysis update. New Zealand Fisheries Assessment Report 2010/25. 54 p
Horn, P L (2015) Spatial and temporal changes in ling (Genypterus blacodes) population structure on the Chatham Rise and off West Coast South Island. New Zealand Fisheries Assessment Report 2015/3. 23 p.
Horn, P L; Dunn, M R; Ballara, S L (2013) Stock assessment of ling (Genypterus blacodes) on the Chatham Rise (LIN 3\&4) and in the SubAntarctic (LIN 5\&6) for the 2011-12 fishing year. New Zealand Fisheries Assessment Report 2013/6. 87 p.
Horn, P L; Francis, R I C C (2013) Stock assessment of ling (Genypterus blacodes) in Cook Strait for the 2010-11 fishing year. New Zealand Fisheries Assessment Report 2013/7. 35 p.
Leach, B F; Boocock, A S (1993) Prehistoric fish catches in New Zealand. British Archaeological Reports International Series 584. 38 p.
McGregor, V (in prep.) Stock assessment of ling (Genypterus blacodes) on the Chatham Rise (LIN 3\&4) for the 2014-15 fishing year. Draft New Zealand Fisheries Assessment Report.
Roberts, J (in prep.) Stock assessment of ling (Genypterus blacodes) in the Sub-Antarctic (LIN 5\&6) for the 2014-15 fishing year. Draft New Zealand Fisheries Assessment Report.
Roux, M-J (2015) Review of the longline fishery for ling (Genypterus blacodes) in LIN 2, and an update of the CPUE index. New Zealand Fisheries Assessment Report 2015/6. 26 p.
Starr, P J; Kendrick, T H; Lydon, G J; Bentley, N (2007). Full term review of the LIN 1 adaptive management programme. Report to the Adaptive Management Fishery Assessment Working Group. (Unpublished document held by Ministry for Primary Industries, Wellington.)

[^0]: * FSU data.

[^1]: * Not used in the reported assessment.

