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EXECUTIVE SUMMARY 
 
Marsh, C. (2019). The 2017 stock assessment of paua (Haliotis iris) for PAU 5B. 
 
New Zealand Fisheries Assessment Report 2019/26. 52 p. 
 
This report summarises the stock assessment for PAU 5B which included fishery data up to the 2016–
17 fishing year. The report describes the model structure and output, including current (2017) and 
projected stock status. The stock assessment was implemented as a length-based Bayesian estimation 
model, with point estimates of parameters based on the mode of the joint posterior distribution, and 
uncertainty of model estimates investigated using the marginal posterior distributions generated from 
Markov chain Monte Carlo simulation. 
 
The assessment showed that current and projected vulnerable biomasses were highly likely to stay 
above the target level (40% 𝐵𝐵0). Spawning stock biomass was estimated to be above the hard and soft 
limits, with only one sensitivity run estimating a very low probability (less than 1%) of falling below 
the soft limit (20% 𝐵𝐵0), under all projected scenarios. 
 
The base case model estimated that the spawning stock in 2017 (𝐵𝐵𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) was about 47% (95% CI 38–
61%) of 𝐵𝐵0. Model projections were made under a range of future harvest level assumptions including 
current catch levels and increasing the TACC by 20%. Model projections also included two differing 
levels of future recruitment. Of these scenarios, future recruitment had a slightly larger impact on future 
stock status than the levels of exploitation explored. The base case model forecasted that the probability 
of the spawning stock biomass remaining above the target (40% 𝐵𝐵0) by 2020 was greater than 85%. 
 
The assessment model indicated that the stock status was very likely (p = 93%) to be above the target, 
and that the estimated stock abundance has been increasing over recent years, corroborating the 
observed trend in the fishery. Results from sensitivity trials were close to the base case, and all estimated 
median stock status to be above the target. All runs considered in the assessment indicated that it was 
very unlikely the stock will fall below the soft or hard limits at current levels of catch. 
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1. INTRODUCTION 

1.1 Overview 
  
This report summarises the stock assessment model and outcomes for the PAU 5B (Stewart Island) 
stock with the inclusion of data to the end of the 2016–17 fishing year. The report describes the model 
structure and output, including current and projected stock status. The stock assessment was conducted 
with the length-based Bayesian estimation model first used in 1999 for PAU 5B (Breen et al. 2000a) 
with revisions made for subsequent assessments in PAU 5B (Breen et al. 2000b, Breen & Smith 2008a,  
Breen & Smith 2008b), PAU 4 (Breen & Kim 2004a), PAU 5A (Breen & Kim 2004b, Breen & Kim 
2007, Fu & Mackenzie 2010a, b), PAU 5D (Breen et al. 2000a, Breen & Kim 2007), and PAU 7 
(Andrew et al. 2000, Breen et al. 2001, Breen & Kim 2003, 2005, McKenzie & Smith 2009a, 2009b). 
PAU 5B was last assessed in 2013 (Fu 2014a and Fu et. al. 2014a).  
 
Seven sets of data were fitted in the assessment: (1) a standardised CPUE series covering 1990–2001 
based on CELR data (CPUE), (2) a standardised CPUE series covering 2002–2017 based on PCELR 
data (PCPUE), (3) commercial catch sampling length frequency series (CSLF), (4) tag recapture length 
increment data, (5) maturity-at-length data, (6) research diver length frequency series (RDLF), and (7) 
research diver abundance survey index (RDSI). Catch history was an input to the model, encompassing 
commercial, recreational, customary, and illegal catch. Marsh et al. (2018) summarise the data input for 
this stock assessment. 
 
The assessment was made in several steps. First, the model was fitted to the data with parameters 
estimated at the mode of their joint posterior distribution (MPD). Next, from the resulting fit, Markov 
chain-Monte Carlo (MCMC) simulations were made to obtain a large set of samples from the joint 
posterior distribution. From this set of samples, forward projections were made with a set of agreed 
indicators obtained. Sensitivity trials were explored by comparing MPD fits made with alternative 
model assumptions. 
 
This document describes the model structure and assumptions, the fits to the data, estimates of 
parameters and indicators, and projection results. This report fulfils part of Objective 1 “Undertake a 
stock assessment for PAU 5B, using a length-based Bayesian model” for Ministry for Primary 
Industries Project PAU201701. 
 

1.2 Description of the fishery 
 
The paua fishery was summarised by Schiel (1992), and in numerous previous assessment documents 
(e.g., Schiel 1989, McShane et al. 1994, 1996, Breen et al. 2000a, 2000b, 2001, Breen & Kim 2003, 
2004a, 2004b, 2007). A summary of the PAU 5B fishery up to the 2012–13 fishing year is presented in 
Marsh et al. (2018). 
 

2. MODEL 
 
This section gives an overview of the model used for the stock assessment of PAU 5B in 2017; for a 
full description see Breen et al. (2003). The model was developed for use in PAU 5B in 1999 and has 
been revised each year of subsequent assessments, in many cases echoing changes made to the rock 
lobster assessment model (Kim et al. 2004), which is a similar but more complex length-based Bayesian 
model. The last assessment completed using this model was for the paua stock PAU 5D (Marsh & Fu 
2017), and this assessment builds on that model structure. 
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2.1 Changes since the 2013 assessment model of PAU 5B  
 
A number of changes have been made to the stock assessment model since the last assessment of PAU 
5B in 2013. One was to use a more flexible function form to describe the variance associated with the 
mean growth increment at length (See Section 2.2.7.2). 
 
The predicted CPUE is now calculated after 50% of the fishing and natural mortality have occurred 
(previously the CPUE indices were fitted to the vulnerable biomass calculated after 50% of the catch 
was taken). This is considered to be appropriate if fishing occurs throughout a year (Schnute 1985). The 
change was recommended by the paua review workshop held in Wellington in March 2015 (Butterworth 
et al. 2015). Accordingly, mid-season numbers (and biomass) was calculated after half of the natural 
mortality and half of the fishing mortality was applied (See Section 2.2.7). 
 
The third change was made to the likelihood function, fitting the tag-recapture observations so that 
weights could be assigned to individual observations (see Section 2.2.8.1); this also followed the paua 
review workshop’s recommendation that “the tagging data should be weighted by the relative 
contribution of average yield from the different areas so that the estimates could better reflect the growth 
rates from the more productive areas” (Butterworth et al. 2015).  
 
Two smaller changes were added in this iteration of the assessment model, including: 1) adding a lag 
between recruitment and spawning for models where the partition was started at more than 2 mm; and 
2) adding a time varying parameter on the catchability coefficient on the CPUE observations (see 
Equations 23 and 26 for details on how this was applied).  
 

2.2 Model description 
 
The model partitioned the paua stock into a single sex population, with length classes from 70 mm to 
170 mm, in groups of 2 mm (i.e., from 70 mm to less than 72 mm, 72 mm to less than 74 mm, etc.). In 
a separate run, the partition was started at 2 mm to test the sensitivity of the model to the assumption of 
the partition starting at 70 mm. The largest length bin was a plus group (170+ mm). The stock was 
assumed to be homogenous and reside in a single area. The partition accounted for numbers of paua by 
length class within an annual cycle, where movement between length classes was determined by 
estimated growth parameters. Paua entered the partition following a Beverton-Holt stock-recruitment 
relationship, and were removed by natural mortality and fishing mortality.  
 
The model’s annual cycle was based on the fishing year 1 October to 30 September, and these are 
referred to by the end year, e.g. fishing year 1998–99 (i.e., 1 October 1998 to 30 September 1999) is 
referred to as “1999”. Any references to calendar years are denoted specifically. 
 
The models were run for the years 1965–2017. The model assumed one time step within an annual 
cycle. Reported catches were used for 1974–2017, and those between 1965 and 1973 were assumed to 
increase linearly from 0 to the 1974 catch level. Catches included commercial, recreational, customary, 
and illegal catch, and all catches occurred at the same time. 
 
Recruitment was assumed to take place at the beginning of the annual cycle, and length at recruitment 
was defined by a uniform distribution with a range between the first five length bins of the partition. 
Recruitment deviations (year class strengths) were assumed known, and equal to 1, for the years up to 
1980. This was ten years before the length data were available (loosely based on the approximate time 
taken for recruited paua to appear on the right-hand side of the length distribution). The stock-
recruitment relationship is unknown for paua, but is believed to be weak (Shepherd et al. 2001). A 
relationship may exist on small scales, but may not be apparent when large-scale data are modelled 
(Breen et al. 2003), following the assumption of a single homogenous stock in the model. This 
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assessment assumed a Beverton-Holt stock-recruitment relationship with a steepness (h) of 0.75 for the 
base case.  
 
Maturity does not feature in the population partition. The model estimated proportion mature at each 
time step from length-at-maturity data. Growth and natural mortalities were also estimated within the 
model as time invariant parameters.  
 
The model estimated two selectivities: the commercial fishing selectivity, and the Research Diver catch 
sample selectivity. Both selectivities had the option of following a logistic or double normal distribution 
(see 2.2.7.2). 
 
The model was implemented in AD Model Builder (Otter Research Ltd., http://otter-
rsch.com/admodel.htm) version 11.6, compiled with the MinGW 5.10 compiler.   
 

2.2.1 Estimated parameters 
 
Parameters estimated by the model were as follows. The parameter vector is referred to collectively as 
𝜽𝜽. 
 
ln(𝑅𝑅0)  natural logarithm of average recruitment under equilibrium conditions 
𝑀𝑀 instantaneous rate of natural mortality 
𝑔𝑔1 expected annual growth increment at length 

1L  

𝑔𝑔2 expected annual growth increment at length 
2L  

𝜙𝜙 CV of the expected growth increment 
𝛼𝛼  one of two parameters that define the variance as a function of growth increment  
𝛽𝛽  one of two parameters that define the variance as a function of growth increment  
∆𝑚𝑚𝑚𝑚𝑚𝑚 maximum growth increment 
𝑙𝑙50
𝑔𝑔  length at which the annual increment is half the maximum  
𝑙𝑙95
𝑔𝑔  length at which the annual increment is 95% of the maximum 
𝑙𝑙95−50
𝑔𝑔  difference between 𝑙𝑙50

𝑔𝑔
  and 𝑙𝑙95

𝑔𝑔  
𝑞𝑞𝐼𝐼 catchability coefficient for the CPUE observation 
𝑞𝑞𝑑𝑑𝑐𝑐𝑑𝑑𝑑𝑑𝑐𝑐𝐼𝐼    parameter for the CPUE observation that allows catchability to vary over the series 
𝑞𝑞𝐼𝐼2 catchability coefficient for the PCPUE observation 
𝑞𝑞𝑑𝑑𝑐𝑐𝑑𝑑𝑑𝑑𝑐𝑐𝐼𝐼2    parameter for the PCPUE observation that allows catchability to vary over the series 
𝑞𝑞𝑅𝑅𝑅𝑅𝑅𝑅𝐼𝐼 catchability coefficient for the RDSI observation 
𝐿𝐿50 length at which maturity is 50% 
𝐿𝐿95−50 interval between 𝐿𝐿50 and length at 95% selectivity  
𝑇𝑇50 length at RDLF selectivity is 50%  
𝑇𝑇95−50 difference between 𝑇𝑇50 and length at 95% selectivity 
𝐷𝐷50 length at which commercial diver selectivity is 50%  
𝐷𝐷95−50  difference between 𝐷𝐷50 and length at 95% selectivity  
𝜎𝜎𝑅𝑅𝑅𝑅      standard deviation for the right hand side of the double normal selectivity 
𝜎𝜎𝑅𝑅𝑆𝑆      standard deviation for the left hand side of the double normal selectivity 
𝜇𝜇 the mean for the double normal selectivity 

𝐷𝐷𝑠𝑠 change in commercial diver selectivity for one unit change of MHS 
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𝜎𝜎� common component of error 
𝑏𝑏� shape parameter defining non-linearity between CPUE and biomass 
𝜺𝜺 vector of annual recruitment deviations, from 1980 to 2015 
h  steepness of the Beverton-Holt stock-recruitment relationship 
∆𝑚𝑚𝑚𝑚𝑚𝑚 growth parameter in the inverse logistic formula  
 

2.2.2 Constants 
 
𝑙𝑙𝑘𝑘 length of a paua at the midpoint of the kth length class (

kl  for class 1 is 71 mm, for class 2 is 
73 mm and so on) 

𝜎𝜎𝑚𝑚𝑑𝑑𝑐𝑐 minimum standard deviation of the expected growth increment (assumed to be 1 mm) 
𝜎𝜎𝑜𝑜𝑜𝑜𝑠𝑠 standard deviation of the observation error around the growth increment (assumed to be 0.25 

mm) 
𝑀𝑀𝐿𝐿𝑀𝑀𝑐𝑐 minimum legal size in year t (assumed to be 125 mm for all years) 
𝑃𝑃𝑘𝑘,𝑐𝑐 switch that describes whether abalone in the kth length class in year t are above the minimum 

legal size (MLS) ( ,k tP = 1) or below ( ,k tP = 0)   
𝑎𝑎, 𝑏𝑏 constants for the length-weight relation, taken from Schiel & Breen (1991) (2.99× 10-8 and 

3.303respectively, converting length in millimetres to weight in kilograms) 
𝑤𝑤𝑘𝑘  weight of an abalone at length 

kl  

𝜛𝜛𝐼𝐼 relative weight assigned to the CPUE dataset. This and the following relative weights were 
varied between runs to find a base case model run with balanced residuals 

𝜛𝜛𝐼𝐼2 relative weight assigned to the PCPUE dataset 
𝜛𝜛𝑠𝑠 relative weight assigned to CSLF dataset 
𝜛𝜛𝑅𝑅 relative weight assigned to RDLF dataset 
𝜛𝜛𝑚𝑚𝑚𝑚𝑐𝑐 relative weight assigned to maturity-at-length data 
𝜛𝜛𝑐𝑐𝑚𝑚𝑔𝑔 relative weight assigned to tag-recapture data 
𝜛𝜛𝑗𝑗
𝑐𝑐𝑚𝑚𝑔𝑔 relative weight assigned to tag-recapture observations that from area j 

𝑈𝑈𝑚𝑚𝑚𝑚𝑚𝑚 exploitation rate above which a limiting function was invoked (0.80 for the base case) 
𝜇𝜇𝜀𝜀 mean of the prior distribution for M 
𝜎𝜎𝑀𝑀 assumed standard deviation of the prior distribution for M 
𝜎𝜎𝜀𝜀 assumed standard deviation of recruitment deviations in log space for years 1980–2012 (part 

of the prior for recruitment deviations)  
𝑛𝑛𝜀𝜀 number of recruitment deviations  
𝐿𝐿1 length associated with 𝑔𝑔1 (75 mm) 
𝐿𝐿2 length associated with 𝑔𝑔2 (120 mm) 
𝐷𝐷𝑐𝑐𝑚𝑚 change in Minimum Harvest Size (MHS) in year t, (exogenous variable associated with the 

change in commercial diver selectivity in year t) 
𝑠𝑠𝑠𝑠𝑏𝑏𝑙𝑙𝑚𝑚𝑔𝑔 spawning year related to the recruits entering the partition in a given year 
 

2.2.3 Observations 
 
𝐶𝐶𝑐𝑐 observed catch in year t  
𝐼𝐼𝑐𝑐 standardised CPUE in year t 
𝐼𝐼2𝑐𝑐 standardised PCPUE in year t 
𝜎𝜎𝑐𝑐𝐼𝐼 standard deviation of the estimate of observed CPUE in year t, obtained from the 

standardisation model 
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𝑐𝑐𝑐𝑐𝑐𝑐𝐼𝐼 CV of the estimate of observed CPUE in year t, obtained from the standardisation model 
𝜎𝜎𝑐𝑐𝐼𝐼2 standard deviation of the estimate of observed PCPUE in year t, obtained from the 

standardisation model 
𝑐𝑐𝑐𝑐𝑐𝑐𝐼𝐼2 CV of the estimate of observed PCPUE in year t, obtained from the standardisation model 
𝑃𝑃𝑘𝑘,𝑐𝑐
𝑠𝑠  observed proportion in the kth length class in year t in CSLF  

𝑙𝑙𝑗𝑗 initial length for the jth tag-recapture record 
𝑑𝑑𝑗𝑗 observed length increment of the jth tag-recapture record 
∆𝑡𝑡𝑗𝑗 time at liberty for the jth tag-recapture record 
𝑃𝑃𝑘𝑘𝑚𝑚𝑚𝑚𝑐𝑐 observed proportion mature in the kth length class in the maturity dataset  
 

2.2.4 Derived variables 
 
𝑅𝑅0 average number of annual recruits under equilibrium conditions 
𝑁𝑁𝑘𝑘,𝑐𝑐 number of paua in the kth length class at the start of year t 
𝑁𝑁𝑘𝑘,𝑐𝑐+0.5 number of paua in the kth length class in the mid-season of year t 
𝑅𝑅𝑘𝑘,𝑐𝑐 recruits to the model in the kth length class in year t 
𝑔𝑔𝑘𝑘 expected annual growth increment for paua in the kth length class 
𝜎𝜎𝑔𝑔𝑘𝑘 standard deviation of the expected growth increment for paua in the kth length class, used in 

calculating G  
G  growth transition matrix 
𝐵𝐵𝑐𝑐 spawning stock biomass at the beginning of year t 
𝐵𝐵𝑐𝑐+0.5 spawning stock biomass in the mid-season of year t 
𝐵𝐵0 spawning stock biomass assuming population in an equilibrium state. 
𝐵𝐵𝑐𝑐𝑐𝑐 biomass of paua above the MLS at the beginning of year t 
𝐵𝐵𝑐𝑐+0.5
𝑐𝑐  biomass of paua above the MLS in the mid-season of year t 

𝐵𝐵0𝑐𝑐 equilibrium biomass of paua above the MLS assuming no fishing and average recruitment 
from the period in which recruitment deviations were estimated 

𝐵𝐵𝑐𝑐𝑣𝑣 vulnerable (to commercial fishing) biomass of paua at the beginning of year t 
𝑈𝑈𝑐𝑐 exploitation rate in year t 
𝐴𝐴𝑐𝑐 the complement of exploitation rate 
𝑀𝑀𝑆𝑆𝑘𝑘,𝑐𝑐 finite rate of survival from fishing for paua in the kth length class in year t 
𝑉𝑉𝑘𝑘𝑘𝑘 relative selectivity of commercial divers for paua in the kth length class 
𝜎𝜎𝑘𝑘,𝑐𝑐
𝑠𝑠  error of the predicted proportion in the kth length class in year t in CSLF data 

𝑛𝑛𝑐𝑐𝑠𝑠 relative weight (effective sample size) of the CSLF data in year t 
𝜎𝜎𝑗𝑗𝑑𝑑 standard deviation of the predicted length increment for the jth tag-recapture record 

𝜎𝜎𝑗𝑗
𝑐𝑐𝑚𝑚𝑔𝑔 total error predicted for the jth tag-recapture record 

𝜎𝜎𝑘𝑘𝑚𝑚𝑚𝑚𝑐𝑐 error of the proportion mature-at-length for the kth length class 
𝑞𝑞�𝑐𝑐𝐼𝐼  scalar for between biomass and CPUE observation 
𝑞𝑞�𝑐𝑐𝐼𝐼2  scalar for between biomass and PCPUE observation 
𝑞𝑞�𝑐𝑐𝐼𝐼2  scalar for between biomass and PCPUE observation 
−ln (𝑳𝑳) negative log-likelihood 
𝑓𝑓 total function value 
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2.2.5 Predictions 
 
𝐼𝐼𝑐𝑐 predicted CPUE in year t 
𝐼𝐼2� 𝑐𝑐 predicted PCPUE in year t 
𝑃𝑃�𝑘𝑘,𝑐𝑐
𝑐𝑐        predicted proportion in the kth length class in Research Diver LF 

𝑃𝑃�𝑘𝑘,𝑐𝑐
𝑠𝑠  predicted proportion in the kth length class in year t in commercial catch sampling 

�̂�𝑑𝑗𝑗 predicted length increment of the jth tag-recapture record 
𝑃𝑃�𝑘𝑘𝑚𝑚𝑚𝑚𝑐𝑐 predicted proportion mature in the kth length class 
 

2.2.6 Initial conditions 
 
The initial population was assumed to be in equilibrium with zero fishing mortality and the base 
recruitment (𝑅𝑅0). The model was run for 60 years with no fishing to obtain near-equilibrium in numbers-
at-length. Recruitment was evenly divided among the first five length bins: 
  
(1) 𝑅𝑅𝑘𝑘,𝑐𝑐 = 0.2𝑅𝑅0   for 51 ≤≤ k  

 
(2) 𝑅𝑅𝑘𝑘,𝑐𝑐 = 0  for 5>k  
 
A growth transition matrix was calculated inside the model from the estimated growth parameters. 
Three growth models were explored to describe mean annual growth increment for kth length class 
(∆𝑙𝑙𝑘𝑘). The three models were the exponential, the inverse logistic and the linear growth models. The 
inverse logistic model was chosen as providing the best fit with the expected annual growth increment 
for the kth length class being:  
 
(3) ∆𝑙𝑙𝑘𝑘 =  ∆𝑚𝑚𝑚𝑚𝑚𝑚

1+ exp (ln(19)�
𝑙𝑙𝑘𝑘− 𝑙𝑙50

𝑔𝑔

𝑙𝑙95
𝑔𝑔 − 𝑙𝑙50

𝑔𝑔 �))
 

 
For comparison, if the exponential growth model had been applied, the expected annual growth 
increment for the kth length class would have been: 
 
(4) ∆𝑙𝑙𝑘𝑘 =  𝑔𝑔1(𝑔𝑔2/𝑔𝑔1)(𝑙𝑙𝑘𝑘− 𝑆𝑆1)/(𝑆𝑆2− 𝑆𝑆1) 
 
And if the linear growth model was applied, the expected annual growth increment for the kth length 
class would have been:  

(5) 
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The model used the AD Model Builder™ function posfun, with a dummy penalty, to ensure a positive 
expected increment at all lengths, using a smooth differentiable function. 
 
The standard deviation of ∆𝑙𝑙𝑘𝑘 was assumed to be proportional to ∆𝑙𝑙𝑘𝑘 with minimum 𝜎𝜎𝑚𝑚𝑑𝑑𝑐𝑐: 
 
(6) 𝜎𝜎∆𝑙𝑙𝑘𝑘 = (∆𝑙𝑙𝑘𝑘𝜙𝜙 − 𝜎𝜎𝑚𝑚𝑑𝑑𝑐𝑐) �1

𝜋𝜋
𝑡𝑡𝑎𝑎𝑛𝑛−1�106(𝛼𝛼∆𝑙𝑙𝑘𝑘𝜙𝜙 − 𝜎𝜎𝑚𝑚𝑑𝑑𝑐𝑐)� + 0.5� + 𝜎𝜎𝑚𝑚𝑑𝑑𝑐𝑐 

 
Or a more complex functional form between the growth increment and its standard deviation defined 
as: 
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(7) 𝜎𝜎∆𝑙𝑙𝑘𝑘 = �𝛼𝛼(∆𝑙𝑙𝑘𝑘)𝛽𝛽 − 𝜎𝜎𝑚𝑚𝑑𝑑𝑐𝑐� �

1
𝜋𝜋
𝑡𝑡𝑎𝑎𝑛𝑛−1 �106�𝛼𝛼(∆𝑙𝑙𝑘𝑘)𝛽𝛽 − 𝜎𝜎𝑚𝑚𝑑𝑑𝑐𝑐�� + 0.5� + 𝜎𝜎𝑚𝑚𝑑𝑑𝑐𝑐 

 
From the expected increment and standard deviation for each length class, the probability distribution 
of growth increments for a paua of length 𝑙𝑙𝑘𝑘 was calculated from the normal distribution and translated 
into the vector of probabilities of transition from the kth length bin to other length bins to form the 
growth transition matrix G. Zero and negative growth increments were permitted, i.e., the probability 
of staying in the same bin or moving to a smaller bin could be non-zero.  
 
In the initialisation, the vector 𝑵𝑵𝒕𝒕 of numbers-at-length was determined from numbers in the previous 
year, survival from natural mortality, the growth transition matrix G, and the vector of recruitment 𝑹𝑹𝒕𝒕 : 
 
(8) 𝑵𝑵𝒕𝒕 = (𝑵𝑵𝒕𝒕−𝟏𝟏𝑒𝑒−𝑀𝑀 ) • 𝑮𝑮+ 𝑹𝑹𝒕𝒕   

 
where the dot (•) denotes matrix multiplication.   
 

2.2.7 Dynamics 

2.2.7.1   Sequence of operations 
 
After initialisation, the first model year was 1965 and the model was run through to 2017. In the first 
nine years the model was run with an assumed catch vector, because it was unrealistic to assume that 
the fishery was in a virgin state when the first catch data became available in 1974. The assumed catch 
vector increased linearly from zero to the 1974 catch. These years can be thought of as an additional 
part of the initialisation, but they use the dynamics described in this section. 
 
Model dynamics were sequenced as follows: 
 

• Numbers at the beginning of year t-1 were subjected to fishing, followed by natural mortality, 
then growth, to produce the numbers at the beginning of year t. 

• Recruitment was added to the numbers at the beginning of year t. 

• Biomass available to the fishery was calculated and, with catch, was used to calculate the 
exploitation rate, which was constrained if necessary. 

• Half the exploitation rate and half natural mortality were applied to obtain mid-season numbers, 
from which the predicted abundance indices and proportions-at-length were calculated. Mid-
season numbers were not used further. 

 

2.2.7.2 Main dynamics 
 
For each year t, the model calculated the start-of-the-year biomass available to the commercial fishery. 
Due to voluntary changes in harvest size from fishers, a time varied selectivity was applied based on an 
exogeneous variable. Biomass available to the commercial fishery was: 

 
(9) 𝐵𝐵𝑐𝑐𝑣𝑣 =  ∑ 𝑁𝑁𝑘𝑘,𝑐𝑐𝑉𝑉𝑘𝑘𝑠𝑠𝑤𝑤𝑘𝑘𝑘𝑘  
  
(10) 𝑉𝑉𝑘𝑘

𝑐𝑐,𝑠𝑠 = 1

1+19
−�

�𝑙𝑙𝑘𝑘−𝐷𝐷50�
𝐷𝐷95−50
� �

   for 2006<t  assuming logistic selectivity 
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(11) 𝑉𝑉𝑘𝑘

𝑐𝑐,𝑠𝑠 = 1

1+19
−�

�𝑙𝑙𝑘𝑘−𝐷𝐷50−𝐷𝐷𝑡𝑡
𝑚𝑚𝐷𝐷𝑡𝑡�

𝐷𝐷95−50
� �

 for 2006≥t  assuming logistic selectivity  

 

(12) 𝑉𝑉𝑘𝑘
𝑐𝑐,𝑠𝑠 = �2−�

�𝑙𝑙𝑘𝑘− 𝜇𝜇�
𝜎𝜎𝑆𝑆𝑆𝑆

�
2

 (𝑙𝑙𝑘𝑘≤𝜇𝜇)

2−�
�𝑙𝑙𝑘𝑘− 𝜇𝜇�
𝜎𝜎𝑆𝑆𝑆𝑆

�
2

 (𝑙𝑙𝑘𝑘>𝜇𝜇)
  for 2006<t  assuming double normal selectivity 

(13) 𝑉𝑉𝑘𝑘
𝑐𝑐,𝑠𝑠 = �2−�

�𝑙𝑙𝑘𝑘− 𝜇𝜇−𝐷𝐷𝑡𝑡
𝑚𝑚𝐷𝐷𝑠𝑠�

𝜎𝜎𝑆𝑆𝑆𝑆
�
2

 (𝑙𝑙𝑘𝑘≤𝜇𝜇)

2−�
�𝑙𝑙𝑘𝑘− 𝜇𝜇−𝐷𝐷𝑡𝑡

𝑚𝑚𝐷𝐷𝑠𝑠�
𝜎𝜎𝑆𝑆𝑆𝑆

�
2

 (𝑙𝑙𝑘𝑘>𝜇𝜇)
 for 2006≥t  assuming double normal selectivity 

 
This model had the option of two selectivities for the fishery; either the logistic (Equations 10 and 11) 
or the double normal (Equations 12 and 13). The observed catch was then used to calculate the 
exploitation rate �𝑈𝑈𝑐𝑐 =  𝐶𝐶𝑐𝑐 𝐵𝐵𝑐𝑐𝑣𝑣

� �. Survival rate (Equation 14) was constrained by 𝐴𝐴𝑚𝑚𝑑𝑑𝑐𝑐 (where 𝐴𝐴𝑚𝑚𝑑𝑑𝑐𝑐 =

1 −  𝑈𝑈𝑚𝑚𝑚𝑚𝑚𝑚) using ADMB’s posfun function (Equation 15). If the ratio of catch to vulnerable biomass 
exceeded Umax, then survival rate was constrained and a penalty was added to the total negative log-
likelihood function (Equation 16). 
 
(14) 𝐴𝐴𝑐𝑐 = 1 −  𝑈𝑈𝑐𝑐    for  𝐶𝐶𝑡𝑡

𝐵𝐵𝑡𝑡𝑣𝑣
≤ 𝑈𝑈𝑚𝑚𝑚𝑚𝑚𝑚  

 

(15) 𝐴𝐴𝑐𝑐 = 𝐴𝐴𝑚𝑚𝑑𝑑𝑐𝑐/ �2 −  
�1− 𝐶𝐶𝑡𝑡

𝐵𝐵𝑡𝑡
𝑣𝑣�

𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚
�                for  𝐶𝐶𝑡𝑡

𝐵𝐵𝑡𝑡𝑣𝑣
> 𝑈𝑈𝑚𝑚𝑚𝑚𝑚𝑚 

 
The penalty invoked when the exploitation rate exceeded 𝑈𝑈𝑚𝑚𝑚𝑚𝑚𝑚  was: 
 

(16) 10000000�𝐴𝐴𝑚𝑚𝑑𝑑𝑐𝑐 − �1 − 𝐶𝐶𝑡𝑡
𝐵𝐵𝑡𝑡𝑟𝑟
��

2

 

 
This prevented the model from exploring parameter combinations that gave unrealistically high 
exploitation rates. Survival from fishing was calculated as: 

 
(17) 𝑀𝑀𝑆𝑆𝑘𝑘,𝑐𝑐 = 1 −  (1 − 𝐴𝐴𝑐𝑐)𝑃𝑃𝑘𝑘,𝑐𝑐 

 
or 
 
(18) 𝑀𝑀𝑆𝑆𝑘𝑘,𝑐𝑐 = 1 −  (1 − 𝐴𝐴𝑐𝑐)𝑉𝑉𝑘𝑘𝑠𝑠 
 

 
The vector of numbers-at-length in year t was calculated from numbers in the previous year:   
 
(19) ( )( )e M −= ⊗ • +t t-1 t-1 tN SF N G R   

 
where ⊗  denotes the element-by-element vector product. The vector of recruitment, Rt, was 
determined from 𝑅𝑅0, estimated recruitment deviations, and the stock-recruitment relationship: 
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(20) 𝑅𝑅𝑘𝑘,𝑐𝑐 = 0.2 𝑅𝑅0 𝑒𝑒(𝜀𝜀𝑡𝑡 −0.5𝜎𝜎2) 𝐵𝐵𝑡𝑡−𝑠𝑠𝑠𝑠𝑠𝑠𝑙𝑙𝑚𝑚𝑔𝑔+0.5

𝐵𝐵0
/ �1 −  5ℎ −1

4ℎ
�1 −

𝐵𝐵𝑡𝑡−𝑠𝑠𝑠𝑠𝑠𝑠𝑙𝑙𝑚𝑚𝑔𝑔+0.5

𝐵𝐵0
��   for  51 ≤≤ k   

 
(21) 𝑅𝑅𝑘𝑘,𝑐𝑐 = 0       for  5>k  
 
The recruitment deviation parameters 𝜀𝜀𝑐𝑐  were estimated for all years from 1980. The recruitment 
deviations were constrained to have a mean of 1 in arithmetic space. 𝑠𝑠𝑠𝑠𝑏𝑏𝑙𝑙𝑚𝑚𝑔𝑔 was an offset added in this 
assessment round that allowed a lag between spawning and when recruits enter the partition (usually 
70 mm). 
 
The model predicted CPUE in year t from mid-season recruited biomass, the scaling coefficient, and 
the shape parameter:  
 
(22) 𝐼𝐼𝑐𝑐𝐼𝐼 = 𝑞𝑞�𝑐𝑐𝐼𝐼(𝐵𝐵𝑐𝑐+0.5

𝑣𝑣 )𝑏𝑏�  
 

(23) 𝑞𝑞�𝑐𝑐𝐼𝐼 = �
      𝑞𝑞𝐼𝐼, 𝑡𝑡 = 1

𝑞𝑞𝑐𝑐−1𝐼𝐼  ∗ (1 +  𝑞𝑞𝑑𝑑𝑐𝑐𝑑𝑑𝑑𝑑𝑐𝑐𝐼𝐼 ), 𝑡𝑡 > 1 

 
Available biomass 𝐵𝐵𝑐𝑐+0.5

𝑣𝑣  was the mid-season vulnerable biomass after half the catch had been removed 
and half natural mortality applied (because the catch occurred throughout the fishing year). It was 
calculated as in Equation 9, but using the mid-year numbers 𝑁𝑁𝑐𝑐+0.5: 
 
(24) 𝑁𝑁𝑐𝑐+0.5 =  𝑁𝑁𝑐𝑐𝑒𝑒𝑒𝑒𝑒𝑒(−0.5𝑀𝑀) �1 − (1−𝐴𝐴𝑡𝑡)

2
𝑉𝑉𝑐𝑐𝑠𝑠� 

 
Similarly, 
 
(25) 𝐼𝐼𝑐𝑐𝐼𝐼2 = 𝑞𝑞�𝑐𝑐𝐼𝐼2(𝐵𝐵𝑐𝑐+0.5

𝑣𝑣 )𝑏𝑏�  
 
where the same shape parameter 𝑏𝑏� was used for both the early and recent CPUE series and where: 
 

(26) 𝑞𝑞�𝑐𝑐𝐼𝐼2 = �
𝑞𝑞𝐼𝐼2, 𝑡𝑡 = 1

𝑞𝑞𝑐𝑐−1𝐼𝐼2  ∗ (1 +  𝑞𝑞𝑑𝑑𝑐𝑐𝑑𝑑𝑑𝑑𝑐𝑐𝐼𝐼2 ), 𝑡𝑡 > 1 

 
The Research Diver LF selectivity 𝑉𝑉𝑘𝑘𝑐𝑐 was calculated from: 

 
(27) 𝑉𝑉𝑘𝑘𝑐𝑐 = 1

1+19
−�

�𝑙𝑙𝑘𝑘−𝑇𝑇50�
𝑇𝑇95−50
� �

 

 
The model predicted proportions-at-length for the CSLF from numbers in each length class for lengths 
greater than 116 mm: 
 

(28) 𝑃𝑃�𝑘𝑘,𝑐𝑐
𝑠𝑠 =  𝑁𝑁𝑘𝑘,𝑡𝑡+0.5𝑉𝑉𝑘𝑘,𝑡𝑡

𝑠𝑠

∑ 𝑁𝑁𝑘𝑘,𝑡𝑡+0.5𝑉𝑉𝑘𝑘,𝑡𝑡
𝑠𝑠51

𝑘𝑘=23
   

 
Predicted proportions-at-length for RDLF were similar: 
 

(29) 𝑃𝑃�𝑘𝑘,𝑐𝑐
𝐹𝐹 =  𝑁𝑁𝑘𝑘,𝑡𝑡+0.5𝑉𝑉𝑘𝑘,𝑡𝑡

𝐹𝐹

∑ 𝑁𝑁𝑘𝑘,𝑡𝑡+0.5𝑉𝑉𝑘𝑘,𝑡𝑡
𝐹𝐹51

𝑘𝑘=25
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The predicted increment for the jth tag-recapture record for a yearly time period, using the inverse-
logistic model, was: 
 
(30) �̂�𝑑𝑗𝑗 =  ∆𝑡𝑡𝑗𝑗

∆𝑚𝑚𝑎𝑎𝑒𝑒

�1+𝑒𝑒𝑒𝑒𝑒𝑒�ln(19)�𝑙𝑙𝑗𝑗− 𝑙𝑙50
𝑔𝑔 �/�𝑙𝑙95

𝑔𝑔 − 𝑙𝑙50
𝑔𝑔 ���

 

 

where ∆𝑡𝑡𝑗𝑗 is the time at liberty (proportion of a year). This allowed observations that were not at liberty 
for exactly a year to be fitted without being considered outliers. For example, if we recaptured an 
individual halfway through the year (days at liberty = 178), ∆𝑡𝑡𝑗𝑗 = 0.5. This assumes that growth is 
uniform throughout the year. This assumption is not considered that important because the tag-recapture 
studies are designed to target tags at liberty for a year, and so there are not many recaptures that deviate 
drastically from a year at liberty. For the exponential model the expected increment was: 
  

(31) �̂�𝑑𝑗𝑗 =  ∆𝑡𝑡𝑗𝑗𝑔𝑔𝛼𝛼�𝑔𝑔𝛽𝛽/𝑔𝑔𝛼𝛼�
�𝑆𝑆𝑗𝑗− 𝛼𝛼�/(𝛽𝛽−𝛼𝛼)

 

 
The error around an expected increment was: 
 

(32) 𝜎𝜎𝑗𝑗𝑑𝑑 = �𝛼𝛼��̂�𝑑𝑗𝑗�
𝛽𝛽 −  𝜎𝜎𝑚𝑚𝑑𝑑𝑐𝑐��

1
𝜋𝜋
𝑡𝑡𝑎𝑎𝑛𝑛−1 �106 �𝛼𝛼��̂�𝑑𝑗𝑗�

𝛽𝛽 −  𝜎𝜎𝑚𝑚𝑑𝑑𝑐𝑐��+ 0.5�+  𝜎𝜎𝑚𝑚𝑑𝑑𝑐𝑐 

 
Predicted maturity-at-length was: 

 
(33) 𝑃𝑃�𝑘𝑘𝑚𝑚𝑚𝑚𝑐𝑐 =  1

1+19
−�

�𝑙𝑙𝑘𝑘−𝑆𝑆50�
𝑆𝑆95−50
� �

 

 
 

2.2.8 Fitting 

2.2.8.1 Likelihoods 
 
The distribution of CPUE was assumed to be normal-log and the negative log-likelihood was: 
 

(34) − ln(𝑳𝑳) �𝐼𝐼𝑐𝑐�𝜃𝜃�  =  (ln(𝐼𝐼𝑡𝑡)−ln(𝐼𝐼𝑡𝑡))

2�𝜎𝜎𝑡𝑡
𝐼𝐼𝜎𝜎�

𝜛𝜛𝐼𝐼� �
+ ln �𝜎𝜎𝑐𝑐

𝐼𝐼𝜎𝜎�
𝜛𝜛𝐼𝐼� � + 0.5 ln (2π)  

where 
 
(35) 𝜎𝜎𝑐𝑐𝐼𝐼 = �𝑙𝑙𝑛𝑛((𝑐𝑐𝑐𝑐𝑐𝑐𝐼𝐼)2 + 1) 

 
and similarly for PCPUE: 
 

(36) − ln(𝑳𝑳) �𝐼𝐼2� 𝑐𝑐�𝜃𝜃� =  (ln(𝐼𝐼2𝑡𝑡)−ln(𝐼𝐼2�𝑡𝑡))

2�𝜎𝜎𝑡𝑡
𝐼𝐼2𝜎𝜎�

𝜛𝜛𝐼𝐼2� �
+ ln �𝜎𝜎𝑐𝑐

𝐼𝐼2𝜎𝜎�
𝜛𝜛𝐼𝐼2� � + 0.5 ln (2π) 

where 
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(37) 𝜎𝜎𝑐𝑐𝐼𝐼2 = �𝑙𝑙𝑛𝑛((𝑐𝑐𝑐𝑐𝑐𝑐𝐼𝐼2)2 + 1) 
 
The proportions-at-length from CSLF data are assumed to follow a multinomial distribution, with a 
standard deviation that depends on the effective sample size and the weight assigned to the data: 

 
(38) 𝜎𝜎𝑘𝑘,𝑐𝑐

𝑠𝑠 = 𝜎𝜎�
𝜛𝜛𝑠𝑠𝑐𝑐𝑡𝑡

𝑠𝑠 

 
The negative log-likelihood was: 
 

(39) − ln(𝐿𝐿) �𝑃𝑃�𝑘𝑘,𝑐𝑐
𝑠𝑠 �𝜃𝜃� =  𝑃𝑃𝑘𝑘,𝑡𝑡

𝑠𝑠

𝜎𝜎𝑘𝑘,𝑡𝑡
𝑠𝑠 �𝑙𝑙𝑛𝑛�𝑃𝑃𝑘𝑘,𝑐𝑐

𝑠𝑠 + 0.01� − ln �𝑃𝑃�𝑘𝑘,𝑐𝑐
𝑠𝑠 + 0.01�� 

 
Errors in the tag-recapture dataset were also assumed to be normal. For the jth record, the total error is 
a function of the predicted standard deviation (Equation 38), observation error, and weight assigned to 
the data: 
 

(40) 𝜎𝜎𝑗𝑗
𝑐𝑐𝑚𝑚𝑔𝑔 =  𝜎𝜎�/𝜛𝜛𝑐𝑐𝑚𝑚𝑔𝑔�𝜎𝜎𝑜𝑜𝑜𝑜𝑠𝑠2 + (𝜎𝜎𝑗𝑗𝑑𝑑)2  

 
The negative log-likelihood for an observation is: 
 

(41) − ln(𝑳𝑳) ��̂�𝑑𝑗𝑗�𝜃𝜃) =  𝜛𝜛𝑔𝑔
𝑐𝑐𝑚𝑚𝑔𝑔 ��𝑑𝑑𝑗𝑗−𝑑𝑑

�𝑗𝑗�
2

2�𝜎𝜎𝑗𝑗
𝑡𝑡𝑚𝑚𝑔𝑔�

2 + ln�𝜎𝜎𝑗𝑗
𝑐𝑐𝑚𝑚𝑔𝑔�

2
+ 0.5ln (2𝜋𝜋)� 

 

where 𝜔𝜔𝑔𝑔
𝑐𝑐𝑚𝑚𝑔𝑔 is a weighting factor calculated as: 

 
(42) 𝜔𝜔𝑔𝑔′ = 𝑒𝑒𝑔𝑔

𝑐𝑐𝑔𝑔
∑ 𝑐𝑐𝑔𝑔𝐺𝐺
𝑔𝑔

 

 

(43) 𝒘𝒘� =  
∑ 𝜔𝜔𝑔𝑔

′
𝑔𝑔

𝐺𝐺
 

 

(44) 𝜔𝜔𝑔𝑔
𝑐𝑐𝑚𝑚𝑔𝑔 = 𝜔𝜔𝑔𝑔′

𝒘𝒘�
�  

 
where 𝑒𝑒𝑔𝑔 is the proportion of catch from area g (where the observation is made), 𝑛𝑛𝑔𝑔 is the number of 
tag-recapture observations from area. This addresses the suggestion from the review (Butterworth et.al. 
2015), that tag data should be weighted by catch so that growth models were representative of the 
commercial fishery. This method also allows for the consideration of weighting the area by the number 
of observations within each area. 𝜔𝜔𝑔𝑔

𝑐𝑐𝑚𝑚𝑔𝑔 can be fixed at 1 if the likelihood is not to be weighted.  
 
The proportion mature-at-length was assumed to be normally distributed, with standard deviation 
analogous to proportions-at-length: 
 

(45) 𝜎𝜎𝑘𝑘𝑚𝑚𝑚𝑚𝑐𝑐 =  𝜎𝜎�

𝜛𝜛𝑚𝑚𝑚𝑚𝑡𝑡�𝑃𝑃𝑘𝑘
𝑚𝑚𝑚𝑚𝑡𝑡+0.1
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The negative log-likelihood was: 
 

(46) − ln(𝑳𝑳) �𝑃𝑃�𝑘𝑘𝑚𝑚𝑚𝑚𝑐𝑐�𝜃𝜃� =  �𝑃𝑃𝑘𝑘
𝑚𝑚𝑚𝑚𝑡𝑡− 𝑃𝑃�𝑘𝑘

𝑚𝑚𝑚𝑚𝑡𝑡�
2

2�𝜎𝜎𝑘𝑘
𝑚𝑚𝑚𝑚𝑡𝑡�

2 + ln(𝜎𝜎𝑘𝑘𝑚𝑚𝑚𝑚𝑐𝑐) + 0.5ln (2𝜋𝜋) 

 

2.2.8.2 Normalised residuals 
 
These are calculated as the residual divided by the relevant 𝜎𝜎 term used in the likelihood. For CPUE, 
the normalised residual was: 
 
(47) ln(𝐼𝐼𝑡𝑡)−ln (𝐼𝐼𝑡𝑡)

�𝜎𝜎𝑡𝑡
𝐼𝐼𝜎𝜎�

𝜛𝜛𝐼𝐼� �
 

 
and similarly for PCPUE. For the CSLF proportions-at-length, the residual was: 
 

(48) 𝑃𝑃𝑘𝑘,𝑡𝑡
𝑠𝑠 −𝑃𝑃�𝑘𝑘,𝑡𝑡

𝑠𝑠  
𝜎𝜎𝑘𝑘,𝑡𝑡
𝑠𝑠  

 
For tag-recapture data, the residual was: 
 

(49) 𝑑𝑑𝑗𝑗−𝑑𝑑�𝑗𝑗
𝜎𝜎𝑗𝑗
𝑡𝑡𝑚𝑚𝑔𝑔  

 
and for the maturity-at-length data the residual was: 
 

(50) 𝑃𝑃𝑘𝑘
𝑚𝑚𝑚𝑚𝑡𝑡−𝑃𝑃�𝑘𝑘

𝑚𝑚𝑚𝑚𝑡𝑡 
𝜎𝜎𝑘𝑘
𝑚𝑚𝑚𝑚𝑡𝑡  

 

2.2.8.3 Dataset weights 
 
Proportions-at-length (CSLF and RDLF) were included in the model with a multinomial likelihood. 
The length frequencies for individual years were assigned relative weights (effective sample size), based 
on a sample size that represented the best least squares fit of log(cvi)~log(Pi), where cvi was the 
bootstrap CV for the ith proportion, Pi (See Figure A1, Appendix A, for a plot of this relationship). The 
weights for individual years (𝑛𝑛𝑐𝑐𝑠𝑠 for CSLF and 𝑛𝑛𝑐𝑐𝑅𝑅 for RDLF) were multiplied by the weight assigned 
to the dataset (𝜛𝜛𝑠𝑠 for CSLF and 𝜛𝜛𝑅𝑅 for RDLF) to obtain the model weights for the observations. We 
used the weighting scheme following Francis (2011) for the base case model, where the weight for the 
CSLF dataset was determined as: 
 
(51) 𝜛𝜛𝑠𝑠 = 1/𝑐𝑐𝑎𝑎𝑣𝑣𝑐𝑐[(𝑂𝑂�𝑐𝑐𝑠𝑠 −  𝐸𝐸�𝑐𝑐𝑠𝑠)/(𝑐𝑐𝑐𝑐𝑠𝑠/𝑛𝑛𝑐𝑐𝑠𝑠)0.5]   (Method TA1.8, table A1 in Francis 2011) 
 
where 
  
(52) 𝑂𝑂�𝑐𝑐𝑠𝑠 =  ∑ 𝑒𝑒𝑘𝑘,𝑐𝑐

𝑠𝑠 𝑙𝑙𝑘𝑘𝑘𝑘  
 
(53) 𝐸𝐸�𝑐𝑐𝑠𝑠 =  ∑ �̂�𝑒𝑘𝑘,𝑐𝑐

𝑠𝑠 𝑙𝑙𝑘𝑘𝑘𝑘  
 
(54) 𝑉𝑉𝑐𝑐𝑠𝑠 = ∑ 𝑙𝑙𝑘𝑘

2𝑃𝑃�𝑘𝑘,𝑐𝑐
𝑠𝑠 −𝑘𝑘  (𝐸𝐸�𝑐𝑐𝑠𝑠)2  
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The TA1.8 method allows for the possibility of substantial correlations within a dataset, and generally 
produces relatively small sample sizes, thus down-weighting the composition data (Francis 2011). The 
actual and estimated sample sizes for the commercial catch at length using the two methods are given 
in Table 1. 
 
The relative abundance indices (CPUE and PCPUE) were included in the model with a lognormal 
likelihood. In previous assessments, the weight of the abundance datasets was determined iteratively so 
that the standard deviation of the normalised residuals was close to one. In this assessment, we used a 
weighting scheme recommended by Francis (2011), with a small modification recommended by the 
review workshop (Butterworth et al. 2015).  With this approach, a series of loess lines of various degrees 
of smoothing were fitted to the abundance indices (this was carried out outside the assessment model), 
and the CV was calculated using the residuals from the loess line which was considered to have the 
"appropriate" smoothness. This CV was then adjusted for the degrees of freedom associated with the 
smoothing: 
 
(55) 𝑐𝑐𝑐𝑐� =  𝑐𝑐𝑐𝑐 � 𝑐𝑐

𝑐𝑐−𝑑𝑑
�  

 
Where CV was calculated using the residuals, n was the number of indices, d was degree of freedom, 
and 𝑐𝑐𝑐𝑐� was the adjusted value. The adjusted CV was applied to all years in the time series and remained 
constant in the stock assessment model. The choice of the “appropriate” fit was based on visual 
examination of the loess lines, by the SFWG.  
 
For the early CPUE (1990–2001), the residuals from the loess line which had the "appropriate" 
smoothness (df=5) had an adjusted CV of 0.09 (Figure A1, top left, Appendix A); for the recent CPUE 
(2002–2017), a CV of 0.1 was considered to be appropriate (df=5, Figure A1, top right, Appendix A), 
for the combined series a CV was chosen (Figure A2, bottom left, Appendix A). The CVs of the CPUE 
observations in the assessment model were fixed at those values (except for sensitivity runs in which 
alterative values were assumed). 
 
 

2.2.8.4 Priors and bounds 
 
Bayesian priors were established for all estimated parameters (Table 2). Most had uniform (uninformed) 
distributions with upper and lower bounds initially set arbitrarily wide so as not to constrain the 
estimation. Recent research has demonstrated the dangers of setting upper limits too high on parameters 
such as ln(𝑅𝑅0) with assumed uniform priors in data limited assessments (Thorson & Cope 2017). For 
this reason, sensitivity runs were done on the upper bound of the ln(𝑅𝑅0). The prior probability density 
for M was assumed to be uniform.  
 
The prior probability density for the vector of estimated recruitment, was assumed to be normal with a 
mean of zero and a standard deviation (𝜎𝜎𝜀𝜀). The contribution to the objective function for the whole 
vector is: 
 

(56) − ln(𝑳𝑳) (𝜀𝜀|𝜇𝜇𝜀𝜀 ,𝜎𝜎𝜀𝜀) =  
∑ (𝜀𝜀𝑚𝑚)2
𝑚𝑚𝜀𝜀
𝑚𝑚=1
2(𝜎𝜎𝜀𝜀)2 + ln(𝜎𝜎𝜀𝜀) + 0.5ln (2𝜋𝜋) 

 

2.2.8.5 Penalty 
 
A penalty was applied to exploitation rates higher than the assumed maximum (Equation 16). The 
penalty was added to the objective function after being multiplied by an arbitrary weight (1000000). 
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AD Model Builder™ also has internal penalties that keep estimated parameters within their specified 
bounds, but these were expected to have no effect on the outcome as the choice of a base case excluded 
situations where parameters were estimated at or near a bound. 
 

2.2.9 Fishery indicators 
 
The assessment calculated the following quantities from their posterior distributions of the model’s 
mid-season spawning and recruited biomass for 2017 (𝐵𝐵𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 and 𝐵𝐵𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ) and for the projection 
period (𝐵𝐵𝑝𝑝𝑐𝑐𝑜𝑜𝑗𝑗 and 𝐵𝐵𝑝𝑝𝑐𝑐𝑜𝑜𝑗𝑗𝑐𝑐 ).  

Simulations were carried out to calculate deterministic MSY, the maximum constant annual catch that 
can be sustained under deterministic recruitment. A single simulation run was done by starting from an 
unfished equilibrium state, and running under a constant exploitation rate until the catch and spawning 
stock biomass stabilised. For each simulation run with exploitation rate U, the equilibrium total annual 
catch and spawning stock biomass were calculated. The exploitation rate U that maximized the annual 
catch was 𝑈𝑈𝑚𝑚𝑠𝑠𝑚𝑚. The corresponding catch was MSY, and the corresponding SSB was 𝐵𝐵𝑚𝑚𝑠𝑠𝑚𝑚. Together 
with 𝐵𝐵0 , 𝐵𝐵𝑚𝑚𝑠𝑠𝑚𝑚 , 𝑈𝑈𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 , 𝑈𝑈%40𝐵𝐵0  and 𝑈𝑈𝑚𝑚𝑠𝑠𝑚𝑚  the current and projected stock status was reported in 
relation to the following indicators: 

%𝐵𝐵0 current and projected spawning biomass as a percent of 𝐵𝐵0,  

%𝐵𝐵𝑚𝑚𝑠𝑠𝑚𝑚 current and projected spawning biomass as a percent of 𝐵𝐵𝑚𝑚𝑠𝑠𝑚𝑚 

𝑃𝑃𝑣𝑣( > 𝐵𝐵𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) probability that current and projected spawning biomass is greater than  
𝐵𝐵𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 

𝑃𝑃𝑣𝑣( > 𝐵𝐵𝑚𝑚𝑠𝑠𝑚𝑚) probability that current and projected spawning biomass is greater than 
𝐵𝐵𝑚𝑚𝑠𝑠𝑚𝑚 

%𝐵𝐵0𝑐𝑐 current and projected recruited biomass as a percent of 𝐵𝐵0𝑐𝑐 

%𝐵𝐵𝑚𝑚𝑠𝑠𝑚𝑚
𝑐𝑐  current and projected recruited biomass as a percent of 𝐵𝐵𝑚𝑚𝑠𝑠𝑚𝑚

𝑐𝑐  

𝑃𝑃𝑣𝑣( >  𝐵𝐵𝑚𝑚𝑠𝑠𝑚𝑚
𝑐𝑐 ) probability that current and projected recruit-sized biomass is greater than 

𝐵𝐵𝑚𝑚𝑠𝑠𝑚𝑚
𝑐𝑐  

𝑃𝑃𝑣𝑣( >  𝐵𝐵𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ) probability that projected recruit-sized biomass is greater than 𝐵𝐵𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  

𝑃𝑃𝑣𝑣(𝐵𝐵𝑝𝑝𝑐𝑐𝑜𝑜𝑗𝑗  > 40%𝐵𝐵0)  probability that current and projected spawning biomass is greater than 40% 
𝐵𝐵0 

𝑃𝑃𝑣𝑣(𝐵𝐵𝑝𝑝𝑐𝑐𝑜𝑜𝑗𝑗 < 20%𝐵𝐵0)   probability that current and projected spawning biomass is less than 20% 𝐵𝐵0 

𝑃𝑃𝑣𝑣(𝐵𝐵𝑝𝑝𝑐𝑐𝑜𝑜𝑗𝑗 < 10%𝐵𝐵0)  probability that current and projected spawning biomass is less than 10% 𝐵𝐵0 

𝑃𝑃𝑣𝑣(𝑈𝑈𝑝𝑝𝑐𝑐𝑜𝑜𝑗𝑗  > 𝑈𝑈40%𝐵𝐵0)  probability that current and projected exploitation rate is greater than 
𝑈𝑈%40𝐵𝐵0 

2.2.10 Markov chain-Monte Carlo (MCMC) procedures  
 
AD Model Builder™ uses the Metropolis-Hastings algorithm to conduct (Markov chain-Monte Carlo) 
MCMC. The step size was based on the standard errors of the parameters and their covariance 
relationships, estimated from the Hessian matrix. 
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For the MCMCs in this assessment, single long chains were run, starting at the MPD estimate. The base 
case was 5 million simulations, from which every 5000th sample was saved. The value of 𝜎𝜎� was fixed 
to that used in the MPD run because it was considered inappropriate to let a variance component change 
during the MCMC. 
 

2.2.11 Development of base case and sensitivity model runs 
 
The 2017 base case was developed from the base case used in the last accepted assessment for PAU 5B 
(Fu 2014a), and incorporated several changes as described in Section 2.1. The 2017 base case was tested 
for consistency with the 2013 base case by running it with the same data. The 2017 base case produced 
a similar fit and relative trend to that produced from the 2013 assessment base case, but with a slightly 
higher biomass (Figure 1). 
 
The Shellfish Working Group (SFWG) then requested an ensemble of initial model runs to be conducted. 
The initial model runs investigated aspects of model configurations such as data weighting methods, 
choice of growth model, and the inclusion of alternative CPUE indices and catch histories. The results 
of the initial model runs are briefly summarised in Section 3.1. For a summary of parameters that were 
fixed across all model runs see Table 3. The configurations of the initial model runs are summarised in 
Table 4. After reviewing the diagnostics and outputs from the initial model runs (Section 3.1), the 
SFWG requested one base case model run, and a suite of sensitivity model runs. The sensitivity model 
runs encompassed model uncertainty, whilst still being biologically plausible. 
 

3. RESULTS 

3.1 Preliminary model runs 
 
Initial model runs considered a large range of model configurations, which generated candidate models 
for the base case and sensitivities runs. Key conclusions drawn from the initial diagnostics are 
summarised below: 
 

• The major model structure change since the last assessment was based on the assumption that 
half of the fishing and natural mortality had occurred prior to calculating CPUE fits. This 
appeared to have little effect on the model fits and derived quantities, but resulted in slightly 
higher equilibrium biomass estimates (Figure 1).   

• The weighting of tag-recapture observations by stratum, catch and number of observations had 
very little effect on model quantities (Figure 4). This is thought to be due to there being little 
variation in catch from strata where tag-recaptures were observed. 

• Investigating hyperdepletion and hyperstability scenarios with the shape parameter (𝑏𝑏� ) on 
CPUE. Initially 𝑏𝑏� was estimated, with a uniform prior bounded between 0.5 and 1.5. The initial 
estimate ran to the lower bound. A profile was run over the parameter space, which was flat. 
As a sensitivity analysis, two runs were presented at the upper and lower bounds. These 
generated different fits to CPUE (Figure 2) and generated the largest divergence in stock status 
in the initial investigation (Figure 3). 

• Including the RDLF and RDSI data had little influence, while the model run including the 
research diver information lowered the absolute biomass slightly, but kept a similar trajectory 
(Figure 5). This was caused by a slightly different fit to the first CPUE series (Figure 6), 
suggesting that the research diver information had a signal for greater exploitation during that 
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period. This sensitivity was explored because there has been considerable historical debate over 
whether research diver information should be included. It has been agreed that this data is not 
representative (Haist 2010) and also that there may be nonlinear relationships between 
abundance and observations (Cordue 2009). 

• The exponential and inverse-logistic growth model were both explored. The inverse logistic 
gave a larger absolute biomass with a higher 𝐵𝐵0 by about 1000 t (Figure 7), but similar relative 
biomass trends. The inverse logistic growth model yielded a slightly ‘better’ visual fit to length 
frequency data (Figure 8). 

• Alternative values for the variance prior on the recruitment deviations were investigated. There 
is little information on the variability of recruitment of paua at a Quota Management Area level. 
Alternative values of recruitment variability for the recruitment deviation priors were 0.2 and 
0.6. There was little difference between the model fits and quantities with different prior 
variances. 

• Changing the lag of spawning to recruitment had little effect on the model outcome. It was 
observed that the estimates of the recruitment deviations were changed as the spawning lag 
changed, resulting in very similar levels of recruitment for each year (Figure 9). A spawning 
lag of three years was used as a default. This was based on the approximate time it is assumed 
that an average individual takes to reach 70 mm. 

• The model fits and quantities were not affected by changing the partition start length from 
70 mm to 2 mm (Figure 10). 

• Additional error was added to the CPUE of both series to investigate the effect of having less 
precise relative biomass indices. The fit to both series was very similar between the models 
with CV of 10% and models with an additional 20% process error resulting in CVs of 37% 
(Figure 11). 

• A component of uncertainty in the PAU 5 stock regions is the historical catch histories. These 
were defined in Marsh et al. (2018) and tested as initial sensitivity runs, which changed the 
absolute scale of the stock size but did not affect model fits. 

• Recent research has suggested that the estimate of log (ln) transformed parameters with uniform 
priors in data ‘limited’ assessments is sensitive to the value of the upper bound (Thorson & 
Cope 2017). This was explored with a range of arbitrarily chosen values for the upper bound. 
The model estimated identical parameter estimates for all values. 

• The final model sensitivity run allowed for the catchability parameter to change over time 
according to Equation 12. This was applied to the combined CPUE series, where the drift 
parameter was estimated with a uniform prior bounded between -0.05 and 0.05 (see Figure 12 
to compare derived SSBs under this assumption). 

• Other runs that were explored but not included in this summary included alternative values for 
the exogenous selectivity variable, combined CPUE series, assuming an informative prior on 
natural mortality, different commercial catch histories, bounds on parameter estimates 
specifically 𝑙𝑙𝑛𝑛𝑅𝑅0 and different combinations of the above settings. These model runs were not 
included in this report as any resulting differences in fits and model quantities were minor. 
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3.2 MPD base case and sensitivity runs 
 
The configurations of the base case model (0.1) and the six sensitivity runs (0.1all and 0.2-0.6) are listed 
in Table 4. MPD estimates of objective function values (negative log-likelihood), parameters, and 
indicators for the base case and sensitivity runs are summarised in Table 5. The suite of models 
considered for MCMC estimation were: the two CPUE series (0.2), excluding research diver 
observations (0.3), alternative catch history (0.4), modelling the partition at 2 mm (0.5), and estimating 
a time varying catchability (0.6).  
 
The base case model predicted the main trends in the CPUE series well, and most fits were within the 
confidence bounds of the observed values, except for the years 2009 and 2010 of the series (Figure 13).  
 
Commercial catch length frequencies were well-fitted for most years (Figure 14). The mean length of 
CSLF increased between 2007 and 2016 (Figure 15), due to the voluntary change in MHS that has 
occurred in the fishery. The effect of this can be observed in the estimated selectivity (Figure 16). The 
standardised residuals of the fits to CSLF revealed that most of the difficulty in fits came around a50-
a95 (Figure 14). This is due to the steep knife edge like selectivity around the MHS, i.e., if the exogenous 
variable is off slightly for a given year this causes a misfit and is why the main residual patterns occur 
around the MHS size.  
 
The fits to the other data sets (RDLF, RDSI, tag recapture data and maturity at length data) were all 
deemed satisfactory by the SFWG (Figures 17–18). 
 
Sensitivity runs, selected by the SFWG from the initial model runs, tested a set of components that 
encompassed most of the uncertainty whilst being biologically plausible. These components included 
removing the RDLF and RDSI data sets, fitting to the CPUE series as two separate series instead of the 
base case of a combined index of abundance, alternative commercial catch history, beginning the 
partition at 2 mm, and estimating a time-varying drift catchability coefficient. The range of biomass 
trajectories from all these sensitivity runs is shown in Figure 19. 
 
There was little difference between sensitivity runs and the base case chosen by the SFWG. The model 
with the lowest stock status was model 0.6 with the time varying catchability, with a current stock status 
of 39.8% B0. The other sensitivities and base case had current stock status between 45 and 47 % B0. 
 
Late in the assessment process, CSLF data for the 2017 fishing year became available. This was added 
into the base case model as a sensitivity run (0.1 all CSLF) to see if there were any consequences of 
leaving this data out of the base case model. Including the 2017 data made no change to model fits and 
quantities (Figures 20-21). 
 
All the sensitivity runs were taken to MCMC to assess marginal posteriors and uncertainty. 
 

3.3 MCMC results 
 
The SFWG requested that model runs 0.1, 0.2, 0.3, 0.4, 0.5 and 0.6 be estimated by MCMC, to derive 
the posterior distributions of estimated parameters and biomass indicators. Only results from model 
runs 0.1, 0.4 and 0.6 are discussed in later sections. This was because model runs 0.2, 0.3 and 0.5 had 
very similar posterior fits and quantities to the base case model (0.1). 
 
All MCMC chains were diagnosed for convergence by visually assessing trace plots of the objective 
function and key parameters. The traces of key indicators (B0 and Bcurrent) across most chains showed no 
visual evidence of non-convergence (Figure 22). 
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3.3.1 Marginal posterior distributions and the Bayesian fit 
 

The base case model marginal posterior fits to all data sources are shown in Figures 23–27. These were 
deemed adequate fits by the SFWG. On average the base case model tracked most trends in all the 
datasets well. The model struggled to fit the plus group in the earlier CSLF data (Figure 24), but 
obtained a good fit to the RDLF data. This suggested a slight conflict between these two data sources 
that couldn’t be resolved. This conflict was relatively minor and accepted by the SFWG. The RDSI was 
generally well fit apart from the year 1994, where the model could not predict such a high biomass. 
 
Model quantities showed that the current spawning population had a high probability (93%) of being 
above the target limit, based on the base case model. This follows a decline during the 1980s and 1990s 
and an increase during the 2000s (Figure 28). The SSB trajectory has flattened off over the past five 
years which is due to lower than average recruitment (Figure 29). 
 
The sensitivity run that had an alternative commercial catch history (run 0.4) had a very similar fit to 
the base case model and similar relative model quantities, but with a higher absolute SSB (Figure 30), 
with a median 𝐵𝐵0 of 4469 t compared to 3948 in the base case model. 
 
The final sensitivity run, estimating a time varying catchability coefficient, expressed the largest 
uncertainty in spawning stock size. The visual inspection of the trace plot showed no departure from a 
stationarity distribution and, while the model quantities were much more variable than the other two 
runs (Figure 31), the fits were very similar to those seen in models 0.1 and 0.4, with similar trends being 
observed. 
 
Overall, the three models taken to MCMC generated very similar fits to the observations and model 
quantities. All models expressed the decline in SSB to the early 2000s followed by a recovery. The 
period of the recovery followed a TACC increase and above average year class strengths, which has 
since shifted to below average recruitment in the past four years. 
 

3.3.2 Projections 
 
Three-year projections (2018–2020) were carried out for the three model runs taken to MCMC (0.1, 
0.4, and 0.6). 
 
For each model, eight future scenarios were run, including alternative recruitment assumptions and 
alternative future harvest levels. The future recruitment was applied by empirical resampling with equal 
probability from the MCMC sample estimates. This method assumes that future recruitment follows 
that estimated for the resampled period. Two time periods were used for resampling, the past ten years 
(2005–2015) and the past five years (2011–2015). Traditionally the period of recruitment resampling is 
from the past ten-year of estimates. The five year scenario was explored due to recent lower-than-
average recruitment (Figure 32).  
 
Future harvest levels were based on changes to the total allowable commercial catch (TACC). Four 
scenarios were run with the TACC increasing by 5% (94.5 t), 10% (99 t), 15% (103.5 t) and 20% (108 t). 
Future harvesting was assumed to have the same selectivity as the last year in the model. 
 
The projected scenarios across all models were very similar and showed that under the most optimistic 
scenario (ten-year resampling and 5% TACC increase) the population would continue to increase. 
Under the most pessimistic situation with five-year resampling of recruitment and 20% TACC increase, 
the population will either stabilise or, in some situations, decrease slightly. Future recruitment 
assumptions had a slightly larger effect than those assumptions surrounding future harvest levels. 
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Under a 5% TACC increase the probability of the stock being above the target level of 40% B0 for the 
base case increased from 93% in 2017 to 96% in 2020 (Figures 33–35). Future stock status (expressed 
as the probability of being above the target level of 40% B0) for the year 2020 for other future scenarios 
and model runs are shown in Table 6. Model (0.6) was the only sensitivity run that had a small 
probability (less than 1%) that projected SSB would fall below the soft limit. Projected quantities across 
all models taken to MCMC are summarised in Tables 7–18. 
 
 

4. DISCUSSION 
 
The base case model suggested that the current spawning stock population (𝐵𝐵𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) for 2017 was 47% 
(95% CI 38–61%) 𝐵𝐵0, and recruit-sized stock biomass (𝐵𝐵𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ) was 43% (95% CI 34–55%) of the 
initial recruit-sized state (𝐵𝐵𝑐𝑐𝑐𝑐). The base case model suggested that the current stock status was very 
unlikely to fall below the target limit. The projections suggested that biomass was likely to remain 
constant if future catches were to be above the TACC by 5%. This was the similar conclusion across 
all sensitivity runs. 
 
Overall, this assessment was quite robust to the assumptions explored during the process with most 
MPD runs suggesting a current relative biomass above the target (40%) of equilibrium size (𝐵𝐵0). This 
was anecdotally supported by some of the fishers who said that they thought the stock size was similar 
to that seen in the 1990s when the stock was last estimated to be at this level.  
 
All the recent data sources in the assessment suggest that the stock has been improving since the mid-
2000s with increasing CPUE and an increase in mean length, although the increase in mean length is a 
direct result of selective targeting i.e. increasing minimum harvest size. The combination of fishers 
targeting larger fish and maintaining high catch rates is indicative of a healthy stock. 
 
This stock assessment had added benefits relative to previous paua stock assessments, in that natural 
mortality could be estimated with an uninformative prior. Natural mortality is an important component 
of uncertainty in other paua assessments, and is usually fixed with a highly informative prior. The ability 
to estimate natural mortality reduced the number of sensitivity runs required. There is still the limitation 
of having a time-invariant natural mortality over the period of interest, and this should be a model 
component that is investigated in the future. 
 
The weaknesses of the assessment are similar to those of historic paua assessments where the main 
biomass observation is based on CPUE. Currently this analysis relies on Paua Catch Effort Landing 
Return (PCELR) forms which record daily fishing time and catch per diver on a relatively large spatial 
scale. These data are likely to remain the basis for stock assessments and formal management in the 
medium term. Since October 2010, a dive-logger data collection programme has been initiated to achieve 
fine-scale monitoring of paua fisheries (Neubauer & Abraham 2014, Neubauer et al. 2015). The use of 
the data loggers by paua divers and ACE holders has been steadily increasing over the last five years.  
Using fishing data logged at fine spatial and temporal scales could substantially improve effort 
calculations and associated CPUE indices, and allow complex metrics such as spatial CPUE to be 
developed (Neubauer 2015). Data from the loggers have been analysed to provide comprehensive 
descriptions of the spatial extent of the fisheries and insight on relationships between diver behaviour, 
CPUE, and changes in abundance on various spatial and temporal scales (Neubauer & Abraham 2014, 
Neubauer et al. 2015). However, the data-loggers can potentially change how the divers operate, such 
that they may become more effective in their fishing operations (the divers become capable of avoiding 
areas that have been heavily fished or that have relatively low CPUE), therefore changing the meaning 
of diver CPUE (Butterworth et al. 2015). 
 
Future work for these assessments include investigating modelling at an appropriate spatial scale. The 
model treats the whole of the assessed area of PAU 5B as if it were a single stock with homogeneous 
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biology, habitat and fishing pressures. The model assumes homogeneity in recruitment and natural 
mortality, and that growth has the same mean and variance. However, it is known that localised variation 
and processes are important for paua (Breen et al. 1982, Laferriere 2015). For instance, if some local 
patches are fished very hard and others are not fished, recruitment failure can result because of the 
depletion of spawners. Spawners must breed close to each other and the dispersal of larvae is unknown 
and may be limited. Recruitment failure is a common observation in overseas abalone fisheries, 
suggesting that local processes may decrease recruitment, an effect that the current model cannot 
account for. The biology of paua adds a great deal of uncertainty into the model and future 
improvements could include a more spatially explicit model or simulations to understand the effects of 
ignoring such spatially variable processes. 
 
Heterogeneity in growth can be a problem for length based models (Punt 2003). Variation in growth is 
addressed to some extent by having a stochastic growth transition matrix based on increments observed 
in multiple areas; similarly, the length frequency data are integrated across samples from many places. 
Relative weights were assigned, so that more productive areas in the fishery were better represented in 
the model. However, there is always a need for more data to help understand the variability of growth 
within a QMA. 
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Table 1: Actual sample sizes, initial sample sizes determined for the multinomial likelihood, and model 
weighted sample sizes for the PAU 5B commercial catch sampling length frequencies from the base model 
(0.1). A description of the model runs is summarised in Table 5.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
      

 
Table 2: Base case model specifications: for estimated parameters, the phase of estimation, type of prior, 
(U, uniform; N, normal; LN, lognormal), mean and CV of the prior, lower bound and upper bound. 
 

Parameter Phase Prior µ CV Lower  Upper 
ln(𝑹𝑹𝟎𝟎) 1 U – – 5 50 
M 3 U – – 0.01 0.5 
g1 2 U – – 0.01 150 
g2 2 U – – 0.01 150 
g50 2 U – – 0.01 150 
g50-95% 2 U – – 0.01 150 
gmax 1 U – – 0.01 50 
α 2 U – – 0.01 10 
β 2 U – – 0.01 10 
Ln(qI) 1 U – – -30 0 
Ln(qJ) 1 U – – -30 0 
L50 1 U – – 70 145 
L95-50 1 U – – 1 50 
D50 2 U – – 70 145 
D95-50 2 U – – 0.01 50 
Ds 1 U – – 0.01 10 
ε 1 N 0 0.4 -2.3 2.3 

Fishing 
year 

Actual 
sample size  

Initial   
sample size  

Final model 
sample size 

1992 18 815 3230 73 
1993 15500 2064 46 
1994 13390 2133 48 
1998 1054 257 6 
1999 4541 1182 27 
2000 2810 625 14 
2001 2707 789 18 
2002 3769 722 16 
2003 3588 1114 25 
2004 6123 1484 33 
2005 3002 733 16 
2006 2632 1120 25 
2007 3537 1180 27 
2008 4184 945 21 
2009 5016 1547 35 
2010 6855 1381 31 
2011 5829 805 18 
2012 5472 969 22 
2013 7316 1063 24 
2014 8890 1417 32 
2015 7094 2024 46 
2016 6848 1713 39 
2017 6925 NA NA 
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Table 3:  Values for fixed quantities for base case model. 
 

Variable Value 
L1 75 
L2 120 
a 2.99E-08 
b 3.303 

𝑼𝑼𝒎𝒎𝒎𝒎𝒎𝒎 0.80 
𝝈𝝈𝒎𝒎𝒎𝒎𝒎𝒎 1 
𝝈𝝈𝒐𝒐𝒐𝒐𝒐𝒐 0.25 

𝝈𝝈� 0.2 

𝒉𝒉 0.75 
 
Table 4: Summary descriptions of base case (0.1) and sensitivity model runs.  
 

Model 
  

Description 
 

0.1 
 

inverse logistic growth model, tag-recapture weighted, CSLF data up to 2016, 
M prior Uniform, tag data > 70mm, RDLF and RDSI included, Combined CPUE series, Catch 
history assumption 3 

0.1 all  The same as model 0.1 with CSLF data up to and including the 2017 fishing year. 
0.2  Model 0.1 with split CPUE series, one for the CELR and another for the PCELR 
0.3  Model 0.1 but with the RDLF and RDSI data excluded 
0.4  Model 0.1 but with catch history assumption 1  
0.5  Model 0.1 but start modelling at 2 mm instead of 70 mm 

0.6  
Model 0.1 but with a time varying catchability coefficient, with an estimated drift parameter ~ 
Uniform(-0.05, 0.05) 
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Table 5: MPD estimates for base case and sensitivity trials. “–” indicates that parameter is fixed and 
likelihood contributions were not used when datasets were removed. SDNRs for CSLF were calculated 
from mean length.  
 

 0.1 0.1 all 
cslf 0.2 0.3 0.4 0.5 0.6 

Parameters        

𝐥𝐥𝐥𝐥 (𝑹𝑹𝟎𝟎) 13.81 13.82 13.79 13.83 13.91 13.95 13.71 
𝑴𝑴 0.10 0.10 0.09 0.10 0.09 0.10 0.09 
𝑳𝑳𝟓𝟓𝟎𝟎 95.25 95.25 95.26 95.25 95.26 95.24 95.25 

𝑳𝑳𝟗𝟗𝟓𝟓−𝟓𝟓𝟎𝟎 18.86 18.86 18.88 18.86 18.91 18.89 18.89 
𝑫𝑫𝟓𝟓𝟎𝟎 125.37 125.37 125.28 125.53 125.22 125.38 125.38 

𝑫𝑫𝟗𝟗𝟓𝟓−𝟓𝟓𝟎𝟎 3.03 3.06 3.02 3.24 2.91 3.04 3.05 
𝑫𝑫𝒐𝒐 0.82 0.84 0.84 0.81 0.84 0.82 0.82 
𝑻𝑻𝟓𝟓𝟎𝟎 102.87 104.03 101.81 112.30 101.20 102.97 101.96 

𝑻𝑻𝟗𝟗𝟓𝟓−𝟓𝟓𝟎𝟎 26.96 26.17 25.10 33.70 24.17 25.58 25.82 
𝒒𝒒𝑰𝑰 -13.67 -13.65 -13.70 -13.68 -13.82 -13.67 -13.69 
𝒒𝒒𝑰𝑰𝟐𝟐 - - -13.80 - - - - 
𝒒𝒒𝑹𝑹𝑫𝑫𝑹𝑹𝑰𝑰 -15.11 -15.09 -15.16 - -15.24 -15.12 -15.06 
𝒍𝒍𝟓𝟓𝟎𝟎
𝒈𝒈  78.04 84.21 80.58 83.87 80.72 77.62 79.90 

𝒍𝒍𝟗𝟗𝟓𝟓−𝟓𝟓𝟎𝟎
𝒈𝒈  66.27 62.35 63.87 61.56 63.74 66.28 64.77 
∆𝒎𝒎𝒎𝒎𝒎𝒎 49.00 42.60 46.34 43.03 46.20 49.75 47.01 
𝜶𝜶 0.72 1.43 0.73 0.75 0.73 0.74 0.73 
𝜷𝜷 0.72 0.45 0.71 0.69 0.71 0.70 0.71 

𝒒𝒒𝒅𝒅𝒅𝒅𝒎𝒎𝒅𝒅𝒕𝒕𝑰𝑰  - - - - - - 0.01 
        

Indicators        

𝑩𝑩𝟎𝟎 3869 3839 3924 3879 4404 3870 3863 
𝑩𝑩𝒄𝒄𝒄𝒄𝒅𝒅𝒅𝒅𝒄𝒄𝒎𝒎𝒕𝒕 1776 1782 1781 1816 2062 1780 1539 

𝑩𝑩𝒄𝒄𝒄𝒄𝒅𝒅𝒅𝒅𝒄𝒄𝒎𝒎𝒕𝒕/𝑩𝑩𝟎𝟎 0.46 0.46 0.45 0.47 0.47 0.46 0.40 
𝑩𝑩𝟎𝟎
𝒅𝒅  3475 3440 3530 3475 3964 3474 3499 

𝑩𝑩𝒄𝒄𝒄𝒄𝒅𝒅𝒅𝒅𝒄𝒄𝒎𝒎𝒕𝒕
𝒅𝒅  1431 1434 1436 1461 1675 1436 1227 

𝑩𝑩𝒄𝒄𝒄𝒄𝒅𝒅𝒅𝒅𝒄𝒄𝒎𝒎𝒕𝒕
𝒅𝒅 /𝑩𝑩𝟎𝟎

𝒅𝒅  0.41 0.42 0.41 0.42 0.42 0.41 0.35 
𝑼𝑼𝒄𝒄𝒄𝒄𝒅𝒅𝒅𝒅𝒄𝒄𝒎𝒎𝒕𝒕 0.09 0.09 0.09 0.09 0.08 0.09 0.11 

        

SDNR        

CPUE 0.92 0.94 0.66 0.93 0.92 0.93 0.93 
CPUE2 0.00 0.00 0.92 0.00 0.00 0.00 0.00 
RDSI 1.60 1.59 1.59 1.63 1.53 1.61 1.54 
CSLF 1.00 1.00 0.98 1.00 1.00 1.00 0.99 
RDLF 0.29 0.30 0.27 1.53 0.31 0.28 0.26 

tag 1.15 1.02 1.16 1.16 1.16 1.15 1.15 
mat 0.26 0.26 0.26 0.26 0.26 0.26 0.26 
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Table 6: Current stock status, and future (2020) stock status under four future assumptions on 
exploitation and recruitment. Stock status defined as: current, 𝑷𝑷𝒅𝒅(𝑩𝑩𝟐𝟐𝟎𝟎𝟏𝟏𝟐𝟐  > 𝟒𝟒𝟎𝟎%𝑩𝑩𝟎𝟎); future, 
𝑷𝑷𝒅𝒅(𝑩𝑩𝒑𝒑𝒅𝒅𝒐𝒐𝒑𝒑  > 𝟒𝟒𝟎𝟎%𝑩𝑩𝟎𝟎). 
 

 Current stock status                                                             Future stock status 
                5% TACC increase      20% TACC increase 
Recruitment 
resampling 

  Five-years Ten-years Five-years Ten-years 

Base model (0.1) 93%  88% 93% 85% 91% 
0.4 95%  92% 96% 90% 94% 
0.6 67%  67% 71% 63% 68% 

 
Figure 1: Comparison between the previous base model for this stock (PAU5Bv10 (2013)) and the 
updated model (PAU5Bv2017 (2013)). 
 
 
 

 
Figure 2: Comparing fits to CPUE series model runs with alternative values of the shape parameter (𝒐𝒐�). 
The black line (0.2) had a value of 𝒐𝒐�. 
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Figure 3: Comparing SSBs from model runs with alternative values of the shape parameter (𝒐𝒐�). The 
black line (0.2) had a value of 𝒐𝒐� =0.2. 
 

 
Figure 4: Comparison in growth fit, when weighting tag data by stratum. 
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Figure 5: Comparison of SSBs between models that included RDLF and RDSI (0.2b) and a model run 
excluding it (0.2). 
 
 
 
 

 
Figure 6: Model fits to CPUE datasets, model 0.2 excludes the research diver datasets and model 0.2b has 
the research diver information included.  
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Figure 7: Comparing spawning stock biomass with different growth models, exponential (0.1) and inverse 
logistic (0.2). 
 

 
Figure 8: Fits to CSLF from models with different growth curves, the inverse logistic (0.2) and 
exponential (0.1). 
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Figure 9: Comparison of true year class strength between models with different yearly lags between 
spawning and recruits entering the partition, for the recruitment dynamic. 
 
 
 

 
Figure 10: Comparison between starting the partition at 2 mm (0.2bX) compared with starting the 
partition at 70 mm (0.2b). 
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Figure 11: Fits to the two CPUE series, the top panels are from a model with additional error on the 
CPUE (20% additional process error). The bottom panels are with the base case value of 10% CV. 
 
 

 
Figure 12: Comparison of SSBs showing the effect of allowing the catchability parameter to vary over the 
series. 
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Figure 13: MPD fits to the CPUE series from the base case model. 
 

 
Figure 14: MPD fits to CSLF data for the base case model, left panel shows average fit to all years, right 
panel shows normalised residuals by year and length bin. 
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Figure 15: Mean length (cm y-axis) observed with standard errors (vertical bars) with the base model 
expectation as the fitted line, for available years (x-axis). 
 

 
Figure 16: The selectivity ogive in the base case model. 

 
Figure 17: MPD fits to the tag recapture data (left panel) and maturity at length data (right panel) for the 
base case model. 
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Figure 18: MPD fits for the base case model to the RDLF in first five panels, where dots are 
observed data and the line is the models expected fit of proportions (y-axis) for each length 
bin (x-axis), and the RDSI (bottom right panel), where dot and vertical bars are observed 
relative abundance plus or minus two standard errors for each year available. 
 

 
Figure 19: SSB trajectories for proposed base case model and sensitivity runs, from the initial ensemble 
of models. 



36 • The 2017 stock assessment of paua (Haliotis iris) for PAU 5B Fisheries New Zealand  

 
Figure 20: SSB trajectories comparing the base case model that included CSLF data up to the 2016 
fishing year, and the same model with the additional 2017 CSLF data. 
 
 

 
Figure 21: Fits to recent CSLF data from the base case model with the inclusion of the 2017 CSLF data. 
 



 
  

Fisheries New Zealand The 2017 stock assessment of paua (Haliotis iris) for PAU 5B• 37 

 
Figure 22: Trace plots and marginal posteriors for key productivity parameters and model quantities, for 
the base case model (0.1). 
 
 

 
Figure 23: Predicted fits from the posterior compared to the observations (green) for the base case model. 
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Figure 24: Standardised residuals for the CSLF observations, from the base case model. 
 
 

 
Figure 25: Left panel shows MCMC fits to length at maturity data, red dots are observations and vertical 
lines are 95% credible predictions. The right panel shows theoretical residuals vs observed residuals from 
the tag recapture observations, from the base case model. 
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Figure 26: MCMC fits to RDLF data, red line is the observed length proportions the vertical density plots 
are the 95% credible predictions generated from the MCMC procedure, for the base case model. 
 
 

 
Figure 27: MCMC posterior predictions (densities) for RDSI data (green dot) plus or minus two standard 
errors (green bar), for the base case model. 
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Figure 28: Left panel shows the SSB relative to an assumed equilibrium spawning biomass. Right panel is 
the absolute SSB over the model time interval. The red line shows SSB trajectory from the MPD fit. 
 

 
Figure 29: Marginal posteriors of model quantities, left panel estimated stock recruitment residuals 
(recruitment deviations). On the right panel exploitation rates derived from the base case model. 
 
 
 

 
Figure 30: Box and whisker plot of absolute SSB from model run 0.4. The red line shows the SSB 
trajectory from the MPD fit. 
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Figure 31: Box and whisker plots of relative SSB to an assumed equilibrium spawning biomass by year. 
The red line shows SSB trajectory from the MPD fit. 
 

 
Figure 32: Recruitment year class multipliers around the stock recruitment relationship estimated and 
forecasted for model 0.1. The red line is the time where recruitment deviations were resampled for use in 
the projections. In panel A recruitments from the past ten years (2005–2015) were used for resampling, 
while in Panel B recruitments from the past five years (2011–2015) were used. 
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Figure 33: Median and 95% credible intervals of relative SSB from the base case model (0.1). This is 
shown for the two future recruitment scenarios and the lower (5%) and upper (20%) requested TACC 
change. The blue line separated the historic period (to the left) and the forecasted period (to the right). 
 

 
Figure 34: Median and 95% credible intervals of relative SSB from model 0.4. This is shown for the two 
future recruitment scenarios and the lower (5%) and upper (20%) requested TACC change. The blue line 
separated the historic period (to the left) and the forecasted period (to the right). 
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Figure 35: Median and 95% credible intervals of relative SSB from model 0.6. This is shown for the two 
future recruitment scenarios and the lower (5%) and upper (20%) requested TACC change. The blue line 
separated the historic period (to the left) and the forecast period (to the right). 
 
 
Table 7: Projected quantities for the Base model with an assumed 5% TACC increase, and recruitment 
based on the past 10 years. 
 

 2018 2019 2020 
Bt 1898 (1460–2528)  1916 (1451–2594)  1936 (1439–2655) 
%B0 0.48 (0.38–0.63)  0.49 (0.38–0.64)  0.49 (0.37–0.65) 
%Bmsy 1.7 (1.4–2.2)  1.7 (1.4–2.3)  1.8 (1.3–2.3) 
rBt 1536 (1176–2031)  1550 (1176–2077)  1569 (1177–2124) 
%rB0 0.43 (0.34–0.56)  0.44 (0.34–0.58)  0.44 (0.34–0.59) 
%rBmsy 2.0 (1.5–2.8)  2.0 (1.5–2.8)  2.0 (1.5–2.9) 
Pr (>Bmsy) 1 1 1 
Pr (>Bcurrent) 0.65 0.69 0.71 
Pr (>40%B0) 0.93 0.93 0.93 
Pr (<20%B0) 0 0 0 
Pr (<10%B0) 0 0 0 
Pr (>rBmsy) 1 1 1 
Pr (>rBcurrent) 0.61 0.64 0.69 
Pr (U>U40%B0) 0 0 0.01 
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Table 8: Projected quantities for the Base model with an assumed 20% TACC increase, and recruitment 
based on the past 10 years. 
 

 2018 2019 2020 
Bt 1892 (1453–2521)  1896 (1431–2574)  1904 (1407–2624) 
%B0 0.48 (0.38–0.62)  0.48 (0.37–0.63)  0.48 (0.37–0.64) 
%Bmsy 1.7 (1.4–2.2)  1.7 (1.3–2.2)  1.7 (1.3–2.3)   
rBt 1529 (1169–2024)  1530 (1156–2057)  1537 (1144–2092) 
%rB0 0.43 (0.34–0.56)  0.43 (0.33–0.57)  0.43 (0.33–0.58) 
%rBmsy 2.0 (1.5–2.7)  2.0 (1.5–2.8)  2.0 (1.5–2.8) 
Pr (>Bmsy) 1 1 1 
Pr (>Bcurrent) 0.58 0.59 0.59 
Pr (>40%B0) 0.93 0.92 0.91 
Pr (<20%B0) 0 0 0 
Pr (<10%B0) 0 0 0 
Pr (>rBmsy) 1 1 1 
Pr (>rBcurrent) 0.53 0.51 0.53 
Pr (U>U40%B0) 0.02 0.02 0.03 

 
 
Table 9: Projected quantities for the Base model with an assumed 5% TACC increase, and recruitment 
based on the past 5 years. 
 

 2018 2019 2020 
Bt 1876 (1434–2530)  1879 (1406–2571)  1876 (1373–2646) 
%B0 0.48 (0.37–0.62)  0.48 (0.37–0.64)  0.48 (0.36–0.65) 
%Bmsy 1.7 (1.3–2.2)  1.7 (1.3–2.3)  1.7 (1.3–2.3)          
rBt 1536 (1175–2032)  1545 (1167–2073)  1551 (1154–2119) 
%rB0 0.43 (0.34–0.56)  0.44 (0.34–0.58)  0.44 (0.33–0.59) 
%rBmsy 2.0 (1.5–2.8)  2.0 (1.5–2.8)  2.0 (1.5–2.8) 
Pr (>Bmsy) 1 1 1 
Pr (>Bcurrent) 0.47 0.49 0.48 
Pr (>40%B0) 0.92 0.9 0.88 
Pr (<20%B0) 0 0 0 
Pr (<10%B0) 0 0 0 
Pr (>rBmsy) 1 1 1 
Pr (>rBcurrent) 0.6 0.6 0.59 
Pr (U>U40%B0) 0 0 0.01 
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Table 10: Projected quantities for the Base model with an assumed 20% TACC increase, and recruitment 
based on the past 5 years. 
 

 2018 2019 2020 
Bt 1869 (1427–2523)  1859 (1386–2551)  1844 (1341–2614) 
%B0 0.47 (0.37–0.62)  0.47 (0.36–0.63)  0.47 (0.35–0.65) 
%Bmsy 1.7 (1.3–2.2)  1.7 (1.3–2.2)  1.7 (1.3–2.3) 
rBt 1529 (1168–2025)  1525 (1147–2053)  1519 (1121–2087) 
%rB0 0.43 (0.34–0.56)  0.43 (0.33–0.57)  0.43 (0.32–0.58) 
%rBmsy 2.0 (1.5–2.8)  2.0 (1.5–2.8)  2.0 (1.4–2.8) 
Pr (>Bmsy) 1 1 1 
Pr (>Bcurrent) 0.41 0.39 0.37 
Pr (>40%B0) 0.91 0.89 0.85 
Pr (<20%B0) 0 0 0 
Pr (<10%B0) 0 0 0 
Pr (>rBmsy) 1 1 1 
Pr (>rBcurrent) 0.52 0.48 0.44 
Pr (U>U40%B0) 0.02 0.02 0.03 

 
 
Table 11: Projected quantities for model 0.4 (alternative catch history) with an assumed 5% TACC 
increase, and recruitment based on the past 10 years. 
 

 2018 2019 2020 
Bt 2173 (1689–2872)  2200 (1689–2926)  2231 (1686–2995) 
%B0 0.49 (0.39–0.62)  0.49 (0.39–0.64)  0.50 (0.39–0.65) 
%Bmsy 1.8 (1.4–2.2)  1.8 (1.4–2.3)  1.8 (1.4–2.3) 
rBt 1779 (1385–2322)  1804 (1385–2374)  1829 (1396–2422) 
%rB0 0.44 (0.35–0.57)  0.45 (0.35–0.58)  0.45 (0.35–0.59) 
%rBmsy 2.0 (1.5–2.7)  2.1 (1.6–2.8)  2.1 (1.6–2.9) 
Pr (>Bmsy) 1 1 1 
Pr (>Bcurrent) 0.7 0.74 0.77 
Pr (>40%B0) 0.96 0.96 0.96 
Pr (<20%B0) 0 0 0 
Pr (<10%B0) 0 0 0 
Pr (>rBmsy) 1 1 1 
Pr (>rBcurrent) 0.72 0.75 0.79 
Pr (U>U40%B0) 0 0 0 
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Table 12: Projected quantities for model 0.4 (alternative catch history) with an assumed 20% TACC 
increase, and recruitment based on the past 10 years. 
 

 2018 2019 2020 
Bt 2166 (1682–2866)  2181 (1669–2907)  2199 (1654–2964) 
%B0 0.49 (0.39–0.62)  0.49 (0.38–0.63)  0.49 (0.38–0.64) 
%Bmsy 1.8 (1.4–2.2)  1.8 (1.4–2.3)  1.8 (1.4–2.3) 
rBt 1772 (1379–2315)  1784 (1365–2354)  1796 (1364–2390) 
%rB0 0.44 (0.35–0.56)  0.44 (0.35–0.57)  0.45 (0.35–0.58) 
%rBmsy 2.0 (1.5–2.7)  2.0 (1.5–2.8)  2.0 (1.5–2.8) 
Pr (>Bmsy) 1 1 1 
Pr (>Bcurrent) 0.65 0.65 0.66 
Pr (>40%B0) 0.95 0.95 0.94 
Pr (<20%B0) 0 0 0 
Pr (<10%B0) 0 0 0 
Pr (>rBmsy) 1 1 1 
Pr (>rBcurrent) 0.64 0.63 0.66 
Pr (U>U40%B0) 0 0 0 

 
 
Table 13: Projected quantities for model 0.4 (alternative catch history) with an assumed 5% TACC 
increase, and recruitment based on the past 5 years. 
 

 2018 2019 2020 
Bt 2159 (1668–2877)  2172 (1646–2952)  2177 (1620–3024) 
%B0 0.48 (0.38–0.62)  0.49 (0.38–0.63)  0.49 (0.37–0.65) 
%Bmsy 1.7 (1.4-2.2)  1.7 (1.4-2.3)  1.8 (1.3-2.3) 
rBt 1778 (1385-2322)  1802 (1382-2378)  1818 (1376–2441) 
%rB0 0.44 (0.35–0.57)  0.45 (0.35–0.58)  0.45 (0.35–0.59) 
%rBmsy 2.0 (1.6–2.7)  2.1 (1.5–2.8)  2.1 (1.5–2.9) 
Pr (>Bmsy) 1 1 1 
Pr (>Bcurrent) 0.57 0.58 0.58 
Pr (>40%B0) 0.94 0.94 0.92 
Pr (<20%B0) 0 0 0 
Pr (<10%B0) 0 0 0 
Pr (>rBmsy) 1 1 1 
Pr (>rBcurrent) 0.71 0.72 0.71 
Pr (U>U40%B0) 0 0 0 
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Table 14: Projected quantities for model 0.4 (alternative catch history) with an assumed 20% TACC 
increase, and recruitment based on the past 5 years. 
 

 2018 2019 2020 
Bt 2153 (1661–2871)  2152 (1626–2932)  2145 (1587–2992) 
%B0 0.48 (0.38–0.62)  0.48 (0.38–0.63)  0.48 (0.37–0.64) 
%Bmsy 1.7 (1.4–2.2)  1.7 (1.3–2.3)  1.7 (1.3–2.3) 
rBt 1772 (1378–2315)  1782 (1362–2358)  1785 (1343–2409) 
%rB0 0.44 (0.35–0.56)  0.44 (0.35–0.57)  0.44 (0.34–0.58) 
%rBmsy 2.0 (1.5–2.7)  2.0 (1.5–2.8)  2.0 (1.5–2.8) 
Pr (>Bmsy) 1 1 1 
Pr (>Bcurrent) 0.51 0.48 0.47 
Pr (>40%B0) 0.94 0.92 0.9 
Pr (<20%B0) 0 0 0 
Pr (<10%B0) 0 0 0 
Pr (>rBmsy) 1 1 1 
Pr (>rBcurrent) 0.63 0.6 0.58 
Pr (U>U40%B0) 0 0 0 

 
 
Table 15: Projected quantities for model 0.6 (time varying catchability) with an assumed 5% TACC 
increase, and recruitment based on the past 10 years. 
 

 2018 2019 2020 
Bt 1729 (1141–2660)  1749 (1130–2692)  1766 (1124–2730) 
%B0 0.44 (0.30–0.64)  0.45 (0.30–0.65)  0.45 (0.30–0.66) 
%Bmsy 1.6 (1.1–2.3)  1.6 (1.1–2.3)  1.6 (1.1–2.4) 
rBt 1393 ( 898–2151)  1409 ( 892–2191)  1426 ( 899–2207) 
%rB0 0.39 (0.26–0.58)  0.40 (0.26–0.59)  0.40 (0.26–0.60) 
%rBmsy 1.8 (1.1–2.9)  1.8 (1.1–2.9)  1.8 (1.1–2.9) 
Pr (>Bmsy) 0.99 0.99 0.98 
Pr (>Bcurrent) 0.64 0.67 0.7 
Pr (>40%B0) 0.69 0.7 0.71 
Pr (<20%B0) 0 0 0 
Pr (<10%B0) 0 0 0 
Pr (>rBmsy) 0.99 0.99 0.99 
Pr (>rBcurrent) 0.64 0.67 0.71 
Pr (U>U40%B0) 0.13 0.14 0.13 
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Table 16: Projected quantities for model 0.6 (time varying catchability) with an assumed 20% TACC 
increase, and recruitment based on the past 10 years. 
 

 2018 2019 2020 
Bt 1722 (1134–2654)  1729 (1110–2672)  1734 (1091–2698) 
%B0 0.44 (0.29–0.64)  0.44 (0.29–0.64)  0.44 (0.29–0.65) 
%Bmsy 1.6 (1.1–2.3)  1.6 (1.0–2.3)  1.6 (1.0–2.3) 
rBt 1387 ( 891–2144)  1389 ( 872–2171)  1394 ( 865–2176) 
%rB0 0.39 (0.25–0.58)  0.39 (0.25–0.59)  0.39 (0.25–0.60) 
%rBmsy 1.8 (1.1–2.8)  1.8 (1.1–2.9)  1.8 (1.1–2.9) 
Pr (>Bmsy) 0.99 0.98 0.98 
Pr (>Bcurrent) 0.57 0.56 0.56 
Pr (>40%B0) 0.68 0.68 0.68 
Pr (<20%B0) 0 0 0 
Pr (<10%B0) 0 0 0 
Pr (>rBmsy) 0.99 0.99 0.98 
Pr (>rBcurrent) 0.56 0.52 0.54 
Pr (U>U40%B0) 0.23 0.24 0.25 

 
 
Table 17: Projected quantities for model 0.6 (time varying catchability) with an assumed 5% TACC 
increase, and recruitment based on the past 5 years. 
 

 2018 2019 2020 
Bt 1716 (1120–2656)  1721 (1099–2674)  1720 (1079–2733) 
%B0 0.44 (0.29–0.63)  0.44 (0.29–0.65)  0.44 (0.28–0.66) 
%Bmsy 1.6 (1.1–2.3)  1.6 (1.0–2.3)  1.6 (1.0–2.3) 
rBt 1393 ( 898–2152)  1405 ( 892–2187)  1417 ( 880–2207) 
%rB0 0.39 (0.26–0.58)  0.40 (0.26–0.59)  0.40 (0.25-0.60) 
%rBmsy 1.8 (1.1–2.9)  1.8 (1.1–2.9)  1.8 (1.1–2.9) 
Pr (>Bmsy) 0.98 0.98 0.98 
Pr (>Bcurrent) 0.5 0.51 0.5 
Pr (>40%B0) 0.67 0.67 0.67 
Pr (<20%B0) 0 0 0 
Pr (<10%B0) 0 0 0 
Pr (>rBmsy) 0.99 0.99 0.99 
Pr (>rBcurrent) 0.64 0.64 0.63 
Pr (U>U40%B0) 0.13 0.14 0.13 
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Table 18: Projected quantities for model 0.6 (time varying catchability) with an assumed 20% TACC 
increase, and recruitment based on the past 5 years. 
 

 2018 2019 2020 
Bt 1709 (1113–2649)  1701 (1079–2654)  1687 (1045–2701) 
%B0 0.44 (0.29–0.63)  0.43 (0.28–0.64)  0.43 (0.27–0.65) 
%Bmsy 1.6 (1.0–2.3)  1.6 (1.0–2.3)  1.54 (0.98–2.32) 
rBt 1386 ( 891–2145)  1385 ( 872–2167)  1384 ( 847–2176) 
%rB0 0.39 (0.25–0.58)  0.39 (0.25–0.58)  0.39 (0.24–0.59) 
%rBmsy 1.8 (1.1–2.9)  1.8 (1.1–2.9)  1.8 (1.0–2.9) 
Pr (>Bmsy) 0.98 0.98 0.97 
Pr (>Bcurrent) 0.44 0.4 0.38 
Pr (>40%B0) 0.66 0.65 0.63 
Pr (<20%B0) 0 0 0 
Pr (<10%B0) 0 0 0 
Pr (>rBmsy) 0.99 0.99 0.98 
Pr (>rBcurrent) 0.55 0.5 0.47 
Pr (U>U40%B0) 0.24 0.25 0.26 
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A. APPENDIX A 
 
Appendix A: Summary of results for MPD model runs 
 
  

 
 
 
Figure A1: Estimated proportions versus CVs for the commercial catch length frequencies for PAU 5B. 
Lines indicate the best least squares fit for the effective sample size of the multinomial distribution. 
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Figure A2: A series of lowess lines of various degrees of freedom (df) fitted to the PAU 5B standardised 
CPUE indices for 1990–2001 (top-left), 2002–2017 (top-right) and combined series 1990-2017 (bottom 
left). CVs are calculated from residuals for each of the fitted lowess line and are further adjusted for the 
degree of “smoothing” (adjusted value in the bracket). The CV of from the “appropriate” fit will be used 
as the CV in the stock assessment model. What is "appropriate" is judged by the SFWG by visual 
examination of lines with different degrees of smoothing.   
  

 GLOSSARY 
 
This glossary is aimed at making this document more accessible to non-technical readers. A knowledge of 
statistical terms is assumed and such terms are not explained here. Technical terms are defined with specific 
reference to the paua stock assessment and may not be applicable in other contexts. 
  
abundance index: usually a time-series of relative estimates of abundance in numbers or weight (biomass) 
Bayesian stock assessment: an inferential method that allows prior information or expert judgement to be used 
formally in addition to the data. Often uncertainty is estimated using Markov chain Monte Carlo simulations 
(MCMC) which samples the posterior distribution of estimated and derived parameters. 
bounds: model parameters can be restricted so that parameter estimates cannot be less than a lower bound or 
higher than an upper bound; these are sometimes necessary to prevent mathematical impossibility (e.g. a 
proportion must be between 0 and 1 inclusive) or to ensure biologically realistic model results. 
catchability: a proportionality constant that relates a relative abundance index, such as CPUE, to absolute 
biomass; usually has the symbol 𝑞𝑞. 
CELR: A standardised CPUE series covering 1990–2001 based on catch effort landing return data. 
CSLF: A commercial catch sampling length frequency series 
CPUE: catch per unit of effort; usually has the units kg of catch per trip; assumed to be a relative abundance 
index such that CPUE = catchability × vulnerable biomass; can be estimated in several ways (see 
standardisation). 
derived parameter: any quantity that depends on the model’s estimated parameters; e.g. average recruitment 
(𝑅𝑅0) is an estimated parameter but initial biomass (𝐵𝐵0) is a derived parameter that is determined by model 
parameters for growth, natural mortality and recruitment. 
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equilibrium: in models, a stable state that is reached when catch, fishing patterns, recruitment and other 
biological processes are constant; does not occur in nature. 
exploitation rate: a measure of fishing intensity; catch in a year or period divided by initial biomass; symbol 𝑈𝑈 
fixed parameter: a parameter that could be estimated by the model but that is forced to remain at the specified 
initial value. 
initial value: when the model minimises, it has to start with a parameter set and the initial values comprise this 
set. 
length frequency (LF) (also called size frequency): The distribution of numbers-at-size (TW) from catch 
samples; based either on observer catch sampling or voluntary logbooks; the raw data are compiled with a 
complex weighting procedure. 
MCMC: Markov chain Monte Carlo simulations. MCMC simulations explore the combinations of parameters 
in the region near the “best” set of parameters, and from this set, the uncertainty in estimated and derived 
parameters can be measured. In one “simulation”, the algorithm generates a new parameter set, calculates the 
function value and chooses whether to accept or reject the new point. 
MLS: Minimum legal size. 
MHS: Minimum Harvest size. 
MSY: under the MSY paradigm, the maximum average catch that can be taken sustainably from the stock under 
constant environmental conditions; usually calculated under simplistic assumptions. 
natural mortality: (symbol𝑀𝑀) the instantaneous rate of mortality from natural causes. If there were no fishing 
mortality F, survival would be 𝑒𝑒−𝑀𝑀. 
normalised residual: the residual divided by the standard deviation of observation error that is assumed or 
estimated in the minimising procedure. 
PCELR: A standardised CPUE series covering 2002–2017 based on Paua catch effort landing return. 
priors: short for prior probability distribution; these allow the modeller to estimate parameter values using 
Bayes's theorem and (if desired) to incorporate prior belief (based on data that are not being used by the model) 
about any likely parameter values. 
RDLF: Research diver length frequency 
RDSI: Research diver survey index, a dataset that represents fishery independent measure of relative biomass. 
recruitment: can mean recruitment to the population (as in puerulus settlement), recruitment to the model at a 
specified size, or recruitment to the stock (by growing above MLS); when used with no qualification in 
documentation here it means “recruitment to the model”.  
resampling: in projections, recruitment for a projection year is equal to estimated recruitment in a randomly 
chosen year that lies within the range of years being resampled. 
residual: the observed data value minus the model’s predicted value, for instance for CPUE in a given time step 
it would be the difference between the observed CPUE in that year and the model’s predicted value. 
SDNR: the standard deviation of normalised residuals; in a good estimation with multiple data sets, this should 
be close to 1; a common procedure is to weight datasets to try to obtain SDNRs close to 1. 
SFWG: The shellfish working group. Throughout this assessment process, multiple working groups were 
conducted to peer review the work and decision making process. These are attended by experts in the field. 
selectivity: selectivity describes the relative chance of a paua being caught, given its sex and size, hence 
“selectivity ogive”, generally driven by minimum legal sizes.  
sensitivity run: a base case stock assessment model is the result of inevitable choices made by the modeller; 
sensitivity trials examine whether results are seriously dependent on (“sensitive to”) these choices. 
standardisation: a statistical procedure that extracts patterns in catch and effort data associated with 
explanatory variables; the pattern in the time variable (e.g. period or year) is interpreted as an abundance index. 
stock: by definition, a group of fish inhabiting a quota management area QMA; may often not coincide with 
biological population definitions. 
TAC: Total Allowable Catch limit set by the Minister for Primary Industries for a stock.  
TACC: Total Allowable Commercial Catch limit set by the Minister for Primary Industries for a stock. 
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