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EXECUTIVE SUMMARY 
 
D'Archino, R.; Schimel, A.C.G.; Peat, C.; Anderson, T. (2021). Automated detection of 
large brown macroalgae using machine learning algorithms—a case study from Island 
Bay, Wellington. 
 
New Zealand Aquatic Environment and Biodiversity Report No. 263. 36 p. 
 
 
This study was initiated to assess and improve previously developed machine learning (ML) algorithm 
for automated detection and identification of three habitat-forming brown macroalgae, using underwater 
towed video imagery, within the Island Bay to Houghton Bay study region (Taputeranga Marine 
Reserve) in Wellington. 

The target taxa were selected to represent key habitat forming taxa across a range of taxonomic levels, 
including: two species (Ecklonia radiata and Lessonia variegata), one genus (Carpophyllum spp.), and 
a grouping of all macroalgae present. 

A total of 32 towed video transects were surveyed. Twelve were acquired in January 2019, as part of a 
ML pilot/feasibility study funded by NIWA’s Strategic Science Investment Fund and the additional 20 
transects were surveyed in August 2020 as part of the current study. The surveyed area was designed to 
include a broad variety of reef sites with variable macroalgal cover and species composition, rather than 
overlapping for temporal comparisons. 

The acquisition of additional video footage provided the data necessary for additional training (15%) 
and algorithm validation (85%). The performance of the models was assessed by evaluating them on 
their respective training dataset and validation dataset, compiling the predicted results against actual 
categories as confusion matrices, and calculating several common metrics used as accuracy, precision, 
recall, F1-score, and Matthew’s correlation coefficient. 

NIWA’s ML models were successful at identifying and distinguishing all four macroalgal groups across 
the entire survey, with overall models attaining high performance accuracies of between 80.6 to 87.1% 
for individual species and genera, and 97.2% for the ‘all-macroalgae’ group. 

Two distribution maps (presence/absence) for each of the four target taxon levels were produced: an 
overall prediction map that indicated the highest certainty for determining the distributions; and an 
overall uncertainty map to examine where rare occurrences of each taxon occurred. 

This study showed that ML can provide a significantly faster and cost-effective approach to post-
processing video imagery which will improve as more data are collected. ML models performed well 
at detecting and distinguishing between closely related species (Lessonia variegata and Ecklonia 
radiata), highlighting the accurate fine-tuned performance of these models. The next step in ML coding 
would be to extend the ML algorithm to estimate the percentage cover for the four macroalgal groups 
and to detect other key macroalgal taxa.  

Kelp forests are susceptible to changing environmental conditions, including changes in water 
temperatures, increasing turbidity, sediment deposition, and ocean acidification. Monitoring data are 
critical to documenting changes in our coastal communities and for management. Decline of kelp beds 
is likely to affect subcanopy species (including pāua and rock lobster) that will lose the three-
dimensional habitat and be affected by changed light and water motion regimes. 
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1. INTRODUCTION 
 
1.1 Background  
 
Large, canopy-forming brown macroalgae (Laminariales and Fucales, commonly known as kelp) are 
globally recognised as critical components of coastal ecosystems (e.g., Krumhansl et al. 2016, Coleman 
& Wernberg 2017). They provide three-dimensional structures that create habitat, shelter, and nursery 
grounds for a diverse range of organisms, including commercially important species of fish and shellfish 
as well as diverse and productive macroalgal assemblages (Mann 1973, Dayton 1985, Graham et al. 
2007). Kelp forests are highly productive and are considered to be one of the most productive systems 
on earth (Mann 1973, Graham et al. 2007). As primary producers, macroalgae use solar energy to 
convert inorganic material to organic matter through photosynthesis by using CO2. Kelps modify their 
surrounding environment by altering the water flow and the light and sedimentation in the subcanopy, 
and they buffer wave energy, reducing coastal erosion (Layton et al. 2019, Murie & Bourdeau 2020). 
Finally, kelp forests have important cultural and socio-economic value and support tourism and 
recreational activities (Bennett et al. 2016). 

In New Zealand, rocky reefs are dominated by diverse algal communities which form large beds with 
species composition differing with geographic distribution. The Laminariales includes three native 
genera (Ecklonia, Lessonia, and Macrocystis) and one introduced genus (Undaria), and the Fucales 
includes 10 genera (Carpophyllum, Cystophora, Durvillaea, Hormosira, Landsburgia, Marginariella, 
Notheia (an obligate epiphyte, primarily found on Hormosira), Phyllotricha, Sargassum, Xiphophora) 
and 29 species. 

International studies have reported on the loss of subtidal macroalgal forests in temperate and 
subtropical marine ecosystems, particularly on urbanised coasts. Large brown macroalgae are now 
globally considered key indicators of ecosystem change on coasts where they are found (D’Archino et 
al. 2019). In New Zealand, the lack of baseline data makes it difficult to assess if large brown algae are 
in decline as in other regions in temperate waters (e.g., Australia, Europe, Japan). Recently the loss of 
Durvillaea spp. was documented in the South Island as a result of the heatwave in 2017–2018 (Thomsen 
et al. 2019) and there is increasing concern about the decline of Macrocystis pyrifera. The conservation 
status of Durvillaea poha, Durvillaea antarctica, and Macrocystis pyrifera has been assessed as ‘at risk 
– declining’ (Nelson et al. 2019). Because the loss of canopy-forming algae is likely to be associated 
with a significant loss of associated species and ecological functions (Teagle et al. 2017), it has become 
clear that monitoring canopy-forming algal beds is important in order to assess changes due to climate 
change and anthropogenic stressors (e.g., pollution, sedimentation, eutrophication. The importance of 
acquiring baseline data on habitat-forming species was widely discussed by (D’Archino et al. (2019). 

This lack of baseline data is partly due to the significant time and cost associated with coastal benthic 
surveys, which rely heavily on expert SCUBA-divers (D’Archino et al. 2019). A solution may be found 
in the automation of underwater video footage analysis, which could constitute a step-change in terms 
of cost and time effectiveness of coastal benthic surveys. Not only would this allow the acquisition of 
the necessary baseline data, but also this would increase the coverage and frequency of monitoring and 
change-detection efforts. Bewley et al. (2012) and Seiler et al. (2012) demonstrated how, given a 
sufficiently large training dataset of expert-labelled frames of underwater video footage, the application 
of standard machine learning classification algorithms (respectively, Support Vector Machine and 
Random Forest) to local image features could accurately predict the presence or absence of Ecklonia 
radiata and map the distribution of temperate rocky reef habitats. The method was developed further 
into the CoralNET software (Beijbom et al. 2015), which was successfully used, for example, to 
estimate habitat-forming algae in Australia (Griffin et al. 2017). 

There have been significant recent advances in Artificial Intelligence (AI): machines can now use 
knowledge from image and video recognition and classification to detect the world in a similar manner 
to that of humans. Advancements in computer vision with deep learning have resulted in Convolutional 
Neural Networks (CNNs), pattern recognition algorithms that can assess an image, detect 
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aspects/objects in the image, assign importance (trained to include weights and biases), and differentiate 
one object/aspect from another (Rawat & Wang 2017). As such, CNN is fast becoming the method of 
choice for visual tasks such as image detection and classification (Rawat & Wang 2017, Gu et al. 2018), 
with direct and significant applications for marine underwater video surveys (Moniruzzaman et al. 
2017, Malde et al. 2020). CNNs can achieve a high level of performance in image analysis, but their 
main drawback is that a large amount of training data (in the order of 104+ images) is generally required 
for these models to learn the spatial features (Yamashita et al. 2018). Advances in transfer learning 
approaches have allowed the use of CNNs without the required training dataset size. 

In a pilot machine learning study (D’Archino et al. 2019, Appendix 8), the authors investigated the 
potential of the ‘feature extraction’ transfer learning method, which consists of passing the video frames 
to a pre-trained, deep CNN to produce ‘deep features’ that can be then used in input to a traditional 
classifier. In this pilot study, Inception-ResNet-v2 was used as the pre-trained neural network, and a 
linear Support Vector Machine (SVM) classifier. Mahmood et al. (2020) demonstrated that this 
methodology (using the deep residual network ResNet-50 instead) allows accurate identification of 
Ecklonia radiata in images collected by an autonomous underwater vehicle in Australia. Following the 
success of this pilot study, a project was funded by NIWA’s Strategic Science Investment Fund to (1) 
acquire additional videos and establish best camera settings, (2) test different approaches for preparing 
the training dataset, (3) develop alternative deep-learning classification approaches, and (4) have an 
expert identifying macroalgae in order to develop the training dataset. 

1.2 Project focus 
 
The current project aims to assess and improve the previously developed machine learning (ML) 
algorithm for automated-detection and identification of three habitat-forming brown macroalgae, using 
underwater towed video imagery, within the Island Bay to Houghton Bay study region in Wellington. 
Previously collected imagery used to train the model is combined with additional new imagery 
(representing new sites and time of sampling) to train (15%) or evaluate (85%) the ML models. 
 
The acquisition of additional video footage on the south coast of Wellington provided data necessary 
for additional training, algorithm validation, and the completion of maps of macroalgal distribution in 
the area between Island Bay and Houghton Bay (Taputeranga Marine Reserve). 
 
1.3 Research objectives  
 
Objective 1: Turn the machine learning method into a practical system that applies readily-trained 
neural networks to new videos and provides results in both .csv files and maps. 
 
Objective 2: Acquire baseline data of large brown algal distribution along transects in Island Bay and 
Houghton Bay (Taputeranga Marine Reserve) for monitoring. Undertake one day of field survey to 
acquire video transects; apply the ML algorithm to these video data to produce a distribution map of 
large brown algae. 
 

2. Methods 
 
2.1 Study species and site 
 
The target taxa were selected to represent key habitat forming taxa across a range of taxonomic levels, 
including: two species (Ecklonia radiata and Lessonia variegata), one genus (Carpophyllum spp.), and 
a grouping of all macroalgae present (Figure 1). These species/genera occur around much of New 
Zealand’s coast (D’Archino et al. 2019), provide important 3-dimensional biogenic habitat for a 
plethora of other benthic and demersal species (Anderson et al. 2019), and, due to their physiological 
sensitivities to changing environmental conditions, are excellent indicator species for monitoring 
environmental and ecosystem health (D’Archino et al. 2019, Anderson et al. 2019). 
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Lessonia variegata (here after referred to as Lessonia) is found in the upper subtidal zone through to 
deep water on rock on exposed coasts, and forms extensive beds in some places. The thalli are large, 
with long, parallel-sided, strap-like blades growing from perennial, solid, dichotomously branched axes, 
up to 1 m or more in height. There are seven species of Lessonia currently recognised in New Zealand, 
three of which have restricted geographic distributions (e.g., Chatham Islands, Snares Islands, and 
subantarctic islands). Lessonia was reported to grow around the North, South, and Stewart islands, but 
recent research has revealed that there is greater genetic diversity than previously recognised. Lessonia 
is confirmed to occur in the Cook Strait region, with an additional three species found around mainland 
New Zealand yet to be described (Zuccarello & Martin 2016). 
 
Ecklonia radiata (here after referred to as Ecklonia) is found in the low intertidal to subtidal zones, on 
rocky reefs, occasionally on cobbles and shells, on moderately sheltered shores, and on exposed coasts. 
The thalli are large, up to 1 m or more high, with a smooth, cylindrical, unbranched stipe and a flattened 
blade with lateral lobes. In New Zealand there is only one species in this genus, but the morphology 
can vary considerably. 
 
Carpophyllum is an endemic genus commonly found fringing the low intertidal margins of rocky reefs. 
There are four species in New Zealand and two occur in Wellington: Carpophyllum flexuosum, which 
has the widest geographic range and extends into deeper waters (to depths of up to 20 m), and 
Carpophyllum maschalocarpum, which is very common in the low intertidal and upper subtidal zones, 
in many areas forming a horizontal band at low water, and occurs on open coasts as well as in sheltered 
harbours, lagoons, and tide pools. Because the two species share a similar morphology (e.g., thalli have 
flattened main axes bearing leaves of various shapes and sizes), they have been treated as Carpophyllum 
spp. in this study. 
 

 
 
Figure 1: The four categories of large brown macroalgae examined in this study. These included two 

species: a) Ecklonia radiata, b) Lessonia variegata; one genus: c) Carpophyllum spp.; and d) a 
category of all macroalgae present. 

 
This study was conducted along an approximately 1.7 km section of exposed coastline encompassing 
Island Bay and Houghton Bay, on the Wellington south coast (Figure 2a). This section of coast lies 
inside the Taputeranga Marine Reserve, a marine protected area that extends 3.8 km along shore and 
2.3 km offshore. 
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2.2 Survey design 
 
In this study, a total of 32 towed video transects were surveyed within the Island Bay to Houghton Bay 
survey area (Figure 2b). Twelve transects were surveyed on 31st January 2019, as part of a ML 
pilot/feasibility study, with seven transects in Houghton Bay and five in Island Bay (black lines in 
Figure 2b) (Table 1). To provide more comprehensive spatial coverage within the study area, an 
additional 20 transects were surveyed on 3rd August 2020. Because this survey aimed to assess the 
capability of AI to automatically detect kelp taxa using the newly-developed ML algorithms, spatial 
extent was optimised to include a broad variety of reef sites with variable macroalgal cover and species 
composition, rather than any overlap for temporal comparisons. 

 
 
Figure 2: Survey area and design of towed video survey of benthic macroalgae within Island Bay to 

Houghton Bay on Wellington’s south coast, inside the Taputeranga Marine Reserve. a) Yellow 
dotted rectangle = extent of survey area; rose-coloured dashed line = the eastern boundary of 
the Taputeranga Marine Reserve. b) Study area, with locations of towed video transects 
surveyed in 2019 (black track lines) and 2020 (burgundy track lines); green and red triangles = 
start and end of towed video transects, respectively; transect numbers = 2019 (underlined black 
or grey) and 2020 (burgundy). 



 

6 • Automated detection of large brown macroalgae  Fisheries New Zealand 
 

Table 1: Use of transects in this study. 
 

Survey year 
Transect numbers in 

survey (total) 

Used for model training (T), 
model evaluation (E), or not 
labelled (NL) 

Used for model 
predictions 
(map) 

2019 1–12 (12) T Yes 

 13–20 (8) T No (Breaker Bay) 

2020 11, 18 (2) T Yes 

 2, 8, 10 (3) E Yes 

 1, 3–7, 9, 12–17, 19, 20 (15) NL Yes 

 
NIWA’s Seaweed-Cam small towed video camera system (Figure 3) and methodology were used for 
both the 2019 and 2020 surveys. The tow frame was fitted with a high-definition forward-facing (45° 
angle) video camera (Splashcam Deep-Blue HD-1080p video camera - Figure 3a-b) to see both the 
seabed and oncoming objects, with real-time video feed via a coaxial cable to the surface vessel1. The 
high-resolution (1080p) video footage was viewed and recorded on a topside video monitor/recorder 
(HDMI Atomos Ninja Blade 5" fitted with a 240GB Solid State Disk Drive). Two LED 1500 lumen 
dive lights provided some close-to-the-seabed illumination, and paired lasers, spaced 10 cm apart, 
provided size reference for objects and organisms seen on the seabed (Figure 3b). The system received 
a GPS fix from a small GPS antenna affixed to the vessel, collecting a low-accuracy satellite-referenced 
position every 1–3 seconds. Each video frame was stamped with the GPS position (latitude and 
longitude in decimal degrees), site or transect number (manually entered), and local date and time (e.g., 
Figure 4, Figure 5), which ensured that the video imagery and the corresponding metadata (GPS position 
and time) were permanently synchronized. 
 
The Seaweed-Cam was deployed by hand off the side of NIWA’s RV Rukawai and was towed 
approximately 1 m above the seabed at a speed of approximately 0.5 to 1 knot. Video transects at each 
site were surveyed perpendicular to the coast and island shores, extending wherever possible from the 
immediate subtidal (about 2 m) across the width of the reef and out beyond the reef edge. Underwater 
videos were acquired at depths between 2 m and 16 m, and the transect length varied from about 76 m 
to 482 m, indicating how far each reef extended offshore. All towed video transects were surveyed 
when underwater visibility was over 3 m to ensure video imagery was of adequate quality to distinguish 
macroalgae. Transects generally started in deep water with the boat proceeding backwards to the shore, 
which allowed a better view of upcoming emerging or shallower rocks and minimised the drift length 
of the cable. During each transect, the real-time video footage displayed on the Atomos Ninja Blade 
monitor allowed the cable operator to see on-coming obstacles and adjust the cable length accordingly 
to avoid collision. All video footage was backed up to NIWA’s archive drive upon completion of the 
day’s field survey. 
 

 
 
1 The tow-frame also has an attached underwater housing for a GoPro Hero4 video camera (stand-alone camera used as a backup system), 
but not used in this survey. 
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Figure 3: The Seaweed-Cam—NIWA’s small towed video camera system. a) Wide angle side view of the 

towed video frame (85L x 24W x 24H cm) and configuration; b) close-up front view of the towed 
video setup. Superscript numbers denote: 1 = High-definition video camera (Splashcam’s Deep-
Blue HD-1080p video camera) with real-time video feed via a coaxial cable to the surface vessel; 
2 = Underwater housing fitted with a GoPro Hero4 video camera (stand-alone camera used as 
a backup system); 3 = Paired lasers are spaced 10 cm apart to provide size reference for objects 
and organisms seen on the seabed. 

 
 

 
 
Figure 4: Examples of metadata overlaid at the top of the video footage. Examples from the 2019 (top) 

and 2020 (bottom) surveys. 
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Figure 5: Examples of seafloor imagery collected within the study area (Island Bay to Houghton Bay). 
 
2.3 Pre-model processing 
 
2.3.1 Metadata and image extraction  
 

A Python algorithm developed during the pilot study, to automatically read the metadata overlaid on 
the videos, was reused for this project (see detailed description in appendix 8 of D’Archino et al. 2019). 
It was modified to account for the difference in the location and style of the date and time overlay in 
more recent footage. 
 
These extracted data were then exported in comma-delimited files, along with relevant information, 
including the source video filename, corresponding frame number in the video, and time since the 
beginning of the video (e.g., Table 2; also see appendix 8 of D’Archino et al. 2019 for a detailed 
description of this method). The metadata algorithm was modified slightly in this study to account for 
the change in screen position and text style of the 2020 date and time overlay. 
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Table 2: Example of metadata extracted from video overlay. Showing the results for the first few seconds 
of the video corresponding to transect 4 of the August 2020 survey. 

 

Data lines Date Time Video time Latitude Longitude Prefix Frame 

0 3/08/2020 11:08:51 0:00:00 -41.3527 174.7755 SWC2001_004 0 

1 3/08/2020 11:08:52 0:00:01 -41.3527 174.7755 SWC2001_004 30 

2 3/08/2020 11:08:53 0:00:02 -41.3527 174.7755 SWC2001_004 60 

3 3/08/2020 11:08:54 0:00:03 -41.3527 174.7755 SWC2001_004 90 

4 3/08/2020 11:08:55 0:00:04 -41.3528 174.7755 SWC2001_004 120 

5 3/08/2020 11:08:56 0:00:05 -41.3528 174.7755 SWC2001_004 150 

6 3/08/2020 11:08:57 0:00:06 -41.3528 174.7755 SWC2001_004 180 

 
2.3.2 Expert data labelling 
 

Twenty-five video transects were selected to provide adequate video imagery of the four macroalgal 
taxa/groups to train and to evaluate the models’ ability to accurately detect each taxon/group. This 
included all 12 of the 2019 survey, 8 additional transects from the 2019 survey outside the study area 
(specifically, Breaker Bay, south coast Wellington), and five of the 20 transects surveyed in 2020 
(Table 1). Individual images for the training library were extracted from each of the video transects at 
the rate of 1 per second (1 image every 30 frames; equivalent to the metadata extraction) and saved as 
‘png’ files. 
 
A macroalgal specialist (R. D’Archino) then visually examined each image and recorded her expert 
assessment in a set of columns of the corresponding comma-delimited file. The suitability of the image 
for expert analysis was recorded in the ‘good-frame’ column, using ‘0’ for unsuitable frames (due to 
the camera being still on the boat, or too far from the bottom, in too turbid waters, obstructed by debris, 
too close to the bottom, stuck on the reef, too much motion blur, etc.) and ‘1’ for otherwise suitable 
frames (where species presence/absence can be confidently assessed). In other columns corresponding 
to a given macroalgal type (such as ‘Ecklonia’, ‘Lessonia’, and ‘Carpophyllum’) or category of interest 
(e.g., ‘macroalgae’ or ‘sand’), the possible labels were ‘0’ for absent, ‘1’ for present (irrespective of 
density), or ‘2’ for uncertain. 
 
2.4 Machine learning models 
 
Five individual ML models were generated using the training images with their associated expert 
identifications (i.e., labelled data library): (1) frame suitability, (2) Ecklonia, (3) Lessonia, (4) 
Carpophyllum, and (5) macroalgae. 
 
The frame suitability model was trained and validated on all images using the ‘good frame’ label as the 
target variable. The purpose was to generate a robust indicator of the quality and suitability of video 
footage for analysis, which would provide an additional degree of confidence on the predictions from 
the other specific models. 
 
The four taxa models were trained and validated on suitable images (i.e., good frame = 1) using the 
corresponding identification label (respectively ‘Ecklonia’, ‘Lessonia’, ‘Carpophyllum’, and 
‘macroalgae’) as the target variable, ignoring the images where the target was uncertain (i.e., expert 
label = 2). The rationale was that the exclusion of ‘unsuitable’ images (i.e., where the seabed was not 
clearly visible) or images where the macroalgal expert could not clearly see or identify taxa from images 
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(i.e., assessment was uncertain), would allow the model training to be focused on the specific features 
that differentiate the presence or absence of a species/taxon/category. 
 
2.4.1 Training and evaluation dataset 
 

To accurately assess a model’s capability for generalisation on future datasets, the evaluation must be 
performed on a dataset that is independent of the dataset that was used for its training. Since there is a 
high risk of correlation between the image contents of consecutive frames in any given transect, several 
specific transects were selected to form the evaluation dataset rather than a random subset of frames. 
After verifying that they contained instances of all classes for all models, the labelled data of transects 
2, 8, and 10 of the 2020 survey were reserved for evaluation (n=3). The training dataset thus consisted 
of the labelled data for all 20 transects of the 2019 survey (including the 8 transects outside the study 
area) and 2 transects from the 2020 survey (transects 11 and 18, see Table 3). 
 
Based on this split, the training dataset for the frame suitability model totalled 7839 frames, and its 
evaluation dataset totalled 1790 frames (Table 4). For the other models, the removal of unsuitable 
frames and frames with uncertain assessment (label = 2) led to slightly smaller datasets, with training 
datasets in the 5863–6137 range and evaluation datasets in the 1366–1517 range (Table 4). 
 
Table 3: Allocation of towed video transects for ML models. 
 

Survey year Transect numbers in survey (n) Use in model Used for model predictions (map) 

2019 1–12 (12) Training set model predictions 
 13–20 (8) Training set Not used (Breaker Bay) 
2020 11, 18 (2) Training set model predictions 
 2, 8, 10 (3) Evaluation set model predictions 
 1, 3–7, 9, 12–17, 19, 20 (15) not labelled model predictions 

 
Table 4: Size and class counts of the training and validation datasets for all five models. Each model 

consists of a binary classification with ‘Negative (0)’ and ‘Positive (1)’ referring respectively to 
the ‘unsuitable’ and ‘suitable’ classes for the frame suitability model, and to the ‘absent’ and 
‘present’ classes for all other models. 

 
 Training  Validation 

Model Negative (0) Positive (1) Total  Negative (0) Positive (1) Total 

        
Frame suitability 1 694 6 145 7 839  273 1 517 1 790 
Ecklonia 4 235 1 628 5 863  815 551 1 366 
Lessonia 4 198 1 699 5 897  888 559 1 447 
Carpophyllum 4 311 1 596 5 907  1 128 357 1 485 
Macroalgae 976 5 161 6 137  73 1 444 1 517 

 
 
2.4.2 Model architecture and training parameters 
 

Given the larger training dataset compared with that in the pilot study (D’Archino et al. 2019), the 
original ‘features extraction’ transfer learning approach (transfer learning = a machine learning method 
where a model developed for a task is reused as the starting point for a model on a second task) was 
upgraded to the ‘fine tuning’ method, in which the pre-trained deep neural network was partially 
retrained (fine-tuned) on new data, rather than simply used to extract image features. The InceptionV3 
CNN pre-trained on the ImageNet dataset was used, as available in the Tensorflow-Keras (v1.12) 
Python library, as a base network. 
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Each of the five models used the same configuration. The last 1000 classes classification layer of the 
InceptionV3 base network was removed and the following were added; a fully-connected (dense) layer 
of 128 units, a dropout layer with a dropout rate of 0.2, and a fully-connected layer of 2 units, suitable 
as a final classification layer for the binary classification tasks. 
 
Model training used a batch size of 32 and class weights equal to the inverse of the class frequencies to 
compensate for the class frequency imbalance. Images were transformed using augmentation with 
parameters randomly updating (see next section) and resized to 299 x 299 pixels to match the input size 
of InceptionV3. Accuracy was selected as the evaluation metric and categorical cross-entropy as the 
evaluation (loss) function. Optimisation followed a Stochastic Gradient Descent with an initial learning 
rate of 0.001, a momentum of 0.5, and a decay rate of 0.0001. 
 
A maximum number of training epochs of 150 was set but included an early-stopping function called 
at the end of each epoch to interrupt the training if accuracy over the validation dataset had not increased 
after 20 consecutive epochs. The model weights at the epoch with maximum accuracy were retained as 
the final weights. 
 
2.4.3 Image augmentation  
 

A common approach to address the issues associated with limited data in training CNNs (e.g., 
overfitting) is to use ‘augmented duplicate images’ (Lei et al. 2019, Shorten & Khoshgoftaar 2019). 
Instead of using the raw images, the models were trained on transformed images (e.g., rotated, stretched, 
flipped, translated, etc.) with the transformations controlled by parameters that update randomly within 
a desired range at each epoch (Table 5, Figure 6). Although the resulting images were still highly 
correlated with the originals, this approach ensured that the neural network was never exposed to the 
exact same image twice during training, which then allowed the network to generalise to these 
transformations. Table 5 lists the transformations and the range of the corresponding parameters. 
 
Underwater photography is characterised by variations in colour and brightness with sun azimuth, cloud 
cover, depth, distance from the seafloor, and water turbidity (Warrant & Locket 2004). This non-random 
variability in the resulting images can introduce bias in CNN image recognition. For example, since 
species of macroalgae tend to be distributed by depth, the model could end up learning to recognise the 
presence of a species not on instances of the algae themselves but on the level of brightness or blue light 
that characterise the depth range at which it occurs. To compensate for this risk, many of these lighting 
variations can be simulated by scaling the hue, saturation, and/or lightness of the image. As part of the 
image augmentation process, a function that transformed the RGB channels to an HSV representation 
and introduced random scaling was implemented, thus allowing the CNN to generalise to variations in 
a wide range of lighting conditions. 
 
Table 5: Transformation types and corresponding parameter ranges used for image augmentation. 
 

Augmentation type Parameter range 
  
Rotation by a random angle Between -30 and 30 degrees 
Height stretch by a random factor Between -10% and 10% 
Width stretch by a random factor Between -10% and 10% 
Randomly horizontal flipping N/A 
Randomly vertical flipping N/A 
Randomly scaling each channel (RGB) Up to 30% (each channel has its own scaling factor) 
Randomly scaling the Hue, Saturation, and Value 

 
Up to 30% 
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Figure 6: Example of a seafloor image augmented for analysis. The unaltered image (left-image) has been 

augmented by enhancing the brightness, flipping its vertical orientation, and adding rotation 
(right-image). 

 
2.4.4 Model evaluation 
 

The performance of the models was assessed by evaluating them on their respective training dataset 
and validation dataset, compiling the predicted results against actual categories as confusion matrices 
(Table 6), and calculating several common metrics used on such binary classification problems: 
accuracy, precision, recall, F1-score, and Matthew’s correlation coefficient (Chicco & Jurman 2020). 
 
Table 6: The confusion matrix, listing the total number of samples classified by their true and predicted 

categories. The total number of correct positive predictions is termed True Positive (TP), total 
number of correct negative predictions is True Negative (TN), total number of negative 
incorrectly classified as positive is the False Positive (FP), and total number of positive 
incorrectly classified as negative is the False Negative (FN). 

 

  
Actual samples: 

Actual positives (1): Actual negatives (0): 

Predicted 
samples: 

Predicted positive (1): True Positive (TP) False Positive (FP) 

Predicted negative (0): False Negative (FN) True Negative (TN) 

    
Accuracy, the most widely used classifier performance metric, is calculated by dividing the number of 
correct predictions (true positive and true negative) by the total number of predictions: 
 
                                            𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = TP+TN

TP+TN+FP+FN
 (1) 

 
The main default of this metric is that it is not suitable if data are strongly unbalanced. As a result, it 
has become common to calculate the alternative metrics Precision, Recall, and F1-score. Precision is 
the proportion of positive predictions that were correct, and Recall is the proportion of actual positives 
that were correctly predicted as such. The F1-score is the harmonic mean of those two terms. They are 
calculated as follows: 
 
                                                     𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = TP

TP+FP
 (2) 
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                                                    𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = TP
TP+FN

 (3) 

 
                              𝐹𝐹1 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 2 ∙ precision∙recall

precision+recall
= 2∙𝑇𝑇𝑇𝑇

2∙𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹+𝐹𝐹𝐹𝐹
 (4) 

 
Despite its popularity as an alternative to accuracy, the F1-score has recently been criticised for 
providing misleading information where a prediction displays many true positives but few true 
negatives, or many true negatives but few true positives (Chicco & Jurman 2020). Accordingly, the 
unbiased, normalised Matthew’s correlation coefficient (nMCC) was also calculated, following Chicco 
& Jurman (2020): 
 
                          𝑀𝑀𝑀𝑀𝑀𝑀 = TP∙TN−FP∙FN

�(𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹)∙(𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹)∙(𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹)∙(𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹)
 (5) 

 
                                                     𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = MCC+1

2
 (6) 

 
All five trained models were applied to all frames of all videos, producing prediction values between 0 
and 1 for each pair of classes, summing to 1 (Table 7). Whichever class has the highest value (>0.5) is 
usually taken as the predicted class. 
 
Table 7: Example of predictions from models applied to video. The predictions from the macroalgae 

model applied to the first five frames of the first transect of the 2019 survey. For each class 
(‘present’ and ‘absent’), the model outputs a number between 0 and 1, with the two numbers 
summing to 1. Whichever class is superior to 0.5 is usually taken as the class predicted. 

 
Frame Prefix 0_absent 1_present 
    
0 SWC1901_001 0.162671 0.837329 
1 SWC1901_001 0.086542 0.913458 
2 SWC1901_001 0.066806 0.933194 
3 SWC1901_001 0.074461 0.925539 
4 SWC1901_001 0.052704 0.947296 

 
2.4.5 GPS interpolation 
 

The precision of the GPS recorded was unbalanced, i.e., though at the latitude of Wellington, the 
latitudes recorded had a precision of 5 decimal places (approximately 1.1 m), the longitude 
measurements had a precision of 4 decimal places (approximately 8.4 m). Before being used for post-
processing, both latitude and longitude outputs (from the metadata extraction process) were filtered 
(forward and backward) using a low-pass Butterworth filter of the 4th order with a critical frequency of 
0.05 half-cycles per sample. 
 
2.4.6 Averaging predictions and uncertainty  
 

Because trained models are applied to all frames in a video, any given model produces 30 predictions 
for each second of footage. Moreover, these predictions are likely to be highly correlated because the 
tow camera and its field of view may not move significantly between each frame. Therefore, 
consecutive model predictions can be averaged to produce an output that is both more robust than the 
raw predictions per frame, and more suitable for analysis or display in a map. 
 
The simplest averaging approach would be to retain whichever class was predicted the most frequently 
(i.e., the mode) over all frames included in the averaging period. However, the fact that model 
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predictions are graduated in their certainty (e.g., a frame for which macroalgae was predicted ‘present’ 
with a value of 0.99 is more certain to show macroalgae than a frame for which the value was 0.51), as 
well as the availability of frame suitability predictions (e.g., higher trust may be put in the result of any 
presence/absence model over a frame that was predicted to be ‘suitable’ with a value of 0.99 than a 
frame with a suitability value of 0.51), create an opportunity for improved forms of averaging. 
 
Considering a set F of 120 consecutive frames of video footage (i.e., 4 seconds), the corresponding set 
of predicted ‘presence’ values p=(p1, p2,…, p120) (taking possible values between 0 and 1) produced by 
a given model (e.g., macroalgae, Ecklonia, Lessonia, or Carpophyllum) and the corresponding set of 
predicted ‘frame suitability’ s=(s1,s2,…,s120) (taking possible values between 0 and 1) produced by the 
frame suitability model, an overall presence value PF and an overall frame suitability value SF were 
calculated as: 
  
                                                          𝑃𝑃𝐹𝐹 = ∑𝑠𝑠𝑖𝑖(2𝑝𝑝𝑖𝑖−1)

∑𝑠𝑠𝑖𝑖
 (7) 

 
                                                                  𝑆𝑆𝐹𝐹 = ∑𝑠𝑠𝑖𝑖

120
 (8) 

 
The sign of P_F informs the overall class prediction for this set of frames: 
 

                                                  𝐶𝐶𝐹𝐹 = �𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝, 𝑃𝑃𝐹𝐹 ≥ 0
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, 𝑃𝑃𝐹𝐹 < 0 (9) 

 
                                                       𝑈𝑈𝐹𝐹 = min(|𝑃𝑃𝐹𝐹|, 𝑆𝑆𝐹𝐹) (10) 

 
UF takes values between 0, indicating ‘uncertain’ and 1, indicating ‘certain’. UF is only close to 1 if it 
fits all three conditions: 1) the individual predicted presence values pi for the set of frames tend to be 
certain (i.e., close to 0 or 1, not close to 0.5); 2) the individual predicted presence values pi for the set 
of frames tend to agree with each other (i.e., a clear majority of predictions indicate either 0 or 1, not 
an even mix), and; 3) the individual predicted frame suitability values si for the set of frames tend to be 
high (i.e., SF tends towards 1). Any unfulfilled condition will result in pulling the value of UF towards 
0. 
 
2.4.7 Post processing and mapping 
 

The metadata files previously exported (every 30 frames, i.e., every second) were reused. The 
navigation (latitude, longitude) were read, interpolated (as described previously), and averaged for each 
group of 120 consecutive frames, then joined with  

1. the overall predictions 𝐶𝐶𝐹𝐹 wherever 𝑈𝑈𝐹𝐹 > 0.5, which indicated the highest certainty for 
determining the distributions of each species/group; and, 

2. the overall uncertainty 𝑈𝑈𝐹𝐹 was plotted, colour coded by three levels of certainty to examine 
where rare occurrences (within the 4-sec range) of each taxon, occurred. 

The model outputs for both the ‘overall predicted’ and the ‘overall uncertainty values’ for each of the 
four species/groups were then exported as coma-delimited (csv) files. Shapefiles and distribution maps 
were then created in ESRI ArcGIS version 6.6, for both the ‘overall predicted’ and the ‘overall 
uncertainty values’ for all four taxon categories. 

 
 



 

Fisheries New Zealand Automated detection of large brown macroalgae • 15 
 

3.  RESULTS 
 
3.1 Model performance 
 
The ML models performed well, with high detection accuracy and high levels of generalisation 
performance (Table 8 and Table 9, respectively), along with an overall accuracy of 97.2% achieved for 
the identification of macroalgae (F1-score: 0.985, nMCC: 0.876), and between 80.6 and 87.1% for 
individual species/groups (F1-score range: 0.738–0.815, nMCC range: 0.796–0.865, see Table 8). For 
all models, false negative (FN) predictions (i.e., predicting it wasn’t there when it was) were more 
common than false positive (FP) predictions (i.e., predicting it was there when it wasn’t), which 
translated in a Precision score higher than the Recall score. 
 
Table 8: Confusion matrix and performance metrics from the evaluation of each model on the respective 

training dataset. TP: True Positive. TN: True Negative. FP: False Positive. FN: False Negative. 
Acc: Accuracy. Prec.: Precision. F1: F1-score. MCC: Matthew’s correlation coefficient. nMCC: 
normalised Matthew’s correlation coefficient. All performance metrics except MCC range 
between 0 for complete misclassification to 1 for perfect classification. The corresponding range 
for MCC is [-1:1]. 

 
Model TP TN FP FN Acc. Prec. Recall F1 MCC nMCC 

           
Frame 
suitability 6028 1532 162 117 0.964 0.974 0.981 0.977 0.894 0.947 

Ecklonia 1556 4126 109 72 0.969 0.935 0.956 0.945 0.924 0.962 

Lessonia 1629 4012 186 70 0.957 0.898 0.959 0.927 0.897 0.949 

Carpophyllum 1485 4156 155 111 0.955 0.905 0.930 0.918 0.887 0.943 

Macroalgae 5128 951 25 33 0.991 0.995 0.994 0.994 0.965 0.982 
 
Table 9: Confusion matrix and performance metrics from the evaluation of each model on the respective 

validation dataset. TP: True Positive. TN: True Negative. FP: False Positive. FN: False 
Negative. Acc: Accuracy. Prec.: Precision. F1: F1-score. MCC: Matthew’s correlation 
coefficient. nMCC: normalized Matthew’s correlation coefficient. All performance metrics 
except MCC range between 0 for complete misclassification to 1 for perfect classification. The 
corresponding range for MCC is [-1:1]. 

 
Model TP TN FP FN Acc. Prec. Recall F1 MCC nMCC 

           
Frame 
suitability 1348 232 41 169 0.883 0.970 0.889 0.928 0.637 0.818 

Ecklonia 373 728 87 178 0.806 0.811 0.677 0.738 0.592 0.796 

Lessonia 410 851 37 149 0.871 0.917 0.733 0.815 0.729 0.865 

Carpophyllum 245 1034 94 112 0.861 0.723 0.686 0.704 0.614 0.807 

Macroalgae 1410 65 8 34 0.972 0.994 0.976 0.985 0.751 0.876 
 
 
3.2 Time comparison 
 
The main purpose for the development of ML algorithms for determining macroalgal presence/absence 
is the potential cost/time saving compared to manual post-processing. In this project, the authors 
estimated that the determination of macroalgal presence/absence from video imagery (i.e., in one image 
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per second of footage) took a specialist observer between 1 and 3 hours per transect, depending on 
transect length, the number of algae species to identify, and the amount of algae present.  
 
This would result in any new survey of 40 video transects (i.e., approximately two days of survey for 
one site) requiring approximately 68 hours of staff time to process manually. 
 
With the ML approach, efforts are split between active staff time (coding, expert labelling of 
training/testing dataset) and automated computing runtime (metadata extraction, training, inferring, 
post-processing), with the bulk of staff efforts (coding, and initial training dataset) having now been 
done and not needing to be repeated. For a new survey, up to 5 video transects may need expert labelling 
for testing and possibly retraining (see discussion in section 4), which would take up to 10 hours of staff 
time. All other efforts (inferring using trained models, testing, re-training) are automated and thus only 
necessitate computing runtime, with negligible staff involvement (i.e., copying videos to a suitable 
place, selecting the code parameters, and starting the algorithms). 
 
Aside from the number and length of transects, the computing time for the post-processing of a new 
survey (i.e., metadata extraction, inference, results combination and interpolation, assuming no testing 
and re-training) is dependent on the number of models to be used and the desired prediction rate (i.e., 
all or a fraction of the frames in the videos), as well as the computing performance of the machine used. 
For this project, seeking predictions from all 5 models for all frames of 40 video transects, and using a 
single Nvidia Tesla P100 GPU from Māui AncillaCFry Nodes, the post-processing took approximately 
10 hours of computing runtime and could thus be run overnight. 
 
3.3 Distribution map 
 
3.3.1 Lessonia variegata 
 

Lessonia was prevalent on rocky reefs, in water depths of 3–10 m, throughout most of the study area 
(Figure 7a-b), and was the dominant species in most transects, with the exception of those on the 
northern, more sheltered side of Taputeranga Island, where the transects were instead dominated by 
Carpophyllum. Lessonia was not present on the deeper sections of the reefs, which were instead 
characterised by Ecklonia beds (Figure 8a). Lessonia was abundant in the exposed Houghton Bay and 
dominant in the western-most transect on the south-west side of Taputeranga Island. Artificial 
intelligence misclassification might be expected between Lessonia and Marginariella spp. due to 
similar blade morphologies, both having long strap like blades. However, although both Lessonia and 
Marginariella spp. were present in the survey area (Marginariella albeit not overly common), no 
misclassification occurred—indicating that the AI identification was very robust in distinguishing these 
two species. The blades of Marginariella have a distinct serrated margin and are a darker brown colour, 
compared to the smooth non-serrated yellower blades of Lessonia, which the AI classification 
accurately identified 100% as not Lessonia. 
 
3.3.2 Ecklonia radiata 
 

Ecklonia was common on exposed rocky reefs in water depths of 8–15 m (Figure 8a-b), growing either 
in monospecific beds or with other large brown seaweeds. Ecklonia was common at sites along the 
south-east coast out from Houghton Bay and in two transects off nearby Princess Bay. In contrast, 
Ecklonia was rarely found in the sheltered areas on the northern side of Taputeranga Island (the large 
island in the middle of Island Bay), or along the western-most transect on the south-west side of 
Taputeranga Island (Figure 8), which was instead dominated by Lessonia (Figure 7a-b). Clear shifts 
from dense Lessonia beds (shallower than10 m) into beds dominated by Ecklonia (deeper than10 m) 
were common at numerous sites but were most pronounced along the south-eastern side of Taputeranga 
Island (Figure 8 vs. Figure 7). 
 
Model performance (based on detection certainty over 0.5) for Ecklonia was notably lower (80.6%) 
than for Lessonia or Carpophyllum (87.1 and 86.1%, respectively). Targeted examination of video 
footage, examining uncertainty/misclassifications of Ecklonia in the final predicted plots, identified that 
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the majority of these misclassifications reflected individual or small clusters of Ecklonia plants growing 
partially obscured within the Lessonia or mixed macroalgal beds. However, examination of the 
uncertainty plots for Ecklonia found that the ML model had correctly detected these cryptic plants as 
Ecklonia (and not Lessonia), but had given these identifications a low certainty value of 0.3–0.49, and 
even rarer occurrences, also correctly detected, were given a certainty value of under 0.3. 
 
3.3.3 Carpophyllum spp. 
 

Less common than Ecklonia and Lessonia, Carpophyllum was detected mostly on transects along the 
northern and north-west side of Taputeranga Island and in Houghton Bay (Figure 9a-b). Carpophyllum 
could have been confused with other branched brown macroalgal species, such as Landsburgia and/or 
Sargassum. These species were also present within the study area, including within transects where 
Carpophyllum occurred. Based on visual observations of the video footage at several sites, Landsburgia 
in particular looked quite similar to Carpophyllum plants (to an untrained eye), particularly where 
present within mixed macroalgal beds. The predicted distributions of Carpophyllum were therefore 
carefully examined to ensure that the ML models had not incorrectly included any Landsburgia. The 
final predicted distributions of Carpophyllum spp. not only accurately detected this genus, but also 
accurately distinguished Carpophyllum from other species including Landsburgia, with no Landsburgia 
included in the predicted Carpophyllum plots.  
 
3.3.4 All macroalgae 
 

Macroalgae were prevalent across the entire survey area occurring in over 90% of all towed video 
images (Figure 10a-b). This reflected the dominance of both monospecific and mixed macroalgal beds 
over the extensive rocky reefs in this region (Figure 10a). A diverse range of species was observed, 
with reef areas dominated by Lessonia, Ecklonia, and Carpophyllum (as described above) and several 
species of green macroalgae (specifically: Ulva, Caulerpa flexilis, and C. brownii), along with localised 
or rare occurrences of other large brown seaweed (e.g., Cystophora, Sargassum, Landsburgia, 
Marginariella, Macrocystis, and Undaria). In contrast to the rocky reefs, areas devoid of macroalgae 
were characterised by mobile sands and gravels that extended out beyond and between these rocky 
reefs. However, even in these mobile sediment habitats, the model accurately detected macroalgae, 
albeit with low certainty (under 0.3), based on the rare occurrence of drift algae. Locally dense patches 
of Marginariella that were recorded in several 2020 sites were examined to determine if these plants 
were misclassified in the species/taxon specific ML models; however, no misclassification due to 
Marginariella was found, instead it was correctly and consistently classified within ‘all-macroalgae’. 
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Figure 7:  Baseline spatial distribution of Lessonia variegata between Houghton Bay and Island Bay, based 

on automated detection of presence/absence in video footage using the deep CNN developed by 
NIWA (model generalisation performance: 87.1% overall accuracy). a) Distribution of 
occurrence with certainty threshold at 0.5. Red circles = present with certainty > 0.5; black 
dots/lines = absent with certainty> 0.5; white lines = low certainty (< 0.5) due to poor quality 
imagery (e.g., topside, water column, too high or too close to the substratum, or poor water 
clarity), poor predictions, or mixed results within 4-sec. windows. b) Certainty of occurrence. 
Bubble size and colour depict the certainty of the model in detecting occurrence, where red = 
good certainty (> 0.5); orange = low-moderate certainty (0.3–0.5); muddy-green = very low 
certainty (> 0 and < 0.3). 
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Figure 8: Baseline spatial distribution of Ecklonia radiata between Houghton Bay and Island Bay, based 

on automated detection of presence/absence in video footage using the deep CNN developed by 
NIWA (model generalisation performance: 80.6% overall accuracy). a) Distribution of 
occurrence with certainty threshold at 0.5. Red circles = present with certainty > 0.5; black 
dots/lines = absent with certainty > 0.5; white lines = low certainty (< 0.5) due to poor quality 
imagery (e.g. topside, water column, too high or too close to the substratum, or poor water 
clarity), poor predictions, or mixed results within 4-sec. windows. b) Certainty of occurrence. 
Bubble size and colour depict the certainty of the model in detecting occurrence, where red = 
good certainty (> 0.5); orange = low-moderate certainty (0.3–0.5); muddy-green = very low 
certainty (> 0 and < 0.3). 
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Figure 9: Baseline spatial distribution of Carpophyllum spp. between Houghton Bay and Island Bay, 

based on automated detection of presence/absence in video footage using the deep CNN 
developed by NIWA (model generalisation performance: 86.1% overall accuracy). a) 
Distribution of occurrence with certainty threshold at 0.5. Red circles = present with 
certainty > 0.5; black dots/lines = absent with certainty > 0.5; white lines = low certainty (< 0.5) 
due to poor quality imagery (e.g., topside, water column, too high or too close to the substratum, 
or poor water clarity), poor predictions, or mixed results within 4-sec. windows. b) Certainty 
of occurrence. Bubble size and colour depict the certainty of the model in detecting occurrence, 
where red = good certainty (> 0.5); orange = low-moderate certainty (0.3–0.5); muddy-green = 
very low certainty (> 0 and < 0.3). 
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Figure 10: Baseline spatial distribution of all macroalgae between Houghton Bay and Island Bay, based 

on automated detection of presence/absence in video footage using the deep CNN developed  by 
NIWA (model generalisation performance: 97.2% overall accuracy). a) Distribution of 
occurrence with certainty threshold at 0.5. Red circles = present with certainty > 0.5; black 
dots/lines = absent with certainty > 0.5; white lines = low certainty (< 0.5) due to poor quality 
imagery (e.g., topside, water column, too high or too close to the substratum, or poor water 
clarity), poor predictions, or mixed results within 4-sec. windows. b) Certainty of occurrence. 
Bubble size and colour depict the certainty of the model in detecting occurrence, where red = 
good certainty (> 0.5); orange = low-moderate certainty (0.3–0.5); muddy-green = very low 
certainty (> 0 and < 0.3). 
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4. DISCUSSION 
 
4.1 Machine learning model performance 
 
In this study, NIWA’s newly developed ML algorithms for detecting macroalgae (developed during the 
‘proof of concept’ pilot study) were applied to determine whether AI could be used to successfully 
identify and distinguish different species, genera, and taxonomic groups, and whether this AI approach 
could be used to rapidly detect and map the distributions (presence/absence) of these macroalgal groups. 
NIWA’s ML models were successful at identifying and distinguishing all four macroalgal groups across 
the entire survey, with overall models attaining high performance accuracies of between 80.6 to 87.1% 
for individual species and genera, and 97.2% for the ‘all-macroalgae’ group. Post-processing of 
macroalgal presence/absence was time consuming, and, in comparison, ML automated detection 
allowed a much greater volume of imagery to be processed in a much shorter timeframe. Although there 
was considerable time involved in the initial development of the ML algorithms (see D’Archino et al. 
2019), and additional time required to set up the ML models for new datasets, once the setup was 
completed the ML models provided a rapid and accurate method to detect and map the distribution 
(presence/absence) of macroalgae at all four taxonomic levels. 
 
Model performance varied among the four taxa/groups. Although model performance for individual 
species categories was high (80.6% to 87.1%), the lumped ‘all-macroalgae’ model produced the highest 
overall accuracy (97.2%). This is also true of the F1-score (0.985 for macroalgae, compared with 0.704–
0.815 for individual species/taxon models) (see Chicco & Jurman (2020) for comparison of F1 and 
Matthew’s coefficient). Although the immediate interpretation of this result is that the task of 
identifying the presence of macroalgae compared to its absence (e.g., bare sand) may be more trivial 
than identifying individual species, it is also very likely that these high scores reflect the class frequency 
imbalance in the validation dataset (1444 instances of ‘present’ samples for only 73 instances of 
‘absent’, see Table 4). Using the unbiased normalised Matthew’s correlation coefficient, the macroalgae 
model achieves a score (nMCC=0.876) that is more in line with the individual species/taxon models 
(nMCC ranging from 0.796 to 0.865). 
 
Detection success was consistently higher for Lessonia (accuracy 87.1%, F1-score 0.815, nMCC 0.865) 
and Carpophyllum (accuracy 86.1%, F1-score 0.704, nMCC 0.807) than Ecklonia (accuracy 80.6%, 
F1-score 0.738, nMCC 0.796). This difference in model performance among taxa could be due to 
several factors. First, detection success might reflect differences in image quality with water depth, with 
improved species detection in shallower water with better natural light illumination. Both Lessonia and 
Carpophyllum spp. were recorded on shallow reefs, whereas Ecklonia (lower performing model) was 
more dominant on deeper reefs. It is unlikely, however, that depth related image quality is a key factor 
in the final models, because the process of image augmentation (duplicating and altering the colour and 
illumination of images in the training library) acts to negate any general biases of image quality due to 
factors such as depth, day, or seasonal water clarity/quality differences. In addition, misclassifications 
of Ecklonia occurred in both shallow and deeper depths. Second, within the survey area, Lessonia 
commonly occurred in relatively dense and extensive beds, whereas Ecklonia occurred in patchy beds 
or isolated clusters of plants in amongst other kelps. Numerous plants per image, along with numerous 
plants in subsequent images allows a particular model to gain higher certainty of identification (such as 
in the Lessonia model), whereas the identification of an isolated plant would register a low certainty in 
the model (e.g., Ecklonia). Targeted examination of video footage, examining misclassifications of 
Ecklonia, identified that most of these reflected individual, or small clusters of Ecklonia within and 
often beneath larger beds of Lessonia. It is unsurprising then that these isolated plants might be missed. 
However, examination of the uncertainty plots for Ecklonia found that the ML model had correctly 
detected these cryptic plants as Ecklonia (and not Lessonia), but these identifications had registered a 
low certainty rating of 0.3–0.49 (isolated small clusters of plants), or 0.1–0.29 (isolated individual 
plants). This indicates that the ML model accurately detected Ecklonia, and the uncertainty plots (based 
on the averaging of positive identifications for the ‘120-consecutive frames’) provided additional and 
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very valuable information on the relative abundance of these beds (over 0.5) compared with the 
occurrence of isolated or infrequent subcanopy plants (under 0.5). 
 
Lessonia and Ecklonia are closely related laminarian kelp species and were included in the current study 
to determine if the ML algorithms could accurately distinguish between kelp species. Inspection of both 
datasets found models did not misclassify Lessonia as Ecklonia or vice versa. Instead both training 
libraries were very efficient at distinguishing the species-specific features of these two species, 
highlighting the accurate fine-tuned performance of these models. Although misclassification with other 
macroalgal species was also possible, the findings highlight that these ML models were clearly able to 
distinguish between macroalgal species that have similar growth forms and colours, indicating that AI 
capabilities are rapidly approaching those of the human eye. 
 
Both AI and ML models are being applied to the detection of marine species. Evaluation of these tools 
for detecting benthic marine species include studies on cold water corals (Purser et al. 2009), oysters 
(Ridge et al. 2019), and seagrass fishes (Ditria et al. 2020). In western Australia, one study has examined 
the use of AI in detecting large canopy and sub-canopy kelps (Mahmood et al. 2020). Mahmood et al. 
(2020) used a feature extraction approach to transfer learning to identify large mixed kelps, including 
Ecklonia, with an accuracy of 75.2–90.0% (ignoring the worst-performing models) and corresponding 
F1-score of 0.75–0.80. Mahmood et al. (2020) identified the presence of large canopy and sub-canopy 
kelp (both mixed genera) from 50 random points per image using the CATAMI scheme, while this 
study identified finer taxonomic (i.e., species, genera) and coarser taxonomic (all-macroalgae) 
categories from the entire surface of each image. Although comparison between these studies needs to 
be made cautiously due to methodological and modelling differences, the validation scores in Mahmood 
et al. (2020) for their lumped “large-canopy forming macroalgae” were in a similar range to the findings 
presented here, albeit slightly lower than the lumped ‘all-macroalgae’ category, both of which were 
higher than the scores for individual species/genera. Although the study presented here has been the 
only one published to date to use ML methods to detect and distinguish individual kelp species, both 
studies highlight the value of a ML approach to mapping ecologically relevant community indices. 
 
Identifying the presence of macroalgae is not a trivial task, because species may occur at any density 
from a single plant to a large patch, and any level of community assemblage from monospecific to 
mixed algal habitats. Assessing absence also needs to be accurately identified. The post-processing 
methodology used in this study, which included averaging 120 consecutive predictions accounting for 
their respective uncertainty, proved to be a robust and simple approach to remove uncertain records. 
For example, rare and uncertain presence records would be dropped where no other presence records 
were recorded within the adjacent 120 images (i.e., over 0.5 certainty). In contrast, repeated but 
uncertain presence records in the adjacent 120 images would increase the probability that the taxon was 
indeed present. An unforeseen benefit of this approach was that this ability to calculate the average over 
the four-second window (i.e., the average estimate of occurrence over the 120 frames/4-sec 
neighbouring frames) provided an excellent means to distinguish rare plants (under 0.5 certainty) from 
beds of kelp for each taxon—here Ecklonia, Lessonia, and Carpophyllum (over 0.5 certainty). This two-
step approach provided more information than a simple presence/absence. 
 
4.2 Including new datasets to the ML models 
 
An important consideration for future ML modelling is how to ensure the performance of this system 
remains adequate as new survey imagery is included. Variations between surveys, due for example to 
changes in seasonal water conditions or change in substratum type and location, imply that there is no 
guarantee that a model trained on past surveys, each with a particular suite of conditions, will perform 
as well on new surveys conducted under different suites of conditions. Some additional training, using 
imagery from a new survey, will likely be required to ‘prime’ the model for these new conditions. In 
the initial ML pilot study, only 20 transects surveyed in 2019 were available. Fifteen of these transects 
were initially labelled (i.e., identified by an observer), of which 12 were used for training (and the 
remaining three used for validation). In the current study, five of the additional 20 transects surveyed 
in 2020 were labelled and used to prime the model (i.e., include examples of these new conditions). 
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Two transects were used for training, which boosted the training dataset to 22 transects (all 20 transects 
of the 2019 survey, plus 2 of the 2020 survey), and the remaining three transects were used for 
validation, leaving the 15 unlabelled transects for inference. This approach effectively increased the 
training library to best capture image variability between the two surveys, ensuring better colour and 
morphology detection for each macroalgal species/group. 
 
Based on the findings of this study, the approach below is recommended as general guidance for 
processing any additional video imagery datasets. 

1. Label 25% of the new transects (e.g., 5 out of 20). 

2. Evaluate the existing model on this dataset and calculate performance metrics. 

A. If performance is adequate, apply model to the rest of the survey to create survey results. 

B. If performance is inadequate, add some of the transects (e.g., 1–3 out of 5) to the pool of 
training data and retrain the model to prime it for the new survey. Evaluate new model 
performance on the remaining labelled transects. 

i. If performance is adequate, apply model to the rest of the survey. 

ii. If performance is inadequate, label more transects and repeat the 
training/validation process. 

This iterative but conditional approach would result in increasing amounts of labelled data in the 
training datasets (to better account for spatial and temporal image variability) thus improving overall 
model performance. At the same time, the ‘initial evaluation of performance’ ensures that retraining 
and revalidation only occurs when necessary. Surveys in areas similar to those previously surveyed 
(e.g., nearby sites on the Wellington south coast) may require fewer training data to be allocated from 
each new survey as the data library increases (e.g., about 10%), whereas new and/or more remote 
locations with different kelp morphologies (e.g., other geographic areas) may require more images to 
be allocated for training (e.g., about 30%). Importantly, however, new macroalgal video datasets would 
sequentially add to the number of training and validation images in the model, and thus slowly increase 
both the generality and predictive capability of these ML models. 
 
The ML models programmed using the NIWA’s ‘seaweedai’ Python package will require ongoing 
maintenance and updating. New versions of the training libraries may include more recent (and 
improved) base classification architectures, as well as new or improved training tools. However, the 
seaweedai code is also flexible to implement minute modifications to capture these and other changes 
as required. 
 
4.3 Changes in model performance 
 
In the initial pilot study (D’Archino et al. 2019), ML models were developed to identify 
presence/absence of Lessonia, Ecklonia, Carpophyllum, and all-macroalgae. Model performance for 
these taxon/groups in the pilot study were comparable with those achieved in the current study, with 
85% for Lessonia (compared with 87.1% now); 86.4% for Carpophyllum (compared with 86.1% now); 
and 92.7% and 98.8% (two results were obtained on two different validation datasets in the pilot study) 
compared with 97.2% in the current study. Model performance for Ecklonia, however, was lower in the 
current study (80.6%) than the initial pilot study (89%). As discussed above, lower performance of the 
Ecklonia model appears to reflect the inclusion of the 2020 sites, where isolated or small clusters of 
Ecklonia were present within kelp beds dominated by Lessonia but were accurately detected and plotted 
in the uncertainty plots. 
 

Other factors may also alter model performance. The previous pilot study used a training dataset of 
limited size for the task, with the four models having been trained on only 836 (Ecklonia), 797 
(Lessonia), 807 (Carpophyllum), and 1400 (macroalgae) images, respectively (D’Archino et al. 2019). 
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The present study was carried out, in part, to obtain more training data to boost the models’ 
performance. The authors suggest several reasons why the measured performance did not increase in 
the new study: 

1. The training datasets were built differently. 

In the pilot study, the training/validation datasets were built by a non-macroalgae expert (C. Peat) 
selecting out of a pool of images instances of ‘present’ and ‘absent’ classes. Therefore, the datasets 
were built with the most evident examples of both classes. Although this approach is sound for a pilot 
study meant to assess the discriminating capabilities of a classifier, it is less suitable for the development 
of a practical system for survey footage analysis, which would include a wider range of uncertain cases. 
In addition, this approach does not easily scale up with additional videos and surveys. 
 
The building of the datasets in the current study was more adapted to the development of such a system. 
The datasets were built by having a macroalgae expert (R. D’Archino) labelling all images extracted at 
a rate of 1 frame per second, from selected survey transects. This approach resulted in more uncertain 
cases, with only the most uncertain being discarded from the labelling process (by use of the ‘2’ or 
‘uncertain’ label in the csv files). This variety of cases is necessary to train a robust model with the 
capacity to work with more uncertain imagery, but a loss of generalisation performance could be 
expected, compared with the pilot study and its more ideal training dataset. 
 

2. New models were not evaluated on the same validation dataset. 

For an unbiased comparison of the performance of two models, these would ideally be evaluated on the 
same validation dataset. This was not done here because a new validation dataset was developed from 
the expert labelling (Table 4). As demonstrated in the pilot study by the wide difference between the 
two accuracy scores (respectively 92.7% and 98.8%) obtained from the validation of the macroalgae 
model on two different validation datasets (respectively 138 images from transects at Moa Point, and 
90 images from transects at Palmer Head), the evaluation of the performance of a model is highly 
dependent on each validation dataset. In addition, the sizes of the validation datasets in the pilot study 
were perhaps too small (respectively 100, 100, and 103 images from both Moa Point and Palmer Head 
for the Ecklonia, Lessonia, and Carpophyllum) for the performance metrics to be precise (compared 
with 1366, 1447, and 1485 respectively in the new validation datasets, see Table 4). 
 

3. Differences in methodology. 
 

Besides the difference in the build and size of the training/validation datasets, the new methodology is 
also different from that of the pilot study, with the use of a different CNN as a base model (InceptionV3 
vs. Inception-Resnet-V2 in the pilot study) and the transfer learning approach (fine tuning vs. features 
extraction in the pilot study). In the future, different models and parameters (hyper-parameter tuning) 
will be tested and compared to elucidate whether in fact these differences have a significant impact on 
performance, compared with simply the dataset building method and size.  
 

4. Modelling increased natural complexity. 
 

Measured performance may decrease with increasing dataset size, because large data libraries will likely 
include a larger universe of data, and therefore by definition increased variation for each target taxon. 
In the current study, additional sites included new areas with numerous sites surveyed around 
Taputeranga Island, along with more sites across deeper offshore reefs. These new video sites included 
a broader range of plant morphologies, sizes, conditions, and bed densities, and more variations in image 
quality (e.g., colour, illumination, altitude above the seabed). Updated ML models need to learn to 
account for this increased variability. Larger image libraries are also likely to include more images of 
other co-occurring species of macroalgae (and their inherent variations), which need to be distinguished 
from the target groups. Consequently, although performance may drop as a reflection of this increased 
variation (i.e., as some of this variation is missed or misclassified), these updated models will become 
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more realistic representations of the natural ecosystems and will therefore become more robust at 
predicting new untrained sites (i.e., improved generality). 
 
4.4 Future recommendations/next steps 
 
This study selected four taxonomic categories to examine the potential of using AI to map macroalgal 
species distributions. Following the success of this approach, the authors highly recommend extending 
the ML algorithms to detect other key macroalgal taxa. This will allow the monitoring of changes in 
key habitat forming taxa given that increasing temperature and ocean acidification will impact 
macroalgal species differently (Hepburn et al. 2011, Cornwall 2012, 2017). It would be possible to 
include, for example, other dominant taxa that were present within the study area including green algae 
(e.g., Caulerpa, Ulva), other large brown algae (e.g., Sargassum, Marginariella, and Landsburgia), and 
other key indicator species (e.g., Macrocystis and Durvillaea). Although Macrocystis and Durvillaea 
were not particularly abundant within the current survey area, both species are common along the south 
coast of Wellington and play critical roles in the coastal marine ecosystems.  
 
Although presence/absence data provide valuable information on the distribution of these macroalgae, 
quantifying and monitoring the abundance (or percentage cover) of key species would be more 
informative. Monitoring the abundance and the species composition of kelp forests would provide 
reliable baseline data to detect future modifications due to climate change or anthropogenic impacts. 
The underwater videos acquired nowadays could then be re-analysed with improved algorithms and 
larger image library. Consequently, the next logical step in ML coding would be to extend the ML 
algorithms to estimate percentage cover for the four macroalgal groups. This could be done as a relative 
estimate, i.e., the amount of each algal type within the image or standardised by the area of seafloor 
seen within the image. For the latter to be calculated, it would be necessary first for the AI code to detect 
the two, 20-cm spaced laser points within each image and then calculate the distance between the lasers, 
to then use this information to determine the altitude off the seafloor and the area of seafloor within the 
frame. Although ML code already exists to detect and measure laser points from video imagery (e.g., 
Schoening 2015), this or similar code would need to be applied and fine-tuned for the macroalgal-
imagery and ML models. 
 
The success of this ML approach means that this method can now be used to survey other locations and 
undertake repeated sampling at sites. Another recommendation is the inclusion of new areas where 
other key taxa are present, such as Macrocystis and Durvillaea which are more common outside of the 
Taputeranga Marine Reserve. These additional surveys could then be used with the current study to 
compare macroalgal occurrence and distributions between areas inside and outside the Taputeranga 
Marine Reserve (and other marine reserves). This approach would be extremely valuable to compare 
the ongoing effects of environmental change and different management and conservation strategies. 
 
Improvements between exporting ML output and plotting resulting in GIS software could also be 
streamlined by integrating the output of the ML python code with R-coding so that macroalgal 
distribution plots, based on a designed template, are automatically produced rather than plotted 
individually in GIS software. This would further streamline map production and reduce laborious staff 
hours, especially where numerous taxa are being plotted. 
 
Importantly, all video images from NIWA surveys (along with imagery collected by other institutes and 
agencies) are archived, and as more species are included in the ever-expanding training libraries, 
previously archived imagery can be easily and quickly analysed to detect these and other newly-detected 
taxa, with no need to spend months reprocessing these images by eye. 
 
4.5 Kelp monitoring and management 
 
Kelp forests are susceptible to changing environmental conditions, including changes in water 
temperatures, increasing turbidity, sediment deposition, and ocean acidification (D’Archino et al. 2019, 
Anderson et al. 2019, Reed et al. 2016). The ML auto-detection models developed in this current study 
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can now be readily applied to ongoing monitoring programmes to rapidly determine and map the 
distributions of key macroalgal indicator species along coastlines, particularly targeting areas where 
environmental change is likely or may already be occurring. Monitoring has traditionally been a costly 
staff-intensive undertaking that in most situations has prohibited its use. However, monitoring data are 
critical to documenting changes in our coastal communities, particularly the shifting baselines that many 
of our marine environments are facing. For example, the decline of kelp forests is a serious issue 
affecting many temperate rocky reefs globally (see D’Archino et al. 2019). Large scale monitoring is 
necessary for coastal resource management to make informed decisions. This study highlights that ML 
auto-detection of macroalgal occurrence is a powerful tool to determine spatial distributions for species, 
genera, and group level identifications with great accuracy, and thus it provides a feasible tool to 
monitor and map future contraction or expansion of macroalgal distributions over both local and 
national scales. The ML auto-detection approach is also rapid and cost-efficient making it readily 
applicable to mapping and monitoring macroalgal communities over broader spatial and temporal scales 
and, as such, is likely to play an important role in future management and conservation of marine 
ecosystems. 
 
 
5. CONCLUSIONS 
 
 This study successfully shows that ML is significantly faster than traditional video analysis 

and is a cost-effective approach to post-process video imagery, and that will improve as more 
data are collected. 

 The ML models performed well at detecting and distinguishing between closely related 
species (Lessonia and Ecklonia), highlighting the accurate fine-tuned performance of these 
models. 
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GLOSSARY 
 
AEBR Aquatic Environment & Biodiversity Report 

CNN Convolutional Neural Network 

FPS Frames Per Second 

GPS Global Positioning System 

HDMI High-Definition Multimedia Interface 

HSV Hue-Saturation-Value/Brightness 

MCC Matthew’s correlation coefficient 

ML Machine Learning 

MPI Ministry for Primary Industries 

nMCC normalised Matthew’s correlation coefficient 

NIWA National Institute of Water and Atmospheric Research 

RGB Red-Green-Blue 

SVM Support Vector Machine 
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APPENDIX  

Seaweed AI - Identifying macroalgae in towed underwater video with Deep Learning 

seaweedai is a Python package to identify macroalgal species in underwater video footage from NIWA's 
SeaweedCam, using deep-learning image classification. It implements a transfer learning technique 
using the Inception V3 deep neural network pretrained for computer vision, made available in the 
TensorFlow/Keras libraries. 

 1. Context 

 1.1 Raw data 

Raw data are videos from the SeaweedCam shallow water drop-camera, are in the QuickTime File 
Format (.MOV). The main repository for the videos is 
R:\National\Datasets\Seaweed_Video_Data\raw_data. 

Each survey with the SeaweedCam is coded as NIWA voyage codes using SWC as the "vessel" code, 
aka SWCXXYY with XX being the year and YY the survey number that year. The main repository for 
videos contains preliminary surveys from testing the system and two actual surveys: SWC1901 and 
SWC2001, both covering the Wellington south coast (Island Bay, Houghton Bay, Breaker Bay). 

Each transect is recorded as a separate video. The name of the video file has the transect number as a 
suffix (e.g. SWC1901_001.MOV for transect #1). Occasionally, the system closes the video file and 
starts a new one DURING a transect. In these cases, the video files are appended with a letter (e.g. 
SWC1901_009.MOV and SWC1901_009B.MOV for transect #9). 

1.2 Pre-processed data 

The videos are pre-processed into two types of data: 

 Individual frames extracted from the videos at regular intervals (1 every second), to use 
for labelling and training the models. They are recorded as png files named after the 
video and the frame number in the video (prefix_frame.png, e.g. 
SWC1901_001_270.png for frame #270 in video SWC1901_001.MOV). 

 One csv file per video containing, for each extracted frame, the metadata hard-coded in 
the frame ('date', 'time', 'latitude', 'longitude'), the calculated time since start of video 
('video_time'), or frame information ('prefix' and 'frame'). 

1.3 Labels 

To inform on the content of the frames for training (labelling), we append additional columns to the csv 
files and complete each row. 

Currently, the standard additional columns are: 'comment', 'good-frame', 
'turfing_or_foliose_algae_on_sand', 'sand', 'algae', 'Lessonia', 'Carpophyllum', 'Ecklonia', 'Ulva', 
'Cystophora', 'Macrocystis', 'Sargassum', 'Marginariella', 'Caulerpa_flexilis', 'Caulerpa_brownii', 
'Undaria', 'Landsburgia', 'cobbles'. 

Others can be added. Ideally, respect the nomenclature: 
 No spaces. Use underscores between words (e.g., good-frame) 

 No capitalisation for non-species (e.g., algae, cobbles) 

 First word is capitalised for species (e.g., Lessonia, Caulerpa_brownii) 
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'comment' is a field for free use. All others only accept a limited number of entries: 0, 1, or 2 (or stay 
empty) 

For 'good-frame': 

 '0' (or empty) means 'this is a bad/unusable frame'. Typically applies to footage 
acquired while on the boat, too far from the bottom, stuck against the reef, view 
obstructed by algae, etc. 

 '1' means 'this is a good/usable frame'. 

 '2' means 'Unsure. Ignore this frame in training.' 

For all others: 

 '0' (or empty) means 'absent'. 

 '1' means 'present'. 

 '2' means 'Unsure. Ignore this frame in training.' 

The main repository for the prepared and labelled dataset is 
R:\National\Datasets\Seaweed_Video_Data\ai\data. 

2. Dependencies  
 
This package uses dependencies that were up-to-date at the time of development but now outdated. 
Including: 

 Python 3.6.8 

 TensorFlow 1.12 

It will eventually need upgrading, especially to TensorFLow 2.0.  

All dependencies are listed in the ./conda_env/seaweed.yml file. Using conda, you can create the 
appropriate environment with: 

conda env create --file ./conda_env/seaweed.yml 

3.  Pre-processing 
 
Pre-processing is the task of extracting pre-processed data (.png frame files and .csv metadata files) 
from raw data (.MOV videos). These are performed with functions 
seaweedai.preprocess.preprocess_videos.preprocess_video (for one video) or 
seaweedai.preprocess.preprocess_videos.preprocess_videos (for multiple videos). 

preprocess_video opens an input video and for every Nth frame, an can do either or both of (1) 
extracting the metadata that is hard-coded in the frame, reformatting it (lat, long, date, time), adding 
information, and saving it all in a single csv file; and (2) saving the frames as individual png files. 

preprocess_videos runs preprocess_video over videos found in a root folder specified in input. 
Substrings can be specified to limit the process to desired videos. 

Python script used for this project: 

from seaweedai.preprocess.preprocess_videos import preprocess_videos 

input_videos_root_dirpath = r'R:\National\Datasets\Seaweed_Video_Data\raw_data0' 

input_videos_file_substrings = ['SWC1901', 'SWC2001'] 

every_nth_frame = 30 
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verbose = 1 

output_dirpath = r'R:\National\Datasets\Seaweed_Video_Data\ai\data0' 

preprocess_videos(input_videos_root_dirpath, input_videos_file_substrings, every_nth_frame, 
verbose, output_dirpath) 

4. Labelling  
 
Once frames and the corresponding csv file are created, the labels must be manually informed. 

4.1  csv approach  
 

The main approach is to edit the csv file produced. Add categories as new columns and for each row, 
complete the corresponding cell with "0" (or leave empty) for absent, "1" for present, or "2" for 
uncertain. 
 
You can use seaweedai.label.add_categories_to_csv_files.add_categories_to_csv_file to automatically 
add columns in one csv file, or 
seaweedai.label.add_categories_to_csv_files.add_categories_to_csv_files for all csv files within a root 
folder (recursively). Both functions can optionally prefill the cells with a set value. Not specifying the 
categories in input will add the default list of categories ('comment', 'good-frame', 
'turfing_or_foliose_algae_on_sand', 'sand', 'algae', 'Lessonia', 'Carpophyllum', 'Ecklonia', 'Ulva', 
'Cystophora', 'Macrocystis', 'Sargassum', 'Marginariella', 'Caulerpa_flexilis', 'Caulerpa_brownii', 
'Cyathea_brownii', 'Undaria', 'Landsburgia', 'cobbles'). 
 
Python script used for this project: 

from seaweedai.label.add_categories_to_csv_files import add_categories_to_csv_files 

input_root_dirpath = r'R:\National\Datasets\Seaweed_Video_Data\ai\data' 

add_categories_to_csv_files(input_root_dirpath) 

4.1  folder approach 

The issue with the approach of labelling in a csv file is that mistakes are difficult to correct. It is not 
easy to spot a wrong number in an array of numbers. It would be much easier to spot mistakes if frames 
with the same label were grouped into individual, distinct folders. 
 

This alternative approach of labelling is possible: 

1. Copy the entire set of frames obtained from pre-processing into a new folder named after a 
category of interest. 

2. In this folder, create subfolders "0_absent", "1_present", and "2_uncertain". 
3. Inspect frames and move them into the appropriate folder. 

The default of this alternative approach is that if you use several categories, you need to copy the whole 
set of frames as many times as there are categories. This undesirable duplication of data is the reason 
why training operates on the labelled csv files, and not on folders of duplicated frames. It's also much 
slower as you go over each frame as many times as there are categories 

A solution is to use both approaches: 

1. Add categories to the csv file and label this file. 
2. Turn this labelled csv into classified folders (using 

seaweedai.label.csv_to_folder.csv_to_folder). 
3. Examine the contents of each folder and correct it if necessary (by moving frames between 

the "0_absent", "1_present", and "2_uncertain" subfolders of a category). 
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4. Turn this edited folder labelling into a new csv file (using 
seaweedai.label.folder_to_csv.folder_to_csv). 

seaweedai.label.csv_to_folder.csv_to_folder automatically copies (or moves) png frames from an input 
folder, into the subfolders of an output folder containing subfolders named as per the labelling info in a 
csv file. 

seaweedai.label.folder_to_csv.folder_to_csv writes and fills in a new csv file as per organization of 
frames in the subfolders (labels) of a category folder of a root folder. The function needs to know the 
original csv file to copy the metadata. 

5. Training   
 
Once the dataset is prepared (folders of frames + labelled csv file), one can run the training function, 
specifying (among other parameters) the path to the dataset and the desired category to run training on. 

seaweedai.train.trainer_categorical.trainer_categorical performs this task. It will find the csv files in the 
subfolders of the data root folder (data_root_dirpath) and read the data for the category of interest 
(category) and relevant labels (labels). Datasets for the training and testing phases can be specified 
(train_file_substrings and test_file_substrings). The datasets can be resampled in different ways 
including limiting the dataset size (max_datasize), shuffling the dataset (shuffle_dataset), or equalizing 
the frequency of labels through subsampling and oversampling (balance_dataset). The function can also 
take several parameters for the model (image_dim) or training hyperparameters (batch_size, 
num_epoch). Outputs, including terminal log, tensorboard logs, and weights of the best model are saved 
into a folder named after the category of interest, in a main output folder (experiment_root_dirpath). 

Command used on HPC for this project (repeat for all categories: good-frame, algae, Lessonia, 
Ecklonia, Carpophyllum): 

python trainer_categorical.py \ 

--data_root_dirpath /nesi/project/niwa02671/data \ 

--experiment_root_dirpath /nesi/project/niwa02671/models \ 

--category good-frame \ 

--labels 0 1 \ 

--train_file_substrings SWC1901 SWC2001_011 SWC2001_018 \ 

--test_file_substrings SWC2001_002 SWC2001_008 SWC2001_010 \ 

--shuffle_dataset True \ 

--balance_dataset False \ 

--image_dim 299 \ 

--batch_size 32 \ 

--num_epoch 150 

trainer_categorical only works for one category. Ideally, modify the code to allow looping on several 
training. But you will need to instantiate several tensorflow graphs. 

Each instance of training is given a unique code based on the date and time of the start of training: 
exp_YYYMMDD-HHMMSS. This code is showing on the screen when starting the training, and all 
outputs are saved in folders bearing this code. 

The training creates three types of outputs: 
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 A terminal log 
(<experiment_root_dirpath>/<category>/terminal_logs/<training_code>.log e.g. 
R:\National\Datasets\Seaweed_Video_Data\ai\models\algae\terminal_logs\exp_202009
07-123524.log) — a text file containing (some of) the screen output of the command. 

 The best model weights 
(<experiment_root_dirpath>/<category>/model_weights/<training_code>/bestmodelwe
ights.h5 e.g. 
R:\National\Datasets\Seaweed_Video_Data\ai\models\algae\model_weights\exp_20200
907-123524\bestmodelweights.h5) — an HDF file containing the weights of the best 
model trained, to allow rebuilding the model for later inference. 

 The tensorboard logs (in 
<experiment_root_dirpath>/<category>/tensorboard_logs/<training_code> e.g. 
R:\National\Datasets\Seaweed_Video_Data\ai\models\algae\tensorboard_logs\exp_202
00907-123524) — one or several files for TensorBoard, a tool for providing the 
measurements and visualizations needed during the machine learning workflow. 

Tensorboard is a web app, started from your machine. In the terminal, type in the command line: 

tensorboard --logdir path/to/tensorboard_logs 

Then click on the link provided. This will open TensorBoard in your browser. Note this does not work 
from the HPC so you will have to copy over the logs from the HPC to your local machine. 

All training outputs are on the HPC on /nesi/project/niwa02671/models.  

They were copied to R:\National\Datasets\Seaweed_Video_Data\ai\models. 

6. Inferencing 
 
A trained model can be used for inferencing. One only needs the model weights file (.h5) that was 
produced by the training. 

The main function for this is seaweedai.inference.classify_videos.classify_videos, which takes a root 
directory of videos (videos_root_dirpath) and a list of substrings (videos_file_substrings, to choose the 
videos in the folder), and apply a model with specified weights (model_weights_filepath) to predict the 
class of every Nth frame (every_nth_frame). The result is a csv file for each video, bearing the same 
name as the video, all saved in a folder (output_csv_dirpath). The csv file contain columns prefix (video 
name), frame (frame number) and the probabilities for each class, between 0 and 1. 

Like the training, this function only works for one category at a time. Ideally, modify the code to allow 
looping on several models but you will need to instantiate several tensorflow graphs to separate the 
models. 

HPC command used for this project (repeated for each model, with appropriate path to model weights 
and output dirpath): 

python classify_videos.py \ 

--videos_root_dirpath /nesi/nobackup/niwa02671/raw_data \ 

--model_weights_filepath /nesi/project/niwa02671/models/good-
frame/model_weights/exp_20200907-112706/bestmodelweights.h5 \ 

--output_csv_dirpath /nesi/project/niwa02671/outputs/good-frame 

The results were initially saved on the HPC at /nesi/project/niwa02671/outputs. 

They were copied to R:\National\Datasets\Seaweed_Video_Data\ai\outputs. 
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6.1 Processing results 
 
seaweedai.inference.process_results.process_results takes the results from the inference stage and 
metadata and process them into a single file suitable for import into a GIS. 

Namely, the function: 

 reads all prediction csv files for all categories requested; 

 reads all metadata csv files provided and interpolate latitude and longitude for each file; 

 merge predictions and (interpolated) metadata; 

 for each video, operate a process combining a number of consecutive frames and taking 
into account uncertainty; 

write all results into a single csv file. 

The combination process consists of a weighted average where the model prediction value in the 0–1 
range for a category (algae, or specie) is weighted by the usability of the frame (good-frame) in the 0–
1 range. The weighted average is then turned into a hard category (aka “absent” if <0.5, or “present” if 
>0.5). 

An estimate of uncertainty is also produced, using the minimum between 1) the absolute value of that 
weighted average, and 2) the average of the good-frame value. If that value is low (towards 0), it means 
the prediction for this group of frame is uncertain (either mostly unusable frames, or frames with mix 
of classes, or frames with low model confidence). If the value is high (towards 1), it means the prediction 
for this group of frame is rather certain (mostly usable frames AND consistent classification in the 
group AND high models confidence). 

Python script used for this project: 

from seaweedai.process.process_results import process_results 

preds_root_dirpath = r'R:\National\Datasets\Seaweed_Video_Data\ai\outputs' 

categories = ['algae', 'Ecklonia', 'Lessonia', 'Carpophyllum'] 

metadata_dirpath = r'R:\National\Datasets\Seaweed_Video_Data\ai\outputs\metadata' 

output_csv_filepath = r'R:\National\Datasets\Seaweed_Video_Data\ai\outputs\out.csv' 

interpolate_navigation = True 

average_n_frames = 120 

process_results(preds_root_dirpath, categories, metadata_dirpath, output_csv_filepath, 
interpolate_navigation, average_n_frames) 
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