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EXECUTIVE SUMMARY

Edwards, C.T.T. (2021). Integrated estimation of density and catchability parameters from
fisheries catch-effort data.

New Zealand Fisheries Assessment Report 2021/32. 32 p.

Given catch and abundance time series, simple process based models can be used to estimate
the biomass and exploitation rate. If these data are of insufficient quality, swept-area methods
offer an alternative means for estimating the exploitation rate. A crucial component of swept-area
approaches is the catch efficiency (a component of the catchability), which describes the proportion
of fish biomass or numbers, within the gear affected area, that are retained by that fishing event. For
trawl fisheries, the efficiency is the proportion of fish within the path of the tow that are retained.
Multiplication of the effort affected area by the efficiency can approximate the exploitation rate
within the region of spatial overlap between the fishery and the population being fished. This
approximation can be improved by knowledge of the population’s distribution across space, since
local exploitation rates can then be aggregated correctly into a global metric. In the current project,
a statistical model is proposed to estimate the catch efficiency from catch-effort data for multiple
fisheries and gear types operating simultaneously throughout the New Zealand Exclusive Economic
Zone. The spatial biomass density for the fished population is co-estimated with the gear efficiency
within an integrated framework. Estimation of the relative biomass density allows spatially explicit
estimates of the exploitation rate to be combined into a single estimate for the stock. The model was
applied to nine fish species and found to provide reasonable fits. Estimates of the catch efficiency
for each species and gear type are provided, along with an illustration of how these can be combined
with the population density estimates to generate an exploitation rate suitable for management
purposes.
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1 Introduction

Fisheries in New Zealand are tiered according to quality of the data available and rigor of the
stock assessments they can support. Tier 1 stocks are high value and typically subjected to fully
quantitative assessment methods using process-based models able to estimate the current and
projected status. An estimate of status includes both the biomass and and exploitation rate, each
relative to its own target reference point. Tier 2 and 3 stocks have a decreasing quality of catch-effort
data with which to estimate a time series of relative abundance, whereas Tier 4 have catch data only.
For Tiers 2 to 4 no established methods exist for the estimation of stock status. These compromise
nearly 80% of all fisheries in New Zealand (by number, Bentley & Stokes 2009), and therefore
represent a considerable challenge to implementation of the Harvest Strategy Standard (Ministry of
Fisheries 2008, 2011).

The Low Information Stocks Projects (LSP2017-02 and LSP2019-02) were designed to develop
methods capable of estimating status for Tier 2 and Tier 3 stocks. These have catch-effort data
available of varying qualities, which could in some cases support a simple process-based modelling
approach (e.g., McAllister & Edwards 2016). However neither a sufficient time-series nor reliable
catches can be assumed, meaning that this approach could not be applied consistently. One class of
methods that requires neither a time series nor catch data are known as swept-area methods. They
are conceptually based on an estimation of the area of the stock that overlaps with the area covered
by a particularly fishery: the larger the overlap the higher the exploitation rate (Edwards 2015).
These have a long history of development and are currently applied in both Europe (e.g., Pope
et al. 2000, Walker et al. 2019) and the Australian Commonwealth (Zhou & Griffiths 2008, Zhou
et al. 2009, 2011, 2014, 2019a). Furthermore, swept-area methods were identified in LSP2017-02
as having scope for potential application in New Zealand (Holmes et al. 2020). This provides
motivation for the current work.

1.1 Swept area methods

Swept-area approaches are based on a simple assumption that the species in question is distributed
homogeneously within spatially defined parts of its range, and fished at random using consistent
methods. Central to the derivation is a definition of the catchability q, which is equal to the
proportion of the area A that is swept by one unit of fishing effort, multiplied by an efficiency term
π (Paloheimo & Dickie 1964):

qi =
π ·ai

A
(1)

For the case of a single area j, the local exploitation rate is then simply the proportion of the total
area covered by fishing scaled by the efficiency (Daan 1991). Summing across tows i:

U j =
π ·∑i∈ j ai j

A j
(2)

Unfortunately however, the catchability is hard to estimate, and further problems arise when
integrating over the large areas that might enclose the stock being assessed, since the assumption of
an homogenous population distribution breaks down. Much of the literature surrounding swept-area
approaches has focused on these two issues: non-homogeneity of the population; and, catchability
estimation. The assumption of random fishing means that they have typically been developed in the
context of bycatch (non-target) fisheries. This report focuses specifically on a method known as
SAFE (Sustainability Assessment for Fishing Effects), which has been developed by CSIRO and
applied across Australian Commonwealth fisheries (Zhou & Griffiths 2008, Zhou et al. 2009, 2011,
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2019a). It has a number of useful properties that have made it a good starting point for methods
development in New Zealand. The basic equation for estimating an exploitation rate is the catch,
summed over tows i, and spatial grids j, divided by the exploitable biomass B j per grid. It is usually
written as a function of the density per grid D j:

U =
∑i j qi j ·B j

∑ j B j
=

π ·∑i j ai j ·D j

∑ j A j ·D j
(3)

If the density is constant across grids then D j cancels out, and only an estimate of π is required to
extract an approximate exploitation rate. The basic-SAFE method (Zhou & Griffiths 2008, Zhou
et al. 2009, 2011) makes this assumption, and further assumes a range of values for π to be applied
in an ad-hoc manner depending on the fishing gear. This is the simplest possible approach.

Actual estimation of π has proceeded using methods first developed in the ecological literature. It
was proposed by Royle (2004) that repeat sampling from multiple non-overlapping sites should
allow estimation of both the detectability (analogous to the efficiency) and the abundance, provided
that the sampling method and detectability is consistent both within and between sites. Their model
was for count data yi j, given unknown numbers N j, and can be described as follows:

Model 1
yi j|N j ∼ Binomial(N j,π) (4a)

N j ∼ Poisson(λ ) (4b)

The abundance per grid N j, is treated as a nuisance parameter and integrated out of the likelihood
during estimation, to be retrieved using an empirical Bayes procedure (Royle 2004). Whether it
can be treated as a true abundance depends on whether the detectability term has been estimated
correctly. The mean abundance across grids is represented by λ .

This concept has been extensively developed (e.g., Kéry et al. 2005, Joseph et al. 2009, Dorazio et al.
2013), and was extended to the fisheries literature by Zhou et al. (2014) to estimate the efficiencies
for multiple fisheries k, repeatedly sampling the same locations. Their model took the form:

Model 2
yi jk|Ni j ∼ Binomial(Ni j,πk) (5a)

Ni j|λ j ∼ Poisson(λ j) (5b)

λ j ∼ NegativeBinomial(r, p) (5c)

which notably now models the abundance Ni j at the level of the fishing event i. This provides
an improved fit to highly variably fisheries data but at the expense of a significant computational
overhead.

Estimation of the relative catchability between fishing fleets or methods requires them to be fishing
at the same time and place. The principal behind the approach is that relative catch rates then give
an indication of their differing catchabilities. If this fishing pattern is replicated across space then
the relative density distribution across space can also be discerned. A specific pattern of sampling
can therefore allow estimation of both the efficiency parameter πk, from catch rates within the grid,
and the numbers density vector N, from catch rates between the grids.
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The difficulty with estimating the catch efficiency πk is that it is never certain whether a zero is a
“true zero” (an indicator of the density) or whether the individual is there but not caught (an indicator
of the efficiency). Repeat samples at the same location along with an assumption of perfect mixing
of the population to some extent alleviates this problem. However, it becomes increasingly difficult
at the fringes of either the fishery or the population, where both the fishing effort and positive
catches may become too low to separate the parameters. For this reason, Zhou et al. (2014, 2019b)
suggest that only a subset of the catch data be used when estimating πk, specifically restricting the
model to data from well sampled grids with a low variance to mean ratio.

Estimation of πk has been included in the latest version of SAFE, known as enhanced-SAFE (Zhou
et al. 2019a). A second addition was to admit that the input density is typically relative, rather than
absolute, so that the exploitation rate becomes:

U =
∑i jk πk ·ai j ·Drel

j

∑ j A j ·Drel
j

(6)

This idea was first proposed by Pope et al. (2000), who suggested using the local catch rate as a
measure of the relative density. Equation 6 can be thought of as a density weighted average of
the local exploitation rate given in Equation 2. The enhanced-SAFE approach in particular uses
relative density values generated from habitat modelling of the population density surface across
space (using a General Additive Model, for example Zhou et al. 2019b), and this is the approach
followed by LSP2019-02 (Holmes et al. in prepa).

1.2 Shortcomings of the enhanced-SAFE approach

The enhanced-SAFE approach includes three-steps for estimation of the exploitation rate. First,
πk is estimated from a localised subset of the catch and effort data. Second, the relative density
surface is estimated across the full spatial range of the stock. Third the efficiency πk and the relative
density are combined with the areal terms to provide an exploitation rate (Equation 6). Two major
shortcomings exist that limit its applicability:

• The methods developed to estimate πk are based on discrete probability distributions, which
means they are not suited to a broader fishery setting where data are typically continuous (i.e.
records of the biomass per fishing event) or semi-continuous (with a point mass at zero);

• Estimation of the density surface is independent of the estimation of πk, and therefore
uncertainty in the density distribution layer, which can be considerable, is effectively ignored,
although ad-hoc sensitivity tests can be performed.

1.3 Estimation of the catch efficiency

Methods development towards estimation of the catch efficiency for New Zealand fisheries were
undertaken by Sibanda et al. (2016) and Edwards et al. (2018). This work focused on developing a
method for semi-continuous biomass catch data, using the same cross-sampling principle proposed
by Zhou et al. (2014), but with different distributional assumptions and with a much greater
volume of data. This was further developed by Zhou et al. (2019b) by re-writing the model as a
semi-continuous analogue to Model 2:

Model 3
yi j|yi j > 0∼ LogNormal(ln(π ·ai ·d j)− ln(ω j)−σ

2/2,σ2) (7a)
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I(yi j > 0)∼ Bernoulli(ω j) (7b)

d j ∼ Gamma(λ/θ ,θ) (7c)

which includes d j as a continuously distributed free parameter representing the density per grid,
and a mean across grids λ . The model assumes that the probability of a positive catch per tow ω j,
is independent of the biomass density per grid d j. Making ω j a function of d j, and d j a function of
environmental covariates, would be key next steps in model development. Both were shown to be
valid avenues for research by Edwards et al. (2018) and are pursued in the current project.

1.4 Objectives

Given previous work in developing a swept-area approach for application to fisheries in New
Zealand, the current project (SEA2019-12) was developed with the following objectives:

1. Extend and test the hierarchical Bayesian mixture model developed by Edwards et al. (2018)
and Zhou et al. (2019b) for estimation of the gear efficiency;

2. Co-estimate fish density distribution within the hierarchical mixture model.

The project ran concurrently with LSP2019-02 (Low Information Stock Status Assessment) and
provided interim estimates of π for implementation of the e-SAFE methodology (Edwards 2021,
Zhou et al. 2021).

2 Data preparation

Commercial catch and effort data were provided by NIWA under project LSP2017-02 (Middleton
2019) for the fishing methods and species listed in Tables 1 and 2. Commercial data were complete
for the fishing years 2012/13 to 2017/18 inclusive and consisted of raw event-by-event catch records,
with each catch “estimated” by the fisher. The estimated catches are limited to the top five or top
eight species caught in an event, meaning that empirical catch rates for any given species will be
biased. If missing catch data are discarded, the bias will be towards overestimation of the catch
rate. If missing catch data are treated as zero observations, this could lead to underestimation of the
catch rate. For this reason, “allocated” catches are typically used for catch rate standardisations
and fishery characterisations. Allocated catch data are generated from trip-by-trip landings that are
allocated to individual fishing events using the approach of Starr (2007). Unlike estimated catches,
most landings data are comprised of measured weights. Although the total catch per trip will be
more accurate in the allocated data, it is unsuitable for estimating the catchability, which requires
the catches per event. The estimated catches were therefore used in the current analyses. Missing
catch data were treated as true zero observations, potentially underestimating the catchability. This
implies that when taking an average across events within the strata, and assuming a good model fit,
both the observed and predicted catches will be less than the true values. It is also likely that the
chance of a catch being not recorded will change depending on the absolute catch. Specifically,
high catches are more likely to be in the top species caught, and are therefore more likely to be
recorded. Small absolute catches are less likely to be recorded. Observed values may therefore
increasingly underestimate the true catch at lower absolute catch values. A better accounting of
these biases in the data could prove a useful subject for future work.
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Table 1: Fishing methods included in the LSP2017-02 data (Middleton 2019).
Calculations of the gear affected area per fishing event for each gear type are listed
(Zhou et al. 2014, 2019b). Distance was in kilometres and time in hours; w = 1 in all
instances.

Method Code Description Gear affected area (km2) Notes
TAN Tangaroa Chatham

Rise Survey
d ·h · s d is fishing duration, h is the net wing

width, s is tow speed
KAH Kaharoa Survey d ·h · s d is fishing duration, h is the net wing

width, s is tow speed
BLL Bottom Long-line w ·L w is bait attraction distance, L is the

length of the line
BT Bottom Trawl d ·h · s d is fishing duration, h is the net wing

width, s is tow speed
PRB Precision bottom

trawl
d ·h · s d is fishing duration, h is the net wing

width, s is tow speed
SN Set Net w ·L w is net affected distance, L is the length

of the net
MW Mid-water trawl d ·h · s d is fishing duration, h is the net wing

width, s is tow speed
CP Cod pot π/4 ·w w is attraction distance
DS Danish Seine π · (L/2 ·π)2 L is the groundrope length of the seine

Commercial catch and effort data were subjected to the following grooming steps, with the number
of records remaining after each step listed in Table S1 (Supplementary Tables):

• Calculate gear affected area using the formulae listed in Table 1.
• Remove records with missing gear area;
• Remove records per fishing method with gear areas outside of the 90% quantiles of the

distribution of gear areas (the truncated distribution of gear areas per fishing method is shown
in Figure 1);

• Remove records with no positional data;
• Remove records on land;
• Assign to 0.2◦×0.2◦ grids covering the New Zealand Exclusive Economic Zone (EEZ) and

Territorial Sea;
• Remove fishing methods with poor sample coverage (Table S2, retained fishing methods are

listed in Table 2);
• Remove records per species and method above the upper 95% quantile of the distribution of

catches;
• Select grids that contain 95% of the remaining commercial catch per species (Figures S1

and S2, the number of retained grids is listed in Table 2).

These steps were intended to remove erroneous or missing values, but also to lower the variance to
mean ratio in the data. By doing so, it becomes easier to describe the data using standard statistical
distributions (Zhou et al. 2014). A substantial proportion of the data were removed (Table S1), and
no attempt was made to include these records when predicting the exploitation rate per species. In
summary, the grooming process facilitated estimation of the catchabilities, but dependent prediction
of the exploitation rate will be substantially underestimated as a result. Further work will be
required to groom the data in a manner better suited to prediction of the exploitation rate across all
fishing events.
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Table 2: Fish species selected by Fisheries New Zealand, NIWA and other
stakeholders for analysis in LSP2019-02. Fishing methods and number of grids
retained following data grooming are also listed.

Species Code Common name Scientific name Fishing methods Number of grids
ELE Elephant fish Callorhinchus milii BT, SN, KAH 142
GUR Gurnard Chelidonichthys kumu BLL, BT, DS, MW,

PRB, SN, KAH
277

HAK Hake Merluccius australis BLL, BT, MW,
PRB, SN, TAN,
KAH

126

LIN Ling Genypterus blacodes BLL, BT, MW,
PRB, SN, TAN,
KAH

456

RSK Rough skate Zearaja nasuta BLL, BT, PRB, SN,
TAN, KAH

315

SNA Snapper Chrysophrys auratus BLL, BT, DS, MW,
PRB, SN, KAH

120

SPE Sea perch Helicolenus spp. BLL, BT, PRB, SN,
TAN, KAH

443

STA Giant stargazer Kathetostoma spp. BT, SN, MW, TAN,
KAH

202

TAR Tarakihi Nemadactylus spp. BLL, BT, DS, MW,
PRB, SN, KAH

308

Trawl survey data from the Tangaroa Chatham Rise survey and Kaharoa were also provided by
NIWA. Records with a gear performace score of 1 (excellent) or 2 (satisfactory), and using a gear
method of 1 (bottom trawl) or 3 (high opening trawl net), were retained. Gear area was calculated
as for the Trawl fishery (Table 1).

3 Statistical methods

3.1 Background

Fisheries catch rate data typically follow a semi-continuous probability distribution which can be
modelled using a two-part model of the form:

ωi = logit−1 (Xi · γ)

µi = Xi ·β

where ω is the binomial probability of a positive catch and µ is the expectation of the log of the
positive catches, assuming a log-normal distribution for the positive catch component of the data.
Regression coefficients are estimated during the model fit, assuming in this case common covariate
design matrices Xi. The expectation is:

E [yi] = ωi · exp
(
µi +σ

2/2
)

where yi is the catch per fishing event i and σ is the standard error for the log-normal model part.
For the current work, a marginalised two-part model is introduced (see Equation 7a and Smith et al.
2014):

ωi = logit−1 (Xi · γ)
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Figure 1: Distribution of gear affected areas per fishing method following data
grooming.

µi = log(Xi ·β )− log(ωi)−σ
2/2

which has the expectation:
E [yi] = Xi ·β

This form of model has the advantage that the expectation is interpretable directly in terms of the
estimated β coefficients (e.g., Smith et al. 2017, Smith & Preisser 2019). If β is the product of a
density term and the catch efficiency term π , and the Xi covariates represent the gear affected area,
then:

E [yi] = ai · (π ·d) (8)

meaning that the product π · d can be estimated as a predictor of the expected catch per fishing
event.

However estimation of an exploitation rate requires both π and d separately (Equation 6). This
necessitates a hierarchical model of the form originally proposed by Royle (2004), applied to
discrete fisheries data by Zhou et al. (2014) and then to semi-continuous data by Edwards et al.
(2018) and Zhou et al. (2019b). Under this model structure the density becomes an estimated
parameter across j discrete spatial units:

d j ∼ f (Θ) (9)

Given appropriate cross sampling of the data, with repeat sampling both within and across spatial
strata using consistent methods, it may be possible to estimate both π and d j. However in typical
applications the sampling design is insufficient, which can warrant the use of external auxiliary data
with which to stabilise estimation of π (Barker et al. 2018). This was addressed by Edwards et al.
(2018) by including survey data with an informative prior, which was shown through simulation to
stabilise the estimation. This substantially lowers the sampling requirements needed for a reliable
estimation of the density and opened up the prospect of co-estimating π and d within the same
statistical framework. Even if only a relative density can be obtained, given these outputs, an
exploitation rate can be immediately calculated.

For this project a hierarchical marginalised two-part model is developed for fisheries data in New
Zealand to allow co-estimation of π and the density surface d. Successful estimation of both these
parameters could provide a framework for future estimation of the exploitation rate using swept
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area methods (Equation 6). This would represent an advancement of the enhanced-SAFE (and
SEFRA, Ministry for Primary Industries 2016) risk assessment approaches, which require external
fixed inputs of the biomass or numbers distribution into the model.

3.2 Model specifics

The probability density functions used to describe the biomass catch data yi jk, can be sum-
marised:

yi jk > 0∼ Bernoulli(ωi jk)

yi jk|yi jk > 0∼ logNormal(µi jk,σ
2
k )

with subscripts:

• i: fishing event

• j: grid

• k: fleet or gear type

For the probability of a positive catch, the regression equation is:

ωi jk = 1− exp(−γk ·ai ·di j) (10a)

where 0≤ γk ≤ 1 is the “encounter rate”. For the conditional catch rate:

µi jk = log(πk ·ai ·di j)− log
(
ωi jk

)
−σ

2
k /2 (10b)

where 0 < πk is the “efficiency.” These equations give the expected catch per event:

E
[
yi jk
]
= πk ·ai ·di j

Rather than treating the biomass density directly as an estimated parameter per grid (Equation 9),
it was predicted per event as a function of estimated regression parameters with a grid-specific
random effect φ j:

log(di j)∼ αi +φ j︸ ︷︷ ︸
density surface

For the current application:

log(di j) = α0 +α1 · log(xi)+α2 · log(xi)
2 +α3 · zi +φ j

where log(xi) is the normalised log-latitude per event and zi is the fishing year. The latitude was
selected as the only covariate available in the data provided. No model selection, potentially
including different function relationships, was performed.

3.3 Prior probabilities and sensitivities

Work carried out by NIWA under LSP2019-02 generated catch efficiency priors for the Kaharoa
trawl survey through interviews with fishermen (Holmes et al. in prepb). These estimated the
proportion of the catch between the trawl doors that would likely be retained. These were converted
to catch efficiency priors for the trawl wings using the following assumed gear characteristics:

• Door spread = 70 m
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• Wing spread = 16.7 m

Efficiency between doors︸ ︷︷ ︸
θ , from LSP2019-02

× 70
16.7

= Efficiency between wings︸ ︷︷ ︸
π

A Gamma distribution was used to define informed priors for the KAH catch efficiency based on θ

(Table 3).
πKAH ∼ Gamma(0.01,η×100)

=⇒ E [π] = η

For the remaining fishing methods:

πk ∼ Gamma(0.1,1.0)

which assumes an expectation of E [πk] = 0.1. For γk a uniform prior distribution between zero
and one was assumed. Sensitivities for the prior on πKAH were constructed for ELE and RSK as
multiples of {0.50,0.75,1.25,1.50} of the reference value (Table 3).

Regression parameters α0,α1,α2,α3 were assigned standard normal priors. The density random
effect was represented by a multivariate normal distribution:

φ ∼MV N(0,Σ)

where Σ is a covariance matrix with dimensions equal to the number of grids. The grid specific
random effect was constrained by representing the multivariate normal distribution as a conditional
autoregressive (CAR) prior (Gelfand & Vounatsou 2003, Jin et al. 2005). This parameterises the
covariance Σ using an estimated correlation term ρ and error τ , such that the prior for φJ is informed
by the estimates of φ j 6=J in neighbouring grids.

3.4 Estimation

Estimation was performed within a Bayesian framework using rstan (Stan Development Team 2020,
R Core Team 2019). For each model fit, two parallel chains were run for 2000 iterations with the
first half discarded and convergence assessed visually.

Table 3: Catch efficiency priors

Species θ η Sensitivities
ELE 0.34 1.43 0.72, 1.08, 1.79, 2.15
GUR 0.70 2.94
HAK – *1.00
LIN – *1.00
SNA 0.29 1.23
SPE 0.47 1.97
RSK 0.26 1.10 0.55, 0.83, 1.38, 1.65
STA 0.21 0.86
TAR 0.22 0.92
*no prior for KAH survey; assumed η = 1.0 for TAN
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4 Results

The model was fitted to groomed catch rate data for the species listed in Table 2. Data were
randomly sub-sampled prior to fitting, with 10% of the data retained, so as to reduce the run time
and enable testing of the models predictive abilities. Data used to fit the model are referred to
as the “insample”, whereas data used to test model prediction of the catches is referred to as the
“outsample”. For each fit, the following diagnostics were implemented:

• Convergence of the estimator: visual inspection of the MCMC chains (Figure 2);

• Fit to catch rate data per grid: predictions of the mean probability of a positive catch and
the mean catch rate (kilograms per square kilometre) were plotted against observed values
(Figure 3);

• Spatial relationship between available density and the predicted catch rate per grid:
predictions of the mean catch rate were compared with the predicted available density
(both expressed in kilograms per square kilometre, Figure 4);

• Cross validation: ability of the model to predict the outsample catches (Figure 5).

4.1 Diagnostic outputs

Diagnostics demonstrate the model provides a reasonable description of the data. Convergence of
the MCMC chains is adequate (Figure 2) despite the short length of the runs, indicating that the
model has a structural definition with an appropriate match to the data observation process. The
model provides a reasonable fit to the catch rate data when viewed across fishery groups (Figure 3),
although the fit per group is sometimes poor (e.g., SN and BLL fisheries for TAR, Figure 3b). The
fit is noticeably better for GUR, RSK, and STA, and less good for LIN, SPE, and TAR. This may
be due to their respective mobilities or schooling behaviours. Species that are more sedentary and
less likely to form schools would be better represented by the model assumptions, and this seems to
be the case for RSK and STA.

Spatial diagnostics were constructed to examine internal consistency of the model. Specifically
arithmetic means of the catch rate per unit area (CPUA) were obtained from the regression equations
(Equation 10) and compared with “available” biomass densities (D), which were calculated directly
from the density and catchability parameters:

CPUA jk =
∑i∈ jk ωi jk · exp

(
µi jk +σ2

k /2
)

∑i∈ jk ai

D jk = πk ·
∑i∈ jk di j

∑i∈ jk 1

These were shown to correlate well, indicating how the catch rates predicted by the model are
determined almost entirely by the catchabilty and density parameters. It is notable that despite
this sparse parameterisation of the fisheries catch process, the model is still able to describe the
observed data well (Figure 3).

Finally, total predicted catches per fishery were compared to observed values. Catches were
predicted using the expected values:

Catch jk = ∑
i∈ jk

πk ·ai ·di j
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This was repeated for both insample and outsample data to evaluate the ability of the model to
predict catch data not used for the model fit. The model is able to provide a good representation of
the outsample data (Figure 5), suggesting that it may be suitable for extrapolation of the catches
across the fishery, as would be necessary for calculation of an exploitation rate.

4.2 Efficiency estimates

Estimates of the catch efficiences per species and fishery group are shown in Figure 6 and listed
Table 4. These estimates are ranked in a similar order to the empirical catch rates, which fits with
intuition. The fishery groups do not take into account targetting or other differences in fishing
behaviour – all vessels with the same gear type are assumed to be equivalent – which may account
for some of the small catch efficiencies observed for bottom trawls. This could explain, for example,
the higher ELE catch efficiency for SN compared to BT. Relative density maps are shown in
Figure 7.

Table 4: Posterior efficiency (πk) estimates for each species and fishing method. The
empirical catch per unit area (CPUA; kg per km2), total effort (insample number of
fishing events) and R̂ convergence diagnostic (Gelman & Rubin 1992) are also shown.
For the bottom trawl fisheries (BT/KAH/TAN) efficiency is for the wingspread, with
a wingspread efficiency of one equivalent to an efficiency of approximately 25%
between the doors.

Species Group Mean (SE) Median (95% CI) CPUA Effort R̂
ELE BT 0.25 (0.05) 0.24 (0.16, 0.35) 46.54 9710 1.001

BLL – – – – –
MW – – – – –
SN 1.02 (0.21) 1.00 (0.67, 1.49) 132.40 1652 1.002
DS – – – – –
PRB – – – – –
KAH 1.41 (0.12) 1.40 (1.18, 1.65) 166.31 183 1.002
TAN – – – – –

GUR BT 0.95 (0.12) 0.94 (0.72, 1.20) 100.52 18346 1.014
BLL 0.02 (0.00) 0.02 (0.02, 0.03) 1.53 2606 1.016
MW 0.04 (0.01) 0.04 (0.02, 0.08) 1.11 1174 1.005
SN 0.05 (0.01) 0.05 (0.04, 0.07) 6.65 1407 1.013
DS 0.34 (0.05) 0.34 (0.25, 0.45) 22.49 1074 1.012
PRB 0.39 (0.06) 0.39 (0.28, 0.52) 31.84 409 1.008
KAH 2.94 (0.17) 2.94 (2.62, 3.28) 298.58 226 1.001
TAN – – – – –

HAK BT 0.61 (0.09) 0.61 (0.46, 0.80) 55.68 3476 1.007
BLL 0.01 (0.00) 0.01 (0.01, 0.01) 0.98 506 1.003
MW 0.27 (0.04) 0.27 (0.20, 0.35) 49.45 1705 1.006
SN 0.09 (0.04) 0.08 (0.04, 0.19) 2.63 775 1.001
DS – – – – –
PRB 0.49 (0.09) 0.48 (0.33, 0.69) 62.30 115 1.005
KAH 0.15 (0.08) 0.13 (0.05, 0.35) 7.82 35 1.001
TAN 1.02 (0.10) 1.02 (0.84, 1.22) 74.66 157 1.002

LIN BT 0.37 (0.04) 0.36 (0.30, 0.45) 73.42 11136 1.005
BLL 0.44 (0.05) 0.44 (0.36, 0.55) 82.12 2786 1.005
MW 0.15 (0.02) 0.15 (0.12, 0.19) 52.02 2143 1.005
SN 0.18 (0.03) 0.18 (0.13, 0.24) 46.26 1527 1.004
DS – – – – –
PRB 0.59 (0.08) 0.58 (0.45, 0.77) 168.28 260 1.002

Continued on next page

Fisheries New Zealand Fisheries Risk Assessment l 12



Table 4: Continued from previous page
Species Group Mean (SE) Median (95% CI) CPUA Effort R̂

KAH 0.40 (0.10) 0.39 (0.25, 0.62) 67.55 84 1.000
TAN 0.97 (0.09) 0.97 (0.81, 1.16) 241.26 310 1.004

RSK BT 0.41 (0.05) 0.41 (0.32, 0.52) 27.59 21074 1.003
BLL 0.01 (0.00) 0.01 (0.01, 0.01) 0.33 2251 1.004
MW – – – – –
SN 0.03 (0.01) 0.03 (0.02, 0.04) 5.56 2227 1.003
DS – – – – –
PRB 0.41 (0.08) 0.40 (0.28, 0.57) 9.42 346 1.003
KAH 1.15 (0.10) 1.15 (0.97, 1.36) 103.99 288 1.004
TAN 0.14 (0.07) 0.12 (0.05, 0.28) 5.08 21 1.004

SNA BT 0.54 (0.12) 0.53 (0.34, 0.78) 158.76 7106 1.005
BLL 0.05 (0.01) 0.05 (0.03, 0.08) 52.81 2685 1.007
MW 0.10 (0.10) 0.07 (0.00, 0.37) <0.01 7 1.002
SN 0.13 (0.03) 0.13 (0.08, 0.20) 83.96 604 1.002
DS 0.17 (0.04) 0.17 (0.10, 0.25) 143.32 1130 1.002
PRB 0.59 (0.13) 0.58 (0.36, 0.87) 462.49 421 1.003
KAH 1.28 (0.11) 1.28 (1.07, 1.50) 392.69 15 1.001
TAN – – – – –

SPE BT 0.19 (0.04) 0.19 (0.13, 0.27) 18.45 11206 1.010
BLL 0.02 (0.00) 0.02 (0.01, 0.03) 1.93 3204 1.012
MW – – – – –
SN 0.01 (0.00) 0.01 (0.00, 0.01) 1.06 1649 1.008
DS – – – – –
PRB 0.54 (0.11) 0.53 (0.35, 0.79) 46.79 279 1.010
KAH 1.96 (0.14) 1.95 (1.70, 2.23) 151.38 170 1.001
TAN 0.87 (0.17) 0.86 (0.58, 1.26) 85.46 298 1.011

STA BT 1.08 (0.30) 1.05 (0.57, 1.73) 90.62 10294 1.007
BLL – – – – –
MW 0.02 (0.05) 0.00 (0.00, 0.17) 0.08 1713 1.001
SN 0.09 (0.03) 0.09 (0.05, 0.15) 11.14 1467 1.008
DS – – – – –
PRB – – – – –
KAH 0.86 (0.09) 0.85 (0.69, 1.05) <0.01 235 0.999
TAN 0.10 (0.10) 0.07 (0.00, 0.39) <0.01 57 1.002

TAR BT 0.73 (0.17) 0.72 (0.42, 1.08) 186.09 14207 1.001
BLL 0.00 (0.00) 0.00 (0.00, 0.00) 1.51 2458 1.000
MW 0.04 (0.07) 0.01 (0.00, 0.24) 0.01 1801 1.001
SN 0.50 (0.12) 0.49 (0.29, 0.76) 168.30 1924 1.001
DS 0.06 (0.02) 0.05 (0.03, 0.09) 12.06 519 1.000
PRB 0.53 (0.14) 0.52 (0.30, 0.82) 182.80 275 1.001
KAH 0.92 (0.10) 0.92 (0.73, 1.12) <0.01 200 1.003
TAN – – – – –
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Figure 2: MCMC trace plots. Each trace represents the Euclidean norm of
the parameter vectors of: efficiencies (||πk||), encounter rates (||γk||), regression
parameters (||α0,α1,α2,α3||) and density random effects (||φ j||). Two overlapping
chains of 1000 iterations are shown in each case for each species.
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(a) Fit to the probability of a positive fishing event per species, grid, and fishing method.

Figure 3: Observed and predicted catch rates. Values are medians of the posterior
expectation of the catch rate per grid, with 95% credibility intervals. The size of
each point is proportional to the number of data points (fishing events) per fishing
method and grid.
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(b) Fit to the mean catch rate (kg per km2) per species, grid, and fishing method.

Figure 3: continued
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Figure 4: Relationship between predicted catch rate and the predicted available
biomass density.
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Figure 5: Fit to total observed catches for the insample and outsample data.
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Figure 6: Posterior distributions for the encounter rate γk and efficiency πk
catchability parameters for each species.
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Figure 7: Estimated density heat maps, showing the posterior median of the expected
density per grid following each model fit. The expectation per grid was calculated as
an arithmetic average of di j across fishing events.
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4.3 Sensitivities

The model takes as input a single informative prior, namely catch efficiency for the trawl survey;
usually for the KAH (Table 3). Alternative runs were performed to examine the influence of this
prior on model estimates of the catch efficiencies and densities. Posterior estimates of the catch
efficiency are sensitive to the input prior, which has an inverse relationship to the mean density
(Figure 8). Intuitively, given the expected catch equation E

[
yi jk
]
= πk ·ai ·di j, higher values for πk

imply lower values for di j and vice versa.

5 Discussion

5.1 Summary and Conclusions

The statistical methods developed in the current project are able to represent a spatial, semi-
continuous catch process across multiple fishing fleets operating simultaneously throughout the
New Zealand EEZ and Territorial Sea. The catch process itself requires only two parameters
per fleet (γk and πk), indicating how strongly the catch rates are driven by the underlying density
distribution, which is also estimated by the model.

The basic framework is applicable across multiple fish species, although the quality of the fits varies
(Figure 3). A more informed representation of πk and d j, potentially including more covariates or a
higher resolution definition of the fisheries, could improve these results. Depth and seasonal affects
for example, could prove useful predictors of the density. Fisheries could also be defined so as to
better represent their likely targetting behaviour. But even with better fishery group definitions,
poor fits may result from statistical distributions that are too conservative for aggregating species,
and more highly skewed descriptions of the conditional catch process are needed. This may also
increase the quantity of data that can be included in the model.

The grooming procedures were developed by Zhou et al. (2019b) to limit the extreme variances
in the data, and thereby ensure more stable estimations of the catch efficiencies using standard
statistical distributions. However, over 30% of the data were discarded due to errors in the positional
or gear area calculations (Table S1). Extreme catch records represented a much smaller subset of
data removed, with the biggest loss due to the removal of low catch grids per species. The data
retained were therefore only a small subset of the total commercial fishing effort. Improvements
to the data preparation would be important if the method is to be applied across the full set of
commercial fishing effort to estimate an exploitation rate of catches across entire fisheries. This
may include effort for which there are no catch records. In some deepwater fisheries for example,
bycatch is recorded by observers on only a subset of the effort. In these instances the observer
data would be needed to fit the model and to predict catches across the unobserved proportion, as
is done routinely for bycatch estimation (e.g., Anderson & Edwards 2018, Anderson et al. 2019,
Finucci et al. 2019). Results presented here, showing good prediction of the outsample catches
(Figure 5), indicate that the model may be suited for this type of application.

The model framework is ultimately intended to generate an exploitation rate that can be resolved
as necessary across space, years, and fisheries. An exploitation rate per species can be calculated
using Equation 6, by summing across the outsample effort data. Because only a small subset of the
effort data were retained (see Table S1), only illustrative exploitation rates could be calculated in
the current application (Figure S3). These are nevertheless indicative of how the model framework
could be used in future applications. The model includes uncertainty in both the underlying density
distribution and catch process, with recognisable diagnostics for evaluation of model performance.
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(a) ELE. Prior expected values for πKAH are Reference = 1.430; A = 0.715, B = 1.073, C = 1.788, D = 2.145
(Table 3).

(b) RSK. Prior expected values for πKAH are Reference = 1.100; A = 0.550, B = 0.825, C = 1.375, D =
1.650 (Table 3).

Figure 8: Sensitivity test results showing posterior distributions for the efficiency
parameters πk and mean density (kg per km2) across grids. The prior mean for
πKAH is shown as a vertical line.
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Requiring only catch and effort data, with catch only needed for a subset of the effort, improved
curation of the data could allow the method to be applied to estimate an exploitation rate across a
wide range of bycatch and mixed species fisheries.

5.2 Improvements and further work

• Data grooming: discarding of data during the grooming steps could be replaced by more
detailed imputation of missing or likely erroneous values. A more complete set of effort data
will improve spatial and temporal coverage of the fisheries and translate into more reliable
estimates of the exploitation rate.

• Population density covariates: estimation of the population density surface will likely be
improved by additional environmental covariates or proxies, for example, depth and seasonal
changes.

• Fishing behaviour covariates: commercial catchability parameters are currently defined
according to a single fixed effect, namely the gear method. Further covariates could be added
to improve fits to the data, for example, targetting behaviour or vessel effects. These could
explain additional variation in the catch data, in a manner similar to how fishing-related
covariates are used in catch-per-unit-effort standardisations.

• Statistical modelling: refinement of the assumed statistical distributions may improve fits to
highly skewed catch data and allow better representation of the inflated variance characteristic
of catch data from aggregating species.

• Catchability priors: refinement of the catchability priors for the Kaharoa, and the development
of priors for the Tangaroa, will improve confidence in the exploitation rates ultimately
estimated by the model.

Collection of data through the Electronic Reporting System may improve both data quality and the
availability of covariates, facilitating future applications of the proposed framework.
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Supplementary Tables

Table S1: Data cleaning steps for combined commercial fisheries. The number of
fishing events following each cleaning step is listed per species. The initial cleaning
steps are commmon to all species. The percentage of fishing events relative to the
initial data extract is shown in parentheses.

Description All ELE
Initial 640852 (100.0%)
Missing gear area 608010 (94.9%)
Extreme gear area 543180 (84.8%)
Missing positional data 451547 (70.5%)
Records on land 447132 (69.8%)

Poorly sampled methods 7333169 (52.0%)
Extreme catches 328609 (51.3%)
Low catch grids 112533 (17.6%)

RSK GUR
Poorly sampled methods 404735 (63.2%) 446974 (69.7%)
Extreme catches 394242 (61.5%) 425133 (66.3%)
Low catch grids 254818 (39.8%) 245815 (38.4%)

SPE SNA
Poorly sampled methods 404735 (63.2%) 446974 (69.7%)
Extreme catches 399011 (62.3%) 434968 (67.9%)
Low catch grids 157804 (24.6%) 116931 (18.2%)

STA TAR
Poorly sampled methods 363155 (56.7%) 446974 (69.7%)
Extreme catches 355059 (55.4%) 433119 (67.6%)
Low catch grids 132886 (20.7%) 206366 (32.2%)

HAK LIN
Poorly sampled methods 434721 (67.8%) 434721 (67.8%)
Extreme catches 431941 (67.4%) 421685 (65.8%)
Low catch grids 63552 (9.9%) 171791 (26.8%)

Fisheries New Zealand Fisheries Risk Assessment l 27



Table S2: Total catch, number of grids occupied and number of records, per species
and fishing method. These were used to justify removal of selected fishing methods
during the data grooming procedure.

Species Method Total Catch Number Grids Number Records Remove?
ELE BLL 591 1065 66042 TRUE

BT 5464804.6 1444 303883 FALSE
CP 0 25 158 TRUE
DS 0 126 12253 TRUE
KAH 22557.5 151 367 FALSE
MW 200 397 29986 TRUE
PRB 0 343 5524 TRUE
SN 793132 542 29286 FALSE
TAN 144.7 325 568 TRUE

RSK BLL 92548 1065 66042 FALSE
BT 5046437.65 1444 303883 FALSE
CP 0 25 158 TRUE
DS 3100 126 12253 TRUE
KAH 5564.2 151 367 FALSE
MW 1566 397 29986 TRUE
PRB 33068 343 5524 FALSE
SN 35348 542 29286 FALSE
TAN 460.5 325 568 FALSE

GUR BLL 412888.75 1065 66042 FALSE
BT 13937776 1444 303883 FALSE
CP 0 25 158 TRUE
DS 510952.8 126 12253 FALSE
KAH 13403.7 151 367 FALSE
MW 44085 397 29986 FALSE
PRB 110490 343 5524 FALSE
SN 41003.3 542 29286 FALSE
TAN 137.3 325 568 TRUE

SPE BLL 591671.15 1065 66042 FALSE
BT 3941228.3 1444 303883 FALSE
CP 145 25 158 TRUE
DS 71 126 12253 TRUE
KAH 14610.5 151 367 FALSE
MW 2742 397 29986 TRUE
PRB 76168 343 5524 FALSE
SN 7580.2 542 29286 FALSE
TAN 8667.7 325 568 FALSE

SNA BLL 9192317.5 1065 66042 FALSE
BT 10012322.5 1444 303883 FALSE
CP 0 25 158 TRUE
DS 3829842.5 126 12253 FALSE
KAH 1675.8 151 367 FALSE
MW 24304 397 29986 FALSE
PRB 1695904 343 5524 FALSE
SN 154909.75 542 29286 FALSE
TAN 0 325 568 TRUE

STA BLL 158 1065 66042 TRUE
BT 11156121.13 1444 303883 FALSE
CP 0 25 158 TRUE

Continued on next page
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Table S2: Continued from previous page
Species Method Total Catch Number Grids Number Records Remove?

DS 4 126 12253 TRUE
KAH 0 151 367 FALSE
MW 3494 397 29986 FALSE
PRB 4481 343 5524 TRUE
SN 95657.1 542 29286 FALSE
TAN 0 325 568 FALSE

TAR BLL 630168.4 1065 66042 FALSE
BT 24257133.41 1444 303883 FALSE
CP 0 25 158 TRUE
DS 193916 126 12253 FALSE
KAH 0 151 367 FALSE
MW 21202 397 29986 FALSE
PRB 554532 343 5524 FALSE
SN 989141 542 29286 FALSE
TAN 0 325 568 TRUE

HAK BLL 165801.15 1065 66042 FALSE
BT 4644812.8 1444 303883 FALSE
CP 0 25 158 TRUE
DS 0 126 12253 TRUE
KAH 237.2 151 367 FALSE
MW 3709180 397 29986 FALSE
PRB 67765 343 5524 FALSE
SN 4537 542 29286 FALSE
TAN 5496 325 568 FALSE

LIN BLL 17635311.478 1065 66042 FALSE
BT 18369242.9 1444 303883 FALSE
CP 572 25 158 TRUE
DS 2162 126 12253 TRUE
KAH 3742.1 151 367 FALSE
MW 3574623.75 397 29986 FALSE
PRB 284335 343 5524 FALSE
SN 194235 542 29286 FALSE
TAN 22825.9 325 568 FALSE
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Supplementary Figures

Figure S1: Grid definitions for each species following data grooming. The number
of grids per species is shown in parentheses.
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Figure S2: Empirical distribution of catches per fishing event per species following
data grooming. Fishing methods retained in the analysis are shown in parentheses
for each species. Catches are shown on a log10-scale, with zero values plotted at
negative infinity.
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Figure S3: Illustrative exploitation rates per year and species calculated using
Equation 6.
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