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EXECUTIVE SUMMARY

Edwards, C.T.T.; Roberts, J.O. (2021) An integrated biodemographic model for New
Zealand sea lion (Phocarctos hookeri).

New Zealand Aquatic Environment and Biodiversity Report No. 256. 39 p.

We present a new model for the New Zealand sea lion (Phocarctos hookeri), using the same data and
similar partitions to the model used for the Threat Management Plan, but represented as a hidden
state model, whereby the state transitions and observation processes are separated. This allows for
more intuitive development of the model and likelihood components, easily incorporating uncertainty
into the state observation process. The model is integrated, using census data on pup counts (from
of all known breeding rookeries on Auckland Islands archipelago) alongside mark-recapture and
mark-recovery data (from Sandy Bay, the best studied rookery). In addition it includes a standardised
index of pup mass as a predictor of pup survivorship, and we show that this shrinks the uncertainty
associated with estimation of pup survivorship for years where the tagging data are uninformative
– notably in the most recent years of the assessment before individuals tagged as pups have first
returned to the beach (around 4 years of age), making them available for recapture. We therefore
expect that including pup mass as a covariate will improve predictive performance of the model. This
has implications for effective monitoring of populations where it is not feasible to get consistent
mark-recapture data (e.g., Dundas Island and Figure of Eight Island). An ability to include covariate
data makes the model useful for understanding and predicting the effects of various factors that
may affect the future status of these sea lion populations, e.g., fisheries, disease, prey availability, or
climatic drivers of environmental change.
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1 Introduction

The endemic New Zealand sea lion (Phocarctos hookeri) has a breeding distribution now centred on
the Auckland Islands (Childerhouse & Gales 1998), in the Sub-Antarctic region of New Zealand’s
Exclusive Economic Zone, with smaller populations also found on Campbell Island, Stewart Island,
and the Otago Peninsula. According to pup census counts and previous modelling work, the
largest breeding population at the Auckland Islands has declined by about 40% since the late-1990s
(Childerhouse et al. 2015, Roberts 2017) contributing to its designation as “Nationally Vulnerable,”
the second highest domestic threat rating (Baker et al. 2019). A low pup census count at the Auckland
Islands in 2014 prompted a process leading to the adoption of a Threat Management Plan (TMP)
for the species, a central component of which was development of a quantitative risk assessment
based on a demographic model capable of simulating the population dynamics under alternate threat
scenarios. This was initially conducted by Roberts & Doonan (2016), based on previous modelling
work by Breen et al. (2012), MacKenzie (2012), and Roberts et al. (2014), and updated by Roberts
(2017, 2019).

The demographic assessment model used by the TMP was created with the SeaBird assessment
software (Francis & Sagar 2012) and fitted to a range of observational data. The most important data
were individual mark-recapture observations, which allow estimation of the inter-annual survival, and
pup census data, which provide information on the population size and trend over time. The SeaBird
modelling software allows these different data types to be integrated in a statisitcally consistent
manner. For the Auckland Islands assessment by Roberts & Doonan (2016), good fits were obtained to
the data, and the model structure and parameter estimates appeared to be a reasonable representation
of demographic processes that have affected population decline there (primarily low pup survival and
low adult survival, but also delayed maturation and years of low annual pupping rate). The model was
able to investigate the impact of a number of threats and potential threats, including disease-related
pup mortality, nutritional stress, and commercial fishing. This work has been ongoing (Roberts
2017, 2019), but the modelling approach has some limitations. Specifically, there is no capacity
within SeaBird to include continuous covariate data to provide better estimates of time-variant rate
parameters.

The current SeaBird model (Roberts & Doonan 2016, Roberts 2017, 2019) uses a generalisation of
the Cormack-Jolly-Seber (CJS; Cormack 1964, Jolly 1965, Seber 1965) approach for estimation of
the annual survivorship and resight probabilities. This generalisation allows resights in a number of
discrete states or partitions, so that transitions between states can also be estimated. Furthermore,
the likelihood includes a novel component that allows for the classification of observations into
different states to have some error associated with it (Francis & Sagar 2012). Because the CJS
method treats observations as conditional on the first mark (i.e., only individuals that have been
captured and marked are considered in the likelihood – the unmarked component of the population
is ignored), it does not make any inference on the population size beyond the fact that it must be
larger than the number of marked individuals alive at any one time. Information on the population
size must be derived from additional data, which in this case were pup counts (or a pup “census”).
Integration of census and mark-recapture data into a single model was an important advancement
in the development of demographic population models (Besbeas et al. 2002). Finally, the model
allowed for recapture of both live and dead individuals, the latter being clearly more informative
for estimation of survivorship. However, despite its utility, SeaBird does not allow for continuous
covariate data to be included.
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The intention in the current project is to develop a new model, maintaining consistency by incorporat-
ing features of the current SeaBird model, but allowing covariate data to be included, illustrating the
approach using data on the mass of pups and assuming it to be related to annual pup survivorship
(Roberts et al. 2021). Variable pup mass has been demonstrated to be a good predictor of early-life
survival across pinniped species (e.g., Harding et al. 2005), and should be responsive to changes in
maternal resources and other external factors. Biometric measurements, including mass, standard
length, and axial girth, have been collected from New Zealand sea lion pups at the Auckland Islands
since the early 1980s (Roberts et al. 2021). At Sandy Bay, pup mass observations have been collected
around the date of tagging according to a highly consistent approach since 1993/94 (DOC 2019).
Roberts et al. (2021) used the Sandy Bay data to produce standardised annual indices of female pup
mass, which showed strong temporal trends through time that had a similar pattern to first year pup
survival estimated by Roberts (2017). By incorporating pup mass into the demographic assessment
model, this project aims to investigate the extent to which the apparent relationship between pup mass
and first year survival (as shown by Roberts et al. 2021) is reflected in subsequent mark-recapture
data. Including this relationship could improve the precision of model estimates of first year survival,
particularly for cohorts with missing or sparse recapture data (such as those marked in the most
recent field seasons that have not yet been resighted). In so doing, it may also provide biological or
ecological insight into the environmental drivers of population dynamics.

2 Description of model components

The new model is required to incorporate a number of features of the data:

1. Different data types: pup census and mark-recapture

2. Different mark-recapture data types: types of mark and the recapture of both alive and dead
individuals

3. Categorical covariate data: the state in which an individual is observed

4. Continous covariate data: empirical measurements of an environmental covariate or proxy over
time

5. Observation error: both categorical and continuous covariate data are observed with error

The model falls into a class known as Hidden Markov Models (HMMs; e.g., Gimenez et al. 2012),
which describe the transition of individuals between discrete states over time, with each transition
dependent only on the current state, and with the states themselves at least “hidden” (i.e., unobserved).
An individual in each state has an associated probability of being recorded in one or more observation
categories, with the probabilities of observation per category also unknown. Inclusion of a number
of different data types means that the model can be referred to as integrated (e.g., Besbeas et al.
2002, Brooks et al. 2004), whereas through inclusion of categorical observation error it is known
as a multi-event model (Pradel 2005). Here we describe the development of such a model for New
Zealand sea lions, and illustrate its performance. The model is for females only and is similar to the
“8+” model of Roberts & Doonan (2016) and Roberts (2019), including 9 age classes (with the last
being a plus group) and an age-dependent probability of breeding.

2.1 Transition and observation probabilities

The possible states for an individual are listed in Table 1 as {x0,t ,x1,t , . . . ,x16,t}, defining ages 0 to 8+
for individuals that progress from being born as pups (age zero) to maturing at age four, subsequently
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Table 1: Possible states per individual at the beginning of time t. Maturity is
abbreviated and can be either Immature (imm) or Mature (mat). Status is one
of Non-breeding (nbr), Breeding (brd), or Dead. The state category “Dead” is
further partitioned into the recently dead (x15,t ), referring to those that have
died during the previous state transition, and the subsequent category (x16,t ).

Notation x1,t x2,t x3,t x4,t x5,t x6,t x7,t x8,t

Age 0 1 2 3 4 4 5 5
Maturity imm imm imm imm mat mat mat mat
Status – – – – nbr brd nbr brd

Notation x9,t x10,t x11,t x12,t x13,t x14,t x15,t x16,t

Age 6 6 7 7 8+ 8+ 0+ 0+
Maturity mat mat mat mat mat mat – –
Status nbr brd nbr brd nbr brd dead dead

breeding or not breeding per year, and ultimately dying. The temporal range is from 1990 (t = 0) to
2019 (t = 30) inclusive. The transitions between states are governed by a set of probabilities, notably
the survivorship vector φ and probabilities of breeding α (see Table 3). The model is described
assuming these rate parameters to be constant over time. For example:

p(x2,t |x1,t−1) = φimm

is the probability of transition from x1,t−1 to x2,t , whereas:

p(x7,t |x5,t−1) = φmat · (1−αa(7))

is the probability of transition from state x5,t−1 to state x7,t , encompassing survivorship from the
beginning of timestep t−1 and instantaneous non-breeding 1−αa(7) at the beginning of time t. The
probability of breeding is age-dependent, using the subscript notation a(k) to refer to the age at state
k. States x13,t and x14,t (i.e. age 8+) are treated as a plus group. For states x11,t , . . . ,x14,t , which are
referred to collectively as x11:14,t , then:

p(x13,t |x11:14,t−1) = φmat · (1−αa(13))

p(x14,t |x11:14,t−1) = φmat ·αa(14)

noting that a(13) = a(14) = 8+. Individuals transition into x15,t (recently dead) when they die:

p(x15,t |x11:14,t−1) = 1−φmat

fulfilling the condition that transition probabilities out of a given state sum to one. In general,
complete specification of the state transition probabilities implies that transition probabilities out of
any state xz sum to one:

∑
k

p(xk,t |xz,t−1) = 1

Finally, following death, individuals accumulate in x16,t :

p(x16,t |x15,t−1) = 1

This distinction between the “recently dead” and “dead” allows us to accommodate different types
of recapture data in the model. Specifically, for alive and dead individuals, the latter are referred
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Table 2: Possible observations per individual during time t. Maturity is ab-
breviated and can be either Immature (imm) or Mature (mat). Status is one
of Non-breeding (nbr), Breeding (brd), Unknown (ukn), Not seen (if the indi-
vidual does not return to the beach), Unobservable (for when there was no
recapture effort), or Dead.

Notation y1,t y2,t y3,t y4,t y5,t y6,t y7,t y8,t y9,t y10,t

Age 0 1 2 3 4 4 4 5 5 5
Maturity imm imm imm imm mat mat mat mat mat mat
Status – – – – nbr brd ukn nbr brd ukn

Notation y11,t y12,t y13,t y14,t y15,t y16,t y17,t y18,t y19,t

Age 6 6 6 7 7 7 8+ 8+ 8+
Maturity mat mat mat mat mat mat mat mat mat
Status nbr brd ukn nbr brd ukn nbr brd ukn

Notation y20,t y21,t y22,t

Age 0+ 0+ 0+
Maturity – – –
Status not seen dead unobservable

to in the literature as “recoveries” (e.g. Barker 2005). In the current setting, phantom tags are from
individuals known and seen to be dead on the beach (i.e. “recently dead”), whereas for the other tag
types death might have occured at any point since the last observation. The observation probabilities
for these two states (x15,t vs. x16,t) are different and conditional on the tag data type. They therefore
need to be separated in the state partitions.

Observation probabilities are constructed differently for phantom tags and the other tag types. For
phantom tags, using the subscript notation l to refer to the mark-recapture data type, we simply
write:

p(y21,t,l=pha|x15,t) = 1

but zero otherwise, meaning that tags are only seen if the individual is recently dead. Individuals
with phantom tags are always correctly identified as belonging to state x15,t .

For the other mark-recapture data types (branded, chipped, and flipper tagged), observation probabili-
ties for each state include the probabilities r of returning to the beach (and therefore being available
for observation), whether an individual can be identified using a tag or other marking (described
using a conditional resight probability υ), and an observation uncertainty δ indicating whether the
breeding status of an individual can be categorised or not (Table 3). For l 6= phantom, observations
for x5,t are illustrative:

p(y5,t,l|x5,t) = υa(5),l · rnbr ·δnbr

p(y7,t,l|x5,t) = υa(5),l · rnbr · (1−δnbr)

p(y20,t,l|x5,t) = (1−υa(5),l) · rnbr +1− rnbr

which refer respectively to the probabilities of an individual in state x5,t being recorded in observation
categories y5,t,l , y7,t,l , or y20,t,l , at time t for mark-recapture data type l.
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Table 3: Table of notations used to construct transition and observation prob-
abilities per year for reference case model with informed estimation of time
variant pup survivorship.

Notation Description
Subscripts and partitions
i = {1,2, . . .} individual
t = {0,1, . . . ,30} time from 1990 to 2019 inclusive
k = {1,2, . . . ,16} index for hidden state xk,t

m = {1,2, . . . ,22} index for observed state ym,t

a = {0,1, . . . ,8+} age
a(k) age at state index k

l = {pha,bra,chp, tag} mark-recapture data type, being one of phantom, branded,
chipped, or flipper tagged.

Time invariant parameters
P5(xk) Simplex vector of proportions per state at time t = 5
N5 Initial numbers scalar at time t = 5

φ (0) = {φ0,φimm,φmat}
probability of survivorship for pups (age 0), immature, and
mature individuals

α (0) = {αa} probability of pupping for age a

r = {rimm,rnbr,rbrd}
probability of returning to beach for immature, non-breeding, and
breeding individuals

υ = {υa,l}
probability of observation for age a and mark data type l,
conditional on return to the beach. For l = tag, this is as a
function of the tag loss rate parameters u0 and u (Equation 1)

δ = {δnbr,δbrd} probability of recording non-breeder or breeder as unknown
Time variant parameters
φ (t) = {φ0,t} probability of survivorship for pups (age 0) at time t
Error terms

σ
dynamic regression variance term fixed at σ = 1 for reference
model

τ smoothing parameter with 0 < τ < 1

Similarly for an individual in state x6,t :

p(y6,t,l|x6,t) = υa(6),l · rbrd ·δbrd

p(y7,t,l|x6,t) = υa(6),l · rbrd · (1−δbrd)

p(y20,t,l|x6,t) = (1−υa(6),l) · rbrd +1− rbrd

The observation category y20,t,l records when an individual was not seen. If she is alive, this may be
due to either not returning to the beach to breed or returning but not being identified (because of tag
loss, for example). Alternatively, she may be dead (i.e. in state categories x15,t or x16,t), in which case
she is never seen:

p(y20,t,l|x15:16,t) = 1.0

Finally, for calculation of the mark-recapture likelihood using the forward algorithm (Section 4.1),
observation probabilities for a state must sum to one and we therefore require an “unobservable”
category for when no sampling effort took place. If there are data the unobservable observation
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category is always empty:
p(y22,t,l|xk,t) = 0.0

but conversely, if there was no sampling effort then for all k:

p(y1:21,t,l|xk,t) = 0

p(y22,t,l|xk,t) = 1

This ensures that each state is always observed in one of the available observation categories:

∑
k

p(yk,t,l|xz,t) = 1

2.2 Conditional resight probabilities

We define υa(k),l as the probability of resighting an individual in state k, with tag type l, given that
she has returned to the beach (Table 3). For the four types of mark-recapture data each has a resight
probability that is considered differently. Individuals that are branded have a conditional resight
probability of one: we assume that they are always seen if they return to the beach. Individuals that
are observed dead (phantom tags) also have a conditional resight probability of one. Individuals
that are chipped have an estimated resight probability that is constant across states. These are easily
represented in the model. However, for individuals that have been tagged using flipper tags, we are
required to model the tag-loss process so as to calculate the probability that an individual has lost
both tags and therefore cannot be identified.

To model the loss of flipper tags, we assume a binomial process, but with a higher initial loss rate
(loss in the first year of tagging) and with a plus group for ages 8+. Using the notation d, s, and m to
represent double, single, and missing tags respectively, and d→ s, s→ m, and d→ m to denote the
various types of tag loss then:

P [d→ d] = 1−
(
2 ·u · (1−u)+u2)

P [d→ s] = 2 ·u · (1−u)

P [d→ m] = u2

P [s→ s] = 1−u

P [s→ m] = u

P [m→ m] = 1

where u is the annual tag loss rate parameter. The intial tag loss is given the notation P0 [.] with
parameter u0. These can be used to calculate the probabilities at age of an individual having two, one,
or no tags at age a. The age is initialised at a = 1, referring to the probability of tag loss between age
0 and age 1. Therefore, because tagged pups are all given double tags:

P [d|a = 1] = P0 [d→ d]

P [s|a = 1] = P0 [d→ s]

P [m|a = 1] = P0 [d→ m]

and the conditional resight probability for age one individuals is:

υa(k)=1,l=tag = 1−P [m|a = 1]

Fisheries New Zealand Sea lion biodemographic model l 7



which is strictly an upper bound, because even some individuals with single (or double) tags may not
be identified.
Similarly for ages a > 1, we can calculate the probabilies of double, single, or missing tags:

P [d|a] = P0 [d→ d]× (P [d→ d])a−1

P [s|a] = P0 [d→ s]× (P [s→ s])a−1+

(P0 [d→ d])× (a−1)× (P [d→ d])a−2×P [d→ s]

P [m|a] = 1− (P [d|a]+P [s|a])

=⇒ υa(k),l=tag = P [d|a]+P [s|a] (1)

For the probability of d, s, or m tags for the 8+ age group, we calculate the above probabilities for
ten additional age classes and take the average. The use of ten additional age classes to calculate the
plus group probability was arbitrary and chosen through trial and error.

2.3 State dynamics

We describe transition between states as a deterministic process, governed by the probabilities
outlined above, with reference to time t, which indicates the beginning of the time step. The numbers
in state xk at the beginning of year t is therefore:

N (xk,t) = ∑
j

N (x j,t−1) · p(xk,t |x j,t−1) (2)

which fulfills the condition that:

∑
k

N (xk,t) = ∑
k

N (xk,t−1) (3)

meaning that the population is closed to emigration and immigration. Following transition of the
numbers vector into time t, the number of pups born is then:

N (x0,t) =
1
2
·∑

k
N (xk,t) for k = {6,8,10,12,14} (4)

since each breeding female is assumed to produce a single pup with a 50% probability of being
female.

It should be noted that whereas transition probabilities are estimated over the full temporal range
of mark-recapture data (t = 0 to t = 30), the abundance is estimated only for years containing pup
census data (Table 5). The numbers are therefore initialised at t = 5, corresponding to 1995, and
estimated through to t = 30. To initialise the model dynamics, the initial state proportions Pt=5(xk)

were treated as estimated parameters and multiplied by a scalar:

N (xk,5) = N5 ·P5(xk) with ∑
k

P5(xk) = 1 (5)

This parameterisation required a further constraint so that the number of pups in the first year was
consistent with the number of breeding females (see Section 4).
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2.4 Informed estimation of dynamic survivorship

To allow for covariate data to be included so as to inform the estimation of time-variant parameters,
we need to introduce an observation model that relates an unobserved condition or state to an observed
covariate value. Usually, this would be represented as a regression of the time-variant rate onto the
observed covariate (e.g. Brooks et al. 2004, Gimenez et al. 2009, Schofield & Barker 2011). However,
to do so assumes that the covariate is measured without error, which is not true. Instead, we require
a model that allows for uncertainty in both the observation and the underlying state process. This
is better represented as a state-space model, also known as a dynamic linear regression (Durbin &
Koopman 2001). Not only does this approach better represent both the observation and process
uncertainties, but it has a number of desirable features, including an ability to smooth responsiveness
of the state, include a lag, account for missing observational data and allow the state to be correlated
with more than one data time series.

In the current setting we are interested in the relationship between observed pup mass shortly after
birth and the estimated (unobserved) pup survivorship in the first year of life, which we suspect to be
positively correlated (Roberts et al. 2021). Including an index on pup mass follows naturally from
our representation of time-variant pup survivorship, with an additional sub-model used to represent
uncertainty in the relationship between φ0,t and the normalised index of pup mass wt :

logit(φ0,t) = logit(φ0)+ εt with εt ∼ N(0,τ ·σ2) (6a)

wt = η + logit(φ0,t) ·β + εt with εt ∼ N(0,(1− τ) ·σ2) (6b)

This representation partitions the variance between temporal changes in the latent variable φ0,t and
the observation error, using the smoothing parameter τ . Smaller values of τ lead to a more damped
response to variation in wt under the assumption that the variation is attributable to observation error
rather than true fluctuations in the survivorship. Either τ or σ can be estimated, but not both. In the
currrent implementation, τ was estimated under a range of fixed values for σ . Alternative runs were
attempted in which σ was estimated for fixed τ , but this failed to produce adequate fits to the pup
mass index.

3 Data

Four sources of data were available to paramaterise the model. These data were identical to those used
for the quantitative modelling conducted by Roberts (2019) with the exception of the standardised pup
mass index, which was provided by Roberts et al. (2021) for the purposes of this project. Consistent
with Roberts (2019), mark-recapture data was restricted to that collected at Sandy Bay, whereas pup
census data was for the entire Auckland Islands archipelago. The data were:

• Mark-recapture: All pups were tagged on the beach and subsequent resightings recorded on
their return. Individuals could be uniquely identified, substantially increasing the power of the
data to resolve time variant life-history parameters. All resighted individuals were assigned to
one of the observation categories listed in Table 2. Three different types of markings were used,
beginning in 1990 and ending in 2019, and are listed in Table 4. Mark types were exclusive,
meaning that each individual was assigned to only one mark type category. Precedence was
given to branding, followed by passive integrated transponders (PIT tags or “chips”), and then
flipper tags, which is the (descending) order in which they were most reliably resighted. For
example, an individual that was both branded and chipped, was consider here as “branded”,
whereas an individual that was both chipped and flipper tagged was considered as belonging to
the “chipped” mark data type. This assignment to a particular mark data type was based on

Fisheries New Zealand Sea lion biodemographic model l 9



how they were marked as pups and retained throughout their resight history regardless of how
the resight was recorded.

• Counts of tag loss: Using data from all mark types, the number of flipper tags at age was
calculated across all observed individuals (Table 6). Individuals with an unknown number of
flipper tags were excluded. These data were used to directly estimate the tag loss rate at age.

• Dead pup counts: pups recorded as dead on the beach were considered to be an additional
mark data type, referred to as “phantom” tags, because they were recorded as dead at the time
of “tagging” (Table 4). For each dead pup recorded at time t a new observation time series was
created, consisting of a mark at time t and a death at time t +1. This records the occurence of
an individual known to have died during its first year. Inclusion of these data was necessary to
ensure accurate estimation of pup mortality.

• Pup census counts: The number of pups on the beaches (live and dead) between 1995 and 2019
was counted and divided by two, giving important information on the annual pup production
(Table 5).

• Pup mass data: a standardised index of female pup mass was provided for 1990 to 2019
(Table 5).

When considering the mark-recapture data, it is necessary to include the “observability,” which is a
binary variable indicating whether or not any resight effort had been expended in a particular year
(this differs from the resight probability, which is conditional on there being positive sampling effort).
The observability for brand, chip, and tag mark-recapture data types was one for all years except
1994 to 1997. For phantom tags, the observability is one for all years, because a “tag” automatically
implies a resight and therefore resight effort.

4 Model fitting

The estimated parameters for the multi-event integrated HMM are listed in Table 3. Calculation
of the likelihood for the mark-recapture data is described first, because this is the most important,
followed by contributions of the tag-loss and pup census data. Finally, the likelihood for inclusion of
the covariate data is described.

4.1 Mark-recapture data

Calculation of the mark-recapture likelihood is via the forward algorithm (Zucchini & MacDonald
2009), which calculates the joint marginal probability of both the current state and the preceding
observations per individual. Dropping the i and l subscripts, for individual and data type respectively,
we write this probability as γ(xk,t ,ym,t , . . . ,ym,1), which is the probability of state k at time t and all
observations for the individual up until then. This is calculated recursively for each observed value
ym,t :

γ(xk,t ,ym,t , . . . ,ym,1) = p(ym,t |xk,t) ·∑
j

p(xk,t |x j,t−1) · γ(x j,t−1,ym,t−1, . . . ,ym,1) (7)

The algorithm is initialised for each individual at t = t0, which is the time of first observation
(capture), and with initial conditions γ(xk,t0 ,ym,t0) = 1 and γ(x j 6=k,t0 ,ym,t0) = 0, corresponding to the
fact that the initial capture state is known without error. The final individual likelihood contribution
is calculated by marginalising γ(xk,T ,ym,T , . . . ,ym,1) across all possible states in the final time step
t = T , to calculate the probability of the time series of observations, whilst accounting for uncertainty
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in the latent states:
L [ym,T , . . . ,ym,1] = ∑

k
γ(xk,T ,ym,T , . . . ,ym,1) (8)

4.2 Tag loss

The probabilities of double d, single s, or missing m flipper tags at age a are calcuated using
Equation 1. The number observed (nd,a,ns,a,nm,a; Table 6) is then modelled using a multinomial
probability distribution:

L [nd ,ns,nm] =
8+

∏
a=1

(nd,a +ns,a +nm,a)!
nd,a! ·ns,a! ·nm,a!

· (P [d|a])nd,a · (P [s|a])ns,a · (P [m|a])nm,a (9)

4.3 Pup census data

The pup count data is assumed to be Poisson distributed, with an expectation equal to the number
of breeding females. For observed numbers nt (Table 5), this was approximated using a Normal
distribution:

L [n5, . . . ,nT ] =
T

∏
t=5

1√
2 ·π ·µt

exp
(
−1

2
· (nt −µt)

2

µt

)
(10)

µt =
1
2 ∑

k
N (xk,t) for k = {6,8,10,12,14}

4.4 Pup mass

The likelihood for the pup mass index has two components, both of which are dependent on τ , which
is estimated, and a fixed input value for σ . First, for the dynamics of φ0,t over time given the estimated
expectation φ0 (Equation 6a):

L
[
φ (t)

]
=

T

∏
t=1

1√
2 ·π · τ ·σ2

exp
(
−1

2
· (φ0,t −φ0)

2

τ ·σ2

)
(11)

and then for the normalised pup mass index wt given the expected value ŵt =η+φ0,t ·β (Equation 6b):

L [wt ] =
T

∏
t=1

1√
2 ·π · (1− τ) ·σ2

exp
(
−1

2
· (wt − ŵt)

2

(1− τ) ·σ2

)
(12)

4.5 Priors and constraints

To invoke biological realism the survivorship is constrained to be higher in older age classes:

φ0 ≤ φimm ≤ φmat

and similarly for the probability of breeding:

αa−1 ≤ αa

for a = {5,6,7,8+}. Finally, the return probability for breeding individuals is ordered such
that:

rimm ≤ rnbr ≤ rbrd

Fisheries New Zealand Sea lion biodemographic model l 11



The number of female pups born is deterministic (Equation 4), with the exception of the initial year
(t = 5) for which the number of pups in the population is a component of the estimated vector P5(xk)

(Equation 5). Within a stochastic model the number of offspring produced by a cohort of females can
be represented by a Poisson distribution (e.g. Brooks et al. 2004). Therefore, to ensure that the initial
number of pups is consistent with the initial number of breeding females, a constraint is imposed in
the form a Normal approximation to the Poisson:

N (x0,5)∼ Normal (µ5,µ5)

µ5 =
1
2 ∑

k
N (xk,5) for k = {6,8,10,12,14}

All parameters contributing to the calculation of state transition and observation probabilities were
given standard normal priors on the logit-scale:

logit
(

φ

)
∼ Normal(0,1)

logit(α)∼ Normal(0,1)

logit(r)∼ Normal(0,1)

logit(δ )∼ Normal(0,1)

Tag loss rate parameters were:
{u0,u} ∼ Beta(1,1)

whilst 0≤ υa,l=chp ≤ 1 was estimated as a free parameter and υa,l=bra was fixed at one. Regression
parameters were:

η ∼ Normal(0,1)

β ∼ Normal(0,1)

τ ∼ Beta(1,1)

Lastly, P5(xk) and N5 were each given improper uniform priors with a lower bound at zero.

5 Model development

The model was constructed using the rstan coding environment (Stan Development Team 2019,
R Core Team 2019). A base model was first developed to assess essential validity of the code
and estimation framework, assuming constant (time-invariant) rate parameters (and therefore no
relationship between pup mass and survivorship). Validation was performed using simulated data to
ensure that known parameter values could be recovered by the model (Section 6.1). Next, performance
of the regression was investigated; specifically model fits to the pup mass index under differing error
assumptions (Section 6.2). The selected model (the reference model) was taken through to estimation
using Markov Chain Monte Carlo (MCMC), and model fits to the data are reported (Section 6.3).
Finally, the model that includes a regression on pup mass was compared with a model with the same
structure but no continuous covariate data (the naive model), so as to assess the benefits of including
these data (Section 6.4). The different models and their utility are listed in Table 7.

12 l Sea lion biodemographic model Fisheries New Zealand



alpha4 alpha5 delta1 delta2

r3 alpha1 alpha2 alpha3

p2 p3 r1 r2

phi1 phi2 phi3 p1

0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75

0
50

100
150
200

0
50

100
150
200

0
50

100
150
200

0
50

100
150
200

Parameter value

C
ou

nt
Fit to simulated data

Figure 1: Simulation based validation of model structure. Data were simu-
lated, and the model refitted to the simulated data using maximum posterior
density estimation. Histograms show estimated values from the simulated
data, relative to values used for the simulation (vertical red line).

6 Results

6.1 Model validation

The initial (base) model construct was first validated through simulation, which required the simula-
tion of new mark-recapture data based on known parameter values, then re-fitting the model to assess
whether the input values can be recovered:

1. Fit the model to the complete data using maximum penalised likelihood

2. Simulate 200 iterations of mark-recapture data using the fitted values

3. Re-fit the model to the simulated data

Results for the transition and observation probability parameters are shown in Figure 1. Typically,
estimated parameter values are similar to those used to generate the data. Because similar parameter
values are obtained from a fit to real or simulated data we can conclude that the model, as a statistical
representation of the data, is a good approximation. If, for example, the model was a biased estimator
of the survivorship, then simulated and observed data would be a poor match, and the input and
estimated parameter values would be different.

6.2 Model selection

Performance of the regression (Equation 6) was explored by including the pup mass index and
estimating the smoothing parameter τ under a range of fixed σ values. Fits of the model to the pup
census and pup mass index, achieved through maximisation of the penalised likelihood, are shown in
Figure 2.

Fits to the census data are good for all model runs. At smaller values of σ , the model predictions of the
pup mass become increasingly accurate (up to a lower limit: for values of σ ≤ 0.5 the minimisation

Fisheries New Zealand Sea lion biodemographic model l 13



●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●● ●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●● ●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

Fit Observed vs. Predicted

1995 2000 2005 2010 2015 2020 800 1000 1200 1400

750

1000

1250

1500

750

1000

1250

1500

σ
●

●

●

●

●

●

●

●

●

●

●

1.6
1.5
1.4
1.3
1.2
1.1
1
0.9
0.8
0.7
0.6

Fit to pup census

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●● ●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●● ●●●●● ●

●●●● ●●● ●● ●●

● ●● ●● ●● ●●● ●

●●●●●●●●●●●

●●●● ●● ●● ●●●

● ●● ●● ●●●● ●●

●● ●●● ●● ●●● ●

● ●●●●●●●●●●

● ●●●● ●●●● ●●

●●●●●●●●●●●

●● ●●●●● ●●● ●

●●●●●●●●●●●

●●●● ●●●● ● ●●

●● ●●●●● ●●●● ●●●●●● ●●●●●

●● ●●●●●●●●●

●● ●● ●● ●●●● ●

●●●●● ●●●●●●

● ●●● ● ●●● ●● ●

●●● ●● ●●●●● ●

●● ●●●●●● ●●●

●●● ●●●●●●●●

● ●●●● ● ●● ●●●

● ●● ● ●●●● ●● ●

●●●●●●●●●●●

●●●●●●●●●●●

● ● ●● ●● ● ●●●●

●● ●●● ● ●●● ● ●

Fit Observed vs. Predicted

1990 2000 2010 2020 0.0 0.5 1.0 1.5 2.0 2.5

0.0

0.5

1.0

1.5

2.0

2.5

0.0

0.5

1.0

1.5

2.0

2.5

σ
●

●

●

●

●

●

●

●

●

●

●

1.6
1.5
1.4
1.3
1.2
1.1
1
0.9
0.8
0.7
0.6

Fit to pup mass

Figure 2: Fits of reference model to census and pup mass index under differ-
ent assumed values of σ .

becomes unstable). Intuitively, smaller σ values place an increasing weight on the pup mass index
at the expense of model flexibility to fit the other data types (because time-variant φ0,t is more
constrained). The mean prediction error was used to measure fits to the different data types. From
Figure 3, it can be seen that improved fits to the pup mass impede the fit to the mark-recapture data,
because at smaller values of σ there is an increase in the mean prediction error. Based on these
results, a value of σ = 1 was adopted for the reference case model, because it allowed a good fit to
the pup mass index without compromising fits to the mark-recpture observations.

6.3 Model fits

The reference model converges well, requiring fewer than 1000 iterations to reach stability of the
MCMC chain (Figure 4). Fits to the pup census data are good (Figure 5), with the model reproducing
the observed decline in pup numbers over time. Fits to the pup mass index (Figure 6) show that the
model is responsive to the covariate data, with pup survivorship changing over time with pup mass.
Fits to the tag loss data are shown in Figure 8. Although not included directly into the likelihood
calculations, it is also reassuring to note that the model is able to accurately reproduce the proportion
of breeding females (Figure 7).
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Figure 3: Mean prediction error for the three input data types under differ-
ent assumed input values for σ (Equation 6)

Fits to the mark-recapture data are shown in Figure 9. For each individual in the mark-recapture
data, posterior prediction was used to simulate a time series of states, from which observations could
be simulated. Summing these simulated observations per tag data type, year, and observation class,
these predicted values were compared to the observations. This is a form of posterior predictive
checking (Gelman et al. 1996), based on the intuitive idea that if a model is a good fit to the data, then
the replicated data (y∗m,t) predicted from the model should look similar to the observed data (ym,t).
Parameter uncertainty is explicitly accounted for because the data realisations are generated from
parameter values randomly drawn from the posterior distribution. To simplify the comparison, a
summary statistic is used. In this case it is the multi-event m-array Ml,m,t which is a summation of
the numbers per tag data type, per observation class, per year. Comparisons of Ml,m,t with M∗l,m,t are
shown in Figure 9. As a further diagnostic, a discrepancy measure D was constructed so as to include
both the simulated data and expected values (e.g. Chapter 7; Kéry & Schaub 2011). To achieve this,
simulated tag observations M∗l,m,t were compared with the expected values from the model fit, and
empircal tag observations Ml,m,t were compared with the same expected values:

Dl,m = ∑
t

log(Ml,m,t)− log(E [Ml,m,t ])

D∗l,m = ∑
t

log
(
M∗l,m,t

)
− log(E [Ml,m,t ])

If the model is structured correctly, these two comparisons (summarised as Dl,t and D∗l,t) should
generate a roughly equivalent residual. It can be seen from Figure 10 that the model in general
provides a good match to the data, but that it underestimates the number of 8+ breeding (y18)
individuals in the branded data set, and the number of 8+ non-breeding and breeding individuals (y17

and y19 respectively) in the chipped data set.
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Figure 9: Fits to tag data. Observed numbers by mark-recapture data type
(branded, chipped, or flipper tagged), class (Table 2), and year are shown
as points. The median and 95th percentile of the posterior predicted values
from the model fit are shown.
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Figure 10: Discrepancy plots for each mark-recapture data type (branded,
chipped, or flipper tagged), and class (Table 2) showing the relationships be-
tween D∗m,l (Simulated vs. Expected) and Dm,l (Observed vs. Expected).
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6.4 Utility of covariate data

The reference case model was fitted to the mark-recapture and pup census data, with and without the
covariate data on pup mass. In the absence of this covariate data, the change in pup survivorship over
time is a simple white noise process (i.e. stochastic with no correlated between years). Comparison of
the pup survivorship estimates over time from the two models is given in Figure 11. It is interesting
to note that both estimates are very close for much of the time series. This indicates that the mark-
recapture data have a strong influence. However, it can also be seen that differences appear for periods
of time when the mark-recapture data are either absent (1994–1997; Table 4) or uninformative (2017
onwards). The data are uninformative until individuals tagged as pups start to return to the beach
approximately four years later. Hence there are few data with which to estimate pup survivorship
in the last four years. Both of these features (the impact of missing and uninformative data) can
be seen in Figure 12, which for the naive model shows an increase in the coefficient of variation
for 1994–1997 and from 2017 onwards, compared with the model including the covariate data (the
reference model; Table 7). We can therefore conclude that including the pup mass index provides
information for the estimation of pup survivorship in years when the mark-recapture data are lacking,
including the latest field seasons.

From Figure 6a, it can be seen that the predicted pup mass fits the data well. The fit is also good
for recent years, this gives confidence that the estimated pup survivorship for 2017 onwards is
at least consistent with the relationship between pup survivorship and pup mass, noting that this
relationship was estimated in the context of informative mark-recapture data over most of the time
series. This conclusion is particularly important if the model is to be used for projections, because
if pup survivorship is better estimated in the current year, short term predictions of the population
dynamics will be be better resolved. We note that previous SeaBird models, when conducting
projections, have not used the most recent two years of pup survivorship as they are too poorly
estimated.

7 Discussion and Conclusions

The reference case model integrates across disparate data types, namely mark-recapture (and “re-
covery”) data, census (pup count) observations, and continuous covariate data (in the form of a
standardised index of pup mass). It is able to provide good fits to all of these data series, showing
predictions that match closely to the empirical values, and converges well when parameters are
estimated using MCMC. Most importantly for the current project it is shown that the pup mass index
can be used to inform estimation of the pup survivorship, which has important implications for years
where the mark-recapture data are uninformative or missing. This includes the most recent cohorts,
because resightings will be too sparse to obtain precise estimates of annual survival. An ability to
predict survivorship from pup mass also has implications for the monitoring of sea lion colonies other
than Sandy Bay (e.g. Dundas Island and Figure of Eight Island), where restricted access may mean
that consistent collection of mark-recapture data is unfeasible, but occasional access to monitor pup
mass may still be possible and provide some information indicative of first year survival.

The utility of pup mass for predicting pup survival suggests that pup nutritional status is a determinant
of population productivity in New Zealand sea lions at the Auckland Islands. Since pups generally
do not wean until around ten months post-partum (Gales 1995), it is likely that variation in pup mass
relates in some way to the nutritional status of breeding females, which may in turn be driven by
changes in the availability of key prey species (Roberts et al. 2018). In addition, bacterial disease
(particularly Klebsiella pneumoniae infections, first detected in the early 2000s) and parasite burden
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(particularly hookworms) are thought to impact on pup survival (Michael et al. 2019, Roberts et al.
2014, Roe et al. 2015), and have an unknown effect on pup condition through time. We note that
variable breeding rates (e.g., age at first breeding or annual breeding probability) of sea lions and
other income breeders are also known to be responsive to changes in nutritional status (Gaillard et al.
2000), and future assessments could explore the potential for biological and environmental drivers of
these demographic rates.

More generally, biodemographic models such as the one presented here could be used to develop
a framework for assessing the population effects of nutritional stress and its environmental drivers,
or other potential threats, to address a major shortcoming of previous multi-threat risk assessments,
including those for New Zealand sea lions and Hector’s and Māui dolphins (Roberts & Doonan 2016,
Roberts 2019). We have not attempted this here. Conceptually, it would require formal comparisons
between models that include different covariate inputs, each representing a potential threat, to assess
which of these is both a strong determinant of the biological processes being modelled and of
consequence for long term viability of the population.

7.1 Management implications

This project highlights the utility of pup mass measurements for monitoring the health of pups and
predicting first-year survival. The standardised index of female pup mass used by this assessment was
based on measurements from Sandy Bay. Given logistical difficulties with respect to the resighting
of sea lions tagged as pups at the much larger rookery at Dundas Island, we recommend that future
research considers the potential utility of using pup measurements to monitor both the Dundas Island
population and the population at Figure of Eight Island.

Having identified an apparently strong relationship between pup mass and first year survival, we
suggest that future research attempts to identify additional relationships, including the underlying
drivers of these patterns. By including multiple threats, and assessing their impacts on the population’s
demographic rates, we could develop a framework capable of incorporating both top-down and
bottom-up effects, useful for future iterations of the sea lion TMP, as well as for risk assessments of
other threatened mega-fauna.
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Table 4: Number of marks and resights per mark type and year. Mark types
are exclusive, meaning that individuals are assigned to one only (see text).

Phantom Brand Chip Tag
Year Mark Mark Resight Mark Resight Mark Resight
1990 148
1991 191 0
1992 226 0
1993 194 0
1994
1995
1996
1997
1998 5 255 0 1
1999 16 211 0 0 147
2000 11 139 105 11 0 181
2001 17 0 5 289 31 0 167
2002 33 0 2 174 68 0 153
2003 33 0 14 0 119 210 144
2004 16 0 26 0 155 252 145
2005 15 0 28 0 155 228 125
2006 19 0 21 0 161 211 159
2007 10 0 21 0 182 203 168
2008 11 0 21 0 124 208 193
2009 6 0 19 0 131 150 190
2010 9 0 19 171 127 0 201
2011 9 0 16 179 132 0 239
2012 9 0 14 181 110 0 186
2013 8 0 16 168 112 0 156
2014 3 0 18 81 214 76 185
2015 4 0 13 144 247 0 155
2016 7 0 15 167 240 0 151
2017 9 0 9 155 197 0 91
2018 11 0 7 166 236 0 108
2019 5 215 63
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Table 5: Female pup counts (total pups, alive and dead, divided by two) for
the Auckland Islands archipelago and standardised pup mass estimates

Year Count Pup mass index
1990 1.23
1991 1.75
1992 2.32
1993 2.45
1994
1995 1 259.0 1.39
1996 1 342.5 0.00
1997 1 487.5 0.99
1998 1 510.5 0.24
1999 1 433.5 1.49
2000 1 428.0 1.06
2001 1 429.5 1.45
2002 1 141.0 0.61
2003 1 258.5 1.30
2004 1 257.5 0.88
2005 1 074.0 1.03
2006 1 044.5 1.06
2007 1 112.0 1.42
2008 1 087.5 1.77
2009 750.5 1.41
2010 907.0 2.12
2011 775.0 1.80
2012 842.0 1.63
2013 934.0 1.17
2014 787.5 0.79
2015 788.0 0.29
2016 863.5 1.45
2017 982.5 1.01
2018 896.0 1.48
2019 839.0 2.07

Table 6: Flipper tag counts at age, summed over all years and tag data types

Age Frequency
Double Single Missing

1 92 25 3
2 100 32 4
3 275 114 16
4 347 163 23
5 282 159 53
6 202 206 51
7 164 227 45
8+ 480 1 213 750
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Table 7: Model descriptions

Model
Pup
survivorship

Regression
on pup mass

Notes

Base Constant False
Used for basic model validation
through fit to simulated data
(Section 6.1)

Naive
Time variant
(σ = 1)

False

For comparison to reference
model to evaluate benefit of
including pup mass covariate
data (Section 6.4)

Reference
Time variant
(σ = 1, τ

estimated)
True

Final model with σ selected
following runs with alternate
input values (Sections 6.2 and
6.3). Model code is provided in
the Appendix (Listing A1).
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Appendix: stan code

Code listing A1: Stan code for reference model
// -------------------------------------------------
// States (S):
// 1 I0
// 2 I1
// 3 I2
// 4 I3
// 5 M4N
// 6 M4B
// 7 M5N
// 8 M5B
// 9 M6N
// 10 M6B
// 11 M7N
// 12 M7B
// 13 M8N
// 14 M8B
// 15 JUST DEAD
// 16 DEAD
// Observations (O):
// 1 I0
// 2 I1
// 3 I2
// 4 I3
// 5 M4N
// 6 M4B
// 7 M4U
// 8 M5N
// 9 M5B
// 10 M5U
// 11 M6N
// 12 M6B
// 13 M6U
// 14 M7N
// 15 M7B
// 16 M7U
// 17 M8N
// 18 M8B
// 19 M8U
// 20 NOT SEEN
// 21 UNOBSERVABLE (NO SAMPLING EFFORT)
// 22 DEAD
// -------------------------------------------------

functions {

/**
** Return an integer value denoting occasion of first capture.

**
** @param y Observed values

** @return Occasion of first capture

**/
int first_capture(int[] y_i, int[] input_zero) {
for (k in 1:size(y_i)) {

if (y_i[k] > 0) {
int zero = 0;
for (l in 1:size(input_zero)) {

if (y_i[k] == input_zero[l])
zero = 1;

}
if (!zero) {

return k;
}

}
}

return 0;
}

/**
** Return a four dimensional integer m-array

**
** Dimension 1: mark time

** Dimension 2: recapture time

** Dimension 3: mark-recapture data type

** Dimension 4: observation state

**
** @param y integer matrix of observed states

** @param n_obs integer number of possible observed states

** @param zero integer values equal to the "not seen" and "unobservable" states

**/
int[,,,] calc_marray(int[,] input_y, int[] input_z, int n_data, int n_obs, int[] input_zero) {

int n_time = size(input_y[1,]);
int n_ind = size(input_y[,1]);

int m[n_time, n_time, n_data, n_obs];
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// initialise
for (i in 1:n_time)

for (j in 1:n_time)
for (k in 1:n_data)

for (l in 1:n_obs)
m[i, j, k, l] = 0;

// loop over individuals
for (i in 1:n_ind) {

// loop over mark occations
for (j in 1:n_time) {

if (j == first_capture(input_y[i,], input_zero)) {

// record mark
// state "not seen" at time j
m[j, j, input_z[i], input_zero[1]] = m[j, j, input_z[i], input_zero[1]] + 1;

if (j == n_time) break;

// loop over recapture occasions
for (k in (j + 1):n_time) {

// record recapture
// state input_y[i,k] at time k
m[j, k, input_z[i], input_y[i,k]] = m[j, k, input_z[i], input_y[i,k]] + 1;

}
}

}
}
return m;

}

/**
** Return expected value for m-array

**
**/

vector[,,] calc_mbar(vector[,] input_ps, vector[,] input_po, vector[,] input_pn, int[,] input_ov, int n_time, int
n_states, int n_data, int n_obs, vector[,] input_marks) {

vector[n_states] nbar[n_time, n_time, n_data];
vector[n_obs] mbar[n_time, n_time, n_data];

// initialise to zero
for (i in 1:n_time) {

for (j in 1:n_time) {
for (k in 1:n_data) {

for (l in 1:n_states)
nbar[i, j, k, l] = 0;

for (l in 1:n_obs)
mbar[i, j, k, l] = 0;

}
}

}

// calculate expected numbers
// per state
for (l in 1:n_data) {

for (i in 1:n_time) {

// all marks in observed state 1
nbar[i, i, l, 1] = input_marks[i, l, 1];

if (i == n_time) break;

// recapture occasion
for (j in (i + 1):n_time) {

for (k in 1:n_states)
nbar[i, j, l, k] = sum(to_vector(input_ps[, j-1, k]) .* nbar[i, j-1, l]);

}
}

}

// calculate expected numbers
// per observation category
for (i in 1:n_time) {

for (j in 1:n_time) {
for (k in 1:n_data) {

for (l in 1:n_obs) {
mbar[i, j, k, l] = (input_ov[k, j] == 1) ? sum(to_vector(input_po[, k, l]) .*

nbar[i, j, k]) : sum(to_vector(input_pn[, k, l]) .* nbar[i, j, k]);
}

}
}

}

return mbar;
}
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/**
** Return the Euclidean norm of a vector

**/
real vector_norm(vector x) {

real i = 0.0;

for (j in 1:num_elements(x))
i += pow(x[j], 2.0);

return pow(i, 0.5);
}

}
data {

// DIMENSIONS
int<lower=0> n_ind; // number of individuals
int<lower=0> n_states; // number of states (including death)
int<lower=0> n_obs; // number of observational categories (including not seen and unobservable)
int<lower=0> n_time; // number of mark-recapture occassions
int<lower=0> n_data; // number of mark-recapture data types (with different resight probabilities)
int<lower=0> n_ages; // max age (i.e. number of age categories excluding zero)
int<lower=0> n_plusgroup; // number of plus group ages considered for estimation of tag loss

// DATA
int<lower=0> x[n_time]; // pup census per year
int<lower=0,upper=n_obs> y[n_ind, n_time]; // mark-recapture history per individual
int<lower=0> z[n_ind]; // mark-recapture data type
int<lower=0,upper=1> observable[n_data, n_time]; // logical flag indicating whether mark-recapture data is

observable (i.e. positive sampling effort)
int<lower=0> loss[n_ages, 3]; // tag loss data

vector[n_time] w; // observed pup mass data
real<lower=0> sigma; // process error variance

}
transformed data {

// specify "not seen" and "unobservable"
// observation categories
int zero[2] = {n_obs - 1, n_obs};

// ages per state
int<upper=n_ages> ages[n_states] = {0, 1, 2, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, -1, -1};

// sex ratio of pups
real sex_ratio = 0.5;

// observables
int<lower=1,upper=2> ov[n_data, n_time];

// census data
// start time
int start;

// census data time
// dimension (dynamics)
int n_time_dyn;

// standardised pup mass
vector[n_time] w_std;

// identify first observation that is not
// equal to zero (no data) or the not seen and unobserved
// observation categories
int<lower=0,upper=n_time> first[n_ind];

// count number of marks
// per observed state
vector[n_obs] marks[n_time, n_data];

for (i in 1:n_time)
for (j in 1:n_data)

for (k in 1:n_obs)
marks[i, j, k] = 0;

for (i in 1:n_ind) {

first[i] = first_capture(y[i], zero);

marks[first[i], z[i], y[i, first[i]]] = marks[first[i], z[i], y[i, first[i]]] + 1;
}

// use vector to map observability
// onto dimensions of observation array
for (i in 1:n_data) {

for (j in 1:n_time) {
ov[i, j] = 1;
if (!observable[i, j]) ov[i, j] += 1;

}
}

// identify start of census
// time series
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start = 1;
for (t in 1:n_time) {

if (x[t] > 0) {
break;

} else {
start += 1;

}
}

// record time dimension
// for estimation of dynamics
n_time_dyn = n_time - start + 1;

// standardise pup mass
{

int n = 0;
real mu = 0.0;
real se = 0.0;

for (i in 1:n_time) {
if (w[i] >= 0) {

mu += w[i];
n += 1;

}
}
mu /= n;

for (i in 1:n_time) {
if (w[i] >= 0) {

se += pow(w[i] - mu, 2.0);
}

}
se /= (n - 1);

w_std = (w - mu) / se;
}

}
parameters {

// survivorship for pups, juveniles and
// adults in ascending order

vector[n_time] ph0_;
ordered[3] phi_;

// probability of pupping in ascending
// order from ages M4 to M8 inclusive
ordered[5] alpha_;

// return probability in ascending
// order for immature, non-puppers and
// puppers
ordered[3] r_;

// resight and tag loss parameters
vector<lower=0,upper=1>[3] p_;

// probability of identifying pupper/non-pupper
// as unknown (observation uncertainty)
vector<lower=0,upper=1>[2] delta_;

// initial number of pups
real<lower=0> N0_initial;

// initial numbers proportions
simplex[n_states - 2] P0;

// pup mass regression parameters
real eta_;
real beta_;

// smoothing parameter
real<lower=0,upper=1> tau;

}
transformed parameters {

// sum to one probabilities
simplex[n_states] ps[n_states, n_time];
simplex[n_obs] po[n_states, n_data];

simplex[n_obs] pn[n_states, n_data];

vector[3] phi[n_time]; // survivorship
vector[5] alpha[n_time]; // probability of breeding
vector[3] r; // probability of returning to beach (equal to one for breeders)
vector[2] delta; // probability of being unable to identify a breeder and non-breeder

vector<lower=0,upper=1>[n_states] p[n_data]; // resight probability conditional on returning to beach
vector<lower=0,upper=1>[3] theta[n_ages]; // multinomial probability of d/s/m flipper tags

// number of breeders
vector[n_time_dyn] NMB;

// number of mature adults
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vector[n_time_dyn] NMA;

// number of pups
vector[n_time_dyn] NI0;

// inverse transform of rate
// parameters

for (i in 1:n_time) {

phi[i, 3] = inv_logit(phi_[3]);
phi[i, 2] = inv_logit(phi_[2]);
phi[i, 1] = inv_logit(phi_[1] - ph0_[i]);

alpha[i, 5] = inv_logit(alpha_[5]);
alpha[i, 4] = inv_logit(alpha_[4]);
alpha[i, 3] = inv_logit(alpha_[3]);
alpha[i, 2] = inv_logit(alpha_[2]);
alpha[i, 1] = inv_logit(alpha_[1]);

}

r[3] = inv_logit(r_[3]);
r[2] = inv_logit(r_[2]);
r[1] = inv_logit(r_[1]);

// observation error
delta = delta_;

// calculate tag loss probabilities
{

// binomial probabilities of
// tag loss
real pr_dd = 1 - (2 * p_[2] * (1 - p_[2]) + p_[2] * p_[2]);
real pr_ds = 2 * p_[2] * (1 - p_[2]);
real pr_dm = p_[2] * p_[2];

real pr_ss = 1 - p_[2];
real pr_sm = p_[2];

real pr_mm = 1.0;

// probabilities of initial loss
// in year of tagging
real pr_idd = 1 - (2 * p_[1] * (1 - p_[1]) + p_[1] * p_[1]);
real pr_ids = 2 * p_[1] * (1 - p_[1]);
real pr_idm = p_[1] * p_[1];

// multinomial probabilities of
// double/single/missing tags
// at age
// age at beginning
// of time interval
int age = 1;

// initial tag loss during age = 0 to 1
theta[age] = to_vector({ pr_idd, pr_ids, pr_idm });

// subsequent tag loss in following years
for (i in 2:(n_ages + n_plusgroup)) {

age = i;

if (age > n_ages) {

theta[n_ages,] += to_vector({ pr_idd * pr_ddˆ(age - 1), pr_ids * pr_ssˆ(age - 1) + pr_idd *
(age - 1) * pr_ddˆ(age - 2) * pr_ds, 0});

} else {

theta[i,] = to_vector({ pr_idd * pr_ddˆ(age - 1), pr_ids * pr_ssˆ(age - 1) + pr_idd * (age - 1)

* pr_ddˆ(age - 2) * pr_ds, 0});
}

}

theta[n_ages] = theta[n_ages] / (n_plusgroup + 1);

for (i in 2:n_ages)
theta[i, 3] = 1 - sum(theta[i]);

}

// Conditional resight probabilities
for (i in 1:n_data)

p[i] = rep_vector(0.0, n_states);

// Branded mark-recapture data
p[1, 1:(n_states - 2)] = rep_vector(1.0, n_states - 2);

// Chipped mark-recapture data
p[2, 1:(n_states - 2)] = rep_vector(p_[3], n_states - 2);

// Tagged mark-recapture data
p[3, 1] = 1.0;
for (i in 2:(n_states - 2))
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p[3, i] = 1 - theta[ages[i], 3];

// Phantom tags
p[4, 1:(n_states - 2)] = rep_vector(1.0, n_states - 2);

// Define probabilities of state S(t+1) given S(t)

// Initialise
for (i in 1:n_states)

for (j in 1:n_time)
for (k in 1:n_states)

ps[i, j, k] = 0.0;

for (t in 1:n_time) {

// Immature transitions
ps[ 1, t, 2] = phi[t, 1];

ps[ 2, t, 3] = phi[t, 2];
ps[ 3, t, 4] = phi[t, 2];

// Mature transitions to
// non-breeder or breeder

// I3 to M4N/M4B
ps[ 4, t, 5] = phi[t, 2] * (1 - alpha[t, 1]);
ps[ 4, t, 6] = phi[t, 2] * alpha[t, 1];

// M4N to M5N/M5B
ps[ 5, t, 7] = phi[t, 3] * (1 - alpha[t, 2]);
ps[ 5, t, 8] = phi[t, 3] * alpha[t, 2];

// M4B to M5N/M5B
ps[ 6, t, 7] = phi[t, 3] * (1 - alpha[t, 2]);
ps[ 6, t, 8] = phi[t, 3] * alpha[t, 2];

// M5N to M6N/M6B
ps[ 7, t, 9] = phi[t, 3] * (1 - alpha[t, 3]);
ps[ 7, t,10] = phi[t, 3] * alpha[t, 3];

// M5B to M6N/M6B
ps[ 8, t, 9] = phi[t, 3] * (1 - alpha[t, 3]);
ps[ 8, t,10] = phi[t, 3] * alpha[t, 3];

// M6N to M7N/M7B
ps[ 9, t,11] = phi[t, 3] * (1 - alpha[t, 4]);
ps[ 9, t,12] = phi[t, 3] * alpha[t, 4];

// M6B to M7N/M7B
ps[10, t,11] = phi[t, 3] * (1 - alpha[t, 4]);
ps[10, t,12] = phi[t, 3] * alpha[t, 4];

// M7N to M8N/M8B
ps[11, t,13] = phi[t, 3] * (1 - alpha[t, 5]);
ps[11, t,14] = phi[t, 3] * alpha[t, 5];

// M7B to M8N/M8B
ps[12, t,13] = phi[t, 3] * (1 - alpha[t, 5]);
ps[12, t,14] = phi[t, 3] * alpha[t, 5];

// M8N to M8N/M8B
ps[13, t,13] = phi[t, 3] * (1 - alpha[t, 5]);
ps[13, t,14] = phi[t, 3] * alpha[t, 5];

// M8B to M8N/M8B
ps[14, t,13] = phi[t, 3] * (1 - alpha[t, 5]);
ps[14, t,14] = phi[t, 3]* alpha[t, 5];

// Death
ps[ 1, t,15] = 1.0 - phi[t, 1];
ps[ 2, t,15] = 1.0 - phi[t, 2];
ps[ 3, t,15] = 1.0 - phi[t, 2];
ps[ 4, t,15] = 1.0 - phi[t, 2];
ps[ 5, t,15] = 1.0 - phi[t, 3];
ps[ 6, t,15] = 1.0 - phi[t, 3];
ps[ 7, t,15] = 1.0 - phi[t, 3];
ps[ 8, t,15] = 1.0 - phi[t, 3];
ps[ 9, t,15] = 1.0 - phi[t, 3];
ps[10, t,15] = 1.0 - phi[t, 3];
ps[11, t,15] = 1.0 - phi[t, 3];
ps[12, t,15] = 1.0 - phi[t, 3];
ps[13, t,15] = 1.0 - phi[t, 3];
ps[14, t,15] = 1.0 - phi[t, 3];
ps[15, t,16] = 1.0;
ps[16, t,16] = 1.0;

}

// Define probabilities of recapture O(t)
// for marked individuals in state S(t)

// Initialise
for (i in 1:n_states) // states

for (j in 1:n_data) // tag data types
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for (k in 1:n_obs) { // observation categories
po[i, j, k] = 0.0;

pn[i, j, k] = 0.0;
}

// data types: branded, chipped, tagged
// observable observations
for (i in 1:3) {

// Pups are not recaptured
// using conventional tags
po[ 1, i,20] = 1.0;

// Immature
po[ 2, i, 2] = p[i, 2] * r[1];
po[ 2, i,20] = 1 - p[i, 2] * r[1];
po[ 3, i, 3] = p[i, 3] * r[1];
po[ 3, i,20] = 1 - p[i, 3] * r[1];
po[ 4, i, 4] = p[i, 4] * r[1];
po[ 4, i,20] = 1 - p[i, 4] * r[1];

// M4N/M4B/M4U
po[ 5, i, 5] = p[i, 5] * r[2] * delta[1];
po[ 5, i, 7] = p[i, 5] * r[2] * (1 - delta[1]);
po[ 5, i,20] = 1 - p[i, 5] * r[2];
po[ 6, i, 6] = p[i, 6] * r[3] * delta[2];
po[ 6, i, 7] = p[i, 6] * r[3] * (1 - delta[2]);
po[ 6, i,20] = 1 - p[i, 6] * r[3];

// M5N/M5B/M5U
po[ 7, i, 8] = p[i, 7] * r[2] * delta[1];
po[ 7, i,10] = p[i, 7] * r[2] * (1 - delta[1]);
po[ 7, i,20] = 1 - p[i, 7] * r[2];
po[ 8, i, 9] = p[i, 8] * r[3] * delta[2];
po[ 8, i,10] = p[i, 8] * r[3] * (1 - delta[2]);
po[ 8, i,20] = 1 - p[i, 8] * r[3];

// M6N/M6B/M6U
po[ 9, i,11] = p[i, 9] * r[2] * delta[1];
po[ 9, i,13] = p[i, 9] * r[2] * (1 - delta[1]);
po[ 9, i,20] = 1 - p[i, 9] * r[2];
po[10, i,12] = p[i, 10] * r[3] * delta[2];
po[10, i,13] = p[i, 10] * r[3] * (1 - delta[2]);
po[10, i,20] = 1 - p[i, 10] * r[3];

// M7N/M7B/M7U
po[11, i,14] = p[i,11] * r[2] * delta[1];
po[11, i,16] = p[i,11] * r[2] * (1 - delta[1]);
po[11, i,20] = 1 - p[i,11] * r[2];
po[12, i,15] = p[i,12] * r[3] * delta[2];
po[12, i,16] = p[i,12] * r[3] * (1 - delta[2]);
po[12, i,20] = 1 - p[i,12] * r[3];

// M8N/M8B/M8U
po[13, i,17] = p[i,13] * r[2] * delta[1];
po[13, i,19] = p[i,13] * r[2] * (1 - delta[1]);
po[13, i,20] = 1 - p[i,13] * r[2];
po[14, i,18] = p[i,14] * r[3] * delta[2];
po[14, i,19] = p[i,14] * r[3] * (1 - delta[2]);
po[14, i,20] = 1 - p[i,14] * r[3];

// Conventional tags
// not seen if dead
po[15, i,20] = 1.0;
po[16, i,20] = 1.0;

}

// phantom tags
// observable
{

// see them if just dead
po[15, 4,22] = 1.0;

// but not if they are really dead
po[16, 4,20] = 1.0;

// all other states not seen
for (i in 1:14)

po[i, 4, 20] = 1.0;
}

// when no sampling effort all states
// are in "unobservable" observation category
for (i in 1:n_data) {

for (k in 1:n_states) {
pn[k, i, 21] = 1.0;

}
}

// Dynamics
{

// numbers matrix
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vector[n_states] N0;
vector[n_states] N[n_time];

// initialise N matrix
for (t in 1:n_time) {

for (k in 1:n_states)
N[t, k] = 0.0;

}

// initial state vector
N0 = rep_vector(0.0, n_states);
N0[1:(n_states - 2)] = N0_initial * P0;

// iterate numbers forward
for (t in 1:n_time_dyn) {

if (t == 1) {
for (k in 2:n_states) {

N[t, k] = sum(to_vector(ps[, start - 2 + t, k]) .* N0);
}

} else {
for (k in 2:n_states) {

N[t, k] = sum(to_vector(ps[, start - 2 + t, k]) .* N[t - 1]);
}

}
// birth at beginning of time step
N[t,1] = sex_ratio * sum(N[t, {6,8,10,12,14}]);

}

// record number of pups
// adults and breeders
for (t in 1:n_time_dyn) {

NI0[t] = N[t, 1];
NMB[t] = sum(N[t, {6,8,10,12,14}]);
NMA[t] = sum(N[t, {5,6,7,8,9,10,11,12,13,14}]);

}
}

}
model {

// census likelihood
for (t in start:n_time)

x[t] ˜ normal(NI0[t - start + 1], sqrt(NI0[t - start + 1]));

// Likelihood
// Forward algorithm

{
real acc[n_states];
vector[n_states] gamma[n_time];

for (i in 1:n_ind) {

gamma = rep_array(rep_vector(0.0, n_states), n_time);

if (first[i] > 0) {
for (k in 1:n_states)

gamma[first[i], k] = (k == y[i, first[i]]);

for (t in (first[i] + 1):n_time) {

for (k in 1:n_states) {
for (j in 1:n_states) {

acc[j] = (ov[z[i], t] == 1) ? gamma[t - 1, j] * ps[j, t - 1, k] * po[k, z[i], y[i, t]] : gamma[t -
1, j] * ps[j, t - 1, k] * pn[k, z[i], y[i, t]];

}
gamma[t, k] = sum(acc);

}
}
target += log(sum(gamma[n_time]));

}
}

}

// Poisson approximation for initial
// number of pups
NI0[1] ˜ normal(sex_ratio * NMB[1], sqrt(sex_ratio * NMB[1]));

// gaussian smoother for
// survivorship
{

real ss[2];

ss[1] = pow(tau * square(sigma), 0.5);
ss[2] = pow((1 - tau) * square(sigma), 0.5);

ph0_ ˜ normal(0, ss[1]);

// fit to pup mass data
for (i in 1:n_time) {

if (w[i] >= 0) {
w_std[i] ˜ normal(eta_ - beta_ * ph0_[i], ss[2]);

}
}
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}

// tag loss data
for (i in 1:n_ages)

loss[i] ˜ multinomial(theta[i]);

// logistic parameters
phi_ ˜ std_normal();
alpha_ ˜ std_normal();
r_ ˜ std_normal();

eta_ ˜ std_normal();
beta_ ˜ std_normal();

// smoother
tau ˜ beta(1,1);

}
generated quantities {

// m-arrays
int marr[n_time, n_time, n_data, n_obs];
int mhat[n_time, n_time, n_data, n_obs];
vector[n_obs] mbar[n_time, n_time, n_data];

// predicted census
vector[n_time] xbar;
vector[n_time] xhat;

// predicted pup mass
vector[n_time] wbar;
vector[n_time] what;

// discrepancy measures for
// tag data

real D[2, n_data, n_obs - 3];

// mean prediction error
// for each data type

real MPE[3] = { 0.0, 0.0, 0.0 };

// summary parameters for trace
// diagnostics
vector[6] trace_summary;

/*
** SIMULATE MARK-RECAPTURE DATA

*/
{

int yhat[2, n_ind, n_time];

for (i in 1:n_ind) {
for (j in 1:n_time) {

yhat[1, i, j] = 0; // TRUE
yhat[2, i, j] = 0; // OBSERVED

}
}

for (i in 1:n_ind) {

if (first[i] > 0) {

// mark simulated individuals using
// empirical data
yhat[1, i, first[i]] = y[i, first[i]];
yhat[2, i, first[i]] = y[i, first[i]];

if (first[i] == n_time) continue;

// step through capture occasions
// for each individual
for (j in (first[i] + 1):n_time){

// single sample from
// multinomial state transition
yhat[1, i, j] = categorical_rng(ps[yhat[1, i, j-1], j-1]);

// single sample from
// multinomial observation process
yhat[2, i, j] = (ov[z[i], j] == 1) ? categorical_rng(po[yhat[1, i, j], z[i]]) :

categorical_rng(pn[yhat[1, i, j], z[i]]);
}

}
}

/*
** CALCULATE M-ARRAYS

*/

marr = calc_marray(y, z, n_data, n_obs, zero);
mhat = calc_marray(yhat[2,,], z, n_data, n_obs, zero);
mbar = calc_mbar(ps, po, pn, ov, n_time, n_states, n_data, n_obs, marks);

}
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/*
** CALCULATE DISCREPANCIES

*/

for (k in 1:n_data) {
for (l in 1:(n_obs - 3)) {

D[1, k, l] = 0.0;
D[2, k, l] = 0.0;

}
}

for (i in 1:n_time) {
for (j in 1:n_time) {

for (k in 1:n_data) {
for (l in 1:(n_obs - 3)) {

if (mbar[i, j, k, l] > 0.0 && marr[i, j, k, l] > 0.0 && mhat[i, j, k, l] > 0.0) {
D[1, k, l] += log(marr[i, j, k, l] / mbar[i, j, k, l]);
D[2, k, l] += log(mhat[i, j, k, l] / mbar[i, j, k, l]);

}
}

}
}

}

// predicted census
xbar = rep_vector(0.0, n_time);
xhat = rep_vector(0.0, n_time);

for (t in start:n_time) {
xbar[t] = NI0[t - start + 1];

xhat[t] = normal_rng(NI0[t - start + 1], sqrt(NI0[t - start + 1]));
}

// predicted pup mass
{

int n = 0;
real mu = 0.0;
real se = 0.0;

// mean
for (i in 1:n_time) {

if (w[i] >= 0) {
mu += w[i];
n += 1;

}
}
mu /= n;

// standard error
for (i in 1:n_time) {

if (w[i] >= 0) {
se += pow(w[i] - mu, 2.0);

}
}
se /= (n - 1);

for (i in 1:n_time) {
wbar[i] = (eta_ - beta_ * ph0_[i]) * se + mu;
what[i] = normal_rng(eta_ - beta_ * ph0_[i], pow((1 - tau) * square(sigma), 0.5)) * se + mu;

}
}

// MPE
{

int n;

// tag data
n = 0;
for (i in 1:n_time) {

for (j in 1:n_time) {
for (k in 1:n_data) {

for (l in 1:(n_obs - 3)) {

if (marr[i, j, k, l] > 0) {

n += 1;

MPE[1] += pow((marr[i, j, k, l] - mbar[i, j, k, l]) / marr[i, j, k, l], 2.0);
}

}
}

}
}
MPE[1] /= n;

// census
n = 0;
for (i in start:n_time) {

if (x[i] > 0) {
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n += 1;

MPE[2] += pow((x[i] - xbar[i]) / x[i], 2.0);
}

}
MPE[2] /= n;

// pup mass
n = 0;
for (i in 1:n_time) {

if (w[i] > 0) {

n += 1;

MPE[3] += pow((w[i] - wbar[i]) / w[i], 2.0);
}

}
MPE[3] /= n;

}

// trace diagnostics
trace_summary[1] = vector_norm(phi_);
trace_summary[2] = vector_norm(r_);
trace_summary[3] = vector_norm(p_);
trace_summary[4] = vector_norm(alpha_);
trace_summary[5] = vector_norm(delta_);
trace_summary[6] = tau;

}
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