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EXECUTIVE SUMMARY 

 
Moore, B.R.1; A’mar, Z.T.; Schimel, A.C.G.; Ó Maolagáin, C.; Hoyle, S.D. (2021). Development 
of deep learning approaches for automating age estimation of hoki and snapper. 
 
New Zealand Fisheries Assessment Report 2021/69. 33 p. 
 
The ages of fish are a key input to fisheries assessment models. However, preparing and reading otoliths 
can be expensive and time-consuming, and age interpretation can be subjective and uncertain. Recent 
trials conducted in New Zealand on hoki (Macruronus novaezelandiae) and snapper (Chrysophrys 
auratus) indicate that advances in machine learning may make it possible to improve the efficiency of 
ageing, with potential to reduce both biases and long-term costs. The current project builds upon work 
conducted in recent trials, by 1) improving the consistency and increasing the number of images 
available to the models and 2) undertaking further model development using the captured images.  
 
To ensure that model development and associated outputs were relevant to current ageing practices, 
imaging focused on bake-and-embed prepared sections for hoki and the whole sister otolith, and break-
and-burn prepared otoliths for snapper. All samples used in this study had been aged previously by 
human readers. A random-stratified approach was used to select samples, to ensure that developed 
algorithms were robust to potential effects of sex or collection location on age interpretation. This 
resulted in 1068 individual hoki and 520 snapper being selected for imaging and age estimation.  
 
For hoki, ten image types were captured, including three images of the whole otolith and seven images 
of the bake-and-embed prepared otolith, at various orientations and magnifications. For snapper, six 
image types were taken of each sample, at various magnifications under reflected or ultraviolet light. 
Prior to inclusion in the age estimation algorithms, captured images were modified by a variety of 
processes, including image segmentation (i.e., removal of backgrounds), resizing, and binarisation.  
 
A convolutional neural network (CNN) designed for object recognition was adapted to estimate age 
using the captured otolith images. For each species, the model was trained on a subset of images (~80% 
of the total number of images), validated against a smaller subset (~10%), and tested against a third 
subset (containing the final ~10 % of images). Models were run using unmodified and modified images. 
 
Overall, models run on hoki otolith images outperformed those run for snapper. For hoki, mean squared 
error (MSE) values of models run on unmodified images ranged from 3.91 to 2.33, whereas correct 
agreement with human readers ranged from 25.2% to 35.5% for test data subsets. For snapper, MSE 
values for models run on unmodified images ranged ~9.1–35.2, with correct agreement with human 
readers ranging from 13.2% to 37.7%. For both species, models run on low magnification images in 
which backgrounds had been removed generally outperformed those using on unmodified images. 
Models run on individual image types outperformed those using multiple image types for each sample. 
 
There is potential for CNN models to derive age estimates from otolith images, although further 
development and testing is required before such an approach could be used to conduct routine ageing. 
The key next steps towards the implementation of the technique for routine age estimation include: 

1. evaluate the hoki model(s) against the current otolith reference collection;  
2. improve / automate image capture for quality and efficiency;  
3. further develop the image segmentation model; 
4. resolve issues around resizing of the images within the CNN model;  
5. improve understanding of the features the models are trained on; and  
6. further develop an integrated approach using multiple image types and other data inputs.  

 
1 All authors: National Institute of Water and Atmospheric Research (NIWA), New Zealand. 
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1. INTRODUCTION 

Reliable estimation of the ages of fish is integral to fisheries management. It is a key requirement for 
numerous components of age-based stock assessments, including for estimating growth, age at recruitment 
and sexual maturity, longevity, mortality rates, population age structure, and age-dependent fishing gear 
selectivity. Globally, it has been estimated that well over one million fish are examined each year to 
estimate age (Campana & Thorrold 2001). For most bony fishes, age is estimated by enumerating 
periodically-deposited growth marks in calcified structures, in particular scales, bones, fin rays, and 
otoliths (Francis et al. 1992, Welch et al. 1993, Horn & Sullivan 1996, Campana & Thorrold 2001, Zhu 
et al. 2015), with otoliths the most commonly-used structure, particularly in recent years. 
 
Preparing and reading otoliths, or other hard parts, for age estimation can be expensive and time-
consuming. Recent estimates suggest that reading accounts for approximately half of the costs involved 
with age estimation from extracted otoliths for inshore fish species in New Zealand, with preparation 
accounting for the remaining half (Jeremy McKenzie, NIWA, pers. comm.). Moreover, age estimation 
can be inherently subjective and uncertain. Individual readers may interpret the same otolith differently, 
and an individual reader’s interpretation can change over time. Differences between readers, or within 
readers over time, can result in long-term changes in interpretation which has the potential to bias age 
estimations and stock assessments. Improving the consistency of ageing through automated age 
determination could increase the replicability of age estimation and improve the reliability of 
management advice. 
 
Machine learning-based methods of fish age estimation have been explored for many years. Early 
studies employed artificial neural networks, which are computational structures consisting of units 
referred to as neurons, organised in layers. Results from these studies generally report age estimates that 
are less precise than those obtained from experienced otolith readers, particularly for younger and older 
components of tested samples (Robertson & Morison 1999, Fablet & Le Josse 2005).  
 
In the last few years, however, there has been considerable progress in machine learning due to improved 
algorithms, greater computing power, and wider availability of digital training data. Central to 
improving the algorithms has been increasing the number of layers in neural networks, a process often 
referred to as deep learning, and the development of convolutional neural networks (CNNs). These are 
unlike previous deep learning neural networks, in which the lower layers learn to distinguish between 
primitive features (e.g., sharp edges or colour transitions), and subsequent layers then learn to recognise 
more abstract features. In a CNN, the layers are organised as a stack of convolutions, applying the same 
filters across the whole image. A key advantage of this process this that it greatly reduces the number 
of parameters to be learned, which in turn reduces the amount of data and computation necessary for 
training (Abadi et al. 2015, Moen et al. 2018).  
 
With these advances, many new applications have become possible, including the potential to automate 
otolith age estimation. In a preliminary study, Moore et al. (2019) investigated the feasibility of using a 
CNN approach to estimate ages of New Zealand snapper (Chrysophrys auratus) and hoki (Macruronus 
novaezelandiae) from otolith images. For each species, the model was trained on a collection of images 
of fish previously aged by human readers (n = 687 and 882 for snapper and hoki, respectively). After 
training, the model gave the same age as the human reader for 47% of snapper in a test dataset, with a 
further 35% of ages estimated within ±1 year of the human reader estimate of age. For hoki, the model 
gave the same age as the human reader for 41% of individuals.  
 
These promising results were achieved despite the application of minimal image or model optimisation. 
Standardising and optimising the input images, as well as optimising the ageing algorithms used, may 
significantly improve the ability to estimate age. The current project aimed to build on the results of 
Moore et al. (2019) by improving the quality of images available for age estimation by machine learning 
and refining the ageing algorithm used. The objectives of this project (SAM2019-02) were as follows: 

1. to develop a reference library of high-quality, standardised otolith images for hoki and snapper 
for use in developing an automated ageing system using machine learning;  
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2. to use these images and associated data to train and optimise a reliable ageing algorithm for hoki 
and snapper. 

2. METHODS 

2.1 Fish selection 

Considerable variation in otolith morphology can occur between stocks and sexes for a given fish species 
(e.g., Bose et al. 2017, Parmentier et al. 2018). Accordingly, a stratified approach to selection of samples 
was used in this study, with the aim of balancing sample numbers across stock (management area for 
snapper), sex, and age (from human reader estimates). All samples were selected from the age database 
(Mackay & George 2017), on the basis of the below criteria and in relation to the age estimate provided in 
the agreed_age field from the t_age table. 
 
2.1.1  Hoki 
All hoki examined in this study had been processed for ageing using bake-and embed methodologies. 
For hoki, approximately equal numbers of otoliths were selected from fish from the eastern and western 
stocks. For the eastern stock, samples were obtained from fish collected predominantly from the Cook 
Strait spawning ground during 2012–2018. A preliminary query of the age database revealed insufficient 
numbers of old fish (i.e., ≥ 15 years) were available over this period. To increase the sample sizes of 
older fish, additional samples were selected from this area, as well as the Central East, and Chatham 
Rise fishing areas, from collections dating back to 1998.  
 
For the western stock, samples were obtained from fish collected predominantly from four areas: the 
west coast South Island, WC25, Puysegur, and Challenger fishing areas, with samples from the latter 
area restricted to those fish caught south of Cape Foulwind, to improve the likelihood that they 
represented the western stock. Samples were selected from fish caught during 2012–2018, although 
additional samples of older fish (i.e., > 13 years) were taken from collections from these four areas 
dating back to 1998. To further increase the sample sizes of older fish for the western stock, additional 
samples were taken from the southern South Island, Stewart Island, and the Sub-Antarctic islands fishing 
regions (encompassing the Auckland Islands, Campbell Plateau (including Campbell Island), Pukaki 
Rise, Snares Islands, Southland, and Stewart Island fishing areas).  
 
From the available samples in each area, approximately equal numbers of males and females were 
initially selected within each 1-year age class, to a maximum of 15 individuals per age class. Fish within 
each age class were selected randomly, with no prior consideration of the characteristics of their otoliths. 
However, it was evident that not all selected individuals had otoliths suitable for imaging (e.g., the whole 
otolith of the pair was broken). These were substituted by individuals in the same age classes of the 
same sex, or, if no suitable replacement was available, by an individual in the same age class of the 
opposite sex, or an individual of an adjacent age class of the same sex. This resulted in a small number 
of age bins with > 15 individuals (Figure 1). A total of 554 and 514 individuals were selected for imaging 
from the western and eastern stocks, respectively, resulting in 1068 hoki being selected. 
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Figure 1:  Age structure of hoki for which otolith images were captured. Left column = western stock, right 

column = eastern stock. 
 
 
2.1.2  Snapper 
For snapper, imaging focused on break-and-burn prepared otoliths. All samples used in this study had 
been aged previously by human readers and were selected from the age database. To ensure any stock-
related geographical variation in otolith morphology was accounted for, samples were taken from the 
main fishery management areas where the majority of fish have been historically caught (and thus where 
samples had previously been collected), namely SNA 1, SNA 2, SNA 7, and SNA 8. An even spread of 
samples across ages and age groups was desired, however this was not possible for the older age classes 
due to low numbers of aged fish (Figure 2). An approximate 1:1 ratio of females:males was targeted; 
however this was not possible in every age group due to insufficient numbers of one sex or the other. 
 
 

 
 

Figure 2:  Age structure of snapper for which otolith images were captured.  
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2.2 Image capture 

Images were captured with a Nikon DS-Ri2 camera attached to a Nikon SMZ25 stereomicroscope. 
Illumination was provided by a Schott KL2500 LED light source using a fiber-optic ring light to provide 
even lighting for sectioned embedded blocks of hoki otoliths. The same light source was used for 
snapper using adjustable gooseneck arms, orientated at ~45° to the burnt otolith face. All images were 
captured at a maximum resolution of 4908 x 3264 pixels per image with a standard exposure time of 
600 ms.  
 
2.2.1   Hoki 
Ten image types were collected for hoki. These included three types for whole otoliths, and seven types for 
bake-and-embed sectioned otoliths (Table 1). Autowhite balance was set at RED=4.71 and BLUE=1.55 
for all image captures. 
 
Table 1:  Examples of images taken for use in age estimation models for hoki (continued on next two 

pages).  
 

Image 
number 

Description Example 

1 Whole otolith, lateral face, 4x 
magnification, under water with 
reflected light 

 
2 Whole otolith, medial face, 4x 

magnification, under water with 
reflected light 

 
3 Whole otolith, lateral face, 4x 

magnification, under water with 
transmitted light 
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4 Baked otolith, whole cut face, 11x 
magnification under reflected light 

 
5 Baked otolith, ventral arm, 30x 

magnification under reflected light 

 
6 Baked otolith, dorsal arm, 30x 

magnification under reflected light 

 
7 Baked otolith, dorsal arm, 40x 

magnification under reflected light 
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8 Baked otolith, ventral arm, 40x 
magnification under reflected light 

 
9 Baked otolith, ventral arm, 50x 

magnification under reflected light 

 
10 Baked otolith, dorsal arm, 50x 

magnification under reflected light 

 
 
 
Prior to imaging, all whole undamaged otoliths were weighed to the nearest 0.1 mg for potential inclusion 
of otolith weight data as data inputs to the CNN models. 
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2.2.2  Snapper 
Break-and-burn prepared otoliths were mounted in plasticine and coated with immersion oil to enhance the 
series of alternating light and dark zones discernible in the burnt section, following Walsh et al. (2014). Six 
image types were collected for snapper (Table 2). 
 
Table 2:  Examples of images taken for use in age estimation models for snapper (continued on next page). 
 

Image 
number 

Description Example 

1 Break-and-burn prepared otolith, whole 
face, 10x magnification under reflected 
light 

 
2 Break-and-burn prepared otolith, whole 

face, 10x magnification under 
ultraviolet light 

 
3 Break-and-burn prepared otolith, 

ventral arm, 20x magnification under 
ultraviolet light 

 
4 Break-and-burn prepared otolith, 

ventral arm, 20x magnification under 
reflected light 
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5 Break-and-burn prepared otolith, 
ventral arm focused on area adjacent to 
sulcal groove, 40x magnification under 
reflected light.  

 
6 Break-and-burn prepared otolith, 

ventral arm focused on area adjacent to 
sulcal groove, 40x magnification under 
ultraviolet light.  

 
 
For image types 5 and 6, images of the largest otoliths were captured across two overlapping areas: one 
encompassing material near the otolith core and a second encompassing material extending to the otolith 
edge. These two images were then stitched together using Microsoft’s Image Composite Editor tool, and 
padding (i.e., extra pixels) was added to the background to ensure that images were of a consistent size and 
otoliths were at a consistent relative scale. 

2.3 Image modification 

A variety of image modification steps, outlined below, were conducted prior to inputting the images to the 
age estimation algorithm. 

2.3.1  Background subtraction 
Background subtraction involved removing the background from the focal otolith image (Figure 3) (see 
also Appendix 1). Background subtraction was conducted using the Clipping Magic software 
(www.clippingmagic.com; Cedar lakes Ventures, Inc.). Background subtraction was trialled on hoki image 
types 4, 5, 6, and 8, and snapper image types 4 and 5. Resulting clipped portable network graphic (.png) 
files were converted back to jpgs for input to the ageing algorithms.  
  

http://www.clippingmagic.com/
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Figure 3:  Example of background subtraction for a hoki type 4 image (top) and snapper type 4 image 

(bottom). 
 

2.3.2 Background subtraction via masking 
The background subtraction process detail in Section 2.3.1 resulted in a small loss of information, with 
images resized from their original dimensions of 4908 x 3264 pixels to 3552 x 2361 pixels. To assess 
any potential impact of this reduction, a further test was conducted. Here, the clipped otolith image was 
used as a mask to extract the background from the original otolith image. This enabled the background 
to be removed from the original otolith image whilst retaining the image’s original dimensions (i.e., 
4908 x 3264 pixels). Models run using this output were compared against the 3552 x 2361 pixel 
background-subtracted images. 

2.3.3 Image binarisation 
The clipped otolith products generated in Section 2.3.1 were used to create binary versions of the original 
otolith images (Figure 4). This was performed using the R package imager (Barthelme 2021) and 
involved overlaying the original image with the clipped png and setting all pixels in the original image 
where the transparency channel in the png files was < 0.01 to 0, and all pixels where the transparency 
channel was ≥ 0.01 to 1.  
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Figure 4:  Example of hoki otoliths (image type 4) having undergone binarisation. The original image is 
provided on the left for comparison.  

 

2.3.4 Image cropping 
Before being fed to the neural network for analysis, each image is rescaled to 299 x 299 pixels (see 
Section 2.4). To reduce the loss of information caused by this process, each image was cropped to its 
minimum bounding box (Figure 5), using custom built code in R v 3.6.1. Otolith images were then 
padded to ensure they matched the dimensions of the largest bounding box (2973 x 938 pixels) to retain 
the relative scale of each otolith. 
 

 
 

 

Figure 5:  Example of a hoki type 4 image cropped to its minimum bounding box. The original image is 
shown above for comparison. 

 
In addition, a range of transformations were conducted on each image within the age estimation model 
framework (see Section 2.4.4). 
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2.4 Deep learning algorithms 

2.4.1  Overview 
As given by Moore et al. (2019), ageing algorithms were developed in Python using the TensorFlow 
Machine Learning library (Abadi et al. 2015) and its Keras application programming interface (API). 
Since the code for Moore et al. (2019) was written in 2018 and the field of computer vision using deep 
learning approaches is evolving fast, the latest stable versions available at the beginning of this project 
were used, which were Python v 3.7 and TensorFlow v 2.3.0. The deep learning algorithm used in the 
current study followed the same transfer learning process as described by Moore et al. (2019) (Figure 6):  

1. loading the Inception V3 CNN (Szegedy et al. 2016) pre-trained on the ImageNet dataset;  
2. replacing the classifier layers with a new set of layers adapted for the task of estimating otolith 

age (i.e., a regressor instead of the original classifier);  
3. replacing the Cross-Entropy loss function used in classification algorithms with a Mean Squared 

Error (MSE) loss function, as commonly used for regression; and  
4. retraining the revised machine learning model on the image datasets. 

 
Mean squared error was calculated as the average of the squared differences between the predicted and 
actual values. The lower the MSE, the better the model is performing. The squaring means that larger 
differences between model age predictions and human estimates result in more error than smaller 
differences. 
 

 
Figure 6:  Flow diagram of the neural network architecture used in this study (adapted from Moore et 

al. 2019). 
 

2.4.2 Datasets 
The otolith images were used to train and evaluate the models, with the agreed age for each otolith used 
as each model’s target variable. Developing an efficient machine learning model and accurately 
evaluating its performance on independent otolith image datasets (generalisation performance) requires 
careful selection and split of the original dataset. In the first instance, independent models for each type 
of image were developed, that is, a dataset for training a model consisting of a single image type. Tests 
were also conducted using models trained on multiple image types (=composite models).  
 
For each model, the image input datasets were split into training, validation, and test subsets (Figure 7). 
Approximately ~10% of the full dataset was split and set aside for the evaluation of the final model (= 
test subset). The age distribution of both the hoki and snapper datasets decayed with age. For example, 
for hoki there were approximately equal numbers for hoki for ages 2–14, with fewer individuals in the 
youngest and older age classes. Accordingly, this split was stratified by age, so that the final evaluation 
could be done on all ages available. The remaining ~90% of the image dataset was split (stratified by 
age) into a training subset and a validation subset, leading to a training/validation/test split of 80/10/10%. 
The training subset was used to minimise the loss function, and the validation subset was to evaluate the 
performance of the model (at any stage of the development) on unseen data. Because model development 
includes tuning hyper-parameters to maximise performance (on the validation subset), the use of 
separate subsets for model evaluation during development (i.e., the validation subset) and after 
completion of the development (i.e., the test subset) ensures that the final evaluation is unbiased and 
more indicative of generalisation performance than the performance on the validation subset.  
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Figure 7:   Outline of the split into training, validation (val.) and test data subsets undertaken in the current 
study. 

 

2.4.3 Model architecture 
The architecture and parameters of the final models were optimised to maximise the performance of the 
model on the validation dataset (hyper-parameter tuning).  
 
After loading the Inception V3 CNN, the last layers were removed and replaced with the following 
sequence of layers: 

• a global average pooling 2D layer; 
• a dense (fully connected) layer of 1024 units and rectified linear activation functions; 
• a dropout layer, with a dropout rate of 0.2; and 
• a regressor layer instantiated as a fully connected layer with a single unit and no (i.e., linear) 

activation function. 
 
In a deep CNN such as Inception V3, the earlier layers tend to capture the gross patterns in the input 
image while increasingly fine details are captured with increasingly later layers in the network. 
Accordingly, the common practice in transfer learning is to freeze the earlier layers, i.e., prevent the 
retraining of their parameters, to maintain their existing gross pattern-recognising capabilities. In this 
study, following the results obtained by Moore et al. (2019), the input layers and the first several blocks 
of the Inception V3 model were frozen (that is, up to layer 249 out of 315). The neural network had a 
total of 23 901 985 parameters, of which 13 214 081 were trainable. 

2.4.4 Training 
Model training for both hoki and snapper was achieved with the Adaptive Movement Estimation (Adam) 
optimiser (Kingma & Ba 2015), or the Nesterov-accelerated Adaptive Movement Estimation (Nadam) 
optimiser (Dozat 2016). Adam is a Stochastic Gradient Descent (SGD) method that is based on adaptive 
estimation of first-order and second-order moments, seeking to minimise the mean square error (loss 
function) between predicted and ‘true’ age (i.e., that from the human reader). Nadam is an extension of 
the Adam version of gradient descent that incorporates Nesterov momentum and can often result in 
improved performance. The Adam parameters, after hyper-parameter tuning, were a learning rate of 
1.0 x 10-3.  
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Complex models such as a deep CNNs tend to overfit the training data (i.e., poor generalisation 
performance despite a good fit to the training dataset) when datasets are small, such as in this study. To 
prevent this outcome, the common method of image augmentation was used, whereby random 
transformations are applied to the input images to simulate a different training dataset at each epoch. 
The transformations included: 

• "rotation_range": 45; 
• "width_shift_range": 0.1; 
• "height_shift_range": 0.1; 
• "horizontal_flip": True; 
• "vertical_flip": True; 
• "fill_mode": "reflect". 

 
The Inception V3 CNN uses images of size 299 x 299 as input. All otolith images were rescaled and 
reduced from their original size of 4908 x 3264 (for the raw images) or the image size specified above 
as part of the image augmentation process. 
 
Model training was carried out in batches of size 32, over a total of 3000 epochs. At the end of each 
epoch, the model was evaluated over the validation dataset (without image augmentation, nor dropout) 
to estimate the model’s generalisation performance. An early stopping callback was used to stop the 
training if this performance had not improved after 750 consecutive epochs. 
 
Since the training of neural networks is highly computing-intensive and parallelisable, the 
multiprocessing capabilities of the Keras fit method that implements the training (8 workers) was used. 
The training algorithms were run using the CUDA/CUDnn v 10.1 libraries to perform the computations 
on an NVIDA P100 Graphical Processing Unit off a node of the NIWA/NeSI High Performance 
Computing Facility. 

2.4.5 Model performance evaluation 
At the end of an instance of model training, a single measure of performance is obtained: the MSE (loss) 
on the validation dataset. Additional performance metrics were produced at the end of model training to 
assist with model evaluation. First, the MSE over the training dataset (without augmentation, nor 
dropout) was calculated to estimate the final model’s performance on the training data. The gap between 
loss on the validation dataset and training dataset allows diagnosis of cases of overfitting. In addition, 
the final predicted ages were rounded, and the percentage of correctly predicted ages (percent agreement, 
PCA), as well as the percentage of predicted age being correct within ±1 year were evaluated, for both 
the training and validation dataset. 

2.5 Ageing performance 

Predicted ages from test subsets of candidate models for hoki (model exp_20210524-194903_HOK_55) 
and snapper (model exp_20210501-054836_SNA_44) were used to evaluate the potential effects on 
ageing performance. Differences between the human age estimates and model predictions were assessed 
using the coefficient of variation (CV, Chang 1982), and the index of average percent error (IAPE, 
Beamish & Fournier 1981). Greater precision is achieved when CV and IAPE are minimised (Beamish 
& Fournier 1981, Campana et al. 1995). Frequency plots of differences in age estimates between human 
readers and model predictions, as well as age bias plots modified from Campana et al. (1995), were 
constructed to detect any differences in age and the presence of any systematic bias in age estimates.  
 
A single age frequency was generated for each of the human age estimates and model predicted ages for 
the test subsets. Potential differences in age frequency distributions between readers (human vs. CNN 
model) were tested using Kolmogorov-Smirnov (K-S) tests. 
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Reproducibility of growth parameter estimates was assessed by constructing separate von Bertalanffy 
growth function (VGBF) curves from the human age estimates and model predictions for the test subsets. 
The form of the VBGF used to model length-at-age data was: 

𝐿𝐿t = 𝐿𝐿∞[1− e−𝑘𝑘(𝑡𝑡−𝑡𝑡0)] 

where Lt is the length-at-age t, L∞ is the hypothetical asymptotic length, k is the growth coefficient, and 
t0 is the hypothetical age at which fish would have zero length. Resulting growth function curves and 
parameters were compared using likelihood ratio tests (LRT, Kimura 1980).  

3. RESULTS 

3.1 Hoki 

3.1.1 Models run on unmodified images 
Models run on ‘raw’ (i.e., unmodified) hoki images produced largely similar results across image types. 
For the test data subsets, MSEs ranged from 3.91 (for image type 1) to 2.33 (for image type 8), and 
correct agreement with human readers ranged from 25.2% (image types 6 and 7) to 35.5% (image types 
2 and 3) (Table 3).  

3.1.2 Models run on modified images 
Models run using ‘clipped’ (i.e., background removed) images showed variable results relative to those 
using raw images. For hoki image types 4 and 5, removing the background improved the MSE for the 
test subsets. In contrast, for those image types taken at higher magnification (i.e., image types 6 and 8), 
MSE values for the test subsets were slightly higher for model runs using images with the background 
removed than when using the raw images (Table 4).  
 
The model run on binarised type 4 images achieved MSE values for the test subset that were slightly 
lower (better) than those of the model run on raw images (4.08 vs. 4.20), but higher than that achieved 
by the model run on clipped images (2.71). Overall, percent agreement, and the percent of individuals 
within ± 1 of the human estimates, from the model run on binary versions of hoki image type 4 were 
largely comparable, if not slightly improved, than those from the models using raw and clipped images 
(Table 4). 

3.1.3 Composite models 
A single composite model was run for hoki, incorporating one image type of a whole otolith (image 
type 3) and one image type of a bake-and-embed prepared otolith (image type 5). This model achieved 
MSE values that were slightly higher than model runs using a single image type for the validation 
dataset, and MSE values that were generally comparable to other models for the test dataset. The percent 
agreement, and the percent of individuals within ± 1 of the human estimates, from this model were 
generally lower than those resulting from models run on single image types, at 13.1% and 41.1%, 
respectively (Table 5). 
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Table 3:  Results for models run on unmodified hoki images. MSE = mean squared error, PCA = percent agreement, val. = validation subset.  
 

Model run name Image type Best epoch MSE train MSE 
validation 

MSE test PCA val. PCA ± 1 
val. 

PCA test PCA ±1 test  

          
exp_20210503-150642_HOK_1 1 254 0.7416 2.3769 3.9083 32.71 76.64 28.97 66.36 
exp_20210504-100656_HOK_2 2 143 1.1285 2.6992 3.0252 28.97 68.22 35.51 77.57 
exp_20210507-111019_HOK_3 3 54 1.5675 2.2938 2.8905 25.23 66.36 35.51 69.16 
exp_20210528-213855_HOK_4 4 652 0.2476 2.5687 4.1975 29.91 71.96 20.56 59.81 
exp_20210523-090901_HOK_5 5 1 136 0.1336 2.6583 2.9288 29.91 70.09 28.04 71.03 
exp_20210507-221237_HOK_6 6 983 0.1075 2.1469 3.0789 31.78 70.09 25.23 65.42 
exp_20210509-063913_HOK_7 7 497 0.3209 2.2065 3.4827 30.84 75.70 25.23 70.09 
exp_20210510-063137_HOK_8 8 844 0.2117 2.7126 2.3325 31.78 66.36 34.58 68.22 
exp_20210511-124921_HOK_9 9 286 0.4264 3.3253 2.8029 28.04 61.68 28.97 70.09 
exp_20210512-074621_HOK_10 10 558 0.2298 2.3864 2.7124 36.45 76.64 33.64 71.03 
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Table 4:  Results for models run on modified hoki images. MSE = mean squared error, PCA = percent agreement, val. = validation subset. Note results for models 
run on the unmodified images using the same model settings are shown for comparison. 

 
Model run name Image 

type 
Modification Best 

epoch 
MSE train MSE 

validation 
MSE test PCA val. PCA ± 1 

val. 
PCA test PCA ± 1 

test  
Run using optimiser Adam:           
exp_20210528-213855_HOK_4 4 Unmodified 652 0.2476 2.5687 4.1975 29.91 71.96 20.56 59.81 
exp_20210529-231430_HOK_444 4 Background removed 741 0.4816 2.5755 2.7142 21.50 65.42 19.63 64.49 
exp_20210530-044224_HOK_44444 4 Binarised 501 2.9949 2.2589 4.0757 40.19 71.03 32.71 64.49 
exp_20210523-090901_HOK_5 5 Unmodified 1 136 0.1336 2.6583 2.9288 29.91 70.09 28.04 71.03 
exp_20210524-194903_HOK_55 5 Background removed 399 0.341 2.9298 2.7933 28.97 62.62 29.91 72.90 
exp_20210507-221237_HOK_6 6 Unmodified 983 0.1075 2.1469 3.0789 31.78 70.09 25.23 65.42 
exp_20210522-042312_HOK_66 6 Background removed 1 361 0.1703 2.3786 3.1522 32.71 63.55 31.78 70.09 
exp_20210510-063137_HOK_8 8 Unmodified 844 0.2117 2.7126 2.3325 31.78 66.36 34.58 68.22 
exp_20210522-220202_HOK_88 8 Background removed 480 0.5292 3.4065 3.2751 31.78 68.22 30.84 69.16 
           
Run with optimiser Nadam, removed kernel regularization in Dense layer:   
exp_20210425-194729_HOK_4 4 Unmodified 88 0.7432 2.8451 4.314 24.30 62.62 25.00 56.48 
exp_20210426-063313_HOK_44 4 Background removed 373 0.8924 2.9538 2.8825 34.58 64.49 38.32 71.96 
exp_20210426-130601_HOK_444 4 Masked 845 1.1678 2.7365 2.9223 28.04 67.29 34.58 72.90 
exp_20210427-065721_HOK_5 5 Unmodified 212 0.4475 1.8184 3.7822 33.64 76.64 33.33 73.15 
exp_20210427-201306_HOK_55 5 Background removed 867 0.1551 2.6733 2.6913 35.51 73.83 38.32 76.64 

 
 
Table 5:  Results for models run incorporating multiple image types per individual. MSE = mean squared error, PCA = percent agreement, val. = validation subset. 
  

Model run name Image 
types 

Modification Best 
epoch 

MSE 
train 

MSE 
validation 

MSE test PCA val. PCA ± 1 
val. 

PCA test PCA ± 1 
test  

Run using optimiser Adam:           
exp_20210618-
171743_HOK_353_535 

3 and 5 Unmodified 134 2.974 4.3765 3.1153 16.98 41.51 13.08 41.12 
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3.2 Snapper 

3.2.1 Models run on unmodified images 
Models run on break-and-burn prepared snapper otolith images performed relatively poorly, with MSE 
values on the test subsets ranging from ~9.1 to 35.2 for those run using the optimiser Adam, and ~9.5–
10.5 for models run using the optimiser Nadam (Table 6). Models run using the optimiser Adam resulted 
in ages of 13.2–26.4% of samples being correctly predicted, whereas models run using the optimiser 
Nadam resulted in a correctness in age prediction of 28.3% and 37.7% for images types 4 and 5, 
respectively (Table 6). 

3.2.2 Models run on modified images 
Where trialled, removing the background had a minor effect on age estimates for snapper, with a slight 
improvement in MSE, percent agreement, and percent of reads within one year for the validation subset, 
but yielded negligible improvement across these metrics for the test subset (Table 7).  

3.2.3 Composite models 
A single composite model was run for snapper, incorporating image types 4 and 5. This model achieved 
MSE values of 47.26 for the validation dataset, and 21.97 for the test dataset (Table 8).  
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Table 6:  Results for models run on unmodified snapper images. MSE = mean squared error, PCA = percent agreement, val. = validation subset. 
 

Model run name Image type Best epoch MSE train MSE 
validation 

MSE test PCA val. PCA ± 1 
val. 

PCA test PCA ± 1 
test  

Run using optimiser Adam          
exp_20210604-141910_SNA_1 1 23 8.0534 14.0635 22.2042 9.62 42.31 13.21 43.40 
exp_20210604-214808_SNA_2 2 385 2.8064 13.9299 13.2863 21.15 48.08 26.42 43.40 
exp_20210605-104400_SNA_3 3 261 1.7705 17.0455 9.1052 23.08 51.92 16.98 47.17 
exp_20210605-214852_SNA_4 4 1 436 1.9634 12.7627 12.3892 19.23 40.38 26.42 49.06 
exp_20210606-195051_SNA_5 5 509 1.5638 14.2187 15.9396 17.31 46.15 19.23 46.15 
exp_20210607-091557_SNA_6 6 1 032 1.0545 25.0676 35.2176 21.15 51.92 19.23 40.38 
          
Run using optimiser Nadam          
exp_20210423-134008_SNA_4 4 1 237 0.5707 11.7820 9.4561 26.92 50.00 28.30 49.06 
exp_20210424-134125_SNA_500 5  357 1.9928 14.2146 10.5343 19.23 42.31 37.74 62.26 

 
Table 7:  Results for models run on modified snapper images. MSE = mean squared error, PCA = percent agreement, val. = validation subset.  
 

Model run name Image type Modification Best 
epoch 

MSE 
train 

MSE 
validation 

MSE test PCA val. PCA ± 1 
val. 

PCA test PCA ± 1 
test  

Run using optimiser Adam 
exp_20210605-214852_SNA_4 4 Unmodified  1 436 1.9634 12.7627 12.3892 19.23 40.38 26.42 49.06 
exp_20210501-054836_SNA_44 4 Background removed 397 2.32 10.3769 10.4901 25.00 67.31 28.30 49.06 
           
Run using optimiser Nadam           
exp_20210423-134008_SNA_4 4 Unmodified 1 237 0.5707 11.7820 9.4561 26.92 50.00 28.30 49.06 
exp_20210424-074839_SNA_44 4 Background removed 701 1.0298 11.1959 9.2238 28.85 69.23 20.75 49.06 

 
Table 8:  Results for models run incorporating multiple image types per individual. MSE = mean squared error, PCA = percent agreement, val. = validation subset.  
 

Model run name Image types Modification Best 
epoch 

MSE 
train 

MSE 
validation 

MSE test PCA val. PCA ± 1 
val. 

PCA test PCA ± 1 
test  

           exp_20210425-
044016_SNA_44_500 

4 (clipped) 
and 5 

Background removed 
(4) and unmodified (5) 

216 54.1861 47.2613 21.9712 19.23 28.85 9.43 20.75 
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3.3 Ageing performance 

3.3.1 Hoki 
Age estimates from model exp_20210524-194903_HOK_55 were used to explore the effect of using 
the age estimated from the CNN model estimates for the generation of biological parameters in place of 
those from human readers. The mean CV of the CNN predicted ages was 7.07% (Figure 8), and the 
IAPE was 5.00%. This was reduced to a CV of 6.72% when a single outlier was removed (Figure 8), 
which also reduced the IAPE to 4.75%. Overall, there was a slight tendency for the model to 
underestimate the ages of fish in the oldest age classes (Figure 8, Figure 9). It should be emphasised, 
however, that there were fewer old fish in both the test and training datasets (Figure 1).  
 
No significant difference was evident between the age frequency distributions for human estimates and 
predicted ages from the model (K-S test, D= 0.0374, P=1.0; Figure 9). Similarly, no significant 
difference was evident in any of the VBGF parameters between growth curves generated from human 
estimates and model predictions (Figure 10, Table 9, Table 10). 
 
 

 

 
Figure 8:  Distribution of age frequency differences and age bias plots from the test subset of the candidate 

CNN model for hoki (model exp_20210524-194903_HOK_55). Results are presented for all 
individuals in the test dataset (n=107; top row) and excluding one outlier (bottom row).  
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Figure 9:  Scatterplot of predicted ages vs. human estimates (left) and age frequency distributions for hoki 
from the human estimates and predicted ages (right) from the test subset of the candidate CNN 
model. 

 
 

 
Figure 10:  von Bertalanffy growth curves for hoki generated from age predictions from the test subset of 

the candidate CNN model and corresponding human estimates. 
 
 
Table 9:  von Bertalanffy growth function parameters (± standard error, SE) for hoki from models based 

on human age estimates and CNN predicted ages.  

Parameter Human age estimates Model predicted ages 
   
L∞ 103.86 (±1.71) 103.06 (±1.76) 
k 0.19 (0.02) 0.20 (0.02) 
t0 -1.24 (0.32) -1.23 (0.34) 
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Table 10:  Results from likelihood ratio tests comparing von Bertalanffy growth parameter estimates 
generated from human age estimates and the test subset of the candidate CNN model for hoki.  

Test χ2 P value 
   
Linf (Human) vs. Linf (Model) 0.57 0.450 
k (Human) vs. k (Model) 0.19 0.663 
t0 (Human) vs. t0 (Model) 0.14 0.708 
All   0.85 0.837 

 

3.3.2 Snapper 
The mean CV of the CNN predicted ages from the test subset of model exp_20210501-054836_SNA_44 
was 10.89% (Figure 11), and the IAPE was 7.70%. Overall, there was a slight tendency for the model 
to overestimate the age relative to human estimates (Figure 11). Again, it should be emphasised that 
there were very few old fish in the test and dataset, and in the dataset that the model was trained on 
(Figure 2). 
 
No significant difference was evident between the age frequency distributions for human estimates and 
predicted ages from the model (K-S test, D=0.0943, P=0.97; Figure 12). Similarly, no significant 
difference was evident in any of the VBGF parameters between growth curves generated from human 
estimates and model predictions (Figure 13, Table 11, Table 12). 
 
 
 

 

Figure 11:  Distribution of age frequency differences and age bias plots from the test subset of the candidate 
CNN model for snapper (model exp_20210501-054836_SNA_44).  
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Figure 12:  Scatterplot of predicted ages vs. human estimates (left) and age frequency distributions for 

snapper from the human estimates and predicted ages (right) from the test subset of the 
candidate CNN model. 

 

 
Figure 13: von Bertalanffy growth curves for snapper generated from age predictions from the test subset 

of the candidate CNN-model and corresponding human estimates. 
 

 
Table 11:  von Bertalanffy growth function parameters (± standard error, SE) for snapper from models 

based on human age estimates and CNN predicted ages.  

Parameter Human age estimates Model predicted ages 
   
L∞ 71.05 (4.79) 73.62 (5.50) 
k 0.06 (0.02) 0.06 (0.02) 
t0 -4.46 (2.24) -4.28 (2.30) 
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Table 12:  Results from likelihood ratio tests comparing von Bertalanffy growth parameter estimates 
generated from human age estimates and the test subset of the candidate CNN model for 
snapper.  

Test χ2 P value 
   
Linf (Human) vs. Linf (Model) 0.01 0.920 
k (Human) vs. k (Model) 0.04 0.841 
t0 (Human) vs. t0 (Model) 0.23 0.632 
All  0.54 0.910 

4. DISCUSSION 

The processing and reading of fish otoliths for age estimation is a time-consuming and costly procedure 
(Worthington et al. 1995, Francis & Campana 2004), which can impede the implementation of routine 
ageing programmes required for monitoring and assessment. Results of this study build upon those of 
previous research (e.g., Moen et al. 2018, Moore et al. 2019, Ordoñez et al. 2020, Politikos et al. 2021) 
that demonstrate the significant potential for using deep learning CNN-based approaches to predict ages 
of fish from otolith images.  
 
The precision of age estimations achieved here for hoki (CV=7.07% for the test subset of the examined 
hoki model) compare favourably with those cases in the primary literature where similar methodologies 
have been applied. For example, Moen et al. (2018) achieved a mean CV of 8.89% for their CNN-based 
model applied to images of whole otoliths of Greenland halibut (Reinhardtius hippoglossoides). 
Interestingly, this was despite Moen et al. (2018) utilising a much larger training dataset (8165 images) 
than used in the current study.  
 
For hoki, the CNN model slightly underestimated the age of the oldest fish (i.e., those greater than 18 
years) relative to human readers. Underestimation of oldest age classes is commonly observed in CNN-
based studies of age estimation (e.g., Moen et al. 2018) and likely results from reduced numbers of old 
fish relative to younger age classes in both training and testing datasets, as well as finer-scale deposition 
of opaque and translucent material with increasing age, coupled with loss of information through 
rescaling of image dimensions for input to the CNN (Moen et al. 2018, Moore et al. 2019, Ordoñez et 
al. 2020). Nevertheless, comparisons of key biological parameters generated from model predictions 
showed no significant difference when compared with those generated from age estimation by human 
readers, demonstrating little overall effect of this bias, or other minor age prediction differences, on 
parameter estimation.  
 
Age estimates derived from the CNN-based models for snapper in the current study were less accurate 
than the results for hoki, and for snapper prepared as thin sections by Moore et al. (2019), for which an 
MSE of 1.2 and overall PCA of 46.7% were achieved for the test subset. This likely reflects the break-
and-burn method of preparation of the samples examined and associated challenges with imaging. The 
otolith samples used commonly had small chips and other damage to the cut surface, with non-uniform 
ground axes, and differed in the degree of burning and subsequent colouration, resulting in inconsistent 
size and shape, and problematic interpretability between samples. Although a human reader can ignore 
this information, the trial using binarised images for hoki and other published works (e.g., Ordoñez et 
al. 2020, Politikos et al. 2021) suggest that the CNN model likely uses size and shape attributes of the 
otolith, in addition to patterns in translucent and opaque material, to derive age estimates. While 
selecting ‘optimal’ otoliths (i.e., those in perfect, or near-perfect condition) may have improved the 
result, this study opted instead to ensure that the technique was developed on samples that are 
representative of those available for ageing. It is recommended that future development and 
implementation of routine ageing of snapper via machine learning be conducted on thin section-prepared 
otoliths, consistent with the validated approach (Francis et al. 1992), and as used for routine ageing in 
other jurisdictions (e.g., South Australia  by Fowler et al. 2016). 
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4.1 Next steps / recommendations for future research 

These results, and particularly those for hoki, highlight the considerable potential for using CNN models 
to derive age estimates from otolith images. Below, the key next steps for improving and implementing 
both the image capture and age estimation components of this work are presented.  
 

1. Evaluate the hoki model(s) against the current otolith reference collection. When introducing 
new readers into an ageing programme, best practice is to ensure they have been tested against 
a reference set of otoliths. The primary role of a reference set is to monitor ageing consistency 
(and accuracy) over both the short and long term, particularly for testing long-term drift, as well 
as consistency among age readers (Campana 2001). The current reference collection for hoki in 
New Zealand consists of 480 individual otoliths covering a range of fish lengths and collection 
seasons, with approximately equal coverage between stocks and sexes (Horn & Sutton 2017). 
Horn & Sutton (2017) consider that IAPE values of less than 5% when tested against the 
reference set are reasonable for hoki. Accordingly, it is strongly recommended that age 
predictions from candidate ageing algorithms for hoki be tested against the reference collection 
to evaluate whether they meet this benchmark. 

 
2. Improve / automate image capture. The capture of images was a costly and time-consuming 

component of the current project and is a considerable impediment to implementing the 
approach for routine age estimation. Approaches to optimise image capture should be 
investigated as a priority. For those species for which routine ageing is performed via thin otolith 
sections on microscope slides (e.g., trevally Pseudocaranx dentex, tarakihi Nemadactylus 
macropterus), one such approach may be to trial digital slide scanning technologies for 
automating image capture. Slide scanning machines can capture high-resolution images with 
high throughput (i.e., multiple slides at a time). Such a trial should first investigate the 
appropriateness of estimating age from captured images (e.g., by comparing ages derived on-
screen from images against prior age estimates from experienced human readers) before using 
the images in a CNN-framework. 

 
3. Further develop the image segmentation model. Results of the present study revealed that 

models based on images with backgrounds removed in most cases outperformed those with 
backgrounds retained. Of the background removal approaches trialled (see Appendix 1), the 
image segmentation approach holds considerable promise for further development, because it 
was found to be generally robust and flexible enough to detect fine-scale differences between 
background and foreground components. Further development of this model is required, 
including generation of both larger training and test datasets, running the segmented products 
from the CNN age estimation model, and trialling the performance of models trained on 
different image types. 

 
4. Resolve issues around resizing of the images within the CNN model. The default size of the 

images used in the Inception V3 is 299 x 299 pixels. Increasing (or retaining the original size) 
the size of the input images may provide greater resolution of structural patterns, particularly of 
the outermost bands in older specimens. However it would require considerable model training 
to replace the feature extractor layers from the Inception V3 CNN (Szegedy et al. 2016), and 
more computing resources to develop each model. Determination of the size of images will be 
a balance between providing good quality images to the CNN and the limitations of 
computational resources.  

 
5. Improve understanding of the features the models are trained on. For stakeholders to accept the 

age estimations from a CNN model, and for the resulting age estimates to be used for fisheries 
management, confidence needs to be built through some level of decision understanding. It is 
especially important to verify that the model does not learn biased prediction rules based on 
some artefacts related to the acquisition of the images or other non-age-related features, such as 
background material. Although significant investment was made in removing noise and 
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arbitrary information from the images (e.g., background removal), due to resource constraints 
this study was unable to explore in detail the model fitting characteristics of the CNN 
algorithms, and determine which features the CNNs were using to determine age. Further 
research to verify which features the developed models are trained on is necessary. 
Understanding decisions of deep learning algorithms is commonly achieved by visualisation 
approaches. Layer-wise relevance propagation (Bach et al. 2015) is one potential approach to 
visualise the decisions of the deep learning algorithms that has been previously applied to otolith 
images for age estimation purposes (e.g., Ordoñez et al. 2020). This approach aims to assign the 
importance of an input pixel to the overall output prediction score by back-propagating a 
relevance score encoding the information about the model’s decision (Ordoñez et al. 2020). 
 

6. Further develop an integrated approach using multiple image types and other data inputs (e.g. 
otolith weight). Multi-task learning (MTL), a nascent subfield of machine learning, provides 
one potential approach for integrating different data types. Here, instead of focusing on a single 
task, multiple auxiliary tasks are used simultaneously, allowing for sharing of information 
between networks (Politikos et al. 2021). Accordingly, an auxiliary task of the prediction of fish 
age from otolith weight, other variables such as 2-dimensional otolith area, or potentially other 
image types (i.e., in a composite, multi-image model approach), could be introduced to the 
CNN. A recent study by Politikos et al. (2021) used a MTL approach to better estimate age of 
red mullet (Mullus barbatus) by introducing as an auxiliary task the prediction of fish length 
from otolith images, improved overall age prediction, and proved effective at identifying older 
age classes. 
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APPENDIX 1: Trial for removal of image backgrounds 

Preliminary trials revealed that age estimates were significantly improved if backgrounds were removed 
from input images. Accordingly, a series of background removal methods were trialled to determine 
which approach provided the optimal result. These trials were conducted on hoki image types 1 (i.e., 
whole otolith imaged at 4x magnification) and 4 (full face of bake-and-embed prepared otolith imaged 
at 11x magnification) (Figure A1.1). 
 

  
Figure A1.1:  Base images used in background removal trials. Left: hoki image type 1; right: hoki image 

type 4. 
 
Background subtraction via ImageJ 
The subtract background function of ImageJ was trialled as a first step in isolating the focal otolith from 
the image background. This approach performed well for the whole otolith image, but failed to 
differentiate the focal otolith from neighbouring images, non-focal material (e.g., material beyond the 
cut surface) and overall background in the bake-and-embedded image (image type 4; Figure A1.2).  
 
 

  
Figure A1.2:  Images with background subtracted using subtract background function in ImageJ. 
 
Background subtraction via ShapeR package 
The R package ShapeR (Libungan & Pálsson 2015) includes a function that detects the outline of a focal 
object. It is most commonly used for extracting otolith shape information for investigations of species 
identification and stock structure (Libungan & Pálsson 2015). If the outline of the focal otolith could be 
obtained, a shape mask could be developed to mask the background from the focal otolith in original 
raw images. 
 
The detect.outline function performed well for whole otoliths, accurately identifying the outlines in most 
cases (Figure A.1.3). However, it failed to accurately detect the required outline in bake-and-embed 
prepared otolith sections (Figure A.1.3), often being unable to differentiate the focal otolith from 
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background material, or detecting outlines from adjacent otoliths, even across the full range of threshold 
settings.  
 

  
Figure A1.3:  Otolith outlines detected using detect.outline function from ShapeR package in R. 
 
 
Background subtraction via Tensorflow & Keras (Image segmentation) 
Here, a u-net algorithm was used to develop a neural network to automatically identify the focal otolith 
from surrounding material. U-net is a multi-class semantic segmentation algorithm, allowing 
classification of each pixel to an object (in this case the otolith of interest or the background). The 
algorithm was developed in R using the packages tensorflow (Allaire & Tang 2021), keras (Allaire & 
Chollet 2021), and platypus (Maj 2021).  
 
The model was trained on a subset (n=1057) of paired original and binary mask images for hoki image 
type 4 (Figure A1.4). The binary masks were generated by binarising the resulting product generated 
via the Clipping Magic tool described in Section 2.3, using the R package imager (Barthelme 2021). 
Due to time constraints, training was based on images reduced to 512 x 512 pixels, and the training 
model was run for 100 epochs. Resulting predicted masks (Figure A1.5) were overlaid on the original 
images to extract the focal otolith, remove the image background, and evaluate model performance.   
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Figure A1.4:  Examples of original image and binary mask pairs used to train the image segmentation 

model. 
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Figure A1.5:  Examples of predicted segmented images from the image segmentation model (right column). 

The original images are shown in the left column for comparison.  
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