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EXECUTIVE SUMMARY 

Marsh, C.; McKenzie, A.; Francis, R.I.C.C.; Doonan, I. (2018). Evaluating the effects of changes 
in the frequency of research abundance trawl surveys and age frequency sampling on the hoki, 
hake, and ling stock assessments. 

New Zealand Fisheries Assessment Report 2018/43. 60 p. 

Under the Ministry for Primary Industries 10-Year Research Programme, the frequency of the Chatham 
Rise and Sub-Antarctic trawl surveys has been reduced from annual to biennial to ease pressure on 
fisheries research budgets, and to focus on priorities for other New Zealand fisheries. This change has 
the potential to affect the robustness of, and uncertainty associated, with biomass estimates for the hoki, 
hake, and ling stock assessments, as well as the future assessments of species that are not currently 
assessed. The effect of the reduction in trawl surveys is investigated in this report using three types of 
computer simulation: (a) generic simulations, (b) retrospective analyses, and (c) forward projection 
simulations. The retrospective analyses and forward projections simulations were conducted for the 
hoki, hake, and ling stock assessments in the Chatham Rise and Sub-Antarctic. 

The generic simulations demonstrated that, under very simple scenarios, when moving from annual to 
biennial surveys we expect to get less precision, but no bias, in estimated biomass changes. For the 
retrospective simulations, there were small differences in current biomass estimates (%B0) between 
annual and biennial survey scenarios (both accuracy and precision), although for the hoki stock there 
was a larger difference between the two different biennial scenarios, which is attributed to an induced 
three-year gap between surveys due to a pre-existing two-year gap. 

The forward projection simulation analysis looked at the effect on biomass estimates of a survey 
frequency change from annual to biennial for each stock, under three alternative population trajectories 
(increasing, decreasing and stable). The size of the differences between annual and biennial scenario 
varied between stocks and population trajectories, but were small, with the annual scenario having 
greater accuracy and slightly higher precision than the biennial scenarios. 

Fisheries New Zealand Effects of changes in the frequency of research abundance trawl surveys 2017• 1 



 

    

  

     
 

        

 
   

      
      

    
    

  
   

   
  

   
           
  

 

        
   

   
 

     
     

  

   
      

       
  

 

   
   

 
 

  
   

 
 

 
 

  

1. INTRODUCTION 

Historically, fishery-independent surveys that indexed the abundance of hoki (and other “Tier one” 
deepwater species, which are regularly quantitatively assessed) were considered a high priority, especially 
when hoki stock size was relatively low. From the 2001 to 2010 fishing years (New Zealand fishing years 
run from 1 October to 30 September, but are normally referenced by the year-ending), Chatham Rise and 
Sub-Antarctic trawl surveys were completed annually, with the Cook Strait acoustic survey completed in 
all but one year from 2001 to 2009 (Ministry for Primary Industries, 2017). The Chatham Rise and Sub-
Antarctic trawl survey data from these and other years have also been used in the ling and hake stock 
assessments, for which they inform estimates of biomass and year class strengths (Figures 1 and 2). 

Under the Ministry for Primary Industries 10-Year Research Programme, the frequency of the Chatham 
Rise and Sub-Antarctic research trawl surveys has been reduced to ease pressure on fisheries research 
budgets, and to focus on priorities for other New Zealand fisheries. This change has the potential to affect 
the robustness of and uncertainty associated with the outputs of the hoki, hake, and ling stock assessments. 
Understanding the potential impacts of this change on the quality of the scientific advice will allow 
managers to determine the appropriate timing and frequency of future research surveys. 

Computer simulation experiments were used to investigate different scenarios related to the frequency of 
abundance surveys and sampling for age frequency. Three different types of simulation experiments were 
conducted, which we briefly describe here: 

1.	 Generic simulations where a biomass change over time is assumed (increasing, stable, 
declining). From the known biomass trajectory, survey biomass estimates are simulated, on 
either an annual or biennial basis. The simulated survey biomass estimates are then used to 
estimate the biomass change. This is not intended to replace stock assessment simulations, but 
as an illustration of the underlying considerations between the frequency of surveys, and the 
effect on accuracy of the estimated biomass changes. A simplified model is used to lessen the 
assessment complexities that may hinder the understanding of the underlying principle. 

2.	 Retrospective biomass estimations. In these simulations, current biomass estimates and five year 
projections are compared using all data, and with data retrospectively removed biennially from 
the trawl survey observations over a ten year period. The aim of these simulations is to take the 
current stock assessment, and investigate the consequences if the trawl survey data used in them 
had been biennial instead of annual. 

3.	 Forward projection simulations using current stock assessments implemented in CASAL (Bull 
et al. 2012). Different scenarios for assumed year class strengths and plausible future catch 
histories are used to obtain known projected biomasses in the future: decreasing, stable, 
increasing. From these known projected biomasses, survey biomass estimates are simulated on 
an annual or biennial survey basis, and a series of assessment biomass estimates done in the 
projected years. The aim of these simulations is to compare possible future scenarios of rapidly 
decreasing or increasing biomass, where moving from annual to biennial surveys may matter 
more. 

2 • Effects of changes in the frequency of research abundance trawl surveys 2017	 Fisheries New Zealand 



 

    

  
  

  
  

 
  

 
    

    
 

     
     

 

 

   
          

   
     

    
       

  
 

The work reported here addresses objectives 1 and 2 of the Ministry for Primary Industries project 
DEE2015-02, with the overall objective: To evaluate the implications of changing the frequency of 
abundance surveys and sampling for age frequency ageing, and stock assessments for selected Tier 1 
deepwater stocks. 

The specific objectives are: 

1. To evaluate the implications of conducting abundance surveys for hoki at intervals more than annually 
in terms of the reliability of and uncertainty associated with stock status and population projections. 

2. To evaluate the impact of less frequent sampling for age frequency for hake and ling stocks in terms of 
the reliability of and uncertainty associated with stock status and population projections. 

Figure 1: Biomass indices (thousands of tonnes) used in the most recent hoki, hake, and ling stock 
assessments, with 95% confidence intervals for the observation error. Top row is Chatham Rise trawl 
survey indices, and the bottom row is Sub-Antarctic trawl survey indices. The hoki stock assessment (HOK) 
incorporates survey indices from both the Chatham Rise trawl survey (CHAT) and Sub-Antarctic trawl 
survey (SA). The hake (HAK) and ling (LIN) stock assessments cover specific quota management areas 
(e.g. HAK 4 for area 4) or combined areas (e.g. LIN 3&4 for areas 3 and 4 combined). See Ministry for 
Primary Industries (2017) for further details. 

Fisheries New Zealand Effects of changes in the frequency of research abundance trawl surveys 2017• 3 



 

    

 
 

  
    

  

Figure 2: True year class strength estimates from the most recent hoki, hake, and ling stock assessments. 
Top row is for stocks in the Chatham Rise, and the bottom row is for stocks in the Sub-Antarctic. See 
Figure 1 for further explanation of the stock and areas titles for each graph. 
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2. METHODS 

There were three types of simulations conducted (a) generic simulations, (b) retrospective analyses, 
and (c) forward projection simulations. We describe each of these in turn. 

2.1 Generic simulations 

These simple simulations are used to illustrate the impact of changing the frequency of biomass surveys 
and are similar to those of Francis & Horn (2005). Three different biomass trajectories over time are 
assumed (increasing, stable, declining), and from these biomass trajectories survey biomass estimates are 
simulated on either an annual or biennial basis. The simulated survey biomass estimates are used to re
estimate the biomass trajectory, and the difference in accuracy of estimates between annual and biennial 
surveys is evaluated. 

The assumed biomass trajectories all start in 2011 with an initial biomass of 150 000 t and finish five years 
later in 2016. Three different biomass trajectories are assumed: (a) increase of 100%, (b) stable, and (c) 
decline of 50%. The biomass trajectories are assumed to be exponential following the equation 

𝐵𝐵𝑡𝑡 = 𝐵𝐵0exp(𝑟𝑟∆t ) 

where B0 is the biomass in the initial year, Bt is the biomass in year t, r the growth rate parameter, and 
∆t the number of years since 2011. The three assumed biomass trajectories correspond to rate parameter 
r values of 0.14, 0, and -0.14 respectively (Figure 3). 

For each of the three assumed biomass trajectories we assume that we can collect a representative 
sample of biomass through time (i.e. survey biomass observations over time). The sampling frequencies 
we assumed were annual and two biennial scenarios (either starting on the initial year, Biennial 1 or 
second year, Biennial 2). 

The simulation survey biomass observations were assumed to follow a lognormal sampling error 
distribution with an expectation that is centred on the biomass trajectory and a CV of 0.25. For each of 
the three trajectories and sampling frequencies 10 000 sets of simulated observations were generated 
(Figure 4). 

For each set of simulated observations the trajectory is re-estimated using the same model that simulated 
the data, hence the model parameters B0 and r are estimated for each set of simulated observations. The 
negative log-likelihood was evaluated and minimised using the optim() function in R (R Core Team 
2016). For a simulated observation (𝑜𝑜𝑖𝑖) and expectation (𝐸𝐸𝑖𝑖) with known CV (𝑐𝑐𝑖𝑖) the negative loglihood 
(− log(𝐿𝐿)) is as follows 

2
𝑛𝑛 log(𝑜𝑜𝑖𝑖)𝐸𝐸𝑖𝑖− log(𝐿𝐿) = ൮log(𝜎𝜎𝑖𝑖) + 0.5 ቌ + 0.5𝜎𝜎𝑖𝑖ቍ ൲𝜎𝜎𝑖𝑖𝑖𝑖=1 

Where 𝜎𝜎𝑖𝑖 = ටlog(1 + 𝑐𝑐𝑖𝑖2) 

For each set of simulated observations, and associated re-estimated trajectories, the percentage change 
in biomass from the initial to the last year was calculated as 

𝐵𝐵2016 𝐵𝐵𝑐𝑐ℎ𝑎𝑎𝑛𝑛𝑎𝑎𝑎𝑎 = 100 
𝐵𝐵𝑜𝑜 

Fisheries New Zealand Effects of changes in the frequency of research abundance trawl surveys 2017• 5 



 

    

    
   

 

 
  

    
   

 
 
 
 

The estimates of percentage changes in biomass are compared to the actual changes under the three 
different biomass trajectory scenario, and the different sampling frequencies for biomass (annual, and 
two biennial). 

Figure 3: The three biomass trajectories all with B2011= 150 000 t; a) exponentially increasing population 
with a growth rate parameter of r = 0.14 b) constant trajectory, c) decreasing population with a growth 
rate parameter of r = -0.14. 
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Figure 4: Simulated data for each of the combinations of the three trajectories (increasing, stable, 
decreasing) and temporal sampling frequencies (Annual, Biennial 1, Biennial 2). 

Fisheries New Zealand Effects of changes in the frequency of research abundance trawl surveys 2017• 7
 



 

    

  

      
            

      
     

         
    

 
    

 
    

        
    

    
    

      
 

       
    

   
 

    
 

  
         

   
       

      
 

    
    

      
         

 
  

  
 

         
       
   

  
 

   
           

  
    

     
  

 
 

    

   
     

2.2 Retrospective biomass estimations 

Retrospective MCMC biomass estimates were calculated using the most recent assessment model for 
each stock (Table 1), comparing model runs with all data, to those where the Sub-Antarctic (SA) and 
Chatham Rise (CR) trawl surveys and their associated age composition data were excluded on a biennial 
basis. Five-year projections were also completed for each retrospective model run. Any catch sampling 
or other observations informing stock status were kept the same in the simulations. The stocks 
investigated and assessment models used are summarised in Table 1. 

Table 1: Retrospective analyses stocks and assessment models used with references. 

Stock Associated area Assessment year Reference 
HAK 4 CR 2013 Horn 2013 
HAK 1 SA 2015 Horn 2015 
LIN 3 & 4 CR 2015 McGregor 2015 
LIN 5 & 6 SA 2015 Roberts 2016 
HOK 1 CR & SA 2015 McKenzie 2016 

The time frame for the biennial scenarios starts in 2005 and finishes in 2013, with two alternating 
biennial scenarios (see Table 2). The rationale behind this time interval being chosen and the two 
biennial scenarios is explained below. 

The reason for the simulation studies is to evaluate the impact of moving from a sequence of annual 
trawl surveys to biennial trawl surveys. To mimic this in the biennial retrospective simulations one 
needs a sequence of annual trawl surveys, followed by biennial surveys. While the CR has a sequence 
of annual trawl surveys from 1992 onwards, in the SA these stopped and recommenced on an annual 
basis in 2001 (see Table 2). For this reason, 2005 was chosen as the start year in the biennial scenarios, 
in part to ensure these scenarios included a reasonable sequence of annual surveys. However, one should 
not choose a start year that is too late, as then there will be little data dropped in the biennial scenarios. 

The finish year 2013 for the biennial surveys was chosen for a number of reasons, the main being that 
after then the CR and SA surveys began alternating biennially, so one of the biennial scenarios provides 
no further contrast as it matches what has already happened (see Scenario 2 in Table 2). This is 
particularly pertinent for the HAK 1 and LIN 5 & 6 stocks that have data just from the SA trawl survey. 

Data after 2013 is dropped for both the annual and biennial scenarios, as after 2013 the CR and SA 
trawl surveys are biennial. 

Implementing a retrospective analysis that covers nine years from 2005 to 2013 ensures that multiple 
cohorts are incorporated. For example, cohorts in the hoki fishery persist for around five to six years 
(Figure 5). The retrospective analyses run over nine years so we will see multiple cohorts which is more 
representative of a dynamic system (as opposed to a period dominated by the same cohorts). 

For each stock and sampling frequency an MCMC estimation was carried out using CASAL v2.30 (Bull 
et al 2012), along with five-year projections. Each MCMC chain was diagnosed for convergence and 
reference points calculated. The reference points summarised were 𝐵𝐵𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑎𝑎𝑛𝑛𝑡𝑡, 𝐵𝐵𝑓𝑓𝑐𝑐𝑡𝑡𝑐𝑐𝑐𝑐𝑎𝑎 where both are 
spawning stock biomass as a percentage of virgin biomass, current is in 2013, and future refers to the 
projected biomass in 2018. These are compared for each stock across the three proposed sampling 
frequencies (annual, and two biennial scenarios). 

A retrospective analysis looks back at the available data and makes changes to see the effects of 
changing assumptions, in this case the assumption of sampling frequencies. The benefit of a 
retrospective analysis is that it uses real data compared to simulated data, and MCMC simulations are 
computationally feasible. However, the retrospective analysis may not be informative of future 
scenarios where assessments will have more annual data than is expressed in a retrospective study. This 

8 • Effects of changes in the frequency of research abundance trawl surveys 2017 Fisheries New Zealand 



 

    

    
 

 
   

  
  

    
 

      
       

         
         
        
       
       
       
       
       
       
        
        
        
        
        
        
        
        
        
        
       
         
        
       
        
       

 
 
 
 
 
 
 
 

is the reason we have done a third analysis, a forward projections simulation study, which includes all 
the current available data. 

Table 2: Trawl survey data for the Sub-Antarctic (SA) and the Chatham Rise. Shown is the fishing year in 
which the trawl surveys occurred and data used in two biennial scenarios for retrospective biomass 
estimates. Data after 2013 is dropped for the retrospective analyses (annual, and both biennial scenarios). 
The lines encompass the range of years for which trawl survey data is dropped in the biennial scenarios. 

Fishing year Observed data Biennial (Scenario 1) Biennial (Scenario 2)
 
Survey SA CR SA CR SA CR
 
1992
 
1993
 
1994
 
1995
 
1996
 
1997
 
1998
 
1999
 
2000
 
2001
 
2002
 
2003
 
2004
 
2005
 
2006
 
2007
 
2008
 
2009
 
2010
 
2011
 
2012
 
2013
 
2014
 
2015
 
2016
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Figure 5: Proportions-at-age data, plotted by cohort and fishing year, with both sexes combined for the 
HOK 1 stock. The area of each circle is proportional to the associated proportion at age. Circle positions 
for the SAautage data in 1992 have been offset horizontally to allow them to be plotted on the same panel 
as the SAsumage data. 
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2.3 Forward Projection Simulations 

2.3.1 Overview 

The nature of the forward projection simulations are similar to the generic illustrative simulations, but are 
more closely based on the current data and state for a fish stock (e.g. hoki, hake, ling) with control over 
assumed year class strengths (YCSs) in the future. 

Due to the complexity of the operating model, which includes time varying parameters, it was 
implemented in CASAL2 (Doonan et al. 2016). CASAL2 is NIWA’s new population model dynamics 
platform which is an extension of CASAL. 

Different scenarios for assumed future year class strengths are used to obtain known projected biomasses. 
For abundance estimates, survey biomass estimates are simulated on an annual or biennial basis from 
these known projected biomasses. For age data, simulated random sampling is conducted on the projected 
age frequencies. Assessment maximum posterior density (MPD) biomass estimates are done in the 
projected years, and compared for the annual and biennial scenarios. 

For stocks where the current quota gives a stable biomass in projections, using YCSs of one in forward 
projections is unlikely to lead to much change in biomass. In this situation, it is unlikely that changing to 
biennial instead of annual surveys would matter much. Where it is more likely to matter is when the YCSs 
are very much below or above average, leading to steep biomass increases or declines. In one set of 
simulations the YCSs are set up to induce a declining biomass (and hence a potential lag in catch quota 
decreases), and in another set of simulations an increasing biomass (and a potential lag in catch quota 
increases to utilise the extra productivity).  

We attempted to generate future data that is as realistic as possible. A common criticism of simulation 
studies is that they use data from a simplified population model that does not reflect a real and complex 
system, so inferences from them are poor. 

In the sections that follow we summarise the operating model used to simulate future data, the scenarios 
investigated in forward projections, and the MPD re-estimation procedure used for each set of 
simulations. 

2.3.2 Finding an Operating Model 

The starting point for the operating model for all stocks was the base case stock assessment model that 
is currently accepted by the working groups (see Table 1). To add more realistic properties into the 
simulated data we investigated adding process error in the form of allowing traditionally fixed 
parameters in our model to vary randomly by year (time-vary). The two sets of parameters that we 
initially investigated to time-vary were selectivity and natural mortality (M) parameters. Both 
parameters were independently and identically drawn from the normal distribution to vary between each 
year. With time-varying M we found that this was unsatisfactory because (a) it required unrealistically 
large variation in M and (b) the simulations sometimes failed because with higher M there was 
insufficient biomass to allow the catch to be taken. 

Selectivity parameters that could time-vary were the location parameter of the selectivity (a50 for logistic 
and the mean for the double normal). These time-varying selectivities have ideal properties for 
introducing process error, because they directly contribute to expectations of observations, which 
simulated data are based on. They are also used in fishing mortality processes, so add more realism into 
the operating model. The time-varying location parameters were assumed to follow independent draws 
from the normal distribution of the form 

𝑆𝑆𝑆𝑆𝑆𝑆𝜇𝜇,𝑡𝑡,𝑠𝑠 ~ 𝑁𝑁(𝑆𝑆𝑆𝑆𝑆𝑆𝜇𝜇,𝑚𝑚𝑚𝑚𝑚𝑚,𝑠𝑠, 𝜎𝜎𝑠𝑠) 

Fisheries New Zealand Effects of changes in the frequency of research abundance trawl surveys 2017• 11 



 

    

 
          

     
     

 
      

     
        

  
   

    
   

 
          

 
 

  
    

   
   

    
 

  
   

        
       

   
 

 
   

       
     

    
 

     

 
    

     
  

 

where, 𝑆𝑆𝑆𝑆𝑆𝑆𝜇𝜇,𝑡𝑡,𝑠𝑠 is the location parameter (𝜇𝜇) in year t for the 𝑠𝑠𝑡𝑡ℎ selectivity, 𝑆𝑆𝑆𝑆𝑆𝑆𝜇𝜇,𝑚𝑚𝑚𝑚𝑚𝑚,𝑠𝑠 is the estimated 
location parameter from the base case assessment, and 𝜎𝜎𝑠𝑠 the standard deviation of the normal 
distribution, referred to from here as the process error term. 

The other component of the operating model (other than process error) that we investigated was the 
observational error for compositional datasets. Observational error was parameterised for each data set 
by a weighting factor (𝜔𝜔𝑖𝑖), where i is the ith dataset. The likelihood chosen to simulate compositional 
data was the logistic-normal likelihood. This was preferred to the commonly used multinomial because 
it can account for correlations between ages or lengths, which is often observed in compositional data 
(Figures 6–7). Another reason was that it did not generate zero compositional values, unlike the 
multinomial which was found to generate 5–20% zeros in initial simulations. Maximum likelihood 
estimation was used to identify the appropriate correlation parameter values that define the logistic-
normal likelihood, given the observed and expected values from the base case assessment for a stock 
(Francis 2014). 

The logistic-normal likelihood uses the logistic transformation of the Multivariate-Normal distribution. 
A logistic-normal distribution is formed by applying a logistic transformation to a multivariate normal 
vector. Specifically, let O be a composition vector for a year where the values sum to one, then O is 
logistic-normal with parameters {E,𝚺𝚺} if O𝑏𝑏 = exp(𝑋𝑋𝑏𝑏) / ∑ exp(𝑋𝑋𝑏𝑏), where the vector X is 
multivariate normal with mean log(E) and covariance matrix 𝚺𝚺 = 𝜔𝜔𝑖𝑖𝜌𝜌1𝜌𝜌2. 

A multivariate normal distribution can have a range of covariance structures, each of these 
corresponding to different assumed covariance structures for the logistic-normal distribution. Some 
common correlation structures coded into CASAL2 are LN1, LN2 and LN3 where the integer part of 
the label is the number of parameters used to describe the covariance structure as described in Francis 
(2014). For more information on the logistic-normal distribution see Francis (2014) and Aitchison 
(2003). 

For simulated biomass data (i.e. trawl surveys) the lognormal likelihood was used with CV from the 
last year of the respective observation. We did initially investigate the observation error on biomass 
observations. However, we found that all assessments investigated in this study incorporated additional 
process error into the biomass observation error, which was deemed to be enough variation to produce 
realistic simulated biomass observations. Auto-correlation in simulated biomass data was investigated, 
but was not incorporated as there appeared to be little in the data (Appendix A). 

Figure 6: Residual correlation structure between age groups for the HAK 1 stock base case assessment for 
observer age dataset. Blue dashed line is a loess fit to the observed residual correlation observed in the base 
case assessment, black dots and red line (loess fit) are the residual correlation when using a multinomial 
likelihood for compositional data. 

12 • Effects of changes in the frequency of research abundance trawl surveys 2017 Fisheries New Zealand 



 

    

 
     

     
 

 
 
 

   
            

          
          

    
    

 
         

 
        

  
   

        
   

  
    

  
         

       
      

  
 

           
       

  
        
     

  
 

    

Figure 7: Residual correlation structure for the HAK 1 stock base case assessment for observer age data. 
The blue line is a loess fit to the observed residual correlation, black dots and red line (loess fit) are the 
residual correlation when using a logistic-normal likelihood for compositional data. 

The residuals distribution patterns for each stock were used to choose the process and observational 
error parameters 𝜎𝜎𝑠𝑠 and 𝜔𝜔𝑖𝑖. This involved looking at the residual patterns (𝑶𝑶𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 − 𝑬𝑬𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑) that exist 
between our past observed data (𝑶𝑶𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑) and the base case model fits to that data (𝑬𝑬𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑). The goal in 
selecting operating model parameters 𝜎𝜎𝑠𝑠 and 𝜔𝜔𝑖𝑖 is to create simulated data 𝑺𝑺𝒇𝒇𝒇𝒇𝒑𝒑𝒇𝒇𝒇𝒇𝒇𝒇 that have the same 
residual variance and correlation patterns as (𝑶𝑶𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 − 𝑬𝑬𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑). This was tested by simulating data in the 
past (𝑺𝑺𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑) and comparing these to the base case fit (𝑬𝑬𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑). 

How we determine 𝜎𝜎𝑠𝑠 and 𝜔𝜔𝑖𝑖 for each observation set is outlined in the following algorithm: 

1. Find the combinations of 𝜎𝜎𝑠𝑠 and 𝜔𝜔𝑖𝑖 that satisfy 𝑣𝑣𝑣𝑣𝑟𝑟(𝑶𝑶𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 − 𝑬𝑬𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑) ≈ 𝑣𝑣𝑣𝑣𝑟𝑟(𝑺𝑺𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 − 
𝑬𝑬𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑). 

2.	 From the combinations in step one, find the single combination 𝜎𝜎𝑠𝑠 and 𝜔𝜔𝑖𝑖 that best recreates 
the residual pattern in the compositional data (including the correlation structure). 

In step one the residual variance refers to residual mean age or length for a compositional data time 
series and the residual abundance or biomass for their relevant time series. An example of such a 
variance plot is shown in Figure 8. From this figure, we can see that any intersection of the horizontal 
dashed black line (𝑣𝑣𝑣𝑣𝑟𝑟(𝑶𝑶𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 − 𝑬𝑬𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑)) are considered candidate pairs of 𝜎𝜎𝑠𝑠 and 𝜔𝜔𝑖𝑖 for the operating 
model. Linear interpolation is used to find the optimal weighting factor for each of the sigma curves 
that intercept the horizontal dashed line. 

In step two for each of the candidate 𝜎𝜎𝑠𝑠 and 𝜔𝜔𝑖𝑖 we investigated the inter-age or inter-length correlation 
structure using lag diagnostics, to find the final values of 𝜎𝜎𝑠𝑠 and 𝜔𝜔𝑖𝑖 that are used in the operating model. 
Lag diagnostics is a plot for visualising the residual intra-bin correlations (bin refers to either an age or 
length bin). Let there be a matrix of observed proportions 𝑃𝑃𝑦𝑦,𝑎𝑎 and expected proportions 𝑃𝑃𝑦𝑦,𝑎𝑎 where 𝑦𝑦 
is the year and 𝑣𝑣 is the age. To investigate inter-bin correlations we look at the raw residuals (𝑆𝑆𝑦𝑦,𝑎𝑎) 
which are defined as 

𝑆𝑆𝑦𝑦,𝑎𝑎 = 𝑃𝑃𝑦𝑦,𝑎𝑎 − 𝑃𝑃𝑦𝑦,𝑎𝑎 
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For ease of notation let 𝒇𝒇𝒑𝒑 represent a vector of residuals for age a for all years i.e. 𝒇𝒇𝒑𝒑 = 
{𝑆𝑆1,𝑎𝑎, 𝑆𝑆2,𝑎𝑎 … 𝑆𝑆𝑌𝑌,𝑎𝑎 }𝑇𝑇, where Y is the last year in the series. Inter-bin correlations can be viewed by looking 
at the correlations of residuals of bins close together, for example between ages 3 and 4 cor(𝒇𝒇𝟑𝟑, 𝒇𝒇𝟒𝟒), 
where cor() is Pearson’s correlation coefficient. These ages have a difference of 1, which is called the 
lag. If we plot the correlations between all possible combinations of bins, we can see that amongst most 
of our compositional data there are correlations (Appendix B). An example of a lag plot is shown for 
the observer catch at age (subaOBSage) and survey proportions at age (subaTANage) from the HAK 1 
stock assessment (Figure 9). 

Figure 8: Residual variance plots for two compositional observations from the HAK 1 assessment, over a 
range of sigma values (separate coloured lines) and weighting factors (x-axis). The horizontal dashed black 
line is the residual variance found in the base cases assessment. 
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Figure 9: Lag plot of Pearson’s correlation for two at age compositional datasets from the HAK 1 stock: 
subaTANageDEC (Sub-Antarctic survey proportions at age) and SubOBSage (observer catch at age 
dataset). The solid fit red line is a loess line fit. 

We fitted a loess to the lag diagnostics for 𝑶𝑶𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 − 𝑬𝑬𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 and also 𝑺𝑺𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 − 𝑬𝑬𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 then used 
minimisation of the sum of squares for the difference between the loess curves to find the final 
combination of 𝜎𝜎𝑠𝑠 and 𝜔𝜔𝑖𝑖. In particular 𝜎𝜎𝑠𝑠 and 𝜔𝜔𝑖𝑖 were determined from the combinations from step 
one by minimising the following term with respect to them 

𝑌𝑌−1 

𝑆𝑆𝑆𝑆𝐸𝐸 = (𝐿𝐿𝑖𝑖 − 𝐿𝐿𝑖𝑖)2 

𝑖𝑖=1 

where, 𝐿𝐿𝑖𝑖 is the loess fit for lag i and 𝐿𝐿𝑖𝑖 is the loess fit for a proposed simulating model comprised of 
𝜎𝜎𝑠𝑠 and 𝜔𝜔𝑖𝑖, and Y is the number of years of composition data. The final operating model was the 
combination of 𝜎𝜎𝑠𝑠 and 𝜔𝜔𝑖𝑖 that had the smallest SSE term. 

The final decision regarding the operating model was choosing the observational sampling error term 
for future years. For simplicity, this was set for all future years to the last error value from the base case 
assessment. 

Figure 10 illustrates how both process and sampling error can contribute to deviations from a model’s 
expectation and shows how the operating models incorporates both for more realism in the simulations. 
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Figure 10: A conceptual plot of how both process and sampling variability can affect simulated 
observations. To the left hand side of the vertical dashed line, the dots are observed data 𝑶𝑶𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 and the line 
represents the expectation 𝑬𝑬𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑. On the right hand side of the vertical dashed line the dashed black line is 
the (𝑬𝑬𝒇𝒇𝒇𝒇𝒑𝒑𝒇𝒇𝒇𝒇𝒇𝒇 ) model and blue points are simulated data (𝑺𝑺𝒇𝒇𝒇𝒇𝒑𝒑𝒇𝒇𝒇𝒇𝒇𝒇 ). 
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2.3.3 Scenarios 

The forward projection simulation study is for five stocks (HAK 1, HAK 4, LIN 3&4, LIN 5&6 and 
HOK 1), with three alternate biomass trajectories (increasing, decreasing and stable), and two 
alternative trawl survey frequencies (annual, biennial). This results in 30 [=5 × 3 × 2] scenarios, where 
for each scenario there are 500 random replicates. We explain here how the operating model is used to 
project the stock forward into the future. 

For the operating model, changes were made to the recruitment dynamics to project the stocks forward 
ten years under three different trajectories: declining, stable or increasing population. We choose three 
contrasting trajectories because we hypothesise that the effect of reducing survey frequency will be 
greater in situations where the biomass is not stable. The biologically plausible mechanism of 
recruitment changes was used to induce the future trajectories, as has been observed before for some 
stocks e.g. for the hoki western stock there was a period of low recruitment in the late 1990s which 
contributed to a subsequent decline in biomass (McKenzie 2016). Other possible scenarios include mass 
mortality events. However, given the time constraints we went with the most likely process to affect 
future stock status. 

For long-term simulations, a harvest control rule would be needed to make the simulations more 
realistic. However, no harvest control rule exists for any of the fisheries, and in any case changes to 
catch often involve factors other than stock status (so any harvest control rule driven only by stock 
status would be unrealistic). Instead the forward simulations are done for a relatively short time of ten 
years, with constant catch, using the last year of catch in the base case assessment. In lieu of a changing 
future catch driven by a harvest control rule, current catches seem to be a plausible near-term 
management target for the hoki, hake, and ling fisheries. 

Different trajectories are induced by scaling future year class parameters by a ratio of current R0 

compared with an assumed future 𝑅𝑅𝑓𝑓: 

𝑅𝑅𝑓𝑓′𝑌𝑌𝑦𝑦 = 𝑌𝑌𝑦𝑦 𝑅𝑅0 

Where, 𝑌𝑌𝑦𝑦′ is the future year class effect, 𝑅𝑅𝑓𝑓 is the future average recruitment, and 𝑌𝑌𝑦𝑦 is a year class that 
is generated from using the projection method for generating year class values in the base case stock 
assessment. This mimics a regime shift in productivity or a change in carrying capacity, and maintains 
realistic trends in future year class effects which is better than having a constant year class effect going 
into the future. 

Because this study covered five different stocks, that all have different current stock status relative to 
B0, a criterion was developed to choose the value for 𝑅𝑅𝑓𝑓 for each stock. For an increasing and decreasing 
future trend, an 𝑅𝑅𝑓𝑓 is chosen that creates a 25% change in %B0 from the base case assessment year, to 
ten years into the future. For example, if current status for %B0 is 50% then we want this to be 75% B0 

after a ten projection into the future under an increasing scenario. For the stable scenario there would 
be no change after a projection ten years into the future. 

When simulating data, we don’t standardise over future YCSs, instead we keep the standardisation the 
same as the base case assessment model, with assumed future YCSs not standardised. The reason for 
this is demonstrated in Figure 11, where if we standardise over future YCSs, the expectation using the 
current base case assessment parameters change, which we did not want to happen. 
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Figure 11: A comparison of future expected trajectories and also mean simulated data under two different 
standardisation procedures for YCSs. On the left panel we have kept the standardisation as specified in the 
base case assessment model (future YCS are not standardised). On the right panel we have standardised 
YCSs over future years as well. The standardisation procedure on the left was chosen for the operating 
model. 

For datasets for which there are no strategic future plans, we set a blanket rule that if a dataset was used 
in each of the final three years, it was assumed to continue into the future on an annual basis. There are 
many reasons why the frequency of other observations used in the assessment may not be as consistent 
as trawl surveys such as un-representative samples, or high uncertainty around estimates which cannot 
be predicted in the future, hence the use of this simplified rule. For a summary of the temporal frequency 
for future observations for HAK 1, HOK 1 and LIN 3 & 4 see Tables 3–6. 

Along with having three different trajectories (increasing, decreasing, stable) we ran two alternative 
survey scenarios: (i) annual surveys, and a (ii) biennial survey scenario (which follows the current 
pattern of biennial surveys).  

If the trawl surveys are biennial, a possible future scenario is that they alternate with fishery dependent 
commercial catch-at-age observations, which is investigated in a sensitivity run for the hoki stock 
assessment. The observations for this sensitivity run are shown in Table 7. 
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Table 3: Frequency of HOK 1 datasets in the forward simulation, CSacous is assumed biennial based on 
O’Driscoll et al. (2016). A black dot means the observation was simulated in that year. Espage = Eastern 
stock spawning commercial age frequency, Enspage = Eastern stock non-spawning commercial age 
frequency, Wspage and Wnspage are the same as the two previously mentioned except they apply to the 
western stock, WCacous is the west coast acoustic survey and CSacous is the cook straight acoustic survey. 

Year Espage Enspage Wspage Wnspage WCacous CSacous 

2016
 
2017
 
2018
 
2019
 
2020
 
2021
 
2022
 
2023
 
2024
 
2025
 
2026
 

Table 4: HAK 1 Observer catch at age frequency for projected years. 

Year	 Commercial
 
age frequencies 

(subOBSage)
 

2014
 
2015
 
2016
 
2017
 
2018
 
2019
 
2020
 
2021
 
2022
 
2023
 

Table 5: LIN 3 & 4 observer catch at age frequency for projected years. 

Year Trawl Catch at age
 
2014
 
2015
 
2016
 
2017
 
2018
 
2019
 
2020
 
2021
 
2022
 
2023
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Table 6: Annual vs biennial frequencies for the Chatham Rise (CR) and Sub Antartic (SA) surveys for 
future years. 

Year Annual Biennial 
CR SA CR SA
 

2012
 
2013
 
2014
 
2015
 
2016
 
2017
 
2018
 
2019
 
2020
 
2021
 
2022
 
2023
 
2024
 
2025
 
2026
 

Table 7: Observation frequency for the sensitivity run for the HOK 1 stock assessment. 

Year Espage Enspage Wspage Wnspage WCacous CSacous SA CR 
survey survey
 

2016 ● ● ● ●
 
2017 ● ● ●
 
2018 ● ● ● ●
 
2019 ● ● ●
 
2020 ● ● ● ●
 
2021 ● ● ●
 
2022 ● ● ● ●
 
2023 ● ● ●
 
2024 ● ● ● ●
 
2025 ● ● ●
 
2026 ● ● ● ●
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2.3.4 Re-Estimation model 

The re-estimation model for a stock was done in CASAL and was the same as the base case assessment 
model (refer to the respective assessment report in Table 1 for more details). The changes that are 
needed to the base case model are simply extending ten years into the future for the observational data, 
and refitting the model. Priors were kept the same as in the base model and future catches the same as 
the last year of the base model. Following the procedure in the base model the YCSs were standardised. 

The base model is stepped forward in time incrementally, during which parameters were re-estimated 
under various scenarios at each increment. This was done for 10 years which was the end of the 
simulation period. 

In detail the algorithm for re-estimation follows: 

•	 For each assessment from the end of the base case assessment year (𝑏𝑏𝑣𝑣𝑠𝑠𝑆𝑆𝑦𝑦𝑎𝑎𝑎𝑎𝑐𝑐 ) step forward 
two years and do an MPD fit, keeping all the data for the annual situation and dropping out 
the necessary data for the biennial situation (see Tables 3–6). 

•	 For each MPD apply the Francis TA1.8 re-weighting method (Francis 2011a) after the first 
MPD and re-run the MPD. 

•	 Summarise the estimation results. 

•	 Step forward until another two years and repeat the above process, until ten years in the future 
is reached. 

We summarise here the entire decision-making process that entails finding the operating model, setting 
future trajectories, and re-estimation. 

1.	 Pick a sub set of 𝜎𝜎𝑠𝑠 and 𝜔𝜔𝑖𝑖 that satisfy 𝑣𝑣𝑣𝑣𝑟𝑟(𝑶𝑶𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 − 𝑬𝑬𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑) ≈ 𝑣𝑣𝑣𝑣𝑟𝑟(𝑺𝑺𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 − 𝑬𝑬𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑) for all 
simulated composition observations. 

2.	 From the subset of 𝜎𝜎𝑠𝑠 and 𝜔𝜔𝑖𝑖 found in step 1, search for the combination that creates the 
smallest SSE term between the loess fits in the residual correlations. 

3.	 Find a value for the future average recruitment (𝑅𝑅𝑓𝑓) to get either a 25% increase, decrease, or 
0% change in biomass within ten years. 

4.	 Simulate N sets of observations for each stock and trajectory. 

5.	 Re-estimation, for the annual situation keeping data for all years or for the biennial situation 
taking every second year for the relevant datasets. Re-estimation model has constant future 
catches and standardises over future YCS parameters. 

6.	 Summarise the outputs. 

Goodness of fit is always a difficult task with so many model outputs. We randomly selected five 
assessment fits, and if the Pearson’s residuals were within the 95% confidence interval they were 
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deemed to be satisfactory fits. These five fits were assumed to be representative of the 495 remaining 
re-estimation outputs. 

All re-estimation model outputs were summarised by spawning stock biomass as a percentage of 
equilibrium spawning stock biomass (%𝐵𝐵𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑎𝑎𝑛𝑛𝑡𝑡)

𝐵𝐵𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =%𝐵𝐵𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑎𝑎𝑛𝑛𝑡𝑡 𝐵𝐵0 

These were presented for all future years that had survey data available, runs comparing the annual 
survey frequency to the biennial frequency are presented in the following results section. 
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3. RESULTS 

In the sections that follow each set of results is considered in turn: (a) generic simulations, (b) 
retrospective, and (c) forward simulations. Overall, there was little difference between the annual and 
biennial survey results. 

3.1 Generic Simulations 

For the generic simulations there are three biomass trajectory scenarios: (a) increasing, (b) constant, 
and (c) decreasing. These simulations demonstrate that going from annual to biennial for simulated 
observed data, there is no change in the estimate of the percentage change in biomass over the trajectory, 
but an increase in the variance for this estimate (Figure 12). The increase in the variance was 
asymmetric, with greater increase for the right-hand tail of the distribution. There was very little 
difference between the two biennial scenarios. 
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Figure 12: Histogram of 𝑩𝑩𝒄𝒄𝒄𝒄𝒑𝒑𝒄𝒄𝒄𝒄𝒇𝒇 (percentage changes in biomass from 2011 to 2016) for different scenarios 
and biomass trajectories. The three scenarios (shown in the rows) are annual and two biennial scenarios. 
The alternative trajectories (shown in the columns) are: a) exponentially increasing population by a rate of 
exp(0.14), b) constant trajectory, c) decreasing population by a rate of exp(-0.14). The red vertical lines 
denote the 95% quantiles for the histograms. 
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3.2 Retrospective biomass estimates 

In these simulations, under annual and two biennial scenarios, estimates are made of biomass (%B0) 
in 2013 (Bcurrent) and with a five-year projection (Bfuture). 

Except for the western hoki stock and the second biennial scenario, there is little difference in the 
estimate of current biomass, for either the median value or variance (Figures 13–18). The difference 
noted for the western hoki stock is hypothesised to be due to the three-year gap for the Sub-Antarctic 
trawl survey under the second biennial scenario (see Table 2). Differences in current biomass estimates 
are magnified under five-year projections, with the biggest difference being for the western hoki stock. 

Figure 13: Comparisons of reference points 𝑩𝑩𝒄𝒄𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒄𝒄𝒑𝒑 and 𝑩𝑩𝒇𝒇𝒇𝒇𝒑𝒑𝒇𝒇𝒇𝒇𝒇𝒇 from the HAK 4 stock assessment between 
the three alternative scenarios. 
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Figure 14: Comparisons of reference points 𝑩𝑩𝒄𝒄𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒄𝒄𝒑𝒑 and 𝑩𝑩𝒇𝒇𝒇𝒇𝒑𝒑𝒇𝒇𝒇𝒇𝒇𝒇 from the HAK 1 stock assessment between 
the three alternative scenarios. 

Figure 15: Comparisons of reference points 𝑩𝑩𝒄𝒄𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒄𝒄𝒑𝒑 and 𝑩𝑩𝒇𝒇𝒇𝒇𝒑𝒑𝒇𝒇𝒇𝒇𝒇𝒇 from the LIN 3 & 4 stock assessment 
between the three alternative scenarios. 
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Figure 16: Comparisons of reference points 𝑩𝑩𝒄𝒄𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒄𝒄𝒑𝒑 and 𝑩𝑩𝒇𝒇𝒇𝒇𝒑𝒑𝒇𝒇𝒇𝒇𝒇𝒇 from the LIN 5 & 6 stock assessment 
between the three alternative scenarios. 
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Figure 17: Comparisons of reference points 𝑩𝑩𝒄𝒄𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒄𝒄𝒑𝒑 and 𝑩𝑩𝒇𝒇𝒇𝒇𝒑𝒑𝒇𝒇𝒇𝒇𝒇𝒇 for the eastern stock from the HOK 1 
stock assessment between the three alternative scenarios. 

Figure 18: Comparisons of reference points 𝑩𝑩𝒄𝒄𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒄𝒄𝒑𝒑 and 𝑩𝑩𝒇𝒇𝒇𝒇𝒑𝒑𝒇𝒇𝒇𝒇𝒇𝒇 for the western stock from the HOK 1 
stock assessment between the three alternative scenarios. 
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3.3 Forward Projection Simulations 

For forward projection simulations there was somewhat larger variance in stock status estimates for 
biennial than annual (Figures 19–36, Tables 9–14). But overall there was little difference between the 
three scenarios re-estimated, though for certain scenarios and stocks the difference was more 
pronounced (e.g. HAK 1 and the decreasing trajectory – see Figure 20). 

An interesting finding from this analysis was that the expectation could not be re-estimated by both the 
annual and biennial scenario. This was investigated and found to be due to a difference existing between 
the operating model and the re-estimation model. The operating model simulated future data based on 
un-standardised year class parameters. When we re-estimated the simulated data, the year class 
parameters were standardised over all years (a common practice). This meant that both the annual and 
biennial scenarios couldn’t re-estimate the underlying known biomass when the population was 
exhibiting change. This highlights the effect of the assumption of forcing relative year class strengths 
to average one, when in fact this might not be true. This suggests that under periods of low recruitment 
our models may be optimistic, and under periods of high recruitment our models are pessimistic. 
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3.3.1 HAK 1
 

Figure 19: HAK 1 and stable trajectory for the operating model. Current biomass estimates (%𝑩𝑩𝟎𝟎 ) for 
forward simulation assessments done every second year. Shown are the estimates from 500 MPD fit 
scenarios: annual, expectation of the operating model, and biennial data. 

Figure 20: As in Figure 19, but for the decreasing trajectory. 
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Figure 21: As in Figure 19, but for the increasing trajectory. 

Table 8: HAK 1 and different trajectories for the operating model. Standard deviation of %𝑩𝑩𝟎𝟎 estimates 
for the annual and biennial frequency for each year of assessments. 

Trajectory Survey Frequency 2015 2017 2019 2021 2023
 
Stable Annual 3.8 5.4 5.7 5.8 6.6
 

Biennial 3.7 5.7 6.4 6.9 8.0
 
Decreasing Annual 3.8 4.9 5.1 4.7 4.1
 

Biennial 3.7 5.1 5.3 5.2 4.6
 
Increasing Annual 3.8 5.8 5.7 6.8 8.6
 

Biennial 3.7 6.6 6.1 7.4 10.3
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3.3.2 HAK 4
 

Figure 22: HAK 4 and stable trajectory for the operating model. Current biomass estimates (%𝑩𝑩𝟎𝟎 ) for 
forward simulation assessments. Shown are the estimates from 500 MPD fit scenarios: annual, expectation 
of the operating model, and biennial data. 

Figure 23: As in Figure 22, but for the decreasing trajectory. 
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Figure 24: As in Figure 22, but for the increasing trajectory. 

Table 9: HAK 4 and different trajectories for the operating model. Standard deviation of %𝑩𝑩𝟎𝟎 estimates 
for the annual and biennial frequency for each year of assessments. 

Trajectory Survey Frequency 2014 2016 2018 2020 2022
 
Stable Annual 2.3 3.2 3.8 4.2 4.1
 

Biennial 2.0 3.4 4.4 4.9 4.9
 
Decreasing Annual 2.3 3.4 3.7 3.1 2.3
 

Biennial 2.0 3.6 4.6 3.8 2.9
 
Increasing Annual 2.3 3.3 4.2 5.3 6.2
 

Biennial 2.0 3.4 4.9 6.1 7.3
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3.3.3 LIN 3 & 4
 

Figure 25: LIN 3 & 4 and stable trajectory for the operating model. Current biomass estimates (%𝑩𝑩𝟎𝟎 ) for 
forward simulation assessments. Shown are the estimates from 500 MPD fit scenarios: annual, expectation 
of the operating model, and biennial data. 

Figure 26: As in Figure 25, but for the decreasing trajectory. 
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Figure 27: As in Figure 25, but for the increasing trajectory. 

Table 10: LIN 3 & 4 and different trajectories for the operating model. Standard deviation of %𝑩𝑩𝟎𝟎 
estimates between the annual and biennial frequency for each year of assessments. 

Trajectory Survey Frequency 2014 2016 2018 2020 2022
 
Stable Annual 1.9 2.5 2.8 2.9 3.1
 

Biennial 1.8 2.3 2.7 2.9 3.0
 
Decreasing Annual 1.8 2.4 2.8 2.6 2.3
 

Biennial 1.6 2.3 2.8 2.5 2.3
 
Increasing Annual 1.9 2.6 3.1 3.8 4.0
 

Biennial 1.8 2.3 2.9 3.6 4.0
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3.3.4 LIN 5 & 6
 

Figure 28: LIN 5 & 6 and stable trajectory for the operating model. Current biomass estimates (%𝑩𝑩𝟎𝟎 ) for 
forward simulation assessments. Shown are the estimates from 500 MPD fit scenarios: annual, expectation 
of the operating model, and biennial data. 

Figure 29: As in Figure 28, but for the decreasing trajectory. 
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Figure 30: As in Figure 28, but for the increasing trajectory. 

Table 11: LIN 5 & 6 and different trajectories for the operating model. Standard deviation of %𝑩𝑩𝟎𝟎 
estimates between the annual and biennial frequency for each year of assessments. 

Trajectory Survey Frequency 2014 2016 2018 2020 2022
 
Stable Annual 3.0 3.6 3.9 4.0 4.3
 

Biennial 3.0 3.6 4.1 4.4 5.0
 
Decreasing Annual 3.0 3.6 3.6 3.4 3.2
 

Biennial 3.0 3.6 3.8 3.7 3.8
 
Increasing Annual 3.0 3.6 4.1 4.7 5.4
 

Biennial 3.0 3.6 4.3 5.1 6.2
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3.3.5 HOK 1 

For the HOK 1 stock, along with annual and biennial trawl survey scenarios, we ran another scenario 
whereby we dropped alternative fishery dependent age compositional data in alternating years to the 
survey. This meant if there was no survey there were fishery dependent age compositional data, and if 
there was a survey there were no fishery dependent age compositional data. This sensitivity run is shown 
as the purple box and whisker graph in the following figures. This is labelled ‘Biennial Commercial 
Sensitivity’ in the following figures (see Figures 31–36) and gave very similar biomass to the Biennial 
scenario, but with slightly more uncertainty. 

3.3.5.1 HOK 1 Eastern Stock 

Figure 31: Eastern HOK 1 stock and stable trajectory for the operating model. Current biomass 
estimates (%𝑩𝑩𝟎𝟎 ) for forward simulation assessments. Shown are the estimates from 500 MPD fit 
scenarios: annual, expectation of the operating model, biennial data, and biennial with a commercial at-
age data sensitivity. 
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Figure 32: As in Figure 31, but for the decreasing trajectory. 

Figure 33: As in Figure 31, but for the increasing trajectory. 

Table 12: Standard deviation of %𝑩𝑩𝟎𝟎 estimates between the annual and biennial frequency for each year 
of assessments for the stable trajectory. 

Trajectory Survey Frequency 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026
 
Stable Annual 3.6 4.3 4.5 4.2 4.4 4.6 4.7 4.8 5.8 5.7
 

Biennial 2.8 4.1 4.6 4.3 4.9 4.9 5.1 5.0 6.0 6.0
 
Decreasing Annual 3.5 4.2 4.2 3.8 3.9 4.0 3.8 3.6 4.1 4.0
 

Biennial 2.8 4.0 4.3 3.9 4.3 4.3 4.2 3.9 4.4 4.4
 
Increasing Annual 3.6 4.5 4.9 4.6 5.1 5.3 5.6 6.0 7.5 7.3
 

Biennial 2.8 4.3 4.9 4.7 5.4 5.5 5.9 6.1 7.4 7.5
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3.3.5.2 HOK 1 Western Stock 

Figure 34: Western HOK 1 stock and stable trajectory for the operating model. Current biomass 
estimates (%𝑩𝑩𝟎𝟎 ) for forward simulation assessments. Shown are the estimates from 500 MPD fit 
scenarios: annual, expectation of the operating model, biennial data, and biennial with a commercial at-
age data sensitivity. 

Table 13: Standard deviation of %𝑩𝑩𝟎𝟎 estimates between the annual and biennial frequency for each year 
of assessments for the stable trajectory. 

Trajectory Survey Frequency 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026
 
Stable Annual 4.5 5.2 5.5 5.4 5.9 6.2 6.5 6.9 7.5 7.6
 

Biennial 4.3 5.2 5.3 5.4 5.9 6.6 6.9 7.4 8.1 8.5
 
Decreasing Annual 4.4 5.0 5.2 5.0 5.3 5.5 5.5 5.4 5.7 5.6
 

Biennial 4.2 5.0 5.1 5.0 5.4 5.8 5.8 5.9 6.2 6.4
 
Increasing Annual 4.7 5.4 5.9 5.8 6.5 7.0 7.6 8.3 9.1 9.2
 

Biennial 4.3 5.3 5.6 5.8 6.5 7.5 7.9 8.8 9.6 10.2
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Figure 35: As in Figure 34, but for the decreasing trajectory. 

Figure 36: As in Figure 34, but for the increasing trajectory. 
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4. DISCUSSION 

In summary, the generic simulations demonstrated that under very simple scenarios that you expect to 
get greater variance but no bias in biomass estimation when comparing annual observations versus 
biennial observations. For the retrospective simulations, there were small differences in biomass 
estimates between annual and biennial scenarios (both median and uncertainty), although for the hoki 
stock there were some differences in biomass estimates between the two biennial scenarios, which is 
thought to be attributed to an induced three-year gap between surveys. For the forward projection 
analysis, differences between annual and biennial scenario were again small, with the annual scenario 
biomass estimates closer to the expected values. 

In this study, the generic simulation was essentially used for illustration. The retrospective analysis used 
actual observations, which made no assumptions on the structure of the data, compared to simulated 
data. Another advantage of retrospective analyses is that MCMC estimations could be done, which 
arguably explores parameter uncertainty and thus derived quantity uncertainty better, and is more 
reflective of uncertainty that would propagate and inform management decisions. A disadvantage is 
that it ignores data that could inform key productivity parameters in future assessments. 

For the retrospective analyses, the largest difference from the annual scenario was seen for the hoki 
assessment under biennial 2 scenario (see Figures 17–18). There were small differences for the current 
reference quantity 𝐵𝐵𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑎𝑎𝑛𝑛𝑡𝑡, and when we projected the population forward that difference was 
magnified for 𝐵𝐵𝑓𝑓𝑐𝑐𝑡𝑡𝑐𝑐𝑐𝑐𝑎𝑎.  We hypothesise that this was caused by the three year gap that occurred due to 
there being no Sub-Antarctic trawl survey in 2011. Other than that one case, there were relatively small 
differences between the annual and biennial survey frequencies in the retrospective analysis. 

The forward projection analyses had the opposite advantages and disadvantages compared to the 
retrospective analysis. They retained all data for current assessments, and made assumptions for future 
data. However, due to the number of simulations needed to generate an informative range of observed 
data, it was not practical to do MCMC estimations. Assumptions that were imposed by the operating 
model were consistent with stock assessment model theory. One assumption of the operating model 
was that productivity parameters were constant through time (time-invariant) with selectivity 
parameters being the only time-varying parameters. Although these were strong assumptions, a great 
deal of effort was put into generating simulated data, consistent with residuals that have been generated 
from real data and stock assessment fits. Our defence for imposing these assumptions is that the 
objective of the operating model was to simulate “realistic” data. There are many mechanisms for 
generating “realistic” data and we used the combination of process error and observation error to add 
plausible variance and correlation in the operating model and thereby in the simulated data. 

For the forward projection analysis, for some stocks and population trajectories the annual scenario re-
estimated stock status was on average closer to the expectation of the operating model than the biennial 
scenario (defined as having a median %B0 that was 5% closer to the operating model). These stocks 
and population trajectories were HOK 1 western stock increasing, LIN 5&6 increasing, LIN 3&4 
increasing and decreasing and HAK 1 decreasing. However, overall there was little difference between 
the annual and biennial scenarios, and a more comprehensive investigation would have to be conducted 
to understand why there were differences for specific stocks and trajectories. The biggest surprise was 
the minor increase in uncertainly in going from annual to biennial surveys. 

Finally, another consideration that merits a mention for the forward simulation component is the 
mechanism that was used to alter the state of future populations. This used a change in recruitment, and 
consequently we observed gradual change in biomass estimates because it takes two to three years for 
new cohorts to emerge into observations. An alternative mechanism for altering the state of future 
populations could be more abrupt or immediate changes, such as a disease or catchability event, that 
would have quite different characterisations in the data and may yield different results. 
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7. APPENDIX A (Analysis of autocorrelation for trawl survey data) 

Autocorrelations for the trawl survey data were investigated by looking at lagged correlations for the 
normalised residuals for the base model fits. Both autocorrelation and partial autocorrelation were 
calculated (using the acf and pacf functions from the R stats package). Although some auto-correlations 
and partial autocorrelations were apparently significant, there was no systematic pattern across the 
surveys, and it was decided not to include autocorrelation in the simulations (Figures 37–38). 

Figure 37: Hoki assessment auto-correlation analysis for the Chatham Rise and Sub-Antarctic trawl 
surveys. Normalised residuals (left panel), auto-correlation function versus lag (middle panel), and partial 
auto-correlation function versus lag (right panel). The blue dashed lines represent approximate 95% 
confidence intervals for the calculated values when it is assumed there is no correlation. 
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Figure 38: Hake and ling assessments auto-correlation analysis for the Chatham Rise and Sub-Antarctic 
trawl surveys. Normalised residuals (left panel), auto-correlation function versus lag (middle panel), and 
partial auto-correlation function versus lag (right panel). The blue dashed lines represent approximate 
95% confidence intervals for the calculated values when it is assumed that there is no correlation. 
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8. APPENDIX B (Forward simulation) 

Diagnostics from the operating models used to simulate data for re-estimation. 

8.1 HOK 1 

A unique element of the hoki assessment model is that the western spawning fishery selectivity already 
time varies, based on the exogenous variable the median fishing day (McKenzie 2016). This makes it 
different from other future selectivities which we allow to vary randomly. For this specific selectivity 
we assumed that the future was randomly drawn as described in the method, but to identify the correct 
amount of process error we removed the exogenous variable. In the final operating model the exogenous 
variable was retained, but with future value assumed to be normally distributed. 

Figure 39: Residual mean age variance plotted for combinations of 𝝈𝝈𝒑𝒑 and 𝝎𝝎𝒊𝒊 for each compositional dataset 
used in the final operating model. 
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Figure 40: Residual correlation by age (Lag, x-axis) and sex (black = male and female = red) of the base 
case stock assessment and true observations (dashed lines) and the average residual correlation from 50 
simulated datasets when compared with the base stock assessment expectation (solid lines). 

Table 14: The combination of process error (𝝈𝝈𝒑𝒑), weighting factors (𝝎𝝎𝒊𝒊) and correlation parameters used 
in the final operating model for each observation and selectivity. 

Selectivity 𝛔𝛔𝐬𝐬 Observation 𝝎𝝎𝒊𝒊 𝝆𝝆𝟏𝟏 𝝆𝝆𝟐𝟐 

Wnsp fishery 10 Wnspage 0.616 0.18 0.37
 
Ensp fishery 0.5 Enspage 0.793 0.17 0.32
 
Wsp fishery 5 Wspage 0.502 0.45 0.14
 
Esp fishery 5 Espage 0.459 0.74 -0.50
 
CR survey 0.5 CRsumage 0.536 0.80 -0.61
 
SA survey 10 SAsumage 1.05 0.19 0.18
 

Fisheries New Zealand Effects of changes in the frequency of research abundance trawl surveys 2017• 47 



 

    

  

 
      

  
 
 
 

 
  

   
           

 
 
 
 

     
  

 
      

      
      

 

8.2 HAK 1
 

Figure 41: Residual mean age variance plotted for combinations of 𝝈𝝈𝒑𝒑 (separate lines) and 𝝎𝝎𝒊𝒊 (x-axis) for 
each compositional dataset used in the final operating model. 

Figure 42: Residual correlation by age (Lag, x-axis) of the base case stock assessment and true observations 
(dashed blue lines) and the average residual correlation from 50 simulated datasets when compared with 
the base stock assessment expectation (solid red lines). The points are the averaged residuals from the 
simulated data when compared to the base case expectation. 

Table 15: The combination of process error (𝝈𝝈𝒑𝒑), weighting factors (𝝎𝝎𝒊𝒊) and correlation parameters used 
in the final operating model for each observation and selectivity. 

Selectivity 𝛔𝛔𝐬𝐬 Observation 𝝎𝝎𝒊𝒊 𝝆𝝆𝟏𝟏 𝝆𝝆𝟐𝟐 

Survey 0.25 subaTANage 0.454 0.22 0.10 
Fishery 0.25 subaOBSage 0.588 0.49 0.46 
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8.3 HAK 4
 

Figure 43: Residual mean age variance plotted for combinations of 𝝈𝝈𝒑𝒑 (separate lines) and 𝝎𝝎𝒊𝒊 (x-axis) for 
each compositional dataset used in the final operating model. 

Figure 44: Residual correlation by age (Lag, x-axis) of the base case stock assessment and true observations 
(dashed blue lines) and the average residual correlation from 50 simulated datasets when compared with 
the base stock assessment expectation (solid red lines). 

Table 16: The combination of process error (𝝈𝝈𝒑𝒑), weighting factors (𝝎𝝎𝒊𝒊) and correlation parameters used 
in the final operating model for each observation and selectivity. 

Selectivity 𝛔𝛔𝐬𝐬 Observation 𝝎𝝎𝒊𝒊 𝝆𝝆𝟏𝟏 𝝆𝝆𝟐𝟐 
Fishery 0.75 chatOBSwst 0.572 0.22 0.38 
Survey 0.5 chatTANage 0.623 0.97 -0.63 
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8.4 LIN 5 & 6
 

Figure 45: Residual mean age variance plotted for combinations of 𝝈𝝈𝒑𝒑 (separate lines) and 𝝎𝝎𝒊𝒊 (x-axis) for 
each compositional dataset used in the final operating model. 

Figure 46 Residual correlation by age (Lag, x-axis) and sex (black = male and female = red) of the base case 
stock assessment and true observations (dashed lines) and the average residual correlation from 50 
simulated datasets when compared with the base stock assessment expectation (solid lines). 

Table 17: The combination of process error (𝝈𝝈𝒑𝒑), weighting factors (𝝎𝝎𝒊𝒊) and correlation parameters used 
in the final operating model for each observation and selectivity. 

Selectivity 𝛔𝛔𝐬𝐬 Observation 𝝎𝝎𝒊𝒊 𝝆𝝆𝟏𝟏 𝝆𝝆𝟐𝟐 
Survey 0.25 Tangoraoa_age_summer 0.751 0.79 -0.55 
Longline Fishery 0.25 Longline_Campbell_home_propn_at_age 1.213 0.064 0.13 
Trawl Fishery 0.5 Trawl_observer_propn_at_age 0.697 0.80 -0.32 
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8.5 LIN 3 & 4
 

Figure 47:Residual mean age variance plotted for combinations of 𝝈𝝈𝒑𝒑 (separate lines) and 𝝎𝝎𝒊𝒊 (x-axis) for 
each compositional dataset used in the final operating model. 

Figure 48 Residual correlation by age (Lag, x-axis) and sex (black = male and female = red) of the base case 
stock assessment and true observations (dashed lines) and the average residual correlation from 50 
simulated datasets when compared with the base stock assessment expectation (solid lines). 
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Table 18: The combination of process error (𝝈𝝈𝒑𝒑), weighting factors (𝝎𝝎𝒊𝒊) and correlation parameters used 
in the final operating model for each observation and selectivity. 

Selectivity 𝛔𝛔𝐬𝐬 Observation 𝝎𝝎𝒊𝒊 𝝆𝝆𝟏𝟏 𝝆𝝆𝟐𝟐 

Survey 0.25 Tangaroa_propn_at_age_Jan 0.391 0.69 -0.58 
Fishery 0.75 Trawl_propn_at_age 0.593 0.81 -0.53 
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9. APPENDIX C (MCMC diagnostics for the retrospective MCMCs) 

9.1 HOK 1 

Figure 49: Trace and cumulative plots for the Annual scenario of the total objective score. Each column is 
an independent MCMC chains, the cumulative plots (bottom right) have chopped each chain into thirds 
and plotted up over each other. 

Figure 50: Trace and cumulative plots for the Biennial 1 scenario of the total objective score. Each column 
is an independent MCMC chains, the cumulative plots (bottom right) have chopped each chain into thirds 
and plotted up over each other. 
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Figure 51: Trace and cumulative plots for the Biennial 2 scenario of the total objective score. Each column 
is an independent MCMC chains, the cumulative plots (bottom right) have chopped each chain into thirds 
and plotted up over each other. 

9.2 HAK 1 

Figure 52: Trace and cumulative plots for the Annual scenario of the total objective score. The cumulative 
plot (right) have chopped the chain into equal thirds and plotted up over each other, to check for 
stationarity. 
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Figure 53 Trace and cumulative plots for the Biennial 1 scenario of the total objective score. The cumulative 
plot (right) have chopped the chain into equal thirds and plotted up over each other, to check for 
stationarity. 

Figure 54: Trace and cumulative plots for the Biennial 2 scenario of the total objective score. The 
cumulative plot (right) have chopped the chain into equal thirds and plotted up over each other, to check 
for stationarity. 
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9.3 HAK 4
 

Figure 55: Trace and cumulative plots for the Annual scenario of the total objective score. The cumulative 
plot (right) have chopped the chain into equal thirds and plotted up over each other, to check for 
stationarity. 

Figure 56: Trace and cumulative plots for the Biennial 1 scenario of the total objective score. The 
cumulative plot (right) have chopped the chain into equal thirds and plotted up over each other, to check 
for stationarity. 
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Figure 57: Trace and cumulative plots for the Biennial 2 scenario of the total objective score. The 
cumulative plot (right) have chopped the chain into equal thirds and plotted up over each other, to check 
for stationarity. 

9.4 LIN 3 & 4 

Figure 58: Trace and cumulative plots for the Annual scenario of the total objective score. The cumulative 
plot (right) have chopped the chain into equal thirds and plotted up over each other, to check for 
stationarity. 
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Figure 59: Trace and cumulative plots for the Biennial 1 scenario of the total objective score. The 
cumulative plot (right) have chopped the chain into equal thirds and plotted up over each other, to check 
for stationarity. 

Figure 60: Trace and cumulative plots for the Biennial 2 scenario of the total objective score. The 
cumulative plot (right) have chopped the chain into equal thirds and plotted up over each other, to check 
for stationarity. 
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9.5 LIN 5 & 6
 

Figure 61: Trace and cumulative plots for the Annual scenario of the total objective score. The cumulative 
plot (right) have chopped the chain into equal thirds and plotted up over each other, to check for 
stationarity. 

Figure 62: Trace and cumulative plots for the Biennial 1 scenario of the total objective score. The 
cumulative plot (right) have chopped the chain into equal thirds and plotted up over each other, to check 
for stationarity. 
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Figure 63: Trace and cumulative plots for the Biennial 2 scenario of the total objective score. The 
cumulative plot (right) have chopped the chain into equal thirds and plotted up over each other, to check 
for stationarity. 
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