BIGEYE TUNA (BIG)

(Thunnus obesus)

1. FISHERY SUMMARY

Bigeye tuna were introduced into the QMS on 1 October 2004 under a single QMA, BIG 1, with allowances (t), TACC, and TAC in Table 1.

Table 1: Recreational and Customary non-commercial allowances, TACC and TAC (all in tonnes) by Fishstock.

		Customary non-commercial			
Fishstock	Recreational Allowance	Allowance	Other mortality	TACC	TAC
BIG 1	8	4	14	714	740

Bigeye were added to the Third Schedule of the 1996 Fisheries Act with a TAC set under s14 because bigeye is a highly migratory species, and it is not possible to estimate MSY for the part of the stock that is found within New Zealand fisheries waters.

Management of the bigeye stock throughout the Western and Central Pacific Ocean (WCPO) is the responsibility of the Western and Central Pacific Fisheries Commission (WCPFC). Under this regional convention New Zealand is responsible for ensuring that the management measures applied within New Zealand fisheries waters are compatible with those of the Commission.

At its second annual meeting (2005) the WCPFC passed a Conservation and Management Measure (CMM) (this is a binding measure that all parties must abide by) relating to conservation and management of tunas. Key aspects of this resolution were presented in the 2006 Plenary document. A number of subsequent CMMs that impact on the catches of bigeye have since been approved by the WCPFC.

At its annual meeting in 2014 the WCPFC approved CMM 2014-01. The aim of this CMM for bigeye is to reduce the fishing mortality rate for bigeye to a level no greater than Fmsy. This objective shall be achieved through a step by step approach through 2017 in accordance with the CMM. This measure is

BIGEYE TUNA (BIG)

large and detailed with numerous exemptions and provisions. Reductions in fishing mortality are being attempted through seasonal fish aggregating device (FAD) closures, high seas area closures (in high seas pockets) for the purse seine fleets, purse seine effort limits, longline effort reductions, bigeye longline catch limits by flag, as well as other methods. This measure was amended and updated in 2015 through CMM2015-01.

1.1 Commercial fisheries

Commercial catches by distant water Asian longliners of bigeye tuna, in New Zealand fisheries waters, began in 1962 and continued under foreign license agreements until 1993. Bigeye were not a primary target species for these fleets and catches remained modest with the maximum catch in the 1980s reaching 680 t. Domestic tuna longline vessels began targeting bigeye tuna in 1990. There was an exponential increase in the number of hooks targeting bigeye which reached a high of approximately 6.6 million hooks in 2000-01 and then declined thereafter.

Catches from within New Zealand fisheries waters are very small (0.2\% average for 2001-2009) compared to those from the greater stock in the WCPO (Tables 2 and 3). Figure 1 shows historical landings and TACC values for BIG 1 and BIG ET. Figure 1 also shows historical longline fishing effort. In contrast to New Zealand, where bigeye are taken almost exclusively by longline, 40% of the WCPO catches of bigeye are taken by purse seine and other surface gears (e.g., ring nets).

1.2 Recreational fisheries

Recreational fishers make occasional catches of bigeye tuna while trolling for other tunas and billfish, but the recreational fishery does not regularly target this species. There is no information on the size of the catch.

1.3 Customary non-commercial fisheries

An estimate of the current customary catch is not available, but it is considered to be low.

1.4 Illegal catch

There is no known illegal catch of bigeye tuna in the EEZ.

1.5 Other sources of mortality

The estimated overall incidental mortality rate from observed longline effort is 0.23% of the catch. Discard rates are 0.34% on average (from observer data), of which approximately 70% are discarded dead (usually because of shark damage). Fish are also lost at the surface in the longline fishery, 0.09% on average (from observer data), of which 100% are thought to escape alive.

Figure 1: [Top] Bigeye catch by foreign licensed and New Zealand vessels from 1979-80 to 2014-15 within New Zealand waters (BIG 1) [Middle]. Bigeye catch by foreign licensed and New Zealand vessels on the high seas from 2001-02 to 2014-15 for New Zealand vessels fishing on the high seas (BIG ET) (Anon 2012) and fishing effort (number of hooks set) for all high seas New Zealand flagged surface longline vessels from 1990-91 to 201415. [Bottom] Fishing effort (number of hooks set for all domestic vessels (including effort by foreign vessels chartered by NZ fishing companies), from 1979-80 to 2014-15.

BIGEYE TUNA (BIG)

Table 2: Reported total New Zealand within EEZ landings* (\mathbf{t}, landings from the Western and Central Pacific Ocean (t) of bigeye tuna by calendar year from 1991 to present, and NZ ET catch estimates from 2001 to present.

Year	landings	Total landings	$\begin{array}{r} \text { NZ ET } \\ \text { SPC } \\ \text { estimate } \end{array}$	Year	landings	Total landings	$\begin{array}{r} \text { NZ ET } \\ \text { SPC } \\ \text { estimate } \end{array}$	Year	landings (t)	Total landings	$\begin{array}{r} \text { NZ ET } \\ \text { SPC } \\ \text { estimate } \end{array}$
1991	44	100608		1999	421	150364		2007	213	134258	651
1992	39	119624		2000	422	133449		2008	133	144101	713
1993	74	103557		2001	480	136153	230	2009	254	149545	204
1994	71	118759		2002	200	161996	593	2010	132	126458	134
1995	60	107406		2003	205	129955	383	2011	174	146254	125
1996	89	110276		2004	185	178556	1198	2012	154	158573	95
1997	142	152862		2005	176	141342	353	2013	110	145883	81
1998	388	168393		2006	178	151646	997	2014	122	154601	185
								2015	81	134682	20

Source: Licensed Fish Receiver Returns, Solander Fisheries Ltd, Anon. (2006), Lawson (2008), WCPFC5-2008/IP11 (Rev. 2), Williams \& Terawasi (2011) and WCPFC Yearbook 2012 Anon (2013).
*New Zealand purse seine vessels operating in tropical regions also catch small levels of bigeye when fishing around Fish Aggregating Devices (FAD). These catches are not included here at this time as the only estimates of catch are based on analysis of observer data across all fleets rather than specific data for NZ vessels. Bigeye catches are combined with yellowfin catches on most catch effort forms.

Table 3: Reported catches and landings (t) of bigeye tuna by fleet and Fishing Year. NZ: New Zealand domestic and charter fleet, ET: catches outside these areas from New Zealand flagged longline vessels, JPNFL: Japanese foreign licensed vessels, KORFL: foreign licensed vessels from the Republic of Korea, and LFRR: Estimated landings from Licensed Fish Receiver Returns.

	BIG 1 (all FMAs)					
	Fishing Year	JPNFL	KORFL	NZ/MHR	Total	LFRR

The majority of bigeye tuna (88%) are caught in the bigeye tuna target surface longline fishery (Figure 2). While bigeye are the target, albacore make up the bulk of the catch (34\%) (Figure 3). Longline fishing effort is distributed along the east coast of the North Island and the south west coast of the South Island. The west coast South Island fishery predominantly targets southern bluefin tuna, whereas the east coast of the North Island targets a range of species including bigeye, swordfish, and southern bluefin tuna.

Figure 2: A summary of the proportion of landings of bigeye tuna taken by each target fishery and fishing method for 2012-13. The area of each circle is proportional to the percentage of landings taken using each combination of fishing method and target species. The number in the circle is the percentage. $S L L=$ surface longline (Bentley et al 2013).

Figure 3: A summary of species composition of the reported bigeye target surface longline catch for 2012-13. The percentage by weight of each species is calculated for all surface longline trips targeting bigeye tuna (Bentley et al 2013).

2. BIOLOGY

Bigeye tuna are epi-pelagic opportunistic predators of fish, crustaceans and cephalopods generally found within the upper few hundred metres of the ocean. Tagged bigeye tuna have been shown to be capable of movements of over 4000 nautical miles over periods of one to several years. Juveniles and small adults school near the surface in tropical waters while adults tend to live in deeper water. Individuals found in New Zealand waters are mostly adults. Adult bigeye tuna are distributed broadly across the Pacific Ocean, in both the Northern and Southern Hemispheres and reach a maximum size of 210 kg and maximum length of 250 cm . The maximum reported age is 11 years old and tag recapture data indicate that significant numbers of bigeye reach at least 8 years old. Spawning takes place in the equatorial waters of the Western Pacific Ocean (WPO) in spring and early summer.

Natural mortality and growth rates are both estimated within the stock assessment. Natural mortality is assumed to vary with age with values about 0.5 for bigeye larger than 40 cm . A range of von Bertalanffy growth parameters has been estimated for bigeye in the Pacific Ocean depending on area (Table 4).

BIGEYE TUNA (BIG)

Table 4: Biological growth parameters for bigeye tuna, by country.

Country	$\mathrm{L}_{\infty}(\mathrm{cm})$	K	t_{0}
Mexico	169.0	0.608	
French Polynesia	187.0	0.380	
Japan	195.0	0.106	-1.13
Hawaii	196.0	0.167	
Hawaii	222.0	0.114	
Hawaii	220.0	0.183	

3. STOCKS AND AREAS

Bigeye tuna are distributed throughout the tropical and sub-tropical waters of the Pacific Ocean. Analysis of mtDNA and DNA microsatellites in nearly 800 bigeye tuna failed to reveal significant evidence of widespread population subdivision in the Pacific Ocean (Grewe \& Hampton 1998). While these results are not conclusive regarding the rate of mixing of bigeye tuna throughout the Pacific, they are broadly consistent with the results of SPC's and IATTC's tagging experiments on bigeye tuna. Before 2008, most bigeye tuna tagging in the Pacific occurred in the far eastern Pacific (east of about $120^{\circ} \mathrm{W}$) and in the western Pacific (west of about 180°). While some of these tagged bigeye were recaptured at distances from release of up to 4000 nautical miles over periods of one to several years, the large majority of tag returns were recaptured much closer to their release points (Schaefer \& Fuller 2002; Hampton \& Williams 2005). Since 2008, bigeye tuna tagging by the Pacific Tuna Tagging Programme has been focussed in the equatorial central Pacific, between 180° and $140^{\circ} \mathrm{W}$. Returns of both conventional and electronic tags from this programme have been suggestive of more extensive longitudinal, particularly west to east, displacements (Schaefer et al submitted). It is hypothesised that while bigeye tuna in the far eastern and western Pacific may have relatively little exchange, those in the central part of the Pacific between about 180° and $120^{\circ} \mathrm{W}$ may mix more rapidly over distances of $1000-3000$ nautical miles. In any event, it is clear that there is extensive movement of bigeye across the nominal WCPO/EPO boundary of $150^{\circ} \mathrm{W}$. While stock assessments of bigeye tuna are routinely undertaken for the WCPO and EPO separately, these new data suggest that examination of bigeye tuna exploitation and stock status on a Pacific-wide scale, using an appropriately spatially structured model, should be a high priority.

4. ENVIRONMENTAL AND ECOSYSTEM CONSIDERATIONS

The figures and tables in this section were updated and additional text included for the November 2016 Fishery Assessment Plenary following review of the text by the Aquatic Environment Working Group in 2015. This summary is from the perspective of the bigeye tuna longline fishery; a more detailed summary from an issue-by-issue perspective is available in the Aquatic Environment and Biodiversity Annual Review where the consequences are also discussed (www.mpi.govt.nz/document-vault/11521) (Ministry for Primary Industries 2016).

4.1 Role in the ecosystem

Bigeye tuna (Thunnus obesus) are epi-pelagic opportunistic predators of fish, crustaceans and cephalopods generally found within the upper few hundred meters of the ocean. Bigeye tuna are large pelagic predators, so they are likely to have a 'top down' effect on the fish, crustaceans and squid they feed on.

4.2 Incidental catch (seabirds, sea turtles and mammals)

The protected species, capture estimates presented here include all animals recovered onto the deck (alive, injured or dead) of fishing vessels but do not include any cryptic mortality (e.g., seabirds caught on a hook but not brought onboard the vessel).

4.2.1 Seabird bycatch

Between 2002-03 and 2014-15, there were 86 observed captures of birds in bigeye target longline fisheries (Table 5). Seabird capture rates since 2003 are presented in Figure 4. Capture rates increased from low levels in 2002-03 to high levels in 2007-08 and 2009-10 and declined since. Seabird captures were more frequent off the east coast of the North Island and Kermadec Island regions (see Table 5 and Figure 5). Previously bayesian models of varying complexity dependent on data quality were used (Richard \& Abraham 2014); more recently a single model structure has been developed to provide a standard basis for estimating seabird captures across a range of fisheries (Richard \& Abraham in prep.). Observed and estimated seabird captures in bigeye longline fisheries are provided in Table 6.

Through the 1990s the minimum seabird mitigation requirement for surface longline vessels was the use of a bird scaring device (tori line) but common practice was that vessels set surface longlines primarily at night. In 2007 a notice was implemented under s11 of the Fisheries Act 1996 to formalise the requirement that surface longline vessels only set during the hours of darkness and use a tori line when setting. This notice was amended in 2008 to add the option of line weighting and tori line use if setting during the day. In 2011 the notices were combined and repromulgated under a new regulation (Regulation 58A of the Fisheries (Commercial Fishing) Regulations 2001) which provides a more flexible regulatory environment under which to set seabird mitigation requirements.

Risk posed by commercial fishing to seabirds has been assessed via a level 2 method which supports much of the NPOA-Seabirds 2013 risk assessment framework (MPI 2013). The method used in the level 2 risk assessment arose initially from an expert workshop hosted by the Ministry of Fisheries in 2008. The overall framework is described in Sharp et al (2011) and has been variously applied and improved in multiple iterations (Waugh et al 2009, Richard et al 2011, Richard \& Abraham 2013, Richard et al 2013 and Richard \& Abraham 2015). The method applies an "exposure-effects" approach where exposure refers to the number of fatalities is calculated from the overlap of seabirds with fishing effort compared with observed captures to estimate the species vulnerability (capture rates per encounter) to each fishery group. This is then compared to the population's productivity, based on population estimates and biological characteristics to yield estimates of population-level risk.

The 2016 iteration of the level 2 risk assessment has included significant modifications to the methodology; in order to include the full uncertainty around population size the total population size was included instead of $\mathrm{N}_{\text {min }}$ in the PST calculation; using the allometric survival rate and age at first reproduction for the calculation of $\mathrm{R}_{\text {max }}$, applying a revised correction factor as the previous was found to be biologically implausible; applying a constraint on the fatalities calculated based on observed survival rates; including live release survival; allowing change in vulnerability over time where there is enough data; switch to assuming number of incidents is related to vulnerability. There were also changes made to the fisheries groups, seabird demographic data were updated and the Stewart Island shag was split into the Otago and Foveaux shags. The 2016 iteration derives a risk ratio, which is an estimate of aggregate potential fatalities across trawl and longline fisheries relative to the Population Sustainability Threshold, PST (an analogue of the Potential Biological Removals, PBR, approach) (Richard \& Abraham in prep).

The 2016 iteration of the seabird risk assessment (Richard \& Abraham in prep.) assessed the bigeye target surface longline fishery contribution to the total risk posed by New Zealand commercial fishing to seabirds (see Table 7). This fishery contributes 0.289 of PST to the risk to black petrel (26.3% of the total risk posed by NZ commercial fishing included in the risk assessment) and 0.036 of PST to Gibson's albatross; both species were assessed to be at high risk from New Zealand commercial

BIGEYE TUNA (BIG)

fishing. This fishery also contributes to the risk of medium risk species; 0.024 of PST to Antipodean albatross and 0.070 of PST to North Buller's albatross (Richard \& Abraham in prep.).

Table 5: Number of observed seabird captures in bigeye tuna longline fisheries, 2002-03 to 2014-15, by taxon and area. The risk category is an estimate of aggregate potential fatalities across trawl and longline fisheries relative to the Population Sustainability Threshold, PST (an analogue of PBR approach) (Richard \& Abraham in prep). The current version of the risk assessment does not include recovery factor. The New Zealand threat classifications are shown (Robertson et al 2013 at http://www.doc.govt.nz/documents/science-andtechnical/nztcs4entire.pdf). Other data, version 2016v1.

Taxon	Risk ratio	Northland and Hauraki	East Coast North Island	West Coast North Island	Bay of Plenty	Kermadec Islands	Total
Southern Buller's albatross	High	6	5				11
Antipodean albatross	NA	2					2
Gibson's albatross	High	8	1	1			10
Salvin's albatross	High	1	1		1		3
Wandering albatross	NA	2					2
Campbell black-browed albatross	Low	3					3
Antipodean and Gibson's albatross	NA	2					2
Albatrosses	NA			1			1
Black-browed albatrosses	NA			1			1
Northern royal albatross	Low				1		1
Southern royal albatross	Negligible	2					2
Wandering albatrosses	NA	2					2
New Zealand white-capped albatross	High	1					1
Total albatrosses		31	7	4	3	0	45
Flesh-footed shearwater	High		9	2			11
Black petrel	Very high	8	10		1	1	20
White-chinned petrel	Negligible	2		3	1		6
Grey-faced petrel	Negligible			3		3	3
Gadfly petrels	NA	1					1
Total other seabirds		11	19	5	5	1	41

Table 6: Effort, observed and estimated seabird captures by fishing year for the bigeye tuna fishery within the EEZ. For each fishing year, the table gives the total number of hooks; the number of observed hooks; observer coverage (the percentage of hooks that were observed); the number of observed captures (both dead and alive); the capture rate (captures per thousand hooks); and the mean number of estimated total captures (with 95\% confidence interval). Estimates are based on methods described in Richard and Abraham (in prep) and are available via https://data.dragonfly.co.nz/pse/ . Estimates from 2002-03 to 2014-15 are based on data version 2016001.

Fishing year	Fishing effort			Observed captures		Estimated captures	
	All hooks	Observed hooks	\% observed	Number	Rate	Mean	95\% c.i.
2002-2003	5188307	80640	1.6	0	0	1187	800-1816
2003-2004	3507037	120740	3.4	1	0.008	818	535-1263
2004-2005	1648381	33116	2.0	2	0.060	388	234-637
2005-2006	1868336	45100	2.4	6	0.133	524	331-827
2006-2007	1532071	84150	5.5	5	0.059	404	251-649
2007-2008	967829	24295	2.5	6	0.247	322	188-561
2008-2009	1565517	91358	5.8	9	0.098	450	283-713
2009-2010	1247437	87459	7.0	30	0.343	442	283-705
2010-2011	1646956	87730	5.3	15	0.171	521	318-883
2011-2012	1291923	39210	3.0	7	0.178	395	226-706
2012-2013	994535	60180	6.0	3	0.050	333	187-623
2013-2014	743981	29651	4.0	2	0.067	283	149-531
2014-2015	385105	24470	6.3	0	0	147	68-304

Figure 4: Observed captures of seabirds in bigeye tuna longline fisheries from 2002-03 to 2014-15.

BIGEYE TUNA (BIG)

Figure 5: Distribution of fishing effort targeting bigeye tuna and observed seabird captures, 2002-03 to 2014-15. Fishing effort is mapped into 0.2 -degree cells, with the colour of each cell being related to the amount of effort. Observed fishing events are indicated by black dots, and observed captures are indicated by red dots. Fishing is only shown if the effort could be assigned a latitude and longitude, and if there were three or more vessels fishing within a cell. Data grooming methods are described in Richard and Abraham (in prep) and are available via https://data.dragonfly.co.nz/pse/ . Data version 2016001.

Table 7: Risk ratio of seabirds predicted by the level two risk assessment for the bigeye target surface longline fishery and all fisheries included in the level two risk assessment, 2006-07 to 2013-14, showing seabird species with risk category of very high, high, or a medium risk category and risk ratio of at least 1% of the total risk. The risk ratio is an estimate of aggregate potential fatalities across trawl and longline fisheries relative to the Population Sustainability Threshold, PST (an analogue of PBR approach) (Richard \& Abraham in prep). The current version of the risk assessment does not include a recovery factor. The New Zealand threat classifications are shown (Robertson et al 2013 at http://www.doc.govt.nz/documents/science-and-technical/nztcs4entire.pdf).

	Risk ratio				
	BIG target	NZ	\% of total risk from	Risk category Very high	NZ Threat Classification
Species name	SLL commercial fishingNZ commercial fishing				
Black petrel	0.289	1.153	26.3		reatened: Nationally Vulnerable
Salvin's albatross	0.003	0.78	0.4	High	Threatened: Nationally Critical
Flesh-footed shearwater	0.017	0.669	2.8	High	reatened: Nationally Vulnerable
Westland petrel	0.006	0.476	1.6	High	At Risk: Naturally Uncommon
Southern Buller's albatross	0.001	0.392	0.2	High	At Risk: Naturally Uncommon
Chatham Island albatross	0	0.362	0.3	High	At Risk: Naturally Uncommon
New Zealand whitecapped albatross	0.006	0.353	1.6	High	At Risk: Declining
Gibson's albatross	0.036	0.337	11.2	High	Threatened: Nationally Critical
Northern Buller's albatross	0.070	0.253	28.2	Medium	At Risk: Naturally Uncommon
Antipodean albatross	0.024	0.203	12.3	Medium	Threatened: Nationally Critical

4.2.2 Sea turtle bycatch

Between 2002-03 and 2013-14, there were ten observed captures of turtles in bigeye tuna longline fisheries (Table 8, Table 9, and Figure 6). Observer recordings documented all sea turtles as captured and released alive. Sea turtle capture distributions are more common on the east coast of the North Island (Figure 7).

Table 8: Data grooming methods are described in Thompson et al (2013) and are available via https://data.dragonfly.co.nz/psc/ data version 2016001.

Species	East Coast North	Kermadec Islands	West Coast North Island	Northland and Hauraki	Total
Leatherback turtle	3	1	3	1	8
Unidentified turtle	1	0	2		3
Total	4	1	5	11	

Table 9: Fishing effort and sea turtle captures in bigeye tuna longline fisheries by fishing year. For each fishing year, the table gives the total number of hooks; the number of observed hooks; observer coverage (the percentage of hooks that were observed); the number of observed captures (both dead and alive); and the capture rate (captures per thousand hooks). Data grooming methods are described in Thompson et al (2013) and are available via https://data.dragonfly.co.nz/psc/ data version 2016001.

Figure 6: Observed captures of sea turtles in bigeye tuna longline fisheries from 2002-03 to 2014-15. Data grooming methods are described in Thompson et al (2013) and are available via https://data.dragonfly.co.nz/pse/ data version 2016001.

BIGEYE TUNA (BIG)

Figure 7: Distribution of fishing effort targeting bigeye tuna and observed sea turtle captures, 2002-03 to 2014-15. Fishing effort is mapped into 0.2 -degree cells, with the colour of each cell being related to the amount of effort. Observed fishing events are indicated by black dots, and observed captures are indicated by red dots. Fishing is only shown if the effort could be assigned a latitude and longitude, and if there were three or more vessels fishing within a cell. Data grooming methods are described in Thompson et al (2013) and are available via https://data.dragonfly.co.nz/psc/ data version 2016001.

4.2.3 Marine Mammals

4.2.3.1 Cetaceans

Cetaceans are dispersed throughout New Zealand waters (Perrin et al 2008). The spatial and temporal overlap of commercial fishing grounds and cetacean foraging areas has resulted in cetacean captures in fishing gear (Abraham \& Thompson 2009, 2011). The analytical methods used to estimate capture numbers across the commercial fisheries have depended on the quantity and quality of the data, in terms of the numbers observed captured and the representativeness of the observer coverage. Ratio estimation is used to calculate total captures in longline fisheries by target fishery fleet and area (Baird 2008) and by all fishing methods (Abraham et al 2010).

Between 2002-03 and 2014-15, there was one observed unidentified cetacean capture and one common dolphin in bigeye longline fisheries (Tables 10 and 11). The capture of the unidentified cetacean took place on the west coast of the North Island and the common dolphin was caught in the Bay of Plenty (Figures 8 and 9) (Abraham \& Thompson 2011). Both captures were recorded as being caught and released alive (see data version 2016001 on https://data.dragonfly.co.nz/psc/).

Table 10: Number of observed cetacean captures in bigeye tuna longline fisheries, 2002-03 to 2014-15, by species and area. Data preparation methods are described in Thompson et al (2013) and are available via https://data.dragonfly.co.nz/psc/ data version 2016001.

Species	West Coast North Island	Bay of Plenty	Total
Unidentified cetacean	1		1
Common dolphin		1	1
Total	1	1	2

Table 11: Effort and cetacean captures by fishing year in bigeye tuna fisheries. For each fishing year, the table gives the total number of hooks; the number of observed hooks; observer coverage (the percentage of hooks that were observed); the number of observed captures (both dead and alive); and the capture rate (captures per thousand hooks). Data preparation methods are described in Thompson et al (2013) and are available via https://data.dragonfly.co.nz/psc/ data version 2016001.

Figure 8: Observed captures of cetaceans in bigeye longline fisheries from 2002-03 to 2014-15. Data grooming methods are described in Thompson et al (2013) and are available via https://data.dragonfly.co.nz/pse/ data version 2016001.

BIGEYE TUNA (BIG)

Figure 9: Distribution of fishing effort targeting bigeye tuna and observed cetacean captures, 2002-03 to 2014-15. Fishing effort is mapped into 0.2 -degree cells, with the colour of each cell being related to the amount of effort. Observed fishing events are indicated by black dots, and observed captures are indicated by red dots. Fishing is only shown if the effort could be assigned a latitude and longitude, and if there were three or more vessels fishing within a cell. Data grooming methods are described in Thompson et al (2013) and are available via https://data.dragonfly.co.nz/psc/ data version 2016001.

4.2.4 New Zealand fur seal bycatch

Currently, New Zealand fur seals are dispersed throughout New Zealand waters, especially in waters south of about $40^{\circ} \mathrm{S}$ to Macquarie Island. The spatial and temporal overlap of commercial fishing grounds and New Zealand fur seal foraging areas has resulted in New Zealand fur seal captures in fishing gear (Mattlin 1987, Rowe 2009). Most fisheries with observed captures occur in waters over or close to the continental shelf, which slopes steeply to deeper waters relatively close to shore, and thus rookeries and haulouts, around much of the South Island and offshore islands. Captures on longlines occur when the fur seals attempt to feed on the bait and fish catch during hauling. Most New Zealand fur seals are released alive, typically with a hook and short snood or trace still attached.

The analytical methods used to estimate capture numbers across the commercial fisheries have depended on the quantity and quality of the data, in terms of the numbers observed captured and the representativeness of the observer coverage. New Zealand fur seal captures in surface longline fisheries have been generally observed in waters south and west of Fiordland, but also in the Bay of Plenty-East Cape area. These capture rates include animals that are released alive (100% of observed surface longline capture in 2008-09; Thompson \& Abraham 2010). Between 2002-03 and 2013-14, there were two observed captures of New Zealand fur seals in bigeye longline fisheries (Tables 12 and 13, Figures 10 and 11).

Table 12: Number of observed New Zealand fur seal captures in bigeye tuna longline fisheries, 2002-03 to 2014-15, by species and area. Data grooming methods are described in Thompson et al (2013) and are available via https://data.dragonfly.co.nz/psc/ data version 2016001.

> West Coast North Island Total
New Zealand fur seal $\quad 2 \quad 2$

Table 13: Effort and captures of New Zealand fur seal by fishing year in bigeye tuna longline fisheries. For each fishing year, the table gives the total number of hooks; the number of observed hooks; observer coverage (the percentage of hooks that were observed); the number of observed captures (both dead and alive); and the capture rate (captures per thousand hooks). Estimates are based on methods described in Thompson et al (2013) are available via https://data.dragonfly.co.nz/pse/ data version 2016001.

Figure 10: Observed captures of New Zealand fur seal in bigeye tuna longline fisheries from 2002-03 to 2014-15. Data grooming methods are described in Thompson et al (2013) and are available via https://data.dragonfly.co.nz/pse/ data version 2016001. [Continued on next page].

Figure 10 [Continued]: Estimated captures of New Zealand fur seal in bigeye tuna longline fisheries from 2002-03 to 2014-15. Data grooming methods are described in Thompson et al (2013) and are available via https://data.dragonfly.co.nz/psc/ data version 2016001.

Figure 11: Distribution of fishing effort targeting bigeye tuna and observed New Zealand fur seal captures, 2002-03 to 2014-15. Fishing effort is mapped into 0.2 -degree cells, with the colour of each cell being related to the amount of effort. Observed fishing events are indicated by black dots, and observed captures are indicated by red dots. Fishing is only shown if the effort could be assigned a latitude and longitude, and if there were three or more vessels fishing within a cell. Data grooming methods are described in Thompson et al (2013) and are available via https://data.dragonfly.co.nz/psc/ data version 2016001.

4.3 Incidental fish bycatch

Observer records indicate that a wide range of species are landed by the longline fleets in New Zealand fishery waters. Blue sharks are the most commonly landed species (by number), followed by Ray's bream (Table 14).

Table 14: Total estimated catch (numbers of fish) of common bycatch species in the New Zealand longline fishery as estimated from observer data from 2009 to 2015. Also provided is the percentage of these species retained (2015 data only) and the percentage of fish that were alive when discarded, N/A (none discarded).

Species	$\mathbf{2 0 1 2}$	$\mathbf{2 0 1 3}$	$\mathbf{2 0 1 4}$	$\mathbf{2 0 1 5}$	\% retained $(\mathbf{2 0 1 5})$	discards \% alive $(\mathbf{2 0 1 5)}$
Blue shark	132925	158736	80118	72480	0.3	87.0
Ray's bream	19918	13568	4591	17555	95.3	13.7
Lancetfish	7866	19172	21002	12962	0.2	44.6
Porbeagle shark	7019	9805	5061	4058	5.1	64.0
Moonfish	2363	2470	1655	3060	95.6	45.5
Mako shark	3902	3981	4506	2667	16.1	72.2
Butterfly tuna	713	1030	699	1309	86.9	11.1
Pelagic stingray	712	1199	684	979	0.0	97.2
Dealfish	372	237	910	842	0.4	22.9
Sunfish	3265	1937	1981	770	0.0	100.0
Escolar	2181	2088	656	653	82.5	71.4
Oilfish	509	386	518	584	46.7	83.3
Deepwater dogfish	647	743	600	545	2.3	88.3
Rudderfish	491	362	327	373	26.9	78.9
Thresher shark	246	256	261	177	0.0	53.3
Skipjack tuna	123	240	90	150	10.0	n/a
Striped marlin	124	182	151	120	10.0	55.6
School shark	477	21	119	88	43.5	76.9
Big scale pomfret	108	67	164	59	32.5	96.3

4.4 Benthic interactions
 N/A

4.5 Key environmental and ecosystem information gaps

Cryptic mortality is unknown at present but developing a better understanding of this in future may be useful for reducing uncertainty of the seabird risk assessment and could be a useful input into risk assessments for other species groups.

The survival rates of released target and bycatch species is currently unknown.
Observer coverage in the New Zealand fleet is not spatially and temporally representative of the fishing effort.

5. STOCK ASSESSMENT

With the establishment of the WCPFC in 2004, future stock assessments of the WCPO stock of bigeye tuna are undertaken by the Oceanic Fisheries Programme (OFP) of Secretariat of the Pacific Community under contract to WCPFC. As noted above, there is continuing work on a Pacific-wide bigeye assessment.

BIGEYE TUNA (BIG)

No assessment is possible for bigeye within the New Zealand EEZ as the proportion of the total stock found within New Zealand fisheries waters is unknown and is likely to vary from year to year.

The bigeye stock assessment was updated by the SPC in 2014 in SC10-SA-WP-01 (Harley et al 2014a) and reviewed by the WCPFC Scientific Committee (SC10) in August 2014. In addition SC10-SA-IP01 (Harley et al 2014b) summarized the major changes to the tropical tuna stock assessments resulting from the recommendations provided in SC8-SA-WP-01 (Independent Review of the 2011 bigeye tuna stock assessment). Also, status quo stochastic projections were provided for bigeye tuna in SC10-SA-WP-06 (Pilling 2014).
The following is a summary of the 2014 bigeye stock assessment as agreed by the WCPFC Scientific Committee (SC10) in August 2014.

Some of the main improvements in the 2014 assessment are:

- Increases in the number of spatial regions to better model the tagging and size data;
- Inclusion of catch estimates from Vietnam and some Japanese coastal longline data previously not included;
- The use of operational longline data for multiple fleets to better address the contraction of the Japanese fleet and general changes over time in targeting practices;
- Improved modelling of recruitment to ensure that uncertain estimates do not influence key stock status outcomes; and
- A large amount of new tagging data corrected for differential post-release mortality and other tag losses

The large number of changes since the 2011 assessment (some of which are described above), and the nature of some of those changes, means that full consideration of the impacts of individual changes is not possible. Nevertheless, the report details some of the key steps from the 2011 reference case (Run3j - Ref.case) to the 2014 reference case (037_L0W0T0M0H0). Distinguishing features of the 2014 reference case model include:

- The steepness parameter of the stock recruitment relationship is fixed at 0.8 .
- The mean length of the oldest age class in the model is fixed at 184 cm .
- Natural mortality at age is fixed according to an external analysis in which it is assumed that the natural mortality rate of females increases with the onset of reproductive maturity.
- The likelihood function weighting of the size data is determined using an effective sample size for each fishing observation of one-twentieth of the actual sample size, with a maximum effective sample size of 50 .
- For modelling the tagging data, a mixing period of 2 quarters (including the quarter of release) is applied.
- The last six quarterly recruitments aggregated over regions are assumed to lie on the stockrecruitment curve.

The rationale for these choices, which comprise the key areas of uncertainty for the assessment, is described in detail in SC10-SA-WP-01. We report the results of "one-off" sensitivity models to explore the impact of these choices for the reference case model on the stock assessment results. A sub-set of
key, plausible model runs was taken from these sensitivities to include in a structural uncertainty analysis (grid) for consideration in developing management advice.

The main conclusions of the current assessment are consistent with recent assessments presented in 2010 and 2011. The main conclusions based on the results from the reference case model and with consideration of results from performed sensitivity model runs, are as follows:

1) The new regional structure, modelling and data improvements appear to have improved the current assessment with the previously observed increasing trend in recruitment much reduced and the fit to Coral Sea tagging data greatly improved.
2) Nevertheless there is some confounding between estimated growth, regional recruitment distributions and movement which, while having minimal impact on stock status conclusions, lead to a complex solution surface and the presence of local minima.
3) Current catches exceed maximum sustainable yield (MSY);
4) Recent levels of fishing mortality exceed the level that will support the MSY;
5) Recent levels of spawning potential are most likely at (based on 2008-11 average) or below (based on 2012) the level which will support the MSY;
6) Recent levels of spawning potential are most likely at (based on 2008-11 average) or below (based on 2012) the LRP of $20 \% \mathrm{SB}_{\mathrm{F}=0}$ agreed by WCPFC;
7) Recent levels of spawning potential are lower than candidate biomass-related target reference points (TRPs) currently under consideration for skipjack tuna, i.e., $40-60 \%$ $\mathrm{SB}_{\mathrm{F}=0}$; and
8) Stock status conclusions were most sensitive to alternative assumptions regarding the modelling of tagging data and the longline CPUE series included, identifying these as important areas for continued research. However, the main conclusions of the assessment are robust to the range of uncertainty that was explored.

Paper SC10-SA-WP-06 (Pilling 2014) contained status quo stochastic projections for bigeye, skipjack, and yellowfin tunas. The paper outlined an assessment of the potential consequences of recent (2012) fishing conditions on the future biological status of the three tropical tuna stocks, based on the 2014 tropical tuna stock assessments. Projected status in 2032 was reported relative to spawning biomass and fishing mortality reference levels in absolute terms (as a median of the projection outcomes) and in probabilistic terms.

A single assessment model run (the reference case model for each tropical tuna stock) was used as the basis for projecting future stock status. Only uncertainty arising from future recruitment conditions was therefore captured in the results, using two alternative hypotheses: where recruitment was assumed to follow the estimated stock recruitment relationship on average with randomly selected deviates from the period used to estimate the relationship in each stock assessment; or was assumed to be consistent with actual recruitments estimated over the period 2002-2011.

Under 2012 conditions, stochastic projection results indicated bigeye tuna were dependent upon the recruitment assumption, the stock was either very likely (>90\%; long-term recruitment deviate assumption) or unlikely ($<25 \%$; recent recruitment assumption) to fall below both the LRP and SB $_{\text {MSY }}$ levels by 2032. Under both recruitment assumptions, it was virtually certain (>99\%) that fishing mortality would be above the $\mathrm{F}_{\text {MSY }}$ level in 2032.

BIGEYE TUNA (BIG)

Stock status and trends

There have been significant improvements to the 2014 stock assessment resulting from the implementation of the 2012 bigeye review recommendations. Improvements were made to regional and fisheries structures, CPUE, size, and tagging data inputs, and the MULTIFAN-CL modelling framework. This assessment is also the first since the adoption of a LRP based on the spawning biomass in the absence of fishing $\left(0.2 \mathrm{SB}_{\mathrm{F}=0}\right)$.

SC10 selected the reference case model as the base case to represent the stock status of bigeye. To characterize uncertainty SC10 chose three additional models based on alternative values of steepness and a shorter tag mixing period. Details of the base case and other models are provided in Table 15.

Table 15: Description of the base case and key model chosen for the provision of management advice.
\(\left.$$
\begin{array}{ll}\begin{array}{l}\text { Name } \\
\text { Base Case }\end{array} & \begin{array}{l}\text { Description } \\
\text { JP CPUE for regions 1, 2, and 4, all flags for regions 3, 7, 8, 5, and 6, and nominal for region 9. Size data } \\
\text { weighted as the weighted number of samples divided by 20, steepness fixed at 0.8, M fixed, tag mixing }\end{array}
$$

at 2 quarters, and the mean length of fish in the oldest age class (L2) fixed at 184 \mathrm{~cm} .\end{array}\right\}\)| h_0.65 |
| :--- |
| Steepness $=0.65$. |

Time trends in estimated recruitment, biomass, fishing mortality and depletion are shown in Figures 12-17.

Fishing mortality has generally been increasing through time, and for the reference case $\mathrm{F}_{\text {current }}$ (200811 average) is estimated to be 1.57 times the fishing mortality that will support the MSY. Across the four models (base case and three sensitivity models) $\mathrm{F}_{\text {current }} / \mathrm{F}_{\text {MSY }}$ ranged from 1.27 to 1.95 . This indicates that overfishing is occurring for the WCPO bigeye tuna stock and that in order to reduce fishing mortality to $F_{M S Y}$ levels the base case indicates that a 36% reduction in fishing mortality is required from 2008-2011 levels (Table 16 and Figure 14). This is similar to the 32% reduction from 2006-2009 levels recommended from the 2011 assessment.

The latest (2012) estimates of spawning biomass are below both the level that will support the MSY $\left(\mathrm{SB}_{\text {latest }} / \mathrm{SB}_{\mathrm{MSY}}=0.77\right.$ for the base case and range $0.62-0.96$ across the four models $)$ and the newly adopted LRP of $0.2 \mathrm{SB}_{\mathrm{F}=0}\left(\mathrm{SB}_{\text {latest }} / \mathrm{SB}_{\mathrm{F}=0}=0.16\right.$ for the base case and range $\left.0.14-0.18\right)$.

An analysis of historical patterns in the mix of fishing gear types indicates that MSY has been reduced to less than half its level prior to 1970 through the increased harvesting of juveniles (Figure 15).

The estimated maximum sustainable yield (MSY) of 108520 t is higher than previous assessments (Table 17). This is for three key reasons 1) the improved assessment has higher average recruitment; 2) application of the lognormal bias correction to the spawner-recruitment relationship; and 3) increased catches used in the new assessment.

Table 16: Estimates of management quantities for selected stock assessment models (see Table 15 for details). For the purpose of this assessment, "current" is the average over the period 2008-2011 and "latest" is 2012.

	Base case	$\mathrm{h}=0.65$	$\mathrm{~h}=0.95$	Mix_1qtr
$M S Y(\mathrm{t})$	108520	101880	116240	107880
$C_{\text {latest }} / M S Y$	1.45	1.55	1.36	1.45
$F_{\text {current }} / F_{M S Y}$	1.57	1.95	1.27	1.73
B_{0}	2286000	2497000	2166000	2183000
$B_{\text {current }}$	742967	744596	741549	640645
$S B_{0}$	1207000	1318000	1143000	1153000
$S B_{M S Y}$	345400	429900	275200	328700
$S B_{F=0}$	1613855	1848385	1483216	1585331
$S B_{\text {curr }}$	325063	326007	324283	269820
$S B_{\text {latest }}$	265599	266290	264937	218679
$S B_{\text {curr }} / S B_{F=0}$	0.20	0.18	0.22	0.17
$S B_{\text {latest }} / S B_{F=0}$	0.16	0.14	0.18	0.14
$S B_{\text {curr }} / S B_{M S Y}$	0.94	0.76	1.18	0.82
$S B_{\text {latest }} / S B_{M S Y}$	0.77	0.62	0.96	0.67

Table 17: Comparison of selected WCPO bigeye tuna reference points from the 2010, 2011, and 2012 base case models.

Management quantity	Base case 2010	Base case 2011	Base case 2014
MSY (t)	73840	76760	108520
$\mathrm{~F}_{\text {current }} / \mathrm{F}_{\text {MSY }}$	1.41	1.46	1.57
SB $_{\text {latest }} / \mathrm{SB}_{\mathrm{F}=0}$	0.16	0.21	0.16

Figure 12: Estimated annual recruitment (millions of fish) for the WCPO obtained from the base case model and three additional runs described in Table 15. The model runs with alternative steepness values give the same recruitment estimates.

BIGEYE TUNA (BIG)

Figure 13: Estimated annual average spawning potential for the WCPO obtained from the base case model and three additional runs described in Table 15. The model runs with alternative steepness values give the same spawning potential trajectory estimates as the reference case.

Figure 14: Estimated annual average juvenile and adult fishing mortality for the WCPO obtained from the base case model.

Figure 15: Estimates of reduction in spawning potential due to fishing (fishery impact = 1-SB $\mathbf{S B}_{\boldsymbol{t}} / \mathrm{SB}_{\mathrm{t}, \mathrm{F}=0}$) by region and for the WCPO attributed to various fishery groups for the base case model.

BIGEYE TUNA (BIG)

Figure 16: Temporal trend for the base case model (top) and terminal condition for the base case and other sensitivity runs (bottom) in stock status relative to $\mathrm{SB}_{\mathrm{F}=0}$ (x -axis) and $\mathrm{F}_{\text {MSY }}$ (y -axis). The red zone represents spawning potential levels lower than the agreed LRP which is marked with the solid black line ($0.2 \mathrm{SB}_{\mathrm{F}=0}$). The orange region is for fishing mortality greater than $\mathrm{F}_{\text {MSY }}\left(\mathrm{F}=\mathrm{F}_{\text {MSY }}\right.$; marked with the black dashed line). The pink circle (top panel) is $\mathbf{S B}_{2012} / \mathbf{S B}_{\mathrm{F}=0}$ (where $\mathrm{SB}_{\mathrm{F}=0}$ was the average over the period 2002-2011). The bottom panel includes the base case (white dot) and sensitivity analyses described Table 15.

Figure 17: History of annual estimates of MSY compared with catches of three major fisheries for the base case model.
SC12 noted that no stock assessment was conducted for WCPO bigeye tuna in 2016. Therefore, the stock status description from SC10 is still current. For further information on the stock status and trends from SC10, please see http://www.wcpfc.int/node/19472

SC12 noted that the total bigeye catch in 2015 was 134084 t , which was a 16% decrease over 2014 and a 13% decrease over the average for 2010-14.

Purse seine bigeye catch in 2015 was 26% lower than that in 2014 and effort was 21% lower. Longline catch in 2015 was 13% lower than that in 2014, and tropical longline effort ($20 \mathrm{~N}-10 \mathrm{~S}$) was 4% lower.

SC12 noted that the results of the updated short-term projections using actual catch and effort levels in 2013-2015 and which assumed that recent above-average recruitments continued, indicated that the median spawning biomass depletion ($\mathrm{SB} / \mathrm{SBF}=0$) of bigeye has been relatively stable since the 2012 assessment.

Management advice and implications

SC10 noted that the spawning biomass of WCPO bigeye tuna breached the biomass LRP in 2012 and that the stock was overfished. Rebuilding spawning biomass to be above the biomass LRP will require a reduction in fishing mortality.

SC10 recommended that fishing mortality on WCPO bigeye tuna be reduced. A 36% reduction in fishing mortality from the average levels for 2008-2011 would be expected to return the fishing mortality rate to $\mathrm{F}_{\text {MSY }}$. This reduction of at least 36% should also allow the stock to rebuild above the LRP over a period of time. This recommended level of reduction in fishing mortality could also be stated as a minimum 33% reduction from the 2004 level of fishing mortality, or a minimum 26% reduction from the average 2001-2004 level of fishing mortality.

Future status quo projections (assuming 2012 conditions) depend upon assumptions on future recruitment. When spawner-recruitment relationship conditions are assumed, spawning biomass continues to decline and the stock is very likely (94%) to remain below the LRP based on projections through $2032\left(\mathrm{SB}_{2032}<0.2 \mathrm{SB}_{\mathrm{F}=0}\right)$. If recent (2002-2011) actual recruitments are assumed, spawning biomass increases and it was unlikely (13%) to remain below the LRP. Under both recruitment assumptions, it was virtually certain (100\%) that the stock would remain subject to overfishing ($\mathrm{F}>\mathrm{F}_{\mathrm{MSY}}$).

BIGEYE TUNA (BIG)

Overfishing and the increase in juvenile bigeye catches have resulted in a considerable reduction in the potential yield of the WCPO bigeye stock. The loss in yield per recruit due to excess harvest of juvenile fish is substantial. SC10 concluded that MSY levels would increase if the mortality of juvenile bigeye was reduced.

Fishing mortality varies spatially within the Convention Area with high mortality in the tropical Pacific Ocean. WCPFC could consider a spatial management approach in reducing fishing mortality for bigeye tuna.

Considering the unavailability of operational longline data for the assessment from some key fleets, SC10 recommended that all operational data including high seas should be available for future stock assessments. The current lack of operational data for some fleets, and in particular the lack of operational longline data on the high seas hampered the 2014 assessment in a number of ways (e.g. the construction of abundance indices) and consequently hindered the SC from achieving "best practice" in the 2014 stock assessment.

SC10 noted that arrangements are being developed between CCMs and SPC to facilitate the availability of operational data for the Pacific wide bigeye stock assessment scheduled for 2015.

SC10 recommended that the Commission consider the results of updated projections at WCPFC11, including evaluation of the potential impacts of CMM 2013-01, to determine whether the CMM will achieve its objectives and allow the bigeye stock to rebuild above the LRP.

SC12 noted that no management advice has been provided since SC10. Therefore, the advice from SC10 should be maintained, pending a new assessment or other new information. For further information on the management advice and implications from SC10, please see http://www.wcpfc.int/node/19472

5.1 Estimates of fishery parameters and abundance

There are no fishery independent indices of abundance for the bigeye stock. Relative abundance information is available from longline catch per unit effort data, though there is no agreement on the best method to standardise these data and several methods are compared. Returns from a large scale tagging programme undertaken in the early 1990s, and an updated programme from 2007-2009 undertaken by the SPC provide information on rates of fishing mortality which in turn has improved estimates of abundance.

5.2 Biomass estimates

The stock assessment results and conclusions of the 2014 assessment show $\mathrm{SB}_{\text {current }} / \mathrm{SB}_{M S Y}$ estimated at 0.94 over the period 2008-2011. This estimate applies to the WCPO portion of the stock or an area that is approximately equivalent to the waters west of $150^{\circ} \mathrm{W}$. Spawning biomass for the WCPO is estimated to have declined to about 16% of its initial level by 2012 .

5.3 Yield estimates and projections

No estimates of $M C Y$ and $C A Y$ are available.

5.4 Other yield estimates and stock assessment results

SC10 achieved consensus to accept and endorse the reference case proposed in the assessment document, and that $\mathrm{SB}_{20 \%, \mathrm{~F}=0}$ be used as the LRP for stock status purposes as agreed by WCPFC. There was further discussion about whether to use $\mathrm{SB}_{\text {latest }}$ or $\mathrm{SB}_{\text {current }}$ as the terminal spawning biomass for management purposes. The SC agreed to use the most recent information on bigeye tuna spawning biomass, $\mathrm{SB}_{\text {latest }}$ corresponding to 2012, given recent trends of increasing catch, high fishing mortality and decreasing CPUE.

SC10 also endorsed the use of the candidate biomass-related target reference point (TRP) currently under consideration for skipjack tuna, i.e., $40-60 \% \mathrm{SB}_{\mathrm{F}=0}$. At $0.16 \mathrm{SB}_{\mathrm{F}=0} \mathrm{SB}_{\text {latest }}$ is below both the target and limit reference points.

5.5 Other factors

There are three areas of concern with the bigeye stock:

- Juveniles occur in mixed schools with small yellowfin and also with skipjack tunas throughout the equatorial Pacific Ocean. As a result, they are vulnerable to large-scale purse seine fishing, particularly when fish aggregating devices (FADs) are set on. Catches of juveniles can be a very high proportion of total removals in numbers from the stock;
- Overfishing and the increase in juvenile bigeye catches have resulted in a considerable reduction in the potential yield of the WCPO bigeye stock. The loss in yield per recruit due to excess harvest of juvenile fish is substantial. SC10 concluded that MSY levels would increase if the mortality of juvenile bigeye was reduced.
- Fishing mortality varies spatially within the Convention Area with high mortality in the tropical Pacific Ocean. WCPFC could consider a spatial management approach in reducing fishing mortality for bigeye tuna.

6. STATUS OF THE STOCKS

Stock structure assumptions

Western and Central Pacific Ocean

All estimates of biomass in this table refer to spawning biomass (SB).

Stock Status	
Year of Most Recent Assessment	A full stock assessment was conducted in 2014.
Assessment Runs Presented	Base case model and selected sensitivity analyses
Reference Points	Candidate biomass-related target reference point (TRP) currently under consideration for key tuna stocks is 40-60\% SBo Limit reference point of $20 \% S B_{0}$ established by WCPFC equivalent to the HSS default of 20\% $S B_{0}$ Hard Limit: Not established by WCPFC; but evaluated using HSS default of $10 \% S B_{0}$ Overfishing threshold: $F_{M S Y}$
Status in relation to Target	Recent levels of spawning biomass (either the 2008-11 average or the 2012 estimate) are Very Unlikely (< 10\%) to be at or above 40- $60 \% ~ S B_{0}$ Very Unlikely (< 10\%) that F < $F_{M S Y}$
Status in relation to Limits	Soft Limit: Likely (>60\%) to be below Hard Limit: Unlikely (<40\%) to be below
Status in relation to Overfishing	Overfishing is Very Likely $(>90 \%)$ to be occurring

BIGEYE TUNA (BIG)

Historical Stock Status Trajectory and Current Status

Temporal trend for the base case model in stock status relative to $\mathrm{SB}_{\mathrm{F}=0}$ (x -axis) and $\mathrm{F}_{\mathrm{MSY}}$ (y -axis). The red zone represents spawning biomass levels lower than the agreed LRP which is marked with the solid black line ($0.2 \mathbf{S B}_{\mathrm{F}=0}$). The orange region is for fishing mortality greater than $\mathrm{F}_{\text {MSY }}\left(\mathrm{F}=\mathrm{F}_{\text {MSY }}\right.$; marked with the black dashed line). The pink circle is $\mathbf{S B}_{2012} / \mathbf{S B}_{\mathrm{F}=0}$ (where $\mathbf{S B}_{\mathrm{F}=0}$ was the average over the period 2002-2011).

Fishery and Stock Trends	
Recent Trend in Biomass or Proxy	Biomass has decreased consistently since the 1950s to levels below $S B_{M S Y}$ in recent years. Spawning biomass for the WCPO is estimated to have declined to about half of the initial levels by about 1970, and has continued to decline ($\left.S B_{2022} / S B_{0}=0.16\right)$.
Recent Trend in Fishing Intensity or Proxy	Fishing mortality has generally increased and has recently escalated to levels near or above $F_{2012} / F_{M S Y}=1.57$.
Other Abundance Indices	-
Trends in Other Relevant Indicator or Variables	Recruitment in all analyses was estimated to have been high during the last two decades. This result is similar to that of previous assessments, and appears to be partly driven by conflicts between some of the CPUE, catch, and size data inputs.

Projections and Prognosis	
Stock Projections or Prognosis	Stochastic projection results were dependent upon the recruitment assumption. Under the long-term recruitment deviate assumption, the stock was Very Likely (> 90\%) to be below both the LRP and SB BSY levels by 2032; under the recent recruitment assumption, the $^{\text {stock was Unlikely }(<40 \%) \text { to be below both the LRP and SBMSY }}$ levels by 2032.
Probability of Current Catch or TACC causing Biomass to remain below or to decline below Limits	Under the long-term recruitment deviate assumption, the stock was Very Likely (> 90\%) to be below the LRP in 2032; under the recent recruitment assumption, the stock was Unlikely (< 40\%) to be below the LRP in 2032.
Probability of Current Catch or TACC causing Overfishing to continue or to commence	Under both recruitment assumptions, it was Virtually Certain (> 99\%) that fishing mortality would be above the FMSY level in 2032.

Assessment Methodology and Evaluation	
Assessment Type	Level 1- Quantitative Stock Assessment
Assessment Method	The assessment uses the stock assessment model and computer software known as MULTIFAN-CL.
Assessment Dates	Latest assessment: 2014 Next assessment: 2017
Overall assessment quality rank	1 - High Quality
Main data inputs (rank)	- Catch and effort data - Size data - All High Quality - Growth data; and - Tagging data
Data not used (rank)	N/A
Changes to Model Structure and Assumptions	Changes to the data from the 2011 assessment included: - Increases in the number of spatial regions to better model the tagging and size data; - Inclusion of catch estimates from Vietnam and some Japanese coastal longline data previously not included; - The use of operational longline data for multiple fleets to better address the contraction of the Japanese fleet and general changes over time in targeting practices; - Improved modelling of recruitment to ensure that uncertain estimates do not influence key stock status outcomes; and - A large amount of new tagging data corrected for differential post-release mortality and other tag losses
Major Sources of Uncertainty	- Catch estimates from the most recent years are uncertain - Lack of availability of operational longline data for some fleets - High levels of uncertainty regarding the recruitment estimates and the resulting estimates of steepness

Qualifying Comments

-

Fishery Interactions

Interactions with protected species are known to occur in the longline fisheries of the South Pacific, particularly south of $25^{\circ} \mathrm{S}$. Seabird bycatch mitigation measures are required in the New Zealand and Australian EEZs and through the WCPFC Conservation and Management Measure CMM2007-04. Sea turtles also get incidentally captured in longline gear; the WCPFC is attempting to reduce sea turtle interactions through Conservation and Management Measure CMM2008-03. Shark bycatch is common in longline fisheries and largely unavoidable; this is being managed through New Zealand domestic legislation and to a limited extent through Conservation and Management Measure CMM2010-07.

7. FOR FURTHER INFORMATION

[^0]
BIGEYE TUNA (BIG)

Anon (2013) Tuna fishery yearbook 2012. Western and Central Pacific Fisheries Commission, 154 p.
Baird, S J (2008) Incidental capture of New Zealand fur seals (Arctocephalus forsteri) in longline fisheries in New Zealand waters, 1994-95 to 2005-06. New Zealand Aquatic Environment and Biodiversity Report No. 20.21 p.
Bentley, N; Langley, A D; Middleton, D A J; Lallemand, P (2013) Fisheries of New Zealand, 1989/90-2011/12. Retrieved from http://fonz.tridentsystems.co.nz. Accessed 11 October 2013.
CMM2010-07 (2010) Conservation and Management measure for sharks, for the Western and Central Pacific Ocean. CMM2010-07 of the Western and Central Pacific Fisheries Commission.
Davies, N; Hoyle, S; Harley, S; Langley, A; Kleiber, P; Hampton, J (2011) Stock assessment of bige ye tuna in the Western and Central Pacific Ocean. Report to the Western and Central Pacific Fisheries Commission Scientific Committee WCPFC-SC7-2011/SA-WP-02. 132 p.

Grewe, P M; Hampton, J (1998) An assessment of bigeye (Thunnus obesus) population structure in the Pacific Ocean based on mitochondrial DNA and DNA microsatellite analysis. SOEST 98-05, JIMAR Contribution 98-330.
Hampton, J; Fournier, D A (2001) A spatially-disaggregated, length-based, age-structured population model of yellowfin tuna (Thunnus albacares) in the western and central Pacific Ocean. Marine and Freshwater Research. 52:937-963.
Hampton, J; Kleiber, P; Langley, A; Hiramatsu, K (2004) Stock assessment of bigeye tuna in the western and central Pacific Ocean, SCTB17 Working Paper SA-2. www.spc.int
Hampton, J; Kleiber, P; Langley, A; Takeuchi, Y; Ichinokawa, M (2005a) Stock assessment of bigeye tuna in the western and central Pacific Ocean. SC-1 SA-WP-2. First meeting of the WCPFC-Scientific Committee, 8-19 August 2005, Noumea, New Caledonia.
Hampton, J; Kleiber, P; Takeuchi, Y; Kurota, H; Maunder, M (2003) Stock assessment of bigeye tuna in the western and central Pacific Ocean, with comparisons to the entire Pacific Ocean. SCTB16 Working Paper BET-1. www.spc.int
Hampton, J; Langley, A; Harley, S; Kleiber, P; Takeuchi, Y; Ichinokawa, M (2005b) Estimates of sustainable catch and effort levels for target species and the impacts on stocks of potential management measures. SC-1 SA-WP-10. First meeting of the WCPFC-Scientific Committee, 8-19 August 2005, Noumea, New Caledonia.
Hampton, J; Langley, A; Kleiber, P (2006) Stock assessment of bigeye tuna in the western and central Pacific Ocean, including an assessment of management options. WCPFC-SC2-2006/SA WP-2. . Second meeting of the WCPFC-Scientific Committee, 7-18 August 2006, Manila, Philippines. (www.wcpfc.org/).
Harley, S.; Davies, N; Hampton, J; McKechnie, S (2014a) Stock assessment of bigeye tuna in the western and central Pacific Ocean Rev 1 (25 July 2014). WCPFC-SC10-2014/SA-WP-01.
Harley, S.; Davies, N; Rice, J; McKechnie, S; Hampton, J (2014b) Summary of major changes in the 2014 tropical tuna stock assessments. WCPFC-SC10-2014/SA-IP-01.
Harley, S; Hoyle, S; Langley, A; Hampton, J; Kleiber, P (2009) Stock assessment of bigeye tuna in the Western and Central Pacific Ocean. Report to the Western and Central Pacific Fisheries Commission Scientific Committee WCPFC-SC5-2009/SA-WP-04. 98 p.
Harley, S; Hoyle, S; Williams, P; Hampton, J; Kleiber, P (2010) Stock assessment of bigeye tuna in the Western and Central Pacific Ocean. Report to the Western and Central Pacific Fisheries Commission Scientific Committee WCPFC-SC5-2010/SA-WP-04. 105 p.
Harley, S J; Maunder, M N; Deriso, R (2005) Assessment of bigeye tuna (Thunnus obsesus) in the eastern Pacific Ocean. Collective Volume of Scientific Papers, ICCAT, 57(2).
Langley, A; Hampton, J; Kleiber, P; Hoyle, S (2008) Stock Assessment of bigeye tuna in the Western and Central Pacific Ocean, including an analysis of management options. Report to the Western and Central Pacific Fisheries Commission Scientific Committee WCPFC-SC4-2008/SA-WP-01. 119 p.
Lawson, T A (2008) Western and Central Pacific Fisheries Commission Tuna Fishery Yearbook 2007. Western and Central Pacific Fisheries Commission, Pohnpei, Federated States of Micronesia. 203 p.
Mattlin, R H (1987) New Zealand fur seal, Arctocephalus forsteri, within the New Zealand region. In Croxall, J P; Gentry, R L Status, biology, and ecology of fur seals: Proceedings of an international symposium and workshop, Cambridge, England, 23-27 April 1984. NOAA Technical Report NMFS-51.
Ministry for Primary Industries (2016) Aquatic Environment and Biodiversity Annual Review 2013. Compiled by the Fisheries Management Science Team, Ministry for Primary Industries, Wellington, New Zealand. 682 p.
Ministry for Primary Industries (2013) National Plan of Action - 2013 to reduce the incidental catch of seabirds in New Zealand Fisheries. Ministry for Primary Industries, Wellington, New Zealand. 59 p.
Perrin, W F; Wursig, B; Thewissen, J G M (Eds.) (2008) Encyclopedia of marine mammals. Second Edition. Academic Press, San Diego.
Pilling, G M; Harley, S J; Davies, N; Rice, J; Hampton, J (2014) Status quo projections for bigeye, skipjack, and yellowfin tunas. WCPFC-SC10/SA-WP-06.
Richard, Y; Abraham, E R (2013) Application of Potential Biological Removal methods to seabird populations. New Zealand Aquatic Environment and Biodiversity Report No. 108. 30 p.
Richard Y; Abraham, E R (2014) Estimated capture of seabirds in New Zealand trawl and longline fisheries, 2002-03 to 2011-12. Draft New Zealand Aquatic Environment and Biodiversity Report held by Ministry for Primary Industries, Wellington.
Richard Y; Abraham, E R (2015) Assessment of the risk of commercial fisheries to New Zealand seabird, 2006-07 to 2012-13. New Zealand Aquatic Environment and Biodiversity Report No. 162.
Richard, Y; Abraham, E R; Filippi, D (2011) Assessment of the risk to seabird populations from New Zealand commercial fisheries. Final Research Report for projects IPA2009/19 and IPA2009/20. (Unpublished report held by the Ministry for Primary Industries, Wellington.) 137 p .
Richard, Y; Abraham, E R; Filippi, D (2013) Assessment of the risk of commercial fisheries to New Zealand seabirds, 2006-07 to 2010-11. New Zealand Aquatic Environment and Biodiversity Report No. 109. $58+70 \mathrm{p}$.
Robertson, H A; Dowding, J E; Elliot, G P; Hitchmough, R A; Miskelly, C M; O’Donnell, C F J; Powlesland, R G; Sagar, P M; Scofield, R P; Taylor, G A (2013) Conservation status of New Zealand Birds, 2012. New Zealand Threat Classification Series 4. Department of Conservation, Wellington. 22 p .
Rowe, S J (2009) Conservation Services Programme observer report: 1 July 2004 to 30 June 2007. DOC Marine Conservation Services Series 1. Department of Conservation, Wellington. 93 p .

Schaefer, K M; Fuller, D W (2002) Movements, behavior, and habitat selection of bigeye tuna (Thunnus obesus) in the eastern equatorial Pacific, ascertained through archival tags. Fishery Bulletin 100: 765-788.
Sharp, B; Waugh, S; Walker, N A (2011) A risk assessment framework for incidental seabird mortality associated with New Zealand fishing in the New Zealand EEZ., (Unpublished report held by the Ministry for Primary Industries, Wellington.) 39 p.
Thompson, F N; Abraham, E R (2010) Estimation of fur seal (Arctocephalus forsteri) bycatch in New Zealand trawl fisheries, 2002-03 to 2008-09. New Zealand Aquatic Environment and Biodiversity Report No. 61.37 p.
Thompson, F N; Berkenbusch, K; Abraham, E R (2013) Marine mammal bycatch in New Zealand trawl fisheries, 1995-96 to 2010-11. New Zealand Aquatic Environment and Biodiversity Report No. 105.73 p.

Waugh, S; Fillipi, D; Abraham, E (2009) Ecological Risk Assessment for Seabirds in New Zealand fisheries. Final Research Report for Ministry of Fisheries project PRO2008-01. 58 p. (Unpublished report held by Ministry for Primary Industries, Wellington.)
Williams, P; Terawasi, P (2011) Overview of the tuna fisheries in the western and central Pacific Ocean, including economic conditions 2010. Report to the Western and Central Pacific Fisheries Commission Scientific Committee WCPFC-SC7-2011/GN-WP-01.

[^0]: Abraham, E R; Thompson, F N (2009) Capture of protected species in New Zealand trawl and longline fisheries, 1998-99 to 2006-07. New Zealand Aquatic Environment and Biodiversity Report No. 32
 Abraham, E R; Thompson, FN (2011) Summary of the capture of seabirds, marine mammals, and turtles in New Zealand commercial fisheries, 1998-99 to 2008-09. Final Research Report prepared for Ministry of Fisheries project PRO2007/01. (Unpublished report held by the Ministry for Primary Industries, Wellington.) 170 p .
 Abraham, E R; Thompson, F N; Oliver, M D (2010) Summary of the capture of seabirds, marine mammals, and turtles in New Zealand commercial fisheries, 1998-99 to 2007-08. New Zealand Aquatic Environment and Biodiversity Report No. 45.148 p.
 Anon. (2002) Annual Report of the Inter-American Tropical Tuna Commission. IATTC, La Jolla, California. 148 p.
 Anon. (2004a) Report of the $3^{\text {rd }}$ meeting of the Scientific Coordinating Group. WCPFC/PrepCon/41. www.ocean-affairs.com
 Anon. (2004b) Report of the $16^{\text {th }}$ meeting of the Standing Committee on Tuna and Billfish. www.spc.int.
 Anon. (2006) The Commission for the Conservation and Management of Highly Migratory Fish Stocks in the Western and Central Pacific Ocean. Scientific Committee Second regular session, 7-18 August 2006, Manila, Philippines. Kolonia Pohnpei. 252 p.

