

Fisheries New Zealand

Tini a Tangaroa

Quantifying benthic biodiversity: developing a dataset of benthic invertebrate faunal distributions from seabed photographic surveys of Chatham Rise

New Zealand Aquatic Environment and Biodiversity Report No. 221

D. Bowden A. Rowden O. Anderson M. Clark A. Hart N. Davey M. Carter C. Chin

ISSN 1179-6480 (online) ISBN 978-0-9951270-5-0 (online)

July 2019

New Zealand Government

Requests for further copies should be directed to:

Publications Logistics Officer Ministry for Primary Industries PO Box 2526 WELLINGTON 6140

Email: <u>brand@mpi.govt.nz</u> Telephone: 0800 00 83 33 Facsimile: 04-894 0300

This publication is also available on the Ministry for Primary Industries websites at: <u>http://www.mpi.govt.nz/news-and-resources/publications</u> <u>http://fs.fish.govt.nz</u> go to Document library/Research reports

© Crown Copyright - Fisheries New Zealand

TABLE OF CONTENTS

E	XEC	CUTIVE SUMMARY	1
1.] 1.1	INTRODUCTION Objectives	2 3
2.	2.1	METHODS Study area	3 3
	2.2	Surveys	4
	2.3	Data extraction from imagery	6
	2.4	Merging data across surveys	7
	D	axon names Density standardisation Aerging Database	7 7 8 8
3.]	RESULTS	9
	3.1	Data	9
	3.2	Taxa	9
	3.3	Distributions	10
4.]	DISCUSSION	18
5.	1	ACKNOWLEDGEMENTS	20
6.]	REFERENCES	20
7.	L	APPENDIX 1 – Taxa	23

EXECUTIVE SUMMARY

Bowden, D.A.; Rowden A.A.; Anderson O.F.; Clark, M.R.; Hart, A.; Davey, N.; Carter, M.; Chin, C. (2019). Quantifying benthic diversity: developing a dataset of benthic invertebrate faunal distributions from seabed photographic surveys of Chatham Rise.

New Zealand Aquatic Environment and Biodiversity Report No. 221. 35 p.

A key gap in the knowledge required to understand and manage ecosystem effects of bottom-contact fishing, and other seabed disturbances is the lack of quantitative baseline information about the distributions of benthic habitats and fauna. Consequently, management decision-making relies increasingly on outputs from habitat suitability models that are used to estimate likely distributions of key fauna based on correlations between available point-sampled faunal data and environmental characteristics. However, the lack of quantitative baseline knowledge of benthic distributions, combined with a lack of fine-scale detail in environmental layers and understanding of biotic interactions, can result in high levels of uncertainty associated with model outputs.

To address the issue of uncertainty in outputs from habitat suitability models for a key fisheries region in the New Zealand Exclusive Economic Zone, Chatham Rise, The Ministry for Primary Industries instigated a project (ZBD2016-11) with four specific objectives: (1) to increase the density of empirical data on benthic distributions by means of a dedicated seabed photographic survey; (2) to compile and merge all available photographic data in a single, internally consistent dataset; (3) to use this dataset as an independent test set to assess the utility of outputs from existing habitat suitability models, and (4) to develop new habitat suitability models based on the new dataset.

This report is a summary of work conducted under the second objective, above; to develop a single coherent dataset of benthic invertebrate distributions on Chatham Rise from seabed photographic surveys. We assessed all available image-based seabed surveys of Chatham Rise, including film and digital camera technologies, and selected five digital-era surveys for development of a combined dataset: three broad-scale Ocean Survey 20/20 biodiversity surveys; one survey of seamounts in the *Graveyard* and *Andes* groups, and one commercial survey of phosphorite nodule habitats on the central crest of the rise. In combination, this set of surveys provides broad spatial coverage with consistent methods and relatively even distribution of sample sites across the region, and incorporates existing data about all areas known to have high biological diversity or be of specific interest for environmental management.

The final, audited dataset spans the full extent of Chatham Rise in depths from 40 m to 1850 m, representing analyses of 358 seabed transects, with 125 658 records of individual organisms in 354 taxa across 13 phyla: Echinodermata (95 taxa), Cnidaria (87), Porifera (58), Arthopoda (43), Mollusca (37), Annelida (10), Bryozoa (9), Chordata (Ascidiacea, 6), Brachiopoda (1), Echiura (1), Foraminifera (1), Hemichordata (1), Nemertea (1). All observations of individual organisms are spatially referenced within transects, enabling retrospective audit by reference to the original imagery if required, and all data are maintained in a purpose-designed *postgres-postgis* database. The approach used here, incorporating data from surveys conducted across a number of years, depends on the assumption that distributions of the taxa vary little over time; an assumption that is implicit in most broad-scale benthic habitat and species modelling initiatives.

In comparison with published studies that have used photographic data to inform habitat suitability modelling at comparable depths in other parts of the world, the Chatham Rise dataset developed here ranks among those with the largest spatial extents and the highest density of sample sites. It provides a coherent body of information about the distributions of benthic fauna across the study region that will have applications including: assessing the usefulness of existing habitat suitability models and their underlying methods; developing new habitat suitability models based on more complete and coherent data, and developing methods to assess the impacts of bottom-contact fishing and other forms of seabed resource exploitation on benthic habitats.

1. INTRODUCTION

A key gap in the knowledge required to understand and manage ecosystem effects of bottom-contact fishing, and other seabed disturbances is the lack of quantitative baseline information about the distributions of benthic habitats and fauna. Consequently, in waters beyond coastal areas, management decision-making relies increasingly on outputs from habitat suitability or 'species distribution' models (e.g., EPA 2015). Such models use complex non-linear correlations between point-sampled faunal occurrence records and spatially continuous environmental variables to predict probabilities of occurrence across unsampled environmental space (Reiss et al. 2015, Vierod et al. 2014). Various methods are in use (e.g., Boosted Regression Trees - BRT, Generalised Dissimilarity Modelling - GDM, Maximum Entropy - MaxEnt, Random Forests - RF, and Generalized Additive Models - GAM) and this modelling field is in constant development. The fundamental requirements of all methods are the same, however; (1) accurate and sufficient point-sample data about where a given taxon has been recorded (and, ideally, where it is absent), and (2) accurate and ecologically relevant environmental data as continuous layers spanning the area of interest. The relative paucity, patchiness, and taxonomic selectivity of available faunal sample data, particularly in the deep sea, combined with a lack of fine-scale detail in environmental layers and understanding of biotic interactions (competition, facilitation, inhibition, etc.), can result in high levels of uncertainty associated with the outputs from habitat suitability models (Araujo & Guisan 2006, Reiss et al. 2015, Vierod et al. 2014).

Knowledge about New Zealand's benthic fauna beyond coastal areas has been accumulating since the Challenger Expedition (Gordon et al. 2010, Rowden et al. 2012). Benthic fauna have typically been sampled using grabs, epibenthic sleds, trawls, and corers, providing a growing resource of occurrence records at fine taxonomic resolution. However, a relatively large proportion of these data have come from fisheries by-catch; records of benthic organisms caught by bottom-contact trawls and long-lines. These fishing gears are designed to catch demersal fish, rather than benthic invertebrates, and a single deployment can span several kilometres of seabed, potentially sampling multiple habitats. Thus, the catchability of benthic taxa by fishing gear is generally low, highly variable among taxa, and unquantified, and fine-scale patchiness of distributions is masked. Furthermore, the accuracy and consistency with which by-catch data are recorded has been variable, both over time and between fisheries and boats, resulting in the need to aggregate data to coarse taxonomic levels for combined use (Bowden et al. 2015). Low, unquantified, catchability and inconsistent recording associated with by-catch records also result in such data being useful only for recording the presence of a taxon; its absence cannot be inferred with any confidence. Thus, these data, which have been used among other data to inform most existing habitat suitability models of benthic faunal distributions have shortcomings associated primarily with low and variable catchability and coarse taxonomic resolution.

Photographic surveying differs from other methods of sampling benthic habitats and fauna in that it: (1) records the full detail of habitat structure at scales from centimetres to kilometres; (2) records a broad range of epifaunal taxa (i.e., catchability is high across most epifaunal taxa); (3) samples quantitatively; (4) enables retrospective audit of identifications and counts, and (5) is non-destructive. Seabed photographic methods have been used in surveys of Chatham Rise for some decades, initially for geological research and minerals prospecting (von Rad & Kudrass 1987), then to inform management of the scampi fishery (Tuck et al. 2015), and since approximately 2000 to describe and quantify benthic habitats and fauna (Clark, M. R. et al. 2010). The first dedicated surveys of benthic habitats and fauna were of seamounts on the northern Chatham Rise (Clark, M. R. et al. 2010) but broad-scale surveys began with New Zealand's *Ocean Survey 2020* initiative (https://www.beehive.govt.nz/speech/ocean-survey-2020-launch-speech) and the development of NIWA's Deep Towed Imaging System (DTIS, Hill 2009) in 2006.

In 2016, the Ministry for Primary Industries (MPI), working with NIWA, identified a need to reduce uncertainty in predictive models of the distributions of seabed habitats and fauna, particularly in areas where impacts from anthropogenic activities are either happening or likely to happen in the future. To

address this issue, MPI initiated a project that would improve understanding of benthic distributions across the Chatham Rise; the most important deep-sea fisheries area for New Zealand

1.1 Objectives

The overall objective of the project is to improve predictive models of seabed habitat, communities, and species across Chatham Rise, and it is structured around four specific research objectives:

- 1. to collect quantitative data about seabed habitats and fauna by undertaking a survey of unsampled areas on Chatham Rise;
- 2. to process and compile seabed habitat and fauna data from the survey and merge these with comparable data from previous quantitative surveys on Chatham Rise;
- 3. To use the new dataset to assess the utility of existing community and species distribution models for Chatham Rise, and
- 4. to use the new dataset to build new community and species distribution models for Chatham Rise.

The results of objective (1), the voyage to collect new data, are described by Bowden et al. (2017). Here, we describe work under objective (2): to process and compile seabed habitat and fauna data from the survey and merge these with comparable data from previous quantitative surveys on Chatham Rise.

2. METHODS

2.1 Study area

The Chatham Rise is a continental rise extending eastwards from the South Island of New Zealand across approximately 10 degrees of longitude, with Mernoo Bank at its western end and the Chatham Islands at the eastern end (Figure 1). Because the Sub-Tropical Front coincides with, and is partially constrained by the rise, it is the most biologically productive fisheries region in New Zealand's exclusive economic zone (EEZ) (Clark, M. R. et al. 2000, Marchal et al. 2009, McClatchie et al. 1997), with intense phytoplankton blooms propagating from west to east along its length (Chiswell 2001, Nodder et al. 2012, Nodder et al. 2007). Commercially important bottom trawl fisheries target populations of scampi (*Metanephrops challengeri*), hoki (*Macruronus novaezelandiae*), orange roughy (*Hoplostethus atlanticus*), and oreos (*Pseudocyttus maculates, Neocyttus rhomboidalis* and others). Recent summaries of bottom-contact trawl history across Chatham Rise (Baird & Wood 2018) show highest trawling intensity, primarily from the hoki fishery, at 450–700 m depth west of Mernoo Bank and on the southern and northern central flanks of Chatham Rise. At present, initiatives to protect benthic habitats and fauna on the Rise consist of spatial closures of fisheries on some seamounts in the 'Graveyard' and 'Andes' regions on the northwest flank and southeast flanks of the rise, respectively (Clark, M. R. & Dunn 2012), and the establishment in 2007 of two Benthic Protection Areas (BPAs); the Mid Chatham Rise BPA and the East Chatham Rise BPA.

Figure 1: Chatham Rise. Isobaths show 250, 500, 1000, and 1500 metres depths, red polygons show Benthic Protection Areas (BPAs), locations of the Graveyard and Andes seamount groups are indicated, and inset map shows location of the study area in relation to New Zealand and the 1000 m isobath.

2.2 Surveys

We considered all photographic surveys that have been conducted on Chatham Rise, assessing each in terms of: (1) spatial extent; (2) camera type (still or video, film or digital, monochrome or colour) and image quality; and (3) survey purpose (have benthic invertebrate data been derived from the survey already?). Surveys were identified by interrogation of NIWA's *marinedb* database, using search terms including all codes known to have been used for camera gear, primarily *UWC* (underwater camera system) and *DTIS* (Deep Towed Imaging System) but including *UWH*, *UWCS*, *UWCR*, *UWCD*, and *CAM*.

On examining all the photographic surveys resulting from this search, the first decision in the selection process was to work only with digital-era surveys because the extra time and resources required to find and digitize original gelatine-silver film negatives would have been beyond the funding scope of the project. There were 14 digital camera surveys: 2 broad-scale surveys of biodiversity; 4 surveys of seamounts on the northern and eastern flanks of the rise; 1 survey covering fishing effects on the southern and western flanks and biodiversity of the central crest; 1 survey of biodiversity within a minerals licence area on the central crest, and 6 surveys for stock assessment of scampi (*Metanephrops challengeri*) (Table 1, Figure 2).

Table 1: Digital era photographic surveys of seabed habitats and fauna of Chatham Rise. 'TAN' prefix survey codes refer to voyages with *RV Tangaroa*, 'CRP' code refers to *RV Dorado Discovery* chartered by Chatham Rock Phosphate Ltd. DTIS; Deep Towed Imaging System, ROV; Remotely Operated Vehicle, HD; high definition, MP; megapixels.

Survey TAN1701 TAN1503	Year 2017 2015	Extent Chatham Rise Seamounts	Platform DTIS DTIS	Digital Yes Yes	video HD1080p HD1080i	stills 24MP 12MP	Purpose Biodiversity Fishing effects and biodiversity
TAN1306	2013	Hoki depths and Central BPA	DTIS	Yes	HD1080i	12MP	Fishing effects and biodiversity
CRP2012	2012	Central BPA	ROV	Yes	SD	5MP	Minerals EIA
TAN0905	2009	Seamounts	DTIS	Yes	HD1080i	10MP	Fishing effects and biodiversity
TAN0705	2007	Chatham Rise	DTIS	Yes	HD1080i	10MP	Biodiversity
TAN0604	2006	Seamounts	DTIS	Yes	SD	5MP	Fishing effects
TAN0104	2001	Seamounts	Prototype	Yes	None	1.5MP	Fishing effects
<i>RV Kaharoa</i> (6 surveys)	2001- 2013	Western crest	'Scampi- cam'	Yes	None	1.3-15.8 MP	Scampi stock assessment

Figure 2: Digital era photographic surveys of seabed habitats and fauna on Chatham Rise. Surveys are colour coded (see legend) and each point represents the start or mid-point of a seabed transect. See text for details. Only the most recent survey of the Graveyard and Andes seamounts is shown (blue points, TAN1503) because earlier surveys are co-located and thus obscured at the scale of this map. Scampi points represent 6 surveys over the period 2001–2013.

The higher level aims of the project were also important in setting criteria for the further selection of surveys. Specific Objective 3 of the overall project required that the image-derived data should be suitable for use in formal statistical assessment of existing habitat suitability model outputs. This testing required that *prevalence* – a measure of the likelihood of a taxon being detected at a given station – could be calculated for every station in the dataset using a consistent method. Achieving this consistency becomes problematic when the dataset includes surveys based on widely varying swept-areas, image resolutions, or frequencies of image capture. The final objective of the overall project, to generate new predictive models using the new dataset, does not have the same limitation, however, because all image-derived data can be used to generate presence data, if not density data.

For these reasons, we next selected a core set of surveys that used similar methods and camera types and provided wide spatial coverage of the study area. This set consisted of three broad-scale biodiversity

surveys: TAN1701; TAN1306, and TAN0705. These surveys are most useful for mapping benthic distributions because of their combined spatial scope, use of the same high-quality imaging system (DTIS), and consistent methods for logging navigational and observational data. We then added data from surveys of two habitats that were known to be under-represented in the core dataset: seamounts and phosphorite-rich sediments. Both of these habitats are associated with protected, habitat-forming, scleractinian coral species and have been the subject of multiple dedicated research voyages with more tightly-focussed spatial extent than the core set of surveys.

Existing datasets from seamounts were from surveys of the *Graveyard* on the northern central flank of Chatham Rise (TAN0104, TAN0604, TAN0905, TAN1503), and the *Andes* on the south-eastern flank (TAN1503). In the Graveyard seamount complex, all of these surveys were designed to repeat the same transects to monitor change in benthic communities after cessation of trawling. Therefore, we selected only the most recent of the surveys (TAN1503) because it had the best overall image quality and was the only survey to include the *Andes* seamounts. Available data consisted of counts of organisms in individual still images from multiple transects on each of six features in the *Graveyard*. Seamount transects were run from summit to base of each feature and thus lengths varied. No analyses had been run on transects from the *Andes* prior to the present project.

Phosphorite-rich sediments occur on the central crest of Chatham Rise. In 2012 a dedicated survey designed by NIWA was run by Chatham Rock Phosphate Ltd, using RV *Dorado Discovery* (voyage referenced here as CRP2012). The photographic survey used a work-class Remotely Operated Vehicle (ROV) along transects designed to match standard DTIS transects but with cameras of lower image resolution. Data available from this survey consisted of counts of organisms in individual still images from 39 transects (Rowden et al. 2014).

In combination, this set of surveys provides broad spatial coverage with relatively even distribution of sample sites across the region, and incorporates existing data about all areas known to have high biological diversity or be of specific interest for environmental management. While it is probable that other sites of interest will be discovered in future surveys, the current set is likely to provide the most complete representation of benthic invertebrate distributions on Chatham Rise available to date.

2.3 Data extraction from imagery

Developing quantitative data about benthic fauna from seabed imagery entails recording the identity and numbers of individual organisms observed during review of either video or still imagery. Imagery from the surveys selected for the generation of a new merged dataset fell into one of four categories: video imagery analysed (in full or in part); still imagery analysed (in full or in part); video and still imagery analysed. Although video and still imagery were recorded simultaneously in surveys where both were collected, there are important differences between the two mediain terms of analysis methods and the resulting data. Video imagery is continuous and thus covers greater seabed area than discontinuous still images, but generally has lower optical resolution than still images. Thus, video enables more reliable density estimates for larger, more conspicuous, or more patchily distributed taxa, while still images enable detection and quantification of smaller taxa. For a given seabed area, analysis of still imagery is generally more time-consuming than of video (Bowden & Jones 2016).

Prior to the dedicated sampling voyage for objective (1) of this project (TAN1701), the most extensive photographic surveys on the rise were the OS2020 voyages TAN0705 and TAN1306. All video imagery from these two surveys has been analysed in full (Bowden 2011, Bowden & Leduc 2017), generating datasets of taxon identities and densities based on a consistent transect length of approximately 1.4 km and using consistent analysis methods. The methods used in analysis of imagery from these surveys are detailed in Bowden (2011) and Bowden and Leduc (2017). In brief, in consultation with the relevant taxonomic experts, taxon image identification libraries were compiled for all taxa seen during the survey. Video files were then synchronised with navigation and metadata files recorded during transects at sea, in appropriate software (Ocean Floor Observation Protocol, OFOP – www.ofop-by-sams.eu - was used for all survey

analyses reported here) to enable video transects to be re-played under controlled conditions in the laboratory. By reference to the image libraries and using taxon lists in OFOP, analysts then worked through the full length of each transect, recording individual organisms by clicking on the relevant taxon label. In this method, each organism is recorded as a separate observation complete with its seabed coordinates (from RV *Tangaroa*'s ultra-short baseline acoustic tracking system), depth, camera metadata, and other information available from the navigation file, typically including surface position of the ship, speed over ground, course over ground, and camera altitude.

All 147 video files from voyage TAN1701 (Bowden et al. 2017) were analysed in full under the present project and all video from TAN0705 (108 transects) had already been analysed using the same protocols (Bowden 2011). Of 59 DTIS video transects collected during TAN1306, 32 had already been analysed (Bowden & Leduc 2017) and a further 14 were analysed under the present project to improve representation of the central crest of the rise and hard substratum habitats around Veryan and Mernoo Banks.

Data from analyses of 1738 still images from 49 transects on the six main features in the *Graveyard* (voyage TAN1503) (Clark, M. R. et al. 2015) were used in full. Because individual seamounts in the *Graveyard* are small (less than 1 km radius), and as summed seabed swept areas for all images on a given seamount approximated to the swept area of standard DTIS transects (about 800 m²), data were pooled by seamount, rather than per transect. No imagery had been analysed from the *Andes*, so five video transects from TAN1503, representing the five main features in the group, were analysed for this project using standard protocols.

2.4 Merging data across surveys

Two key stages were required before data from the selected surveys could be merged to form the final dataset: mapping of taxon synonyms to consistent nomenclature and taxonomic hierarchy, and standardisation of density values to standard unit area of seabed.

Taxon names

Surveys have been undertaken to address a range of different research aims and the methods used for analyses of imagery have been tailored to address specific questions. For instance, whereas biodiversity surveys aim to record all taxa, surveys to identify effects of fishing might emphasise erect sessile fauna within a certain size range. The taxonomic accuracy and precision with which taxa are identified has also changed with time as taxonomists have become more familiar with assigning identifications from imagery alone, and analysts have gained experience. Consequently, ensuring consistency of taxon identification and naming, both within and between surveys, was a major stage in developing the dataset, requiring generation of a master taxon table in which synonymous labels from different analyses were matched to unique taxon codes and placed in a full taxonomic hierarchy.

Density standardisation

Base data from each survey were in the form of counts of organisms, either per video transect or per image. Because transects were variable in length and image frame width, standardisation to consistent unit area was necessary. For video transects, seabed swept area was estimated by multiplying the distance travelled, minus any sections in which the seabed was not visible, by the frame width. Frame width was calculated for each survey separately as the mean of 50–100 measurements of frame-grabs selected at random from multiple transects, using parallel laser points in the image for scale (Table 2). For still images, the full seabed area was calculated for each image individually and image areas were summed either by transect (CRP2012 data) or by seamount (TAN1503 data), again, using laser points for scale. All image measurements were made in *ImageJ* (https://imagej.nih.gov/ij/).

DTIS transects for biodiversity surveys are of standard 1 h duration with a target speed range of 0.3 to 0.5 ms⁻¹. While the basic geometry and layout of DTIS has remained the same through its lifespan, a major upgrade in 2016 resulted in wider field of view for video (through use of dome ports, rather than flat ports). Consequently, seabed swept-areas for DTIS video increased from $1500 - 2800 \text{ m}^2$, to $2800 - 3000 \text{ m}^2$ from

2016. Use of RV *Tangaroa*'s Dynamic Positioning for DTIS deployments from late 2015 also greatly improved consistency of transect speed, resulting in generally improved video image quality. Where still images were analysed, rather than video (i.e., for *Graveyard* seamounts and CRP2012 phosphorite habitats), analysed swept-areas per transect were smaller; in the range $700 - 1200 \text{ m}^2$. Given these ranges, and following existing practice in New Zealand and globally, we standardised counts from all surveys to the number of individuals per 1000 m² of seabed.

Table 2: Standard values for video image frame width and still image seabed area used in calculations of swept area for standardisation of taxon densities. Video values were derived as the average of 50–100 frame-grabs taken at random from each voyage. Seabed area of each still image was measured and these values were summed over all analysed images in a given transect to yield total swept area for density calculation. Still image area values shown here are indicative means for the two surveys from which still image data were used.

Survey	Video frame width (m)	Still image area (m ²)
TAN1701	3.2	-
TAN1503	3.2	2.3
TAN1306	1.5	
CRP2012		12
TAN0705	1.5	

Merging

For point-observation datasets for each voyage individually, recorded taxon labels were initially mapped to audit taxon names and codes using the VLOOKUP function in MS Excel. The Point-observation datasets were then merged in R (www.r-project.org). Density datasets developed from the point-observation data for each survey individually were then imported into R (R Core Team 2017), taxon labels aggregated to their audit codes (using *aggregate* function in *readr*) and data were merged (function *merge*) into a single dataset and exported as text files.

After each survey was incorporated into the dataset via the merging process, density data were plotted in a geographic information system (GIS, ArcGIS 10.4.1) using proportional scaling symbols. This step enabled distributions to be compared with known occurrences (i.e., by comparison with the data from other surveys, published studies, trawl survey data, and evaluation by researchers with direct experience from the surveys). Where data points appeared anomalous, for example, through high or low-density values or absence of taxa at sites where they were known to occur, images and the original at-sea and rerun analysis logs were reviewed.

2.5 Database

A key requirement of this project was to develop data management structures that would enable access to the merged image-derived dataset and facilitate addition of new data as they become available. To achieve this, a dedicated database was designed, using *postgres/postgis* architecture, to be hosted and maintained on NIWA's secure server system. The specifications of the database were planned to allow direct interrogation via existing tools (e.g., PGAdminIII, QGIS) and access via on-line portals (e.g., NIWA's Coastal and Marine Data Portal, <u>https://marinedata.niwa.co.nz/</u>, and the New Zealand Ocean Data Network https://nzodn.nz/).

3. RESULTS

3.1 Data

The final data set consisted of 125 658 records of individual organisms from analyses of 358 seabed transects across 5 surveys, with 109 161 records from analyses of video, and 15 795 from still images (Table 3). Data spanned the full extent of Chatham Rise from 172° 50' E to 173° 53' W and from 42° 29' S to 45° 5' S in depths from 40 m to 1850 m (Figure 3).

Table 3: Chatham Rise image-derived data, showing digital-era surveys used, number of seabed transects analysed (total and numbers from video or still imagery), and numbers of benthic invertebrate fauna observations recorded. Note, still-image data from seamounts in the Graveyard complex (TAN1503) were combined by seamount, thus each of the 6 still-image sites noted here represents multiple individual transects.

Survey	Analysed	video	stills	Fauna observations
TAN1701	147	147	0	51 597
TAN1503	11	5	6	3 861
TAN1306	53	53	0	18 603
CRP2012	39	0	39	13 689
TAN0705	108	108	0	37 908

Figure 3: Chatham Rise showing locations of all seabed photographic transects from which data on benthic invertebrate taxon identities and densities were compiled for the current project. Locations are colour coded by survey; see legend and text for details.

The full dataset is stored in the dedicated postgres-postgis database developed under this project and can be interrogated via NIWA's Coastal and Marine Data Portal (https://marinedata.niwa.co.nz/) and the New Zealand Ocean Data Network (https://nzodn.nz/) or, from within NIWA and MPI, directly using standard database and GIS tools.

3.2 Taxa

The merged taxon list consisted of 354 taxa across 13 phyla (Table A 1), with most taxa in the phyla Echinodermata (95 taxa), then Cnidaria (87), Porifera (58), Arthopoda (43), Mollusca (37), Annelida (10),

Bryozoa (9), Chordata (Ascidiacea, 6), Brachiopoda (1), Echiura (1), Foraminifera (1), Hemichordata (1), Nemertea (1).

Taxonomic resolution of records among analysts and between surveys was consistent for most taxa but variations were apparent for some groups for which detailed, species-level guides had been developed. Such variations were particularly noticeable for Porifera, where taxonomists had provided many speciesand genus-level identifications from images but in which intra-specific growth form can be variable and inter-specific similarity of form can be high. For other taxa, the main source of inconsistencies in identification was the variability in image resolution within and between transects (e.g., through variations in camera height above seabed), which can result in neighbouring individuals of the same taxon being recorded at different taxonomic levels. To address this issue, a set of aggregated taxon labels was developed in which each recorded taxon was mapped to a taxonomic level at which its identity could be expected to be recorded with confidence (Table A 1). This process yielded a list of 79 'aggregated' taxa, ranging in taxonomic resolution from species-level for distinctive taxa (e.g., Metanephrops challengeri and Dermechinus horridus), to family (e.g., primnoidae and brisingidae), order (e.g., Cerantharia), class (e.g., Asteroidea and Holothuroidea), or phylum (e.g., Brachiopoda). Some finer taxonomic detail is certainly masked in this aggregation approach but distinctions likely to be relevant to management of benthic impacts, such as differentiation of brisingid seastars in the class Asteroidea and Dermechinus horridus in the class Echinoidea, are retained. Furthermore, because the underlying seabed photographic material from all voyages remains available for re-analysis or targeted audit, individual species or higher taxonomic groupings can be revisited at any point should their occurrence become important to future analyses for management or fundamental science objectives.

3.3 Distributions

Representative distribution maps for selected taxa are shown in Figure 4 to Figure 10. These maps use expanding symbols to show standardised densities of taxa (individuals 1000 m⁻²) on a uniform scale (i.e., symbol size range is the same for all taxa). Symbols occur only at sites where a given taxon was observed (present), all other sites (see Figure 3) are taken to be absences.

Colonial scleractinian corals (Figure 4) are protected in the New Zealand EEZ and are highly vulnerable to bottom-contact trawling and other seabed disturbances. Distinguishing between species can be problematic without detailed taxonomic examination however, and in analyses of video or still imagery, identifications are made primarily on the basis of gross colony form and colouration. The two species most frequently recorded in the combined dataset were *Goniocorella dumosa* and *Solenosmilia variabilis*, the latter being recorded only on the *Graveyard* hills. *Enallopsammia* sp. colonies were recorded only on the *Andes* seamount, and the generic observation *Scleractinia* (used when there was doubt about finer-level identification) was recorded in low numbers across the rise. The combined distribution of all colonial scleractinian corals shows highest densities on the Graveyard and Andes seamounts and on phosphorite nodules in the mid-Chatham Rise BPA. Outside of these areas, abundances were low and strongly dependent on the presence of hard substrata.

Sea-pens (Pennatulacea) were widely distributed on soft sediments in depths from 400–1000 m. Very high densities recorded at about 500 m on the central southern flank of the rise were of a small, truncated, taxon identified in the dataset as *Kophobelemnon* sp. Gorgonian corals (Gorgonacea) are a diverse grouping in which individual taxa are poorly distinguished in video analyses. They are widely distributed across the rise, generally associated with hard substrata, with highest densities recorded on the *Graveyard* hills. Soft corals (Alcyonacea) are generally associated with hard substrata but the dataset was dominated by the endemic solitary soft coral *Taiaroa tauhou*, which occurred in very high densities on soft sediments along the southern flank of the rise in about 500 m depth (Figure 5).

Echinoids were recorded at most sites in the dataset (Figure 6). Highest densities were recorded for the regular urchin *Gracilechinus multidentatus*, which occurred along the southern and north-western flanks of the rise in 600 - 1000 m depth, and spatangoid burrowing urchins (Spatangoida), which occurred in soft

sediments primarily on the central and central-western crest of the rise in 300–500 m depth. Cidaroid ('pencil') urchins occurred widely but in lower densities, with highest densities occurring in phosphorite nodule habitats on the central crest of the rise and at the western end of the rise around Veryan Bank.

Sponges (Figure 7) were widely distributed across the rise, again, dependent on the presence of hard substrata. The dataset included many identifications to species or genus level but high diversity in this taxon coupled with difficulties in confirming identifications from video imagery generated some inconsistencies among surveys in the level of identification achieved. Considerably more detail could be achieved for this group by reanalysis of the data and review of the underlying imagery. Highest densities of sponges were on the Graveyard hills, Veryan Bank, and the Andes seamounts, with Demospongiae occurring commonly on hard substrata across the rise and Hexactinellida primarily on the two seamount groups and Veryan Bank. The distinctive, large, conical sponge *Hyalascus* n. sp. was one of the few sponge taxa reliably and consistently identified to species level in the dataset. It occurred in low densities (less than 1 individual 1000 m⁻²), however, and primarily on the central crest of the rise but also on the southern flank.

The echinoderm classes Holothuroidea and Asteroidea occurred widely across the rise (Figure 8), generally at lower densities than the echinoids (Figure 6). Highest densities of holothuroids occurred around Veryan Bank, on the northern flank of the rise in about 500 - 1000 m depth, and around the Graveyard hills. Asteroids showed distribution, with highest densities around Veryan Bank, on the Graveyard hills, and at sites around the Chatham Islands. The distinctive and conspicuous suspension-feeding asteroid family, Brisingidae, was widely but sparsely distributed, occurring at very low densities other than in phosphorite nodule habitats on the central crest of the rise and on the Graveyard hills.

Three distinctive taxa associated with sensitive or vulnerable marine habitats are shown in Figure 9: stylasterid corals; brachiopods, and Xenophyophores ('giant' forams). Stylasterids, while distributed widely on hard substrata, occurred at highest densities on the Andes seamounts, with lesser concentrations on Veryan Bank, the Graveyard hills, and phosphorite substrata on the central crest of the rise. Brachiopods were recorded in the central crest phosphorite habitats, Veryan Bank, and at sites around the Chatham Islands. Xenophyophores occurred on soft sediments deeper than 500 m and primarily on the extreme southwestern and eastern flanks of the rise and around the Graveyard seamounts.

Three mobile taxa that might be resistant to, or benefit from, seabed disturbance by trawling (Jennings & Kaiser 1998, Kaiser et al. 2006) are shown in Figure 10: hermit crabs (family Paguridae); carnivorous and scavenging snails (families Buccinidae and Volutidae), and the quill worm *Hyalinoecia* sp. (probably *H. longibrachiata*). Hermit crabs were widely distributed across the rise but with highest densities along the southern flanks in about 500 m depth and around the Graveyard seamounts. Carnivorous and scavenging snails were also widespread but, again, with highest densities recorded along the southern flank at about 500 m depth, and on the north-eastern flank at about 1000 m depth. *Hyalinoecia* sp. quill worms were widespread but occurred in high densities primarily along the southwestern and southern flanks of the rise and on the continental slope of the South Island, in depths of about 500 – 800 m, with high densities also recorded in these depths at sites northeast of the Chatham Islands.

Figure 4: Colony-forming scleractinian corals. Top; all colonial scleractinian observations. Middle; *Goniocorella dumosa*. Bottom; *Solenosmilia variabilis*. Colonial scleractinia were represented by five observation labels: *Solenosmilia variabilis*; *Goniocorella dumosa*; *Enallopsammia* sp.; *Madrepora* sp., and 'Scleractinia'. 'Scleractinia' was used by analysts when the identity of colonies was uncertain.

Figure 5: Pennatulacea, Gorgonacea, and Alcyonacea observations.

Figure 6: Echinoid observations in the orders Echinoida and Echinothuroidea (top), Cidaroida (middle), and Spantangoida (bottom).

Figure 7: Porifera observations. Class Demospongiae (top), class Hexactinellida (middle), and the distinctive large cone-shaped hexactinellid sponge *Hyalascus* n. sp. (bottom).

Figure 8: Holothuroidea (top), Asteroidea (middle), and filter-feeding asteroids in the family Brisingidae (bottom).

Figure 9: Stylasterid hydrocoral, brachiopod, and Xenophyophore observations.

Figure 10: Hermit crabs (Paguridae), whelks (Buccinidae and Volutidae), and quill worms (Hyalinoecia sp.).

4. DISCUSSION

The combined dataset of benthic epifaunal invertebrate distributions developed here is rare for deep-sea environments beyond the continental shelf, in that it combines broad spatial extent and relatively even distribution of sample sites with consistent survey and analysis methods appropriate for sampling of benthic fauna. In comparison with published studies using photographic data to inform habitat suitability modelling at comparable depths in other parts of the world (e.g., Howell et al. 2016, Robert et al. 2016), the Chatham

Rise dataset ranks among those with the largest spatial extents and the highest density of sample sites. By comparison with other areas of the New Zealand EEZ, Chatham Rise has been sampled intensively for benthic research, with a higher density of photographic sampling than any other area, including the other Ocean Survey 20/20 areas, Challenger Plateau (Bowden 2011) and the eastern Northland continental shelf (Morrison et al OS2020 report). When research trawl bycatch records are included, the density of benthic sampling is very high indeed but these data have issues in relation to low catchability of many benthic taxa by fish trawls and inconsistent and un-auditable variations in taxonomic identifications between years (O'Driscoll et al. 2011). Until now, therefore, data on the distributions of benthic fauna used in habitat suitability models have been limited to either results from a single dedicated survey of biodiversity (e.g., Compton et al. 2013) or records accumulated over many years from diverse sources, including benthic research, fisheries research, and commercial fisheries bycatch (e.g., Anderson et al. 2014, Tracey et al. 2011). The dataset developed here enables all digital-era seabed photographic data collected across Chatham Rise to be used as a single, coherent, source of information to support assessments of the utility of existing habitat-suitability models and the development of new models with greater reliability.

The approach used here, merging data across multiple surveys conducted over a decade (2007 to 2017), depends on the assumption that distributions of relatively large epifaunal taxa vary little over time. This assumption underlies almost all attempts to model the distributions of benthic organisms because the datasets of species' presence are generally reliant on the accumulation of knowledge over time. There is some support for the assumption of invariant distributions here, however, in that co-located survey transects from TAN0705 and TAN1701 show similar community make-up and that overall patterns of distribution for most taxa are similar between these two broad-scale surveys. Repeat surveys of seamounts in the Graveyard complex from 2001 to 2015 have also shown no detectable change in community composition (Clark, M. R. et al. 2010, Williams et al. 2010). The assumption will also be tested more formally in the next phase of this project, when existing habitat-suitability models developed using only data from TAN0705 (Compton et al. 2013) will be assessed using combined data from the other surveys incorporated here (CRP2012, TAN1306, TAN1503, and TAN1701).

Despite careful auditing undertaken here, it is inevitable in a dataset of this complexity, compiled from multiple sources by multiple analysts, that some residual errors and inconsistencies in terms of both taxon identifications and relative density estimates will remain. Inconsistencies in taxon identities can arise through differences in the experience level of individual analysts, variations in image quality within and between transects and surveys, and name changes at species or higher levels resulting from taxonomic reviews, whereas density estimates are affected primarily by differences in the size of organism and differences in the optical resolution of the imagery. Density estimates for larger species are generally more reliable than those for smaller ones, because they are more likely to be seen and identified correctly from the imagery, and a key dichotomy in image resolution is between video and still imagery, with still imagery being of higher resolution than video but usually sampling smaller seabed area at the scale of individual transects. This has implications for both the number of taxa identified and the estimates of their relative densities (Andrew & Mapstone 1987); sampling less seabed area means that taxa occurring at low densities are less likely to be recorded and higher resolution means that smaller taxa are more likely to be recorded and their densities to be estimated accurately. Thus, in the full dataset here, the estimated diversity and density of smaller taxa might be expected to be higher in the two areas represented by data from still imagery; the Graveyard hills (TAN1503), and phosphorite nodule habitats on the central crest of the rise (CRP2012). However, total seabed swept areas per site were similar between video and still image transects (because we summed still image areas across multiple individual transects, e.g., combining images from all transects on each seamount in the Graveyard complex) and taxon densities derived from still images fall within the ranges estimated for all sites across the study area (Figures 4 - 10). It is still likely that more species-level identifications will have been made from still images but the taxon aggregation levels at which the data will be used in most applications should largely negate this in the final dataset.

A major advantage of photographic surveys is that the source samples (video and still image files) are retained in full and are not modified or degraded during analysis. Thus, the auditing process undertaken for this initial compilation under the current project, in which apparently anomalous identifications or density values detected are checked against the original imagery and log files, can be revisited at any time. While

we are confident that the current dataset presents a largely accurate and realistic description of distributions across Chatham Rise, we anticipate that the audit process will continue as the dataset is taken up for use in research applications and as data from future surveys are incorporated.

In summary, the combined dataset developed here makes available a detailed body of information about the distributions of benthic fauna of Chatham Rise that represents ten years of research effort. Until now, most of these data were not generally accessible and thus had no application beyond the disparate research projects under which they were collected. By merging data from all broad-scale digital-era photographic surveys on Chatham Rise, we now have an independent data resource that can be used in a range of research applications including: assessing the usefulness of existing habitat suitability models and their underlying methods; developing new habitat suitability models based on more complete and coherent data, and developing methods to assess the impacts of bottom-contact fishing and other forms of seabed resource exploitation on benthic habitats.

5. ACKNOWLEDGEMENTS

This study was commissioned and funded by the New Zealand Ministry for Primary Industries (MPI, project ZBD2016-11), with additional support during post-voyage analyses through NIWA Strategic Science Investment Fund project COES1801. We thank Mary Livingston for project governance at MPI. At NIWA, Brent Wood and Fred Wei developed the postgres-postgis database for the image data and we are grateful to Ian Tuck at NIWA for reviewing the draft report.

6. **REFERENCES**

- Anderson, O.F.; Tracey, D.M.; Bostock, H.C.; Williams, M.; Clark, M.R. (2014). Refined habitat suitability modelling for protected coral species in the New Zealand EEZ. *National Institute of Water and Atmsopheric Research, Report No. WLG2014-69.* 46 p.
- Andrew, N.L.; Mapstone, B.D. (1987). Sampling and the description of spatial pattern in marine ecology. *Oceanography and Marine Biology* 25: 39-90.
- Araujo, M.B.; Guisan, A. (2006). Five (or so) challenges for species distribution modelling. *Journal of Biogeography 33(10)*: 1677-1688. ">http://dx.doi.org/10.1111/j.1365-2699.2006.01584.x>">http://dx.doi.org/10.1111/j.1365-2699.2006.01584.x>
- Baird, S.J.; Wood, B.A. (2018). Extent of bottom contact by Nwew Zealand commercial trawl fishing for deepwater Tier 1 and Tier 2 target fishstocks, 1989-90 to 2016-16. New zealand Aquatic Environment and Biodiversity Report 193.
- Bowden, D.A. (2011). Benthic invertebrate samples and data from the Ocean Survey 20/20 voyages to Chatham Rise and Challenger Plateau, 2007. *New zealand Aquatic Environment and Biodiversity Report No. No.* 65. 46 p.
- Bowden, D.A.; Clark, M.R.; Hewitt, J.; Rowden, A.; Leduc, D.; Baird, S. (2015). Designing a programme to monitor trends in deep-water benthic communities. *New Zealand Aquatic Environment and Biodiversity Report No. 143 No.* 151 pp p.
- Bowden, D.A.; Davey, N.; Fenwick, M.; George, S.; Macpherson, D.; Ray, C.; Stewart, R.; Christensen-Field, C.; Gibson, K. (2017). Quantifying Benthic Biodiversity: A factual voyage report from RV Tangaroa voyage TAN1701 to Chatham Rise, 4 January - 2 February 2017. New zealand Aquatic Environment and Biodiversity Report No. 185. 194 p.
- Bowden, D.A.; Jones, D.O.B. (2016). Towed Cameras. *In*: Clark, M.R.; Rowden, A.A.; Consalvey, M. (eds). Biological Sampling in The Deep Sea, pp. 260-284. Wiley & Sons,
- Bowden, D.A.; Leduc, D. (2017). Ocean Survey 20/20, Chatham Rise Benthos: effects of seabed trawling on benthic communities. *New zealand Aquatic Environment and Biodiversity Report No.* 67 p.
- Chiswell, S.M. (2001). Eddy energetics in the Subtropical Front over the Chatham Rise, New Zealand. *New Zealand Journal of Marine and Freshwater Research 35(1)*: 1-15.

- Clark, M.R.; Anderson, O.F.; Francis, R.; Tracey, D.M. (2000). The effects of commercial exploitation on orange roughy (Hoplostethus atlanticus) from the continental slope of the Chatham Rise, New Zealand, from 1979 to 1997. *Fisheries Research* 45(3): 217-238.
- Clark, M.R.; Bowden, D.A.; Baird, S.J.; Stewart, R. (2010). Effects of fishing on the benthic biodiversity of seamounts of the "Graveyard" complex on the northern Chatham Rise. New Zealand Aquatic Environment and Biodiversity Report. *New Zealand Aquatic Environment and Biodiversity Report* No. 46 No. p.
- Clark, M.R.; Bowden, D.A.; Tracey, D.M.; Mills, S.; George, S.; Stewart, R.; Hart, A.; Macpherson, D.; Gammon, M.; Holland, L.; Moore, K.; Frontin-Rollett, G. (2015). Factual voyage Report of a Survey of Seamounts on the Northwest and Southwest Chatham Rise (TAN503). *No. DSCA153*. 66 p.
- Clark, M.R.; Dunn, M.R. (2012). Spatial management of deep-sea seamount fisheries: balancing sustainable exploitation and habitat conservation. *Environmental Conservation 39*(3): 204-214.
- Compton, T.J.; Bowden, D.A.; Pitcher, R.C.; Hewitt, J.E.; Ellis, N. (2013). Biophysical patterns in benthic assemblage composition across contrasting continental margins off New Zealand. *Journal of Biogeography* 40(1): 75-89. http://dx.doi.org/10.1111/j.1365-2699.2012.02761.x
- EPA (2015). Decision on marine consent application by Chatham Rock Phosphate Ltd to mine phosphorite nodules on the Chatham Rise. *No. EEZ000006*. 299 p.
- Gordon, D.P.; Beaumont, J.; MacDiarmid, A.; Robertson, D.A.; Ahyong, S.T. (2010). Marine Biodiversity of Aotearoa New Zealand. *PLoS ONE 5(8)*. http://dx.doi.org/10.1371/journal.pone.0010905>
- Hill, P. (2009). Designing a deep-towed camera vehicle using single conductor cable. *Sea Technology* 50(12): 49-51.
- Howell, K.L.; Piechaud, N.; Downie, A.L.; Kenny, A. (2016). The distribution of deep-sea sponge aggregations in the North Atlantic and implications for their effective spatial management. *Deep-Sea Research Part I-Oceanographic Research Papers 115*: 309-320. http://dx.doi.org/10.1016/j.dsr.2016.07.005>
- Jennings, S.; Kaiser, M.J. (1998). The effects of fishing on marine ecosystems. In: Blaxter, J.H.S.; Southward, A.J.; Tyler, P.A. (eds). Advances in Marine Biology, Vol 34, pp. 201-352. Advances in Marine Biology. Academic Press, London.
- Kaiser, M.J.; Clarke, K.R.; Hinz, H.; Austen, M.C.V.; Somerfield, P.J.; Karakassis, I. (2006). Global analysis of response and recovery of benthic biota to fishing. *Marine Ecology-Progress Series 311*: 1-14.
- Marchal, P.; Francis, C.; Lallemand, P.; Lehuta, S.; Mahevas, S.; Stokes, K.; Vermard, Y. (2009). Catchquota balancing in mixed-fisheries: a bio-economic modelling approach applied to the New Zealand hoki (Macruronus novaezelandiae) fishery. *Aquatic Living Resources* 22(4): 483-498. http://dx.doi.org/10.1051/alr/2009033>
- McClatchie, S.; Millar, R.B.; Webster, F.; Lester, P.J.; Hurst, R.; Bagley, N. (1997). Demersal fish community diversity off New Zealand: Is it related to depth, latitude and regional surface phytoplankton? *Deep-Sea Research Part I-Oceanographic Research Papers* 44(4): 647-667. http://dx.doi.org/10.1016/s0967-0637(96)00096-9
- Nodder, S.D.; Bowden, D.A.; Pallentin, A.; Mackay, K.A. (2012). Seafloor Habitats and Benthos of a Continental Ridge: Chatham Rise, New Zealand. *In*: Harris, P.T. (ed.). Seafloor Geomorphology as Benthic Habitat, pp. 763-776. Elsevier Inc.,
- Nodder, S.D.; Duineveld, G.C.A.; Pilditch, C.A.; Sutton, P.J.; Probert, P.K.; Lavaleye, M.S.S.; Witbaard, R.; Chang, F.H.; Hall, J.A.; Richardson, K.M. (2007). Focusing of phytodetritus deposition beneath a deep-ocean front, Chatham Rise, New Zealand. *Limnology and Oceanography* 52(1): 299-314.
- O'Driscoll, R.L.; MacGibbon, D.; Fu, D.; Lyon, W.; Stevens, D. (2011). A review of hoki and middledepths trawl surveys of the Chatham Rise, January 1992-2010. New Zealand Fisheries Assessment Report 2011/47. *No.* 72 p.
- Reiss, H.; Birchenough, S.; Borja, A.; Buhl-Mortensen, L.; Craeymeersch, J.; Dannheim, J.; Darr, A.; Galparsoro, I.; Gogina, M.; Neumann, H.; Populus, J.; Rengstorf, A.M.; Valle, M.; van Hoey, G.; Zettler, M.L.; Degraer, S. (2015). Benthos distribution modelling and its relevance for marine

ecosystem management. *Ices Journal of Marine Science* 72(2): 297-315. http://dx.doi.org/10.1093/icesjms/fsu107>

- Robert, K.; Jones, D.O.B.; Roberts, J.M.; Huvenne, V.A.I. (2016). Improving predictive mapping of deepwater habitats: Considering multiple model outputs and ensemble techniques. *Deep-Sea Research Part I-Oceanographic Research Papers 113*: 80-89. http://dx.doi.org/10.1016/j.dsr.2016.04.008
- Rowden, A.; Berkenbusch, K.; Brewin, P.; Dalen, J.; Neill, K.; Nelson, W.; Oliver, M.; Probert, P.K.; Schwarz, A.-M.; Sui, P.; Sutherland, D. (2012). A review of the marine soft-sediment assemblages of New Zealand. *New zealand Aquatic Environment and Biodiversity Report No. 96*: 169 p.
- Rowden, A.; Leduc, D.; Torres, L.; Bowden, D.; Hart, A.; Chin, C.; Davey, N.; Nodder, S.D.; Pallentin, A.; Mackay, K.A.; Northcote, L.; Sturman, J. (2014). Benthic epifauna communities of the central Chatham Rise crest. *NIWA Client Report to Chatham Rock Phosphate Ltd. No. WLG2014-9.* 116 p.
- Tracey, D.M.; Rowden, A.A.; Mackay, K.A.; Compton, T. (2011). Habitat-forming cold-water corals show affinity for seamounts in the New Zealand region. *Marine Ecology-Progress Series 430*: 1-U59. http://dx.doi.org/10.3354/meps09164>
- Tuck, I.D.; Parsons, D.M.; Hartill, B.W.; Chiswell, S.M. (2015). Scampi (Metanephrops challengeri) emergence patterns and catchability. *Ices Journal of Marine Science* 72: 199-210. http://dx.doi.org/10.1093/icesjms/fsu244
- Vierod, A.D.T.; Guinotte, J.M.; Davies, A.J. (2014). Predicting the distribution of vulnerable marine ecosystems in the deep sea using presence-background models. *Deep-Sea Research Part II -Topical Studies in Oceanography 99*: 6-18. http://dx.doi.org/10.1016/j.dsr2.2013.06.010
- von Rad, U.; Kudrass, H.-R. (1987). Exploration and genesis of submarine phosphorite deposits from the Chatham Rise, New Zealand a review. *In*: Telekei, P. (ed.). Marine minerals advance in research and resource assessement, pp. 157-175. Reidel, Dordrecht.
- Williams, A.; Schlacher, T.A.; Rowden, A.A.; Althaus, F.; Clark, M.R.; Bowden, D.A.; Stewart, R.; Bax, N.J.; Consalvey, M.; Kloser, R.J. (2010). Seamount megabenthic assemblages fail to recover from trawling impacts. *Marine Ecology 31*: 183-199. ">http://dx.doi.org/10.1111/j.1439-0485.2010.00385.x>

7. APPENDIX 1 – Taxa

Table A 1: Benthic invertebrate taxa observed in post-voyage analyses of seabed video and still images collected during surveys on Chatham Rise. 'Taxon observed' is the label used by analysts (audited here to combine synonyms, mis-spellings, etc.). 'ID_code' is a unique identifier for each taxon, as developed for use in OFOP. 'Taxon aggregated' is a higher-level aggregation that groups taxa at taxonomic levels at which we have confidence that identifications are both accurate and consistent across all surveys and analysts.

Phylum	Class	Order	Family	Taxon observed	ID_code	Taxon aggregated
Annelida	Polychaeta			Polychaete (errant)	T_117	Polychaeta
				Sedentaria	T_2430	Polychaeta
				Tube worms	T_212	Polychaeta
		Aciculata	Onuphidae	Onuphidae	T_2367	Polychaeta
				Quill worm	T_130	Hyalinoecia sp.
		Sabellida	Sabellidae	Sabellidae (fan worm)	T_710	Polychaeta
			Serpulidae	Protula	T_2323	Polychaeta
				Salmacina australis	T_2408	Polychaeta
				Serpulidae	T_1023	Polychaeta
			Chaetopteridae	Chaetopteridae	T_2309	Polychaeta
Arthropoda	Malacostraca	Amphipoda		Amphipoda	T_125	Amphipoda
		Decapoda	Atelecyclidae	Atelecyclidae	T_508	Brachyura
				Trichopeltarion fantasticum	T_509	Brachyura
			Campylonotidae	Campylonotus rathbunae	T_524	Caridea
			Chirostylidae	Chirostylidae	T_530	Galatheidae/Chirostylidae
				Gastroptychus novaezelandiae	T_531	Galatheidae/Chirostylidae
			Galatheidae	Crustacean (galatheid/Chirostylidae)	T_111	Galatheidae/Chirostylidae
				Galatheidae	T_528	Galatheidae/Chirostylidae
				Munida gracilis	T_529	Galatheidae/Chirostylidae
			Goneplacidae	Goneplacidae	T_510	Brachyura
				Neommatocarcinus huttoni	T_512	Brachyura
			Homolidae	Homolidae	T_2533	Brachyura

Phylum	Class	Order	Family	Taxon observed	ID_code	Taxon aggregated
			Inachidae	Carcinoplax victoriensis	T_511	Brachyura
				Inachidae	T_513	Brachyura
			Lithodidae	Lithodidae	T_516	Lithodidae
				Paralomis zealandica	T_517	Lithodidae
			Majidae	Leptomithrax longipes	T_523	Brachyura
				Majidae	T_521	Brachyura
				Platymaia maoria	T_515	Brachyura
				Teratomaia richardsoni	T_522	Brachyura
				Vitjazmaia latidactyla	T_514	Brachyura
			Nematocarcinidae	Nematocarcinus sp.	T_526	Caridea
			Nephropidae	Crustacean (scampi)	T_112	Metanephrops challengeri
			Nephropidae	Metanephrops challengeri	T_533	Metanephrops challengeri
				Nephropidae	T_532	Crustacean (lobster)
			Paguridae	Crustacean (pagurid)	T_108	Paguridae
			Pandalidae	Notopandalus magnoculus	T_2366	Caridea
				Pandalidae prob Plesionika sp.	T_525	Caridea
			Polychelidae	Crustacean (polychelidae)	T_122	Polychelidae
			Scyllaridae	Ibacus alticrenatus	T_535	Ibacus alticrenatus
			Solenoceridae	Haliporoides sibogae	T_527	Caridea
				Crustacean (crab)	T_107	Brachyura
				Crustacean (lobster)	T_106	Crustacean (lobster)
				Crustacean (peracarid)	T_110	Caridea
				Crustacean (shrimp)	T_109	Caridea
		Euphausiacea		Euphausiacea	T_123	Euphausiacea
		Isopoda	Serolidae	Acutiserolis sp.	T_538	Serolidae
				Serolidae	T_537	Serolidae
				Isopoda	T_126	Serolidae
		Mysida		Mysidacea	T_124	Mysidacea
	Maxillopoda			Barnacles	T_215	Barnacles

Phylum	Class	Order	Family	Taxon observed	ID_code	Taxon aggregated
	Pycnogonida	Pantopoda		Pycnogonid	T_539	Pycnogonida
			Colossendeidae	Collossendeis sp.	T_119	Pycnogonida
Brachiopoda	1			Brachiopods	T_210	Brachiopoda
Bryozoa	Gymnolaemata	Cheilostomata		Bitectipora retepora	T_2348	Bryozoa
				Bryozoan - filamentous form	T_2041	Bryozoa
				Bryozoans	T_211	Bryozoa
				Bryzoan - Branched coral-like form	T_716	Bryozoa
				Bryzoan - bushy form	T_715	Bryozoa
				Bryzoan - Encrusting form	T_719	Bryozoa
				Bryzoan - Erect cheilostome	T_714	Bryozoa
				Bryzoan - Lacy fan form	T_717	Bryozoa
				Bryzoan - Stylasterid look-alikes	T_718	Bryozoa
Chordata	Ascidiacea			Ascidians (clonal)	T_213	Ascidiacea
				Ascidians (solitary)	T_214	Ascidiacea
		Aplousobranchia	Didemnidae	Didemnid	T_2341	Ascidiacea
				Diplosoma	T_2342	Ascidiacea
			Polyclinidae	Synoicum otagoensis	T_2345	Ascidiacea
				Aplousobranchia	T_1951	Ascidiacea
Cnidaria	Anthozoa	Actiniaria		Anemones	T_203	Anemones
				Anenome uni 1	T_615	Anemones
				Anenome uni 10	T_624	Anemones
				Anenome uni 11	T_625	Anemones
				Anenome uni 12	T_626	Anemones
				Anenome uni 13	T_627	Anemones
				Anenome uni 14	T_628	Anemones

Phylum	Class	Order	Family	Taxon observed	ID_code	Taxon aggregated
				Anenome uni 16	T_630	Anemones
				Anenome uni 17	T_631	Anemones
				Anenome uni 18	T_632	Anemones
				Anenome uni 2	T_616	Anemones
				Anenome uni 3	T_617	Anemones
				Anenome uni 4	T_618	Anemones
				Anenome uni 5	T_619	Anemones
				Anenome uni 6	T_620	Anemones
				Anenome uni 7	T_621	Anemones
				Anenome uni 8	T_622	Anemones
				Anenome uni 9	T_623	Anemones
			Actinostolidae	Actinostolidae	T_2110	Anemones
			Edwardsiidae	Edwardsid	T_2351	Anemones
			Hormathiidae	Hormathiidae	T_959	Anemones
			Liponematidae	cf. Liponema/Bolocera	T_957	Anemones
		Alcyonacea		Alcyonacea	T_501	Alcyonacea
			Alcyoniidae	Alcyoniidae	T_704	Alcyonacea
				Anthomastus sp.	T_688	Anthomastus sp.
			Clavulariidae	Clavularia sp.	T_706	Alcyonacea
				Telesto sp.	T_720	Telesto sp.
			Isididae	Keratoisis sp.	T_2330	Isididae
			Plexauridae	Plexauridae	T_2331	Alcyonacea
			Primnoidae	Thouarella	T_694	Primnoidae
			Taiaroidae	Taiaroa tauhou	T_709	Taiaroa tauhou
		Antipatharia		Antipatharia	T_2131	Antipatharia
			Antipathidae	Antipathes	T_707	Antipatharia
				Bathypathes	T_703	Antipatharia
			Leiopathidae	Leiopathes	T_2352	Antipatharia
		Ceriantharia		Ceriantharia sp.	T_708	Ceriantharia

Phylum	Class	Order	Family	Taxon observed	ID_code	Taxon aggregated
		Corallimorpharia		Corallimorpharia	T_634	Corallimorpharia
				Corallimorpharia 1	T_635	Corallimorpharia
				Corallimorpharia 2	T_636	Corallimorpharia
				Corallimorpharia 3	T_637	Corallimorpharia
		Gorgonacea		Gorgonacea	T_503	Gorgonacea
			Chrysogorgiidae	Chrysogorgiidae	T_698	Gorgonacea
				Radicipes sp.	T_699	Radicipes sp.
			Coralliidae	Coralliidae	T_690	Gorgonacea
				Corallium sp.	T_701	Gorgonacea
			Isididae	Isididae	T_667	Isididae
			Paragorgiidae	Paragorgia sp.	T_696	Paragorgiidae
				paragorgiidae	T_695	Paragorgiidae
			Primnoidae	Callogorgia sp.	T_692	Primnoidae
				Narella sp.	T_2536	Primnoidae
				Primnoella sp.	T_693	Primnoidae
				Primnoidae	T_691	Primnoidae
				Tokoprymno sp.	T_2537	Primnoidae
		Pennatulacea		Pennatulacea	T_502	Pennatulacea
				Pennatulacea 1	T_669	Pennatulacea
				Pennatulacea 2	T_670	Pennatulacea
				Pennatulacea 3	T_671	Pennatulacea
				Pennatulacea 4	T_672	Pennatulacea
				Pennatulacea 5	T_673	Pennatulacea
			Funiculinidae	Funiculina sp.	T_2530	Pennatulacea
			Kophobelemnidae	Kophobelemnon sp.	T_1944	Pennatulacea
			Protoptilidae	Protoptilidae	T_2423	Pennatulacea
			Umbellulidae	Umbellula sp.	T_1107	Pennatulacea
			Anthoptilidae	Anthoptilidae	T_2427	Pennatulacea
			Pennatulidae	Pennatula sp.	T_2117	Pennatulacea

Phylum	Class	Order	Family	Taxon observed	ID_code	Taxon aggregated
		Scleractinia		Corals (stoney)	T_206	Scleractinia
				Scleractinia	T_504	Scleractinia
			Caryophylliidae	cup corals (stalked)	T_678	Caryophylliidae
				cup corals (Stephanocyathus sp.)	T_679	Stephanocyathus sp.
				Desmophyllum/ Caryophyllia	T_680	Caryophylliidae
				Goniocorella dumosa	T_689	Goniocorella dumosa
				Solenosmillia variabilis	T_675	Solenosmillia variabilis
			Dendrophylliidae	Enallopsammia sp.	T_677	Enallopsammia sp.
			Flabellidae	Flabellum	T_682	Flabellum
				Flabellum 1	T_683	Flabellum
				Flabellum 3	T_685	Flabellum
				Flabellum knoxi	T_687	Flabellum
				Flabellum loure kexeii	T_686	Flabellum
				Flabellum rubrum	T_684	Flabellum
			Oculinidae	Madrepora sp.	T_676	Madrepora sp.
		Zoantharia	Epizoanthidae	Epizoanthus sp.	T_2011	Epizoanthidae
		Zoanthidea		Zoanthidea	T_638	Zoanthidea
	Hydrozoa	Anthoathecata	Stylasteridae	Stylasteridae	T_506	Stylasteridae
				Lepidotheca sp.	T_2358	Stylasteridae
				Calyptopora sp.	T_2099	Stylasteridae
				Errina sp.	T_702	Stylasteridae
		Leptothecata		Hydroids	T_208	Hydrozoa
			Aglaopheniidae	Lytocarpia sp.	T_2529	Hydrozoa
Echinodermata	Asteroidea			Asteroid	T_101	Asteroidea
		Brisingida	Brisingidae	Brisingid	T_120	Brisingidae
				Brisingid 1	T_440	Brisingidae
				Brisingid 2	T_441	Brisingidae
				Brisingid 3	T_442	Brisingidae

Phylum	Class	Order	Family	Taxon observed	ID_code	Taxon aggregated
				Brisingid 4	T_495	Brisingidae
		Forcipulatida	Asteriidae	Asteriidae	T_413	Asteroidea
				Coronaster sp.	T_1956	Asteroidea
				Pseudechinaster rubens	T_415	Asteroidea
				Sclerasterias mollis	T_2355	Asteroidea
			Zoroasteridae	Zoroaster sp.	T_412	Asteroidea
				Zoroasteridae	T_411	Asteroidea
			Zoroasteridae/Asteriidae	Zoroasteridae/Asteriidae	T_410	Asteroidea
		Notomyotida	Benthopectinidae	Benthopecten sp.	T_417	Asteroidea
				Benthopectinidae	T_416	Asteroidea
		Paxillosida	Astropectinidae	Astromesites/Psilaster/Proserpinaster	T_424	Asteroidea
				Astropectinidae	T_420	Asteroidea
				Dipsacaster magnificus	T_422	Asteroidea
				Dipsacaster sp.	T_421	Asteroidea
				Plutonaster/Dytaster	T_423	Asteroidea
			Radiasteridae	Radiaster sp.	T_426	Asteroidea
				Radiasteridae	T_425	Asteroidea
		Spinulosida	Echinasteridae	Echinasteridae	T_418	Asteroidea
				Henricia sp.	T_419	Asteroidea
			Pterasteridae	Hymenaster sp.	T_436	Asteroidea
			Pterasteridae	Pterasteridae	T_435	Asteroidea
			Solasteridae	Crossaster multispinus	T_439	Asteroidea
				Solaster torulatus	T_438	Asteroidea
				Solasteridae	T_437	Asteroidea
		Valvatida	Goniasteridae	Ceramaster sp.	T_432	Asteroidea
				Goniasteridae	T_427	Asteroidea
				Hippasteria sp.	T_428	Asteroidea
				Lithosoma novazealandiae	T_434	Asteroidea
				Lithosoma/Pseudarchaster	T_433	Asteroidea

Phylum	Class	Order	Family	Taxon observed	ID_code	Taxon aggregated
				Mediaster sp.	T_429	Asteroidea
				Pillsburiaster sp.	T_431	Asteroidea
				Plinthaster/Ceramaster	T_430	Asteroidea
	Crinoidea			Crinoid	T_105	Crinoidea (motile)
		Bourgueticrinida		Crinoidea (stalked)	T_711	Crinoidea (stalked)
		Comatulida		Crinoidea (motile)	T_507	Crinoidea (motile)
	Echinoidea	Cidaroida		Cidaroida	T_453	Cidaroidea
			Cidaridae	Cidaridae	T_454	Cidaroidea
				Goniocidaris parasol	T_2356	Cidaroidea
				Goniocidaris sp.	T_455	Cidaroidea
				Ogmocidaris benhami	T_456	Cidaroidea
			Histocidaridae	Histocidaridae	T_457	Cidaroidea
		Echinoida		Echinoid	T_103	Euechinoidea
			Echinidae	Dermechinus horridus	T_464	Dermechinus horridus
				Echinidae	T_462	Euechinoidea
				Gracilechinus multidentatus	T_463	Euechinoidea
				Echinoida	T_459	Euechinoidea
		Echinothurioida	Echinothuriidae	Phormosoma bursarium	T_461	Echinothurioida
			Echinothuriidae/Phormosomatidae	Echinothuriidae/Phormosomatidae	T_460	Echinothurioida
		Pedinoida	Pedinidae	Pedinidae	T_465	Euechinoidea
			Pedinidae	Caenopedina sp.	T_466	Euechinoidea
		Spatangoida	Spatangidae	Paramaretia peloria	T_470	Spatangoida
				Spatangidae	T_469	Spatangoida
				Spatangus sp.	T_471	Spatangoida
		Temnopleuroida	Temnopleuridae	Pseudechinus flemingi	T_468	Euechinoidea
				Temnopleuridae	T_467	Euechinoidea
	Holothuroidea	Aspidochirotida		Holothurian	T_104	Holothuroidea
				holothurian uni 1	T_491	Holothuroidea
				holothurian uni 2	T_492	Holothuroidea

Phylum	Class	Order	Family	Taxon observed	ID_code	Taxon aggregated
				holothurian uni 3	T_493	Holothuroidea
				holothurian uni 4	T_494	Holothuroidea
			Stichopodidae	Australostichopus mollis	T_486	Holothuroidea
				Stichopodidae	T_485	Holothuroidea
			Synallactidae	Bathyplotes	T_2337	Holothuroidea
				Pseudostichopus mollis	T_476	Holothuroidea
				Pseudostichopus peripatus	T_477	Holothuroidea
				Pseudostichopus sp.	T_475	Holothuroidea
				Synallactidae	T_472	Holothuroidea
				Bathyplotes moseleyi	T_473	Holothuroidea
				Bathyplotes sulcatus	T_474	Holothuroidea
				Benthodytes incerta	T_484	Holothuroidea
		Dendrochirotida	Psolidae	Psolidae	T_2338	Psolidae
		Elasipodida		Elasipoda	T_489	Holothuroidea
			Deimatidae	Deimatidae	T_481	Holothuroidea
			Elpidiidae	Scotoplanes sp.	T_578	Holothuroidea
			Laetmogonidae	Laetmogone sp.	T_479	Holothuroidea
				Laetmogonidae	T_478	Holothuroidea
				Pannychia sp.	T_480	Holothuroidea
			Pelagothuridae	Pelagothuridae	T_487	Holothuroidea
			Pelagothuriidae	Enypniastes eximia	T_488	Enypniastes eximia
			Psychropotidae	Benthodytes incerta	T_484	Holothuroidea
				Psychropotidae	T_483	Holothuroidea
	Ophiuroidea			Ophiuroid	T_102	Ophiuroidea
		Euryalida		Euryalida	T_449	Ophiuroidea
			Gorgonocephalidae	Astrothorax waitei	T_2531	Gorgonocephalidae
				Gorgonocephalidae	T_450	Gorgonocephalidae
		Ophiacanthida	Ophiodermatidae	Bathypectinura heros	T_2430	Ophiuroidea
		Ophiurida	Ophiacanthidae	Ophiacanthidae	T_444	Ophiuroidea

Phylum	Class	Order	Family	Taxon observed	ID_code	Taxon aggregated
			Ophiomyxidae	Ophiomyxa brevirima	T_446	Ophiuroidea
			Ophiuridae	Ophiomusium lymani	T_443	Ophiuroidea
				Ophiurida unspecified	T_447	Ophiuroidea
				Unknown ophiurida 1	T_448	Ophiuroidea
Echiura				Echiura	T_217	Echiura
Foraminifera			Xenophyophoroidea (superfamily)	Foram (giant)	T_218	Xenophyophoroidea
Hemichordata	Enteropneusta			Hemichordate	T_129	Hemichordata
					-	
Mollusca	Bivalvia			Molluscs (bivalves)	T_209	Bivalvia
		Ostreoida	Pectinidae	Pectinidae	T_1110	Bivalvia
		Pteriomorpha	Limidae	Acesta maui	T_2325	Bivalvia
	Cephalopoda	Octopoda		Mollusc (octopod)	T_127	Octopoda
			Cirroteuthididae/Luteuthididae	Cirroteuthidae/Luteuthididae	T_570	Octopoda
			Enteroctopodidae	Enteroctopus zealandicus (yellow)	T_562	Octopoda
			Octopodidae	Benthoctopus sp.	T_565	Octopoda
				Graneledone sp.	T_567	Octopoda
				Octopodidae	T_561	Octopoda
			Opisthoteuthidae	Opisthoteuthis sp.	T_569	Octopoda
		Sepiida		Sepioloidea	T_1284	Squid
		Teuthida		Squid	T_408	Squid
				Mollusc (vampire squid)	T_128	Squid
	Gastropoda			Mollusc (gastropod)	T_113	Gastropoda
		Archaeogastropoda	Calliostomatidae	Calliostoma alertae	T_557	Gastropoda
				Calliostoma sp.	T_2326	Gastropoda
				Callostomatidae	T_556	Gastropoda
		Littorinimorpha	Ranellidae	Fusitriton magellanicus	T_550	Buccinidae

Phylum	Class	Order	Family	Taxon observed	ID_code	Taxon aggregated
		Neogastropoda	Buccinidae	Aeneator recens	T_548	Buccinidae
				Austrofusus glans	T_546	Buccinidae
				Buccinidae	T_545	Buccinidae
				Penion sp.	T_547	Buccinidae
			Muricidae	Muricidae	T_551	Gastropoda
			Olividae	Olividae	T_553	Gastropoda
			Turbinellidae	Coluzea sp.	T_559	Gastropoda
				Turbinellidae	T_558	Gastropoda
			Turridae	Turridae	T_543	Gastropoda
			Volutidae	Volutidae	T_540	Volutidae
			Volutomitridae	Volutomitira banksi	T_542	Volutidae
				Volutomitridae	T_541	Volutidae
		Neotaenioglossa	Cassidae	Cassidae	T_560	Gastropoda
			Ranellidae	Fusitriton magellanicus	T_550	Buccinidae
				Ranellidae	T_549	Gastropoda
		Nudibranchia		Mollusc (nudibranch)	T_2012	Nudibranchia
				Mollusc (opisthobranch)	T_115	Nudibranchia
			Dorididae	Dorididae	T_1271	Nudibranchia
		Trochida	Turbinidae	Turbinidae	T_1260	Gastropoda
	Scaphopoda			Scaphopoda	T_121	Scaphopoda
Nemertea	Anopla			Nemertean	T_116	Worm indet.
D	Calcarea			Calcarea	T 1110	Calcarea
Porifera	Calcarea	T 1 ' 1			T_1118	
	D	Leucosolenida	Leucosoleniidae	Leucosolenia	T_1119	Calcarea
	Demospongiae			Encrusting sponges	T_660	Demospongiae
				Sponge (demospongiae)	T_204	Demospongiae
		Astrophorida		Astrophorid	T_645	Demospongiae
			Ancorinidae	Tethyopsis n. sp.	T_648	Demospongiae

Phylum	Class	Order	Family	Taxon observed	ID_code	Taxon aggregated
			Geodiidae	Geodia regina	T_646	Demospongiae
				Geodia sp.	T_2088	Demospongiae
			Pachastrellidae	Pachastrellidae	T_650	Demospongiae
				Thenea novaezelandiae	T_649	Demospongiae
				Poecillastra laminaris	T_2072	Demospongiae
		Hadromerida		Hadromerid	T_651	Demospongiae
			Suberitidae	Suberites affinis	T_652	Demospongiae
		Halichondrida		Halichondrid	T_653	Demospongiae
			Axinellidae	Axinella sp.	T_654	Demospongiae
		Haplosclerida		Haplosclerid	T_658	Demospongiae
			Callyspongiidae	Callyspongia sp.	T_1176	Demospongiae
				Callyspongiidae	T_1175	Demospongiae
			Petrosiidae	Petrosia	T_659	Demospongiae
		Lithistida		Lithistid	T_639	Demospongiae
			Corallistidae	Awhiowhio sepulchrum	T_642	Demospongiae
			Isoraphiniidae	Costifer wilsoni	T_641	Demospongiae
			Phymatellidae	Neoaulaxinia persicum	T_640	Demospongiae
		Poecilosclerida		Poecilosclerid	T_643	Demospongiae
			Cladorhizidae	Cladorhizidae	T_1188	Cladorhizidae
			Coelosphaeridae	Coelosphaera globosa	T_2361	Demospongiae
				Coelosphaeridae	T_1229	Demospongiae
				Lissodendoryx (Ectyodoryx)	T_2104	Demospongiae
			Desmacididae	Desmacidon mammilatum	T_2362	Demospongiae
			Esperiopsidae	Esperiopsis cf. inodes	T_2070	Demospongiae
			Hymedesmiidae	Hymedesmia (Stylopus) n. sp. 1	T_2538	Demospongiae
				Phorbas aerolata	T_1192	Demospongiae
			Latrunculiidae	Latrunculia sp.	T_644	Demospongiae
		Polymastiida	Polymastiidae	Tentorium papillatum	T_2535	Demospongiae
		Spirophorida	Tetillidae	Tetilla leptoderma	T_657	Demospongiae

Phylum	Class	Order	Family	Taxon observed	ID_code	Taxon aggregated
		Suberitida	Suberitidae	Suberites sp.	T_1200	Demospongiae
		Tetractinellida	Ancorinidae	Ecionemia novaezealandiae	T_2363	Demospongiae
				Stelletta sp.	T_1164	Demospongiae
			Geodiidae	Geodia vestigifera	T_1161	Demospongiae
			Vulcanellidae	Poecillastra sp.	T_1067	Demospongiae
				Xestospongia/Poecillastra	T_2364	Demospongiae
	Hexactinellida			Sponge (hexactinellidae)	T_205	Hexactinellida
		Amphidiscosida	Hyalonematidae	Hyalonema (Cyliconema) sp	T_1116	Hexactinellida
			Pheronematidae	Sericolphus sp.	T_2075	Hexactinellida
			Pheronematidae	Pheronema sp.	T_1117	Hexactinellida
		Hexactinosida	Farreidae	Farrea sp.	T_2324	Hexactinellida
				Hexactinosida	T_131	Hexactinellida
		Lyssacinosida	Euplectellidae	Euplectella regalis	T_662	Hexactinellida
				Euplectellidae	T_2100	Hexactinellida
				<i>Regadrella</i> sp.	T_2079	Hexactinellida
			Rossellidae	Crateromorpha	T_2244	Hexactinellida
				Hyalascus n. sp.	T_661	Hyalascus n. sp.
				Hyalascus sp.	T_2037	Hexactinellida
				<i>Rossella</i> sp.	T_2083	Hexactinellida
				Symplectella sp.	T_2086	Hexactinellida
		Sceptrulophora	Aphrocallistidae	Aphrocallistes beatrix beatrix	T_2098	Hexactinellida
			Euretidae	Chonelasma	T_2085	Hexactinellida
				Chonelasma lamella	T_2360	Hexactinellida
			Rossellidae	Rossellidae Acanthascus (Rhabdocalyptus) sp. 1	T_2434	Hexactinellida
Indet				Worm (indeterminate)	T_118	Worm indet.