(Pseudocaranx dentex)

Arara

1. FISHERY SUMMARY

Trevally was introduced into the QMS in 1986 with five QMAs. A Total Allowable Catch (TAC) was set under the provisions of the 1983 Fisheries Act initially at 3220 t . Since the introduction into the QMS there have been no recreational or customary allocations in TRE 1, 3, 7, or 10 , therefore the total allowable commercial catch (TACC) is the same as the TAC. In 2010 TRE 2 was allocated a 100 t recreational catch, 1 t customary catch, and 7 t for other mortality, combining to make a 350 t TAC .

1.1 Commercial fisheries

Trevally is caught around the North Island and the north of the South Island, with the main catches from the northern coasts of the North Island. Trevally is taken in the northern coastal mixed trawl fishery, mostly in conjunction with snapper. Since the mid-1970s trevally has been taken by purse seine, mainly in the Bay of Plenty (BoP), in variable but often substantial quantities. Setnet fishermen take modest quantities.

Historical estimated and recent reported trevally landings and TACCs are shown in Tables 1 and 2 , while Figure 1 shows the historical and recent landings and TACC values for the main trevally stocks.

Landings from TRE 1 were $1,301 \mathrm{t}$ (86% TACC), below that of $1,408 \mathrm{t}$ in 2010-11, but higher than any landings of the previous decade. For TRE 2, catches have exceeded the TACC in 12 of the last 17 fishing years. Landings from TRE 7 have been under the TACC for the last nine fishing years.

Table 1: Reported landings (t) for the main QMAs from 1931 to 1982.

Year	TRE 1	TRE 2	TRE 3	TRE 7	Year	TRE 1	TRE 2	TRE 3	TRE 7
1931-32	9	0	0	0	1957	788	235	0	374
1932-33	6	0	0	0	1958	856	197	1	409
1933-34	30	0	0	3	1959	980	175	0	433
1934-35	27	0	0	3	1960	1141	191	1	686
1935-36	0	0	0	0	1961	1144	368	0	567
1936-37	0	0	0	0	1962	1415	431	0	658
1937-38	20	4	0	4	1963	1284	348	0	769
1938-39	53	10	2	8	1964	1329	395	2	639
1939-40	17	9	0	6	1965	1581	344	2	673
1940-41	12	13	0	7	1966	1568	382	0	1151
1941-42	17	6	0	4	1967	1121	472	1	1512
1942-43	90	1	0	1	1968	1425	504	0	1547
1943-44	190	2	0	1	1969	1428	474	0	1378
1944	401	2	0	19	1970	2010	490	0	1740
1945	307	9	0	23	1971	3060	779	1	2109
1946	316	12	2	19	1972	2738	946	0	2309
1947	317	8	1	28	1973	1950	616	0	2381
1948	432	7	0	34	1974	2365	687	0	2077
1949	291	9	0	39	1975	1470	361	0	1679
1950	402	39	0	60	1976	2659	1026	0	1994
1951	470	57	0	82	1977	3749	558	0	2176
1952	310	73	0	63	1978	3627	518	1	2381
1953	376	90	0	136	1979	2566	449	1	2658
1954	471	132	0	116	1980	1471	330	0	2545
1955	609	120	0	193	1981	1524	229	0	2957
1956	556	124	0	179	1982	2102	135	0	2548

Notes:

1. The 1931-1943 years are April-March but from 1944 onwards are calendar years.
2. Data up to 1985 are from fishing returns: Data from 1986 to 1990 are from Quota Management Reports.
3. Data for the period 1931 to 1982 are based on reported landings by harbour and are likely to be underestimated as a result of underreporting and discarding practices. Data includes both foreign and domestic landings. Data were aggregated to FMA using methods and assumptions described by Francis \& Paul (2013).

Table 2: Reported landings (t) of trevally by Fishstock from 1983 to 2013-14 and actual TACCs (t) from 1986-87 to 2013-14. QMS data from 1986-present.

Fishstock	$\begin{array}{r} \text { TRE } 1 \\ 1 \\ \hline \end{array}$		$\begin{array}{r} \text { TRE } 2 \\ 2 \\ \hline \end{array}$		$\begin{array}{r} \text { TRE } 3 \\ 3,4,5,6 \end{array}$		$\begin{aligned} & \text { TRE } 7 \\ & 7,8,9 \end{aligned}$		$\begin{array}{r}\text { TRE } 10 \\ 10 \\ \hline\end{array}$	
FMA (s)										
	Landings	TACC								
1983*	1534	-	77	-	3	-	2165	-	0	-
1984*	1798	-	335	-	1	-	1707	-	0	-
1985*	1887		162	-	1	-	1843		0	-
1986*	1431		161	-	3	-	1830		0	-
1986-87	982	1210	237	190	< 1	20	1626	1800	0	10
1987-88	1111	1210	267	219	< 1	20	1752	1800	0	10
1988-89	818	1413	177	235	< 1	20	1665	2010	0	10
1989-90	1240	1493	275	237	18	20	1589	2146	0	10
1990-91	1011	1495	273	238	8	22	2016	2153	0	10
1991-92	1169	1498	197	238	< 1	22	1367	2153	< 1	10
1992-93	1328	1505	247	241	< 1	22	1796	2153	<1	10
1993-94	1162	1506	230	241	< 1	22	2231	2153	0	10
1994-95	1242	1506	179	241	< 1	22	2138	2153	0	10
1995-96	1175	1506	211	241	< 1	22	2019	2153	0	10
1996-97	1174	1506	317	241	< 1	22	1843	2153	0	10
1997-98	1027	1506	223	241	3	22	2102	2153	0	10
1998-99	1469	1506	284	241	24	22	2148	2153	0	10
1999-00	1424	1506	309	241	3	22	2254	2153	0	10
2000-01	1049	1506	211	241	< 1	22	1888	2153	0	10
2001-02	1085	1506	243	241	< 1	22	1856	2153	0	10
2002-03	1014	1507	270	241	< 1	22	2029	2153	0	10
2003-04	1111	1507	251	241	< 1	22	2186	2153	0	10
2004-05	977	1507	319	241	< 1	22	1945	2153	0	10
2005-06	1149	1507	417	241	< 1	22	1957	2153	0	10
2006-07	790	1507	368	241	< 1	22	1739	2153	0	10
2007-08	847	1507	230	241	< 1	22	1797	2153	0	10
2008-09	855	1507	302	241	< 1	22	2018	2153	0	10
2009-10	814	1507	261	241	< 1	22	1966	2153	0	10
2010-11	1408	1507	245	241	< 1	22	1922	2153	0	10
2011-12	1050	1507	186	241	< 1	22	1895	2153	0	10
2012-13	1301	1507	197	241	<1	22	1842	2153	0	10
2013-14	1431	1507	303	241	<1	22	1610	2153	0	10

(TRE)

Table 2 [Continued]

FMA (s)	Total	
	Landings	TACC
1983*	3779	-
1984*	3841	
1985*	3893	
1986*	3425	
1986-87	2845	2230
1987-88	3131	3259
1988-89	2651	3688
1989-90	3122	3906
1990-91	3308	3918
1991-92	2733	3921
1992-93	3371	3931
1993-94	3624	3932
1994-95	3559	3932
1995-96	3405	3932
1996-97	3333	3932
1997-98	3355	3932
1998-99	3925	3932
1999-00	3989	3932
2000-01	3148	3932
2001-02	3185	3933
2002-03	3313	3933
2003-04	3548	3933
2004-05	3241	3933
2005-06	3524	3933
2006-07	2897	3933
2007-08	2875	3933
2008-09	3175	3933
2009-10	3042	3933
2010-11	3575	3933
2011-12	3131	3933
2012-13	3340	3933
2013-14	3344	3933

Figure 1: Historical landings and TACCs for the three main TRE stocks. TRE 1 (Auckland). [Continued on next page]

Figure 1: Historical landings and TACCs for the three main TRE stocks. Top: TRE 1 (Auckland), Middle: TRE 2 (Central East), and Lower: TRE 7 (Challenger).

1.2 Recreational fisheries

Recreational fishers catch trevally by setnet and line methods. Although highly regarded as a table fish, some trevally may be used as bait.

1.2.1 Management controls

The main methods used to manage recreational harvests of trevally are minimum legal size limits (MLS), method restrictions and daily bag limits. Fishers can take up to 20 trevally as part of their combined daily bag limit (except in the South-East and Southland fisheries management areas including the Fiordland Marine Recreational Fishing Area where the limit is 30 within a combined daily bag limit of 30 finfish) and the MLS is 25 cm in all areas.

1.2.2 Estimates of recreational harvest

Recreational catch estimates are given in Table 3. There are two broad approaches to estimating recreational fisheries harvest: the use of onsite or access point methods where fishers are surveyed or counted at the point of fishing or access to their fishing activity; and, offsite methods where some form of post-event interview and/or diary are used to collect data from fishers.

The first estimates of recreational harvest for trevally were calculated using an offsite approach, the offsite regional telephone and diary survey approach. Estimates for 1996 came from a national telephone and diary survey (Bradford 1998). Another national telephone and diary survey was carried out in 2000 (Boyd \& Reilly 2005) and a rolling replacement of diarists in 2001 (Boyd \& Reilly 2004 allowed estimates for a further year (population scaling ratios and mean weights were not re-estimated in 2001).

The harvest estimates provided by these telephone diary surveys are no longer considered reliable for various reasons. With the early telephone/diary method, fishers were recruited to fill in diaries by way of a telephone survey that also estimates the proportion of the population that is eligible (likely to fish). A "soft refusal" bias in the eligibility proportion arises if interviewees who do not wish to co-operate falsely state that they never fish. The proportion of eligible fishers in the population (and, hence, the harvest) is thereby under-estimated. Pilot studies for the 2000 telephone/diary survey suggested that this effect could occur when recreational fishing was established as the subject of the interview at the outset. Another equally serious cause of bias in telephone/diary surveys was that diarists who did not immediately record their day's catch after a trip sometimes overstated their catch or the number of trips made. There is some indirect evidence that this may have occurred in all the telephone/diary surveys (Wright et al 2004).

The recreational harvest estimates provided by the 2000 and 2001 telephone diary surveys are thought to be implausibly high for many species, which led to the development of an alternative maximum count aerial-access onsite method that provides a more direct means of estimating recreational harvests for suitable fisheries. The maximum count aerial-access approach combines data collected concurrently from two sources: a creel survey of recreational fishers returning to a subsample of ramps throughout the day; and an aerial survey count of vessels observed to be fishing at the approximate time of peak fishing effort on the same day. The ratio of the aerial count in a particular area to the number of interviewed parties who claimed to have fished in that area at the time of the overflight was used to scale up harvests observed at surveyed ramps, to estimate harvest taken by all fishers returning to all ramps. The methodology is further described by Hartill et al (2007).

This aerial-access method was first employed and optimised to estimate snapper harvests in the Hauraki Gulf in 2003-04. It was then extended to survey the wider SNA 1 fishery in 2004-05 and to provide estimates for other species, including trevally (Hartill et al 2007). This survey was repeated in 2011-12 (Hartill et al 2013).

In response to the cost and scale challenges associated with onsite methods, in particular the difficulties in sampling other than trailer boat fisheries, offsite approaches to estimating recreational fisheries harvest have been revisited. This led to the development and implementation of a national panel survey for the 2011-12 fishing year (Wynn-Jones et al 2014). The panel survey used face-to-face interviews of a random sample of 30,390 New Zealand households to recruit a panel of fishers and non-fishers for a full year. Panel members were contacted regularly about their fishing activities and catch information collected in standardised phone interviews.

The most recent aerial-access survey conducted in QMA 1 in 2011-12 (Hartill et al 2013) provides independent harvest estimates for comparison with those generated from the concurrent national panel survey. Both surveys appear to provide plausible results that corroborate each other TRE 1, and are therefore considered to be broadly reliable (Hartill et al 2013). Note that neither of these estimates includes catch taken on recreational charter vessels, or recreational catch taken under s111 general approvals.

Table 3: Recreational harvest estimates for trevally stocks ((Bradford 1998, Boyd \& Reilly 2005, Boyd et al 2004, Hartill et al 2007, Hartill et al 2013, MPI Wynn-Jones et al 2014). The telephone/diary surveys and earlier aerial-access survey ran from December to November but are denoted by the January calendar year. The surveys since 2010 have run through the October to September fishing year but are denoted by the January calendar year. Mean fish weights were obtained from boat ramp surveys (for the telephone/diary and panel survey harvest estimates).

Stock	Year	Method	Number of fish	Total weight (t)	CV
TRE 1	1996	Telephone/diary	194000	234	0.07
	2000	Telephone/diary	701000	677	0.13
	2001	Telephone/diary	449000	434	0.19
	2005	Aerial-access	-	105	0.18
	2012	Aerial-access	-	124	0.12
TRE 2	2012	Panel survey	130227	154	0.11
	1996	Telephone/diary	9000	13	0.19
	2000	Telephone/diary	153000	160	0.60
	2001	Telephone/diary	32000	339	0.23
TRE 3	2012	Panel survey	8866	10	0.25
	1996	Telephone/diary	2000	$3 \#$	-
	2000	Telephone/diary	10000	10	0.45
	2001	Telephone/diary	2000	12	0.46
TRE 7	2012	Panel survey	864	1	0.73
	1996	Telephone/diary	67000	70	0.11
	2000	Telephone/diary	69000	81	0.27
	2001	Telephone/diary	107000	124	0.21
	2012	Panel survey	20600	29	0.17

\#No harvest estimate available in the survey report, estimate presented is calculated as average fish weight for all years and areas multiplied by the number of fish estimated caught.

1.3 Customary non-commercial fisheries

Trevally is an important traditional and customary food fish for Maori. No quantitative information is available on the current level of customary non-commercial take.

1.4 Illegal catch

No quantitative information is available on the level of illegal trevally catch. An estimate of historical illegal catch is incorporated in the TRE 7 stock assessment model catch history (see Section 4.3.2).

1.5 Other sources of mortality

No quantitative estimates are available regarding the impact of other sources of mortality on trevally stocks. Trevally are known to occur in sheltered harbour and estuarine ecosystems particularly as juveniles. Some of these habitats are known to have suffered substantial environmental degradation.

2. BIOLOGY

Trevally are both pelagic and demersal in behaviour. Juvenile fish up to 2 years old are found in shallow inshore areas including estuaries and harbours. Young fish enter a demersal phase from about 1 year old until they reach sexual maturity. At this stage adult fish move between demersal and pelagic phases. Schools occur at the surface, in mid-water and on the bottom, and are often associated with reefs and rough substrate. Schools are sometimes mixed with other species such as koheru and kahawai. The occurrence of trevally schools at the surface appears to correlate with settled weather conditions rather than with a specific time of year.

Surface schooling trevally feed on planktonic organisms, particularly euphausids. On the bottom, trevally feed on a wide range of invertebrates.

Trevally are known to reach in excess of 40 years of age. The growth rate is moderate during the first few years, but after sexual maturity at 32 to 37 cm fork length (FL), the growth rate becomes very slow. The largest fish are typically around 60 cm FL and weigh about 4.5 kg , however much larger fish of 68 kg are occasionally recorded.

Fecundity is relatively low until females reach about 40 cm FL. They appear to be batch spawners, releasing small batches of eggs over periods of several weeks or months during the summer. Biological parameters relevant to stock assessment are shown in Table 4.

Table 4: Estimates of biological parameters.

3. STOCKS AND AREAS

There are no new data that would alter the stock boundaries given in previous assessment documents.

4. STOCK ASSESSMENT

4.1 TRE 1

The TRE 1 QMA is believed to contain two biological stocks: East Northland to Hauraki Gulf and Bay of Plenty. Stock assessments for each of these stocks were rejected by the Northern Inshore Working Group in 2015. The Bay of Plenty assessment was rejected on account of strong conflict between previously accepted abundance indices (standardised bottom trawl CPUE and Aerial Sightings) and catch-at-age data (for bottom trawl and purse seine fisheries). The East Northland assessment was not completed as the abundance index, based on standardised bottom trawl CPUE, was not accepted due to conflicting trends in the positive-catch and proportion-of-zero-catch models. Methods for producing an index of abundance for East Northland from bottom trawl catch and effort data are being investigated. There are few aerial sightings data for the East Northland area.

4.2 TRE 2

High annual variability in standardised CPUE indices, and narrow confidence intervals (Bentley 2014), led the Northern Inshore Working Group to conclude that trevally in TRE 2 are probably part of the TRE 1 biological stock in the Bay of Plenty, with abundance in TRE 2 fluctuating markedly according to the movement of fish into and out of this QMA. Stock assessments for TRE 2 will in future be done in conjunction with TRE 1.

4.3 TRE 7

The TRE 7 stock assessment was revised and updated in 2015 (Langley in prep). Recent analyses have revealed considerable differences in TRE 7 age composition data and trends in CPUE indices among the three main fishing areas within the TRE 7 fishstock; i.e. Ninety Mile Beach (NMB), South Taranaki Bight (STB) and the core area of the fishery between North Taranki Bight and Tauroa Point (KMNTB). The apparent spatial heterogeneity within TRE 7 indicated that assuming a single stock was not appropriate. Attempts to incorporate spatial structure within the TRE 7 assessment model were not successful due to inadequate historical catch-at-age data from the STB and NMB areas (Langley 2015). The final 2015 stock assessment was limited to the core area of the fishery (KMNTB) only. This area accounted for 60% of the total TRE 7 commercial catch from 1944 to 2012-13 and 70% of the catch from recent years (2010-2011 to 2012-13).

4.3.1 CPUE

A standardised CPUE index of abundance was used in the 2015 assessment (Table 5). The CPUE data set was comprised of catch and effort records from the single bottom trawl fishery targeting trevally or
snapper within the core area of the fishery (KMNTB area) during 1990-91 to 2012-13. Fishing effort records were aggregated by vessel fishing day in a format consistent with the CELR reporting format. The final data set excluded one of the vessels that dominated the fishery in recent years. The trend in catch rate of trevally for this vessel differed considerably from the remainder of the fleet and there were also marked differences in the overall age composition of the trevally catches taken by this vessel. (Langley in prep).

The standardised CPUE analysis included two components: a positive trevally catch component modelled assuming a Weibull error structure and a binomial model of the presence/absence of trevally in the vessel daily catch. The CPUE final index multiplied the annual indices from the separate models to derive a combined index.

The CPUE indices increase markedly after 2007-08. There were considerable changes in the operation of the fishery during that period related to an increased degree of targeting trevally following the reduction in the TACC for snapper in 2005-06. The CPUE standardisation accounts for a component of the change in the operation of the fishery, although it is unknown whether the shift in targeting is fully accounted for in the final CPUE indices.

Table 5: Standardised single trawl CPUE indices (relative year effects) from 1990-90 to 2012-13 (Langley in prep).

Fishing year	CPUE index	Fishing year	CPUE index
1989-90	-	$2004-05$	0.620
$1990-91$	1.291	$2005-06$	0.855
$1991-92$	1.202	$2006-07$	0.685
$1992-93$	0.862	$2007-08$	0.920
$1993-94$	1.181	$2008-09$	0.819
$1994-95$	0.980	$2009-10$	0.828
$1995-96$	0.888	$2010-11$	1.209
$1996-97$	0.830	$2011-12$	1.055
$1997-98$	0.782	$2012-13$	1.023
$1998-99$	0.992		
$1999-00$	0.764		
$2000-01$	0.678		
$2001-02$	0.805		
$2002-03$	0.882		
$2003-04$	0.783		

4.3.2 Catch history

Commercial catch records for TRE 7 date back to 1944. Before that time the stock is assumed to have been lightly exploited and close to its unexploited state. It is likely that reported catches prior to 1970 are underestimates of the true catch due to large-scale discarding of fish (James 1984). Total annual TRE 7 catches were apportioned by fishery area and fishing method (single and pair bottom trawl) (see Figure 2). The base assessment model included annual catches from the KMNTB area only. A separate fishery was configured to account for the catch by the single dominant vessel operating in the bottom trawl fishery in recent years.

Since 1944, there has also been a recreational and customary catch as well as an illegal or non-reported catch. For the purposes of modelling the KMNTB component of the TRE 7 stock, it is necessary to make allowance for mortality due to discarded fish, recreational catch, customary catch, and nonreported catch. The final catch history included in the assessment model is presented in (Table 6).

4.3.3 Catch at age

A time series of age frequency distributions is available from the target TRE 7 single trawl fishery within KMNTB from 1997-98 to 2012-13 (9 observations). The age sampling data from the recent, dominant single trawl vessel were excluded from the age frequency samples for 2009-10 and 2012-13. There are also some age frequency samples for the pair trawl method from the late 1990s and early 2000s (3 observations). Previous comparisons found no significant difference between the age composition of catches made by pair and single trawl methods (Hanchet 1999).

In addition, two sources of age frequency data are available from the 1970s: (1) a series covering the years 1971-74 derived from research sampling carried out by the vessel James Cook, and (2) a series
derived from market sampling carried out in the 1974-76 and 1978-79 fishing years (5 observations). There is considerable variability amongst the latter series with the result that these data were relatively uninformative in the assessment modelling and, hence, were down-weighted in the final model options.

4.3.4 Estimate of natural mortality (M)

Following previous assessments, natural mortality was assumed to be 0.10 based on an observed maximum age of about 40 years (using the regression method of Hoenig 1983). Estimates of stock status were sensitive to the value of natural mortality and the final model runs included a sensitivity run using a lower value of 0.083 , corresponding to an assumed maximum age of 50 years.

Table 6: Catch history (t) for the KMNTB area of the TRE 7 fishery including total annual reported commercial catch, estimated discarded (D) commercial catch, estimated non-reported commercial catch, recreational catch, and customary catch. (The year denotes the year at the end of the fishing year).

Year	Reported landings	D										
		Under- reported catch	Rec. catch	Cust. catch	Total	Year	Reported landings	D	Under- reported catch	Rec. catch	Cust. catch	Total

Figure 2. Total TRE 7 commercial catch history formulated for the stock assessment, apportioned by fishing method and sub-area of TRE 7.

4.3.5 Model structure

The age structured population model encompasses the 1944-2014 period. The model structure includes two sexes and 1-40 year age classes, including an accumulating age class for older fish ($40+$ years). The age structure of the population at the start of the model is assumed to be in an unexploited, equilibrium state. The biological parameters are those used in previous assessments and equivalent for the two sexes (see Table 4). For the base model, natural mortality was invariant with age at a value of 0.1. A Beverton-Holt spawning stock - recruitment relationship (SRR) was assumed with steepness (h) fixed at 0.85 and the standard deviation of the natural logarithm of recruitment $\left(\sigma_{R}\right)$ was fixed at 0.6 . Recruitment deviates were estimated for the 1970-2008 years.

Separate fishery selectivities were estimated for the main bottom trawl fishery (double normal parameterisation) and the pair trawl fishery (logistic), and a double normal selectivity was estimated for the James Cook research trawl age samples. The CPUE indices were linked to the vulnerable biomass of the main bottom trawl fishery.

The model was fitted to: (a) a combined (either trevally or snapper targeted) bottom trawl CPUE index for the years 1990 to 2013, (b) a research sampling proportions-at-age series for 1971 to 1974, (c) a market sampling proportions-at-age series covering 1974 to 1976 and 1978 to 1979, (d) a commercial proportions-at-age series for 1997 to 2013. The weighting of the individual data sets followed the 1442
approach of Francis (2011). The final assessment model adopted a CV of 16% for the time-series of CPUE indices. The recent bottom trawl age composition data were assigned a moderately high weighting in the likelihood (ESS of about 50).

During model development, a range of options was investigated to examine the key structural assumptions of the model. The most influential assumption was the value of natural mortality, and a lower value of natural mortality (0.083) was used as a key model sensitivity. An additional sensitivity run was conducted assuming a lower value of steepness for the SRR (0.7 compared to 0.85), and with $\mathrm{M}=0.1$).

The base model estimates a low selectivity of older fish for the BT fishery. The age composition data appear to be uninformative regarding the selectivity of the oldest age classes and, hence, the selectivity was sensitive to the prior for the associated parameters. An additional selectivity was conducted that assumed a prior value which corresponded to a high selectivity of the older age classes (0.8 for the oldest age class) (BTselect).

The base model encompassed the KMNTB area only. The spatial stratification of the TRE 7 fishstock was primarily based on differences in the age composition of trevally amongst sub-areas of TRE 7. However, limited sampling has been conducted in the other areas and, while some differences in age structure of the catch are apparent among areas, there are some similarities in the age structures from the three areas. Spatial differences in age composition could be attributable to differences in fishery selectivity and/or variability in the sampled component of the catch. On that basis, an alternative model was formulated based on a single stock hypothesis, including the entire catch from TRE 7 within the framework of the KMNTB model (AllCatch). The AllCatch model provides estimates of yield that are consistent with the total TRE 7 catch and TACC.

Further model runs were undertaken to explore the influence of two key data sets in the assessment: the recent (2007-2013) CPUE indices and the 1998-2001 BPT age composition data.

Model projections for a five year period (2015-19) were conducted using the AllCatch model. These projections were conducted with annual commercial catch assumed to be either at the level of the TACC or equivalent to the annual catch from the 2012-13 fishing year and included additional allowances for customary and recreational catch. In the projection period, recruitment variation was incorporated in the model with the recruitment deviates simply constrained by the assumed variation in the deviates (σ_{R} $=0.60$). Parameter uncertainty was determined using a Markov chain Monte Carlo (MCMC) approach.

4.3.6 Results

The assessment models indicate that the spawning biomass gradually declined during the 1940s and 1950s. The rate of decline increased in the 1960s and 1970s consistent with the increase in the total annual catch. The extent of the reduction in the spawning biomass during the 1970s was informed by the 1998-2001 age composition data from the BPT fishery. The proportion of older fish included in the age composition provide information regarding the level of fishing mortality in the preceding period. Thus, the estimation of the level of depletion will also be influenced by the assumed value of M (i.e. higher depletion with lower M) (Figure 3). The spawning biomass remained relatively stable during the late 1990s and 2000s.

Figure 3: Spawning biomass (female only) trajectory from MCMC model fits for the base model, with $\mathbf{9 5 \%}$ credibility intervals.

The stock status of the KMNTB component of TRE 7 has been assessed relative to a default target biomass level of $40 \% S B_{0}$ and associated soft limit and hard limits of 20% and $10 \% S B_{0}$ (Ministry of Fisheries 2008). Stock status conclusions are specific to the area encompassed by the base assessment model (i.e. KMNTB). For the base model, spawning biomass was maintained at about $50 \% S B_{0}$ during the late 1990s and 2000s and there is a very low probability that the biomass declined below the target biomass during that period (Figure 3). The spawning biomass is estimated to have increased from 2010 to 2014 and the base model estimates that current biomass ($S B_{2014}$) is above the target biomass level (Tables 7 and 8).

Current levels of fishing mortality are estimated to be below the $F_{S B 40 \%}$ level for all model options with the base level of natural mortality $(M=0.1)$. The model sensitivity with the lower M estimated current fishing mortality to be at about the $F_{S B 40 \%}$ level (Table 8 and Figure 4).

Figure 4: Fishing mortality (female only) relative to the overfishing threshold ($F_{S B 40 \%}$) (median of MCMCs) for the base model run. 95% credibility intervals were derived from MCMC. The dashed, black horizontal line represents the default overfishing threshold.

Stock status from the model sensitivities is comparable to the base model, although the status is less optimistic for the Low M sensitivity (Tables 7-9 and Figure 5). For the Low M sensitivity, current biomass was estimated to be at about the target biomass level with no associated risk that the stock biomass has approached the biomass limit reference points. The stock status from the AllCatch model, that includes all the TRE 7 catch, is very similar to the base model, although the estimate of equilibrium yield is considerably higher, which is consistent with the magnitude of catch included in the AllCatch model.

Table 7: Biomass and yield estimates (medians, with $\mathbf{9 5 \%}$ confidence intervals in parentheses) for the base model and sensitivities. Estimates are derived from MCMC analysis. Model results are limited to the KMNTB area of TRE 7, except for the AllCatch sensitivity which represents the entire TRE 7 area.

Model option	$\boldsymbol{S B}_{\boldsymbol{0}}$	$\boldsymbol{S B}_{2014}$	$\boldsymbol{S B}_{40 \%}$	$\boldsymbol{S B}_{2014} / \mathbf{S B}_{\boldsymbol{0}}$	$\boldsymbol{S B}_{\mathbf{2 0 1 4}} / \mathbf{S B}_{\mathbf{4 0 \%}}$
Base	22339	11526	8935	0.510	1.275
M low	$(18493-36213)$	$(7384-23808)$	$(7397-14485)$	$(0.393-0.669)$	$(0.982-1.672)$
	21026	8399	8410	0.399	0.998
Steep70	$(18692-26268)$	$(5774-13446)$	$(7477-10507)$	$(0.305-0.525)$	$(0.762-1.313)$
	23557	11483	9423	0.489	1.224
BTselect	$(19723-39933)$	$(7384-26688)$	$(7889-15973)$	$(0.368-0.682)$	$(0.92-1.704)$
	20436	9698	8174	0.474	1.184
AllCatch	$(17787-27121)$	$(6708-16116)$	$(7115-10848)$	$(0.371-0.619)$	$(0.927-1.549)$
	34363	16873	13745	0.49	1.226
	$(29348-50375)$	$(11247-32361)$	$(11739-20150)$	$(0.381-0.66)$	$(0.951-1.649)$

Table 8: Estimates of target fishing mortality $\left(F_{S B 40 \%}\right)$ and current fishing mortality (F_{2014}) relative to the target level (medians, with 95% confidence intervals in parentheses) for the base model and sensitivities. Estimates are derived from MCMC analysis. Model results are limited to the KMNTB area of TRE 7, except for the AllCatch sensitivity which represents the entire TRE 7 area.

Model option	$\boldsymbol{F}_{\text {SB40\% }}$	$\boldsymbol{F}_{2014} / \boldsymbol{F}_{\text {SB40\% }}$	$\boldsymbol{P r}\left(\boldsymbol{F}_{2014}<\boldsymbol{F}_{\text {SB40\% }}\right)$
Base	$0.0877(0.0844-0.0904)$	$0.678(0.338-1.024)$	0.969
M low	$0.0768(0.0742-0.079)$	$1.067(0.69-1.517)$	0.365
Steep70	$0.077(0.0741-0.0795)$	$0.776(0.351-1.183)$	0.851
BTselect	$0.0885(0.0855-0.0908)$	$0.796(0.49-1.12)$	0.902
AllCatch	$0.0872(0.0843-0.0896)$	$0.591(0.319-0.862)$	0.999

Table 9: Probability $(P r)$ of the KMNTB component of the TRE 7 stock being above key reference points in 2014. Estimates are derived from MCMC analysis.

	$\boldsymbol{P r}\left(\boldsymbol{B}_{2014}>\mathbf{0 . 1 B}_{0}\right)$	$\operatorname{Pr}\left(\boldsymbol{B}_{\mathbf{2 0 1 4}}>\mathbf{0 . 2 \boldsymbol { B } _ { 0 })}\right.$	$\boldsymbol{P r}\left(\mathbf{B}_{\mathbf{2 0 1 4}}>\mathbf{0 . 4 \boldsymbol { B } _ { 0 })}\right.$
Base	1.000	1.000	0.961
M low	1.000	1.000	0.492
Steep70	1.000	1.000	0.899
BTselect	1.000	1.000	0.909
AllCatch	1.000	1.000	0.931

Figure 5: Median spawning biomass (female only) trajectories from MCMC model fits for the base model and sensitivities. The horizontal line in the right panel represents the target biomass level.

Further model runs were undertaken to explore the influence of two key data sets in the assessment. There is some concern regarding the reliability of the recent (2007-2013) CPUE indices due to changes in the targeting behaviour of the trawl fleet. A model trial was conducted that down-weighted the later indices (by increasing the CV to 30%). The BPT age composition data from 1998-2001 are influential in determining the extent of the stock depletion during the preceding period. A model trial was conducted that assigned a high weight (ESS 200) to these BPT age data to ensure the estimated levels of fishing mortality were entirely consistent with the age composition data (i.e. to ensure a good fit to the "plus group" in the age composition). Both model trials resulted in a reduction in the current stock status relative to $S B_{0}$ compared to the base model (by approximately 10%) although in both cases current stock status was estimated to be above the target biomass level. On that basis, it was concluded that the overall conclusions of the assessment were not overly sensitive to either set of data.

4.3.7 Yield estimates and projections

Stock projections, for a five-year period, were conducted for the AllCatch model. The projections used either the TACC or a constant catch equivalent to the 2013 catch level; i.e., 2153 t for the TACC projection and 1952 t for the 2013 catch projection. For the TACC projection, the spawning biomass is projected to decline slightly (by 3\%) during the projection period, although there is a low probability that the biomass will decline below the target biomass level (Table 10). For the constant catch projection, projected biomass is maintained at the current (2014) level. The $F_{40 \% B O}$ yield at the 2014 biomass level is $2949 \mathrm{t}(1987-5557 \mathrm{t})$ for the AllCatch model that includes the entire TRE 7 catch. The current TACC is 2153 t .

Table 10: Stock status in the terminal year (2019) of the five year forecast period for the AllCatch model using either the current TACC or the 2013 catch in the projections.

Model option	SB $\mathbf{2 0 1 9} / \mathbf{S B} \boldsymbol{B}_{0}$	$\operatorname{Pr}\left(\mathbf{S B}_{2019}>\mathbf{X \%} \% \mathrm{SB}_{0}\right)$		
		10\%	20\%	40\%
AllCatch (with TACC projection)	0.478 (0.355-0.659)	1.000	1.000	0.863
AllCatch (with 2013 catch projection)	0.494 (0.374-0.671)	1.000	1.000	0.924

(TRE)

5. STATUS OF THE STOCKS

- TRE 1

There is no accepted stock assessment for TRE 1.

- TRE 2

This is no accepted stock assessment for TRE2. Since trevally in TRE 2 are thought to be part of the biological stock located in the Bay of Plenty (TRE 1), future assessments for TRE 2 will be undertake n in conjunction with TRE 1.

- TRE 7

Stock Structure Assumptions
Trevally occurring along the west coast of the North Island are believed to comprise a single stock.

Stock Status	
Year of Most Recent Assessment	2015
Assessment Runs Presented	A base case model based on the main fishery area only (Kaipara-Manukau-Northern Taranaki Bight; KMNTB); this represents about 70\% of recent (2010-2011 to 2012-13) TRE 7 catches
Reference Points	Interim Target: 40\% $S B_{0}$ Soft Limit: $20 \% S B_{0}$ Hard Limit: $10 \% ~ S B_{0}$ Overfishing threshold: $F_{40 \sigma_{B O}}$
Status in relation to Target	Very Likely (> 90\%) to be at or above the target.
Status in relation to Limits	Soft Limit: Very Unlikely ($<10 \%$) to be below Hard Limit: Exceptionally Unlikely (< 1\%) to be below
Status in relation to Overfishing	Overfishing is Very Unlikely (<10\%) to be occurring

Historical Stock Status Trajectory and Current Status

Spawning biomass (female only) relative to the interim target biomass (SB40\%) (median of MCMCs) for the base model run. $\mathbf{9 5 \%}$ credible intervals were derived from MCMC. The dashed, black horizontal line represents the default target biomass level and the grey line represents the default soft limit ($20 \% \quad S B_{0}$).

Fishery and Stock Trends	
Recent Trend in Biomass or Proxy	Spawning biomass is estimated to have declined gradually during the 1940s and 1950s. The rate of decline increased from the 1960s to the mid-1980s consistent with the increase in the total annual catch. Since the mid-1990s spawning biomass has remained relatively stable.
Recent Trend in Fishing Mortality or Proxy	Fishing mortality rates are estimated to have been relatively stable since the late 1990s, at a level below $F_{S B 40 \%}$. Annual fishing mortality relative to the level of fishing mortality that corresponds to the default target spawning biomass from the KMNTB base assessment model. The solid line represents the median of the MCMC samples and the shaded area represents the $\mathbf{9 5 \%}$ credible interval.
Other Abundance Indices	-
Trends in Other Relevant Indicators or Variables	

Projections and Prognosis	
Stock Projections or Prognosis	Model projections indicate that the biomass of TRE 7 is About as Likely as Not (40-60\%) to decline over the next 5 years (to 2019), but with low probability of dropping below 40\% SB 0 by 2019.
Probability of Current Catch or TACC causing decline below Limits (5 years)	Exceptionally Unlikely $(<1 \%)$ to decline below Soft and Hard Limits
Probability of Current Catch or TACC causing Overfishing to continue or to commence	Very Unlikely ($<10 \%)$

Assessment Methodology and Evaluation					
Assessment Type	Level 1 - Full Quantitative Stock Assessment				
Assessment Method	Age-structured Stock Synthesis model with Bayesian estimation of posterior distributions				
Assessment Dates	Latest assessment: 2015	Next assessment: 2020			
Overall assessment quality rank	1-High Quality				

(TRE)

Main data inputs (rank)	- Standardised CPUE index of abundance - Proportions at age data from the commercial fisheries and trawl surveys	1 - High Quality
Data not used (rank)	- Bottom pair trawl CPUE, Quality 1973-74 to 1984-85	3 - Low Quality: does not index abundance
Changes to Model Structure and Assumptions	The stock assessment was based on data from KMNTB only. The fishery catch, CPUE and age composition data sets were reconfigured accordingly. The model was re-run with the total TRE 7 catch to calculate the total expected yield at $F_{S B 40 \%}$ Projections were based on the model for the entire area, using both the 2014 catch and the 2014 TACC.	
Major Sources of Uncertainty	- Reliability of CPUE as an index of stock abundance as a result of recent increases in the degree of targeting of trevally - Whether results for the KMNTB sub-area reflect changes in biomass in the other two sub-areas within TRE 7	
- Reliability of the pair trawl age composition data (1998-2001),		
which strongly influence estimates of B_{0} and exploitation rates		
during the period of peak catch		

Qualifying Comments

- The stock assessment was based on the KMNTB sub-area only, and the extent to which it is reflective of the other two (smaller) sub-areas is unknown.

Fishery Interactions

Main QMS bycatch species are snapper, red gurnard, John dory and tarakihi.

6. FOR FURTHER INFORMATION

Annala, J. H., K. J. Sullivan, and C. J. O’Brien.(1999). "Report from the Fishery Assessment Plenary, April 1999: stock assessments and yield estimates. 430 p." Unpublished report held in NIWA library, Wellington (1999).
Annala, J H et al (Comps.) (2004) Report from the Fishery Assessment Plenary, May 2004: stock assessment and yield estimates. (Unpublished report held in NIWA library, Wellington.)
Bradford, E (1997) Estimated recreational catches from Ministry of Fisheries North region marine recreational fishing surveys, 1993-94. New Zealand Fisheries Assessment Research Document 1997/7. 16 p. (Unpublished report held in NIWA library, Wellington.)
Bradford, E (1998) Harvest estimates from the 1996 national recreational fishing surveys. New Zealand Fisheries Assessment Research Document 1998/16. 27 p. (Unpublished report held in NIWA library, Wellington.)
Boyd, R O; Gowing, L; Reilly, J L (2004) 2000-2001 National marine recreational fishing survey: diary results and harvest estimates. Draft New Zealand Fisheries Assessment Report. (Unpublished report held by Ministry for Primary Industries.)
Boyd, R O; Reilly, J L (2002) 1999/2000 National marine recreational fishing survey: harvest estimates. Draft New Zealand Fisheries Assessment Report for Ministry of Fisheries project REC1998-03 obj. 2. (Unpublished report held by Ministry for Primary Industries.)
Francis, M P; Bradford, E; Paul, L J (1999) Trevally catch per unit effort in TRE 7. New Zealand Fisheries Assessment Research Document 1999/13. 27 p. (Unpublished report held in NIWA library, Wellington.)
Gilbert, D J (1988) Trevally. New Zealand Fisheries Assessment Research Document 1988/29. 28 p. (Unpublished report held by NIWA library.)
Hanchet, S M (1999) Stock assessment of Trevally (Caranx georgianus) in TRE 7. New Zealand Fisheries Assessment Research Document 1999/55. 20 p. (Unpublished report held by NIWA library.)
Hartill, B; Bian, R; Armiger, H; Vaughan, M; Rush, N (2007) Recreational marine harvest estimates of snapper, kahawai, and kingfish in QMA 1 in 2004-05. New Zealand Fisheries Assessment Report 2007/26. 44 p
Hartill, B (Draft) Review of methods used to estimate recreational harvests. Draft report held by MPI. Project code: REC2004-06.
Hartill, B.; Bian, R.; Rush, N.; Armiger, H. (2013). Aerial-access recreational harvest estimates for snapper, kahawai, red gurnard, tarakihi and trevally in FMA 1 in 2011-12. New Zealand Fisheries Assessment Report 2013/70. 44 p.
James, G D (1980) Tagging experiments on trawl-caught trevally, Caranx georgianus, off north-east New Zealand. New Zealand Journal of Marine and Freshwater Research 14 (3): 249-254.
James, G D (1984) Trevally. Caranx georgianus: age determination, population biology and fishery. Ministry of Agriculture and Fisheries. Fisheries Research Bulletin; 25.51 p.
Kendrick, T H; Bentley, N (2010) Fishery characterisation and catch-per-unit-effort indices for trevally in TRE 7; 1989-90 to 2007-08. New Zealand Fisheries Assessment Report 2010/41.
Langley, A D (2001) Length and age composition of trevally in commercial landings from TRE 1 and TRE 7, 1999-2000. New Zealand Fisheries Assessment Report 2001/42. 32 p.

TREVALLY (TRE)

Langley, A D (2002a) Length and age composition of trevally in commercial landings from TRE 1 and TRE 7, 2000-01. New Zealand Fisheries Assessment Report 2002/19. 34 p.
Langley, A D (2002b) Analysis of catch and effort data from the TRE 7 fishery. New Zealand Fisheries Assessment Report 2002/32. 28 p.
Langley, A D (2003) Length and age composition of trevally in commercial landings from TRE 1, 2001-02. New Zealand Fisheries Assessment Report 2003/48. 18 p
Langley, A D (2004) Length and age composition of trevally (Pseudocaranx dentex) in commercial landings from the TRE 1 purse-seine fishery, 2002-03. New Zealand Fisheries Assessment Report 2004/39. 17 p
Langley, A D (in prep.) Stock assessment of TRE 7. Draft New Zealand Fisheries Assessment Report.
Langley, A D; Maunder, M (2009) Stock assessment of TRE 7.New Zealand Fisheries Assessment Report 2009/49. 42 p.
Maunder, M N; Langley, A D (2004) Integrating the standardisation of catch-per-unit-effort into stock assessment models: testing a population dynamics model and using multiple data types. Fisheries Research 70 (2-3): 389-395
McKenzie, A (2008) Standardised CPUE analysis and stock assessment of the west coast trevally fishery (TRE 7). New Zealand Fisheries Assessment Report 2008/44.
Taylor, P R (In Press) Developing indices of relative abundance from observational aerial sightings of inshore pelagic finfish; step 1, exploring the data. Draft New Zealand Fisheries Assessment Report. 66 p. Draft report held by MPI.
Teirney, L D; Kilner, A R; Millar, R E; Bradford, E; Bell, J D (1997) Estimation of recreational catch from 1991/92 to 1993/94. New Zealand Fisheries Assessment Research Document 1997/15. 43 p. (Unpublished report held by NIWA library, Wellington.)
Walsh, C; McKenzie, J M (2010) Review of length and age sampling for trevally in TRE 1 and TRE 7. New Zealand Fisheries Assessment Report 2010/09. 27 p.
Walsh, C; McKenzie, J M; Ó Maolagáin, C; Buckthought, D; Blackwell, R; James, G D; Rush, N (2010) Length and age composition of commercial trevally landings in TRE 1 and TRE 7, 2006-07. New Zealand Fisheries Assessment Report 2010/9.
Walsh, C; McKenzie, J; Ó Maolagáin, C; Stevens, D (1999) Length and age composition of trevally in commercial landings from TRE 1 and TRE 7, 1997-98. NIWA Technical Report 66.

