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EXECUTIVE SUMMARY 
 
Stephenson, F.1; Bowden, D.A.; Finucci, B.; Anderson, O.F.; Rowden, A.A. (2021). 
Developing updated predictive models for benthic taxa and communities across Chatham 
Rise and Campbell Plateau using photographic survey data. 
 
New Zealand Aquatic Environment and Biodiversity Report No. 276. 82 p. 
 
 
Effective ecosystem-based management of the marine environment requires an understanding of the 
spatial distribution of species across appropriate spatial scales. However, species data generally consist 
of point records of taxon presences assembled from disparate sources spanning many years or decades 
(particularly for deepwater taxa due to the logistical difficulties and cost of data collection). 
Consequently, correlative modelling methods, in which statistical relationships between observed 
species point occurrences and continuous environmental data layers are used to predict species 
occurrence across unsampled space, referred to as species distribution models (SDMs). However, most 
SDMs are developed using presence-absence data and therefore predictions represent species’ 
probability of occurrence. For many taxa, patterns of occurrence alone cannot indicate the range of 
environmental conditions under which a species is likely to thrive, rather than just survive. SDMs 
derived from abundance data (quantitative models), by contrast, can provide more ecologically nuanced 
information that is more useful for informing spatial management decisions. The lack of abundance-
based models for seafloor invertebrate taxa is a consequence of the paucity of spatially consistent 
abundance data for non-commercial marine taxa. 
 
The present work builds on previous projects which collected quantitative (abundance) benthic 
community data and predicted distribution of abundance for the Chatham Rise. Here, quantitative 
observation data from Campbell Plateau were incorporated to expand these predictions to encompass 
much of the southeastern sector of New Zealand’s Exclusive Economic Zone; a region that is of 
importance for fisheries, encompasses areas of oil and gas exploration, and is of potential future interest 
for extraction of seabed minerals. The methods used were similar to those used in the Chatham Rise 
studies to develop a set of twenty single-taxon models and a community-level model (using gradient 
forests - GF) from which a spatial classification of seafloor community types was developed. The single 
taxon predictions were constructed from ensembles of three separate SDM methods in a hurdle model 
approach (a binomial model was used initially to predict the probability of occurrence, followed by a 
separate model with a Gaussian distribution to estimate population density for locations where presence 
was recorded). The modelling methods were also extended by applying a new approach, joint species 
distribution modelling (jSDM). jSDM is a developing field of distribution modelling in which multiple 
species occurrences or abundances, their functional traits and phylogenetic relationships, environmental 
covariates, and the spatial-temporal context in which the data were acquired are analysed explicitly and 
simultaneously. The study used jSDM to generate single-taxon predictions for the same set of twenty 
taxa that was modelled using the single-taxon models and, because the method models all taxa 
simultaneously, also to generate another community-level classification using the Regions of Common 
Profile method (RCP). As far as the authors are aware, this is the first application of jSDM to the study 
of marine faunal distributions in the New Zealand region. 
 
The overall explanatory power of the single taxon and joint species distribution models for presence-
absence was high (most taxa AUC > 0.81) with relatively high predictive power (most taxa AUC > 
0.70). For abundance model results, the overall explanatory power was lower (most taxa R2  > 0.43) and 
predictive power was much lower (most taxa R2 > 0.12). The model fit metrics varied by taxon, but 
most models had at least some explanatory and predictive power in both presence-absence and 
abundance models for both single-taxon models and jSDMs. Across all taxa, the majority of spatial 

 
 
1 All authors: National Institute of Water and Atmospheric Research (NIWA), New Zealand. 
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patterns predicted using the single-taxon models and jSDMs were broadly similar for both presence-
absence and abundance models. However, for some taxa this was not the case, e.g., the abundance of 
Goniocorella dumosa was predicted to be highest in shallower parts of the study area when using the 
jSDM, compared with deeper parts of the study area (Bounty Trough) in the individual taxon model. In 
addition, there were marked localised differences between jSDM and single-taxon model predictions 
for those taxa predicted to be affected by trawling history with larger, more obvious, changes to 
predicted distributions in parts of the study area with high intensity of trawling for jSDMs predictions. 
 
Community models from GF and RCP were classified at 3 levels of detail (8, 16, and 25 classes) based 
on an analysis assessing the optimal number of community classes. The 8-class representation can be 
viewed as a bioregionalisation, whereas the greater detail in the 16- and 25-class representations can be 
viewed as communities at increasingly finer spatial scales. Spatial predictions of classifications using 
both methods reflected broadscale patterns in environmental variables linked to well-defined 
oceanographic patterns. At the 25-class level, there were some similarities between the RCP and GF 
classifications but many points of difference. Similarities were most evident around western and 
southern flanks of Chatham Rise and extending into Bounty Trough, and in the grouping of Campbell 
Island Shelf, Pukaki Rise, and Bounty Islands shelf in the same class. Obvious differences were present 
on the Campbell Plateau. Because both classifications were based on the same input sample data, the 
differences between them result from the modelling methods. 
 
Spatial variation in trawling history emerged as a key predictor of distributions for nine out of twenty 
taxa in the ensemble models and for twelve out of twenty taxa in the jSDM models and was the third 
most important variable in the Gradient Forest community model. The jSDM results also showed that 
the influence of trawl fishing varies across taxa, with most taxa, particularly larger-bodied ones, being 
negatively affected but smaller predatory or scavenging taxa positively affected. Bottom-contact 
trawling has been a factor in the marine environment of New Zealand for many years and these results 
indicate that it has influenced the distributions of benthic invertebrate taxa across broad spatial scales. 
Given these results, the authors suggest that trawl history should be included routinely as a candidate 
predictor variable in species distribution models designed to predict the distributions of benthic taxa in 
the region.  
 
Here, a comprehensive and systematically collected quantitative dataset of benthic invertebrate 
distributions from seafloor photographic surveys was used to predict distributions for the Chatham Rise 
and the Campbell Plateau. These abundance predictions cover the largest geographical areas and span 
the broadest (ecologically relevant) environmental gradients in New Zealand to date, and likely 
represent the most reliable predictions of distributions for these taxa. Despite the large geographic span 
of the study area, the environmental conditions sampled will be very different to those in other parts of 
New Zealand (i.e., the warmer waters north of the Sub-Tropical Front). The Challenger Plateau has 
contrasting environmental conditions but similar ranges of latitude (38–45° S) and depth and is known 
to have shared species with the Chatham Rise and Campbell Plateau. Given the overlap in species, the 
Challenger Plateau represents an ideal area in which to expand current predictions and validate these 
with further collection of quantitative benthic invertebrate data.  
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1. INTRODUCTION 
 
Effective ecosystem-based management of bottom-contacting fisheries requires understanding of how 
disturbances from fishing affect seafloor fauna and habitats over a wide range of spatial and temporal 
scales (Clark et al. 2016, Pitcher et al. 2017). A key element needed to generate such understanding is 
reliable knowledge about the spatial distributions of seafloor fauna. Such data are rare, however, 
particularly for areas where deepwater fisheries occur, with available data generally consisting of point 
records of taxon presences assembled from disparate sources spanning many years or decades. 
Consequently, correlative modelling methods, in which statistical relationships between observed point 
occurrences of fauna and continuous environmental data layers are used to predict faunal occurrence 
across unsampled space (refered to as habitat-suitability, species-environment, or species-distribution 
models, e.g., Elith & Leathwick 2009, Guisan & Zimmermann 2000), are used increasingly to generate 
full-coverage maps of either predicted habitat suitability or taxon presence for use in assessments of 
seafloor (benthic) impacts (Mazor et al. 2021). 
 
In the New Zealand region, species distribution models (SDMs) have been used for more than a decade 
to provide predictions of benthic faunal distributions in the deep sea to inform research, environmental 
management, and prediction of climate change effects across a range of spatial scales (see examples 
and references in Stephenson et al. 2018b, Lundquist et al. 2020). Until recently, all these models other 
than one small-scale study (Rowden et al. 2017) have been informed by faunal occurrence data 
compiled from research trawl bycatch and scientific museum records, which yield information about 
the presence of a taxon at any given site but not its abundance (density) or absence. Such models can 
only yield predictions of relative habitat suitability (the likely distribution of species), rather than 
predictions of expected abundance. These existing models fulfil their purpose in that they still provide 
the best estimates of benthic distributions in an environment that remains data-limited in terms of 
knowledge about both faunal distributions and the physical characteristics of their habitats. However, 
knowledge about spatial variations in species’ abundances is crucial for understanding ecosystem 
functioning;  for instance, the presence of a single bryozoan colony at a site will not have the same 
ecological influence, or conservation value, as will a high density of bryozoan thickets (Wood et al. 
2013). A number of studies have assessed whether presence-absence models can be used as surrogates 
for abundance distributions, with contrasting results. There is some evidence that correlation between 
probability of occurrence and density is weaker for species with broader ecological niches (e.g., as in 
Rullens et al. 2021 and references therein).  
 
Acceptance of SDM outputs (whether using presence-only or abundance data) in management of 
impacts from fisheries and seabed mineral resource use remains limited because of a lack of confidence 
in their predictions, which arises because the outputs can rarely be tested against independent sample 
data. The lack of independent data is, of course, the main motivation for development and use of 
predictive modelling techniques for data-limited systems in the first instance, but the consequent lack 
of confidence in outputs is a serious impediment to their application in practice. Recognising the issue 
of low confidence in outputs from existing models, Fisheries New Zealand instigated research in 2016 
with the broad objectives to assess the credibility of existing predictions and to improve on them, if 
possible, using enhanced modelling methods and more appropriate data. The first project under this 
initiative (ZBD2016-11) assessed the credibility of predictions from several existing habitat suitability 
models for Chatham Rise (Bowden et al. 2021) by compiling an independent dataset of benthic 
invertebrate faunal distributions from five photographic seafloor surveys designed specifically to 
quantify benthic invertebrate faunal occurrences (Bowden et al. 2019b), and then used the new dataset 
to generate new SDMs tuned using abundance data (termed quantitative SDMs herein) (Bowden et al. 
2019a). Although the existing models proved to have generally low predictive ability when evaluated 
against the independent dataset, the assessment exercise highlighted a number of areas in which 
improvements might be made, including use of quantitative occurrence data collected using consistent 
sampling methods and testing against independent data, wherever possible, in preference to cross-
validation against withheld subsets of the input occurrence data (Bowden et al. 2021). The new models 
developed for Chatham Rise were built using quantitative data from the photographic survey dataset 
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and the best available modelling methods and, though they returned high scores in cross-validation tests, 
their credibility remained in question because of the lack of independent data. 
 
The second project in the initiative to improve confidence in predictive model outputs (ZBD2019-01) 
first used the new quantitative models developed for Chatham Rise to explore the potential for 
predicting distributions across a neighbouring seafloor area, Campbell Plateau, beyond the spatial extent 
of their original training data, then ran a dedicated photographic survey to test these predictions  
(Anderson et al. 2020a), and finally, combined all data from Chatham Rise and Campbell Plateau to 
enable generation of updated models encompassing both areas. This report presents results from the 
final objective of ZBD2019-01: to generate updated models with a spatial domain encompassing 
Chatham Rise and Campbell Plateau by merging data from the dedicated survey of Campbell Plateau 
with the existing Chatham Rise dataset developed under ZBD2016-11.  
 
For the updated models presented here, the study used similar methods to those used in the Chatham 
Rise studies to develop a set of twenty single-taxon models and a community-level model (using 
Gradient Forests, Ellis et al. 2012) from which a spatial classification of seafloor community types was 
developed. The main difference in these components of the study in comparison to the earlier work is 
that the single taxon predictions are constructed from ensembles of three separate SDM methods, rather 
than the two used for the Chatham Rise predictions. The modelling methods were also extended by 
applying a new approach; joint species distribution modelling (jSDM, Ovaskainen & Soininen 2011, 
Warton et al. 2015, Ovaskainen et al. 2016b) that has the potential to revolutionise how ecological 
community data are interpreted. Species distribution modelling methods based on single taxa can be 
limited by the often-weak inclusion of ecological theory, in terms of biotic interactions (e.g., predation, 
competition, facilitation). jSDM is a developing field of distribution modelling (Warton et al. 2015) in 
which multiple species occurrences or densities, their functional traits and phylogenetic relationships, 
environmental covariates, and the spatial-temporal context in which the data were acquired are analysed 
explicitly and simultaneously. This study uses jSDM to generate single-taxon predictions for the same 
set of twenty taxa as are modelled using the ensemble technique (above) and, because the method 
models all taxa simultaneously, also to generate another community-level classification using the 
Regions of Common Profile method (RCP, Foster et al. 2013, Ovaskainen & Abrego 2020). As far as 
the authors are aware, this is the first application of jSDM to the study of marine faunal distributions in 
the New Zealand region.  
 
1.1 Objectives of project ZBD2019-01 
 
Overall Objective: To expand and develop initiatives to improve confidence in predictive models of 
seabed fauna and habitat distributions started under ZBD201611: “Quantifying benthic biodiversity to 
improve predictive habitat modelling potential”. 
 
Specific Objective 1: Predict distributions of benthic taxa and communities, and gradients in faunal 
turnover across Campbell Plateau using relationships between faunal distributions and environmental 
gradients developed for Chatham Rise under project ZBD2016-11. 
 
Specific Objective 2: Run a dedicated photographic survey of seabed habitats and fauna across 
Campbell Plateau, structured on the basis of predictions from Specific Objective 1. 
 
Specific Objective 3: Use quantitative data from the Campbell Plateau survey to assess the utility of 
predictions from the existing Chatham Rise models when applied to a neighbouring area of the EEZ 
 
Specific Objective 4: Generate updated models with a spatial domain encompassing both regions 
(Chatham Rise and Campbell Plateau) by merging data from the Campbell Plateau survey with the 
existing Chatham Rise dataset. 
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2. METHODS 

2.1 Study area 
 
The species distribution models developed in the present study span a broad segment of New Zealand’s 
marine environment, encompassing Chatham Rise, Campbell Plateau, and the intervening areas of the 
Otago continental shelf and slope and Bounty Trough (Figure 1). Chatham Rise is a continental rise 
extending eastwards from the South Island of New Zealand for approximately 1000 km, with Mernoo 
Bank at its western end and the Chatham Islands at the eastern end. The Sub-Tropical Front coincides 
with, and is partially constrained by, the rise. Intense phytoplankton blooms propagate from west to east 
along the length of the rise (Chiswell 2001, Nodder et al. 2007, Nodder et al. 2012), and because of this 
it is the most biologically productive fisheries region in New Zealand’s Exclusive Economic Zone 
(EEZ) ( McClatchie et al. 1997, Clark et al. 2000, Marchal et al. 2009). Commercially important bottom 
trawl fisheries exploit populations of scampi (Metanephrops challengeri), hoki (Macruronus 
novaezelandiae), orange roughy (Hoplostethus atlanticus), and oreos (Pseudocyttus maculatus, 
Neocyttus rhomboidalis, and others). Recent summaries of bottom-contacting trawl history across 
Chatham Rise (Baird et al. 2011, Black et al. 2013, Black & Tilney 2015) show highest trawling 
intensity, primarily from the hoki fishery, at 450–700 m depth west of Mernoo Bank and on the southern 
and northern central flanks of Chatham Rise (Figure 2). At present, initiatives to protect benthic habitats 
and fauna are limited to closures, since 2000, of fisheries on some seamounts in the ‘Graveyard’ and 
‘Andes’ regions on the northwest flank and southeast flanks of the rise, respectively (Clark & Dunn 
2012), and establishment in 2007 of two Benthic Protection Areas (BPAs); the Mid Chatham Rise  and 
the East Chatham Rise BPAs (Helson et al. 2010). No bottom-contacting trawling is allowed within the 
seamount closures and BPAs. 
 
Campbell Plateau is a broad submarine plateau extending to the south and southeast of New Zealand’s 
South Island. Much of the plateau lies in water depths of 500–1000 m but with shoal areas rising to the 
surface around Stewart Island, The Snares, Auckland Island, and Campbell Island in the west, and 
shoaling to less than 150 m on Pukaki Rise in the east (Figure 1). On its western and southern 
boundaries, the plateau descends steeply to depths greater than 3000 m. The Sub-Antarctic Front, which 
forms at the northern boundary of the east-going Antarctic Circumpolar Current, is constrained by the 
southern edge of the plateau. The Sub-Tropical Front lies generally north of the Auckland Islands, where 
warmer subtropical waters entrained down the west coast of the South Island recurve northwards, 
forming the Southland Current, which transports nutrient rich, relatively colder waters towards the 
southern flank of Chatham Rise to the North ( Nelson & Cooke 2001, Hayward et al. 2007, Hurlburt et 
al. 2008, Mackay et al. 2014). Biological productivity, in terms of water column primary production, is 
lower than on Chatham Rise but is elevated above levels in the surrounding ocean (Gutierrez-Rodriguez 
et al. 2020) and supports substantial fisheries for several species including hoki (Macruronus 
novaezelandiae), hake (Merluccius australis), southern blue whiting (Micromesistius australis), jack 
mackerel (Trachurus spp.), and scampi (Metanephrops challengeri) (Fisheries New Zealand 2019).  
 
Trawl fisheries operate in many areas on Campbell Plateau, the cumulative footprint of these fisheries 
showing a concentration of effort around the southern and eastern Stewart-Snares shelf at 500 m depth, 
on the Auckland Islands Shelf north and east of the Auckland Islands in depths from 200 to 400 m, and 
in areas of deeper water (about 700 m) between these two main shelf regions (Baird & Mules 2019) 
(Figure 2). Three BPAs lie at least partially on Campbell Plateau; the Campbell Heritage, Campbell 
East, and Sub-Antarctic Deep BPAs (Helson et al. 2010). The territorial sea (that extends 12 nm from 
the coast) around the Auckland Islands and Campbell Island are marine reserves and are fully protected 
under the Marine Reserves Act 1971 (Figure 2). A seafloor ridge feature to the east of Auckland Island 
in depths of approximately 270 to 325 m and known as ‘Squires’ Coppice’ is not currently protected 
but has been reported to be a potential cold water coral reef site (Mackay et al. 2014). 
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Figure 1: Study area, showing: approximate extents of Chatham Rise (CR) and Campbell Plateau (CP); 

survey sites from which benthic invertebrate density data were collated from seafloor 
photographic transects (five surveys on Chatham Rise, see Bowden et al. 2019b for details, and two 
on Campbell Plateau, TAN2004 and TAN1602); seafloor community classes from the Chatham 
Rise Gradient Forest model (CRGF) used as survey strata for TAN2004, and seafloor bathymetry 
from 50 to 2000 m depth. 
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Figure 2: Chatham Rise and Campbell Plateau overview showing trawl intensity (cumulative seabed swept 

area as km2 per 5 x 5 km grid cell) for the period 1989/90 to 2006/7; Benthic Protection Areas 
(named red polygons without fill), and marine reserves (un-named red polygons with light red fill). 
Trawl data are from Baird & Mules (2019). Seabed photographic survey sites used in this study 
(crosses) are shown as in Figure 1.  

2.2 Faunal occurrence data  
 
The faunal occurrence dataset consisted of observations of invertebrate fauna at 467 seafloor sites 
compiled across seven surveys: 358 sites from five surveys of Chatham Rise (Bowden et al. 2019b) and 
109 sites from Campbell Plateau compiled from voyages TAN2004 (Anderson et al. 2020a) and 
TAN1602 (Roberts et al. 2018). These survey data spanned a depth range from 49 to 1813 m but because 
there were few sites at the shallow and deep extremes of this range, model predictions here were 
restricted to depths from 100 to 1500 m. This range encompassed 449 sites (96% of the total available). 
 
More than 380 individual taxa were identified from these surveys but many of these were either 
operational taxonomic units (OTUs) or species-level names that were often not consistently recorded 
within and between surveys. In an extensive audit process (see Bowden et al. 2019b), the full dataset 
was aggregated to a set of 139 taxa, at a range of taxonomic levels, which were reliably and consistently 
recorded across all studies. A subset of 66 taxa was then extracted from the aggregated taxon list by 
selecting only those that were observed at five or more survey sites (Table 1), with the exception of 
Paragorgiidae (‘Bubblegum coral’) because these are large and highly distinctive corals unlikely to have 
been missed or mis-identified during video analyses.  
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Table 1: Benthic invertebrate taxa for which abundance data (as individuals per 1000 m2) were used in 
development of species distribution models here, showing the number of individual operational 
taxonomic units encompassed by each taxon (OTU), the number of sites at which each taxon 
occurred (Site), and whether they were used for single-taxon (S) or community-level (C) models, 
or both. (Continued over the page) 

Phylum Class Sub class Taxon Common name OTU Site Use 
        

Annelida Polychaeta  Polychaeta 
Polychaete 
worms 10 136 C 

  Palpata Hyalinoecia sp. Quill worms 1 149 S, C 

Arthropoda Hexanauplia Thecostraca Barnacles  Barnacles 1 12 C 

 Malacostraca Eumalacostraca Brachyura True crabs 17 204 C 

   Caridea 
Shrimps and 
prawns 8 325 C 

   Crustacean (lobster) Lobsters 2 11 C 

   
Galatheidae / 
Chirostylidae Squat lobsters 6 253 C 

   Paguridae Hermit crabs 1 373 S, C 

   Lithodidae King crabs 2 5 C 

   
Metanephrops 
challengeri Scampi 2 109 S, C 

   Serolidae Serolid isopods 3 63 C 

 Pycnogonida  Pycnogonida Sea spiders 2 42 C 

Brachiopoda Rhynconellata  Brachiopoda Lamp shells 2 90 S, C 

Bryozoa Gymnolaemata  Bryozoa Bryozoans 9 279 S, C 

Chordata Ascidiacea  Ascidiacea Sea squirts 7 206 C 

Cnidaria Anthozoa Hexacorallia Anemones Anemones 31 409  C 

   Antipatharia Black corals 7 46 C 

   Ceriantharia 
Cerianthid 
anemones 1 220 C 

   Corallimorpharia Corallimorpharia 5 41 C 

   Caryophylliidae Solitary corals 2 97 C 

   Stephanocyathus sp. Solitary coral 1 25 C 

   Enallopsammia sp. Stony coral 1 7 S, C 

   Flabellum sp. Solitary coral 7 220 C 

   Goniocorella dumosa Stony coral 1 69 S, C 

   Madrepora sp. Stony coral 1 8 S, C 

   Solenosmillia variabilis Stony coral 1 9 S, C 

   Epizoanthidae 
Commensal 
zoanthid 1 35 C 

   Zoanthidea Zoanthid 1 53 C 

  Octocorallia Alcyonacea Soft corals 5 86 C 

   Taiaroa tauhou 
Solitary soft 
coral 1 111 C 

   Anthomastus sp. Soft coral 1 116 C 

   Telesto sp. Soft coral 1 42 C 

   Gorgonacea 
Branching erect 
soft corals 4 114 C 

   Isididae Bamboo corals 3 53 C 

   Paragorgiidae 
Bubblegum 
corals 2 3 C 
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Table 1 continued. 
Phylum Class Sub class Taxon Common name OTU Site Use 

        

   Primnoidae 
Primnoid soft 
coals 6 65 C 

   Radicipes sp. 
Spiral whip 
corals 1 74 C 

   Pennatulacea Sea pens 12 172 S, C 

   Kophobelemnon sp. Sea pen 1 30 C 

 Hydrozoa Hydroidolina  Stylasteridae Hydrocorals 4 109 S, C 

   Hydroids Hydroids 2 271 C 

Echinodermata Asteroidea  Asteroidea Sea stars 37 429 S, C 

   Brisingidae 
Suspension-
feeding sea stars 5 93 C 

 Crinoidea Articulata Crinoidea (stalked) Sea lilies 1 14 C 

   Crinoidea (motile) Sea lilies 2 98 C 

 Echinoidea Cidaroidea Cidaroidea Pencil urchins 7 206 S, C 

  Euechinoidea Euechinoidea Regular urchins 12 203 S, C 

   Dermechinus horridus Urchin 1 27 C 

   Echinothurioida 
Tam O’shanter 
urchins 4 166 C 

   Spatangoida 
Burrowing 
urchins 3 190 S, C 

 Holothuroidea  Holothuroidea Sea cucumbers 31 235 S, C 

   Enypniastes eximia 
Swimming sea 
cucumber 1 18 C 

 Ophiuroidea  Ophiuroidea Brittle stars 12 143 S, C 

   Gorgonocephalidae Basket stars 2 17 C 

Echiura   Echiura Penis worms 1 23 C 

Foraminifera   Xenophyophoroidea Giant forams 2 96 S, C 

Mollusca Bivalvia  Bivalvia Bivalves 6 47 C 

 Gastropoda  Gastropoda Snails (grazing) 12 305 C 

   Buccinidae + Ranellidae Whelks 2 343 S, C 

   Volutidae 
Large predatory 
snail 3 172 S, C 

   Scaphopoda Tusk shells 1 36 C 

   Nudibranchia Sea slugs 4 49 C 

 Cephalopoda Coleoidea Octopoda Octopus 7 91 C 

Porifera Demospongiae  Demospongiae 
Common 
sponges 51 316 S, C 

 Hexactinellida  Hexactinellida Glass sponges 34 148 S, C 

   Hyalascus maui Glass sponge 1 37 C 
 
All 66 taxa in the final subset were included in the community-level models. For the single-taxon 
models, the same set of 20 taxa that was used by Bowden et al. (2021) for assessment of existing SDMs 
for Chatham Rise was used. This selection was developed initially to match the taxa encompassed in 
the existing, published models, with priority given to taxa associated with Vulnerable Marine 
Ecosystems (VME; Agnew et al. 2009, FAO 2009, Parker et al. 2009, Parker & Bowden 2010) or 
Sensitive Environments (MacDiarmid et al. 2013), and the addition of other taxa for which sufficient 
sample data were available (Table 1).  
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2.3 Explanatory variables 
 
Explanatory variables were a subset of those explored in detail in Phase I of this project (ZBD2016-
11), selected on the basis of results from the earlier models developed for Chatham Rise (Bowden et al. 
2019a) and review of each layer in terms of credibility and presence of artefacts when examined visually 
in a Geographic Information System (GIS). The following paragraphs are modified from Bowden et al. 
(2019a).  
 
A set of environmental variables that potentially influence marine organism distributions was generated 
from regional or global datasets upscaled to a finer resolution based on depth data from a 250 m 
bathymetry grid for the New Zealand region by Georgian et al. (2019) following the method of Davies 
& Guinotte (2011). Additional seafloor terrain metrics were derived from this bathymetry grid using 
Benthic Terrain Modeler in ArcGIS 10.3.1.1, with each calculated at a range of window sizes from 3 x 
3 grid cells up to 15 x 15 grid cells. Some potentially important variables for explaining benthic 
distributions that had been used in earlier modelling studies were discarded because of artefacts 
observed during the review process. Thus, for instance, recently developed layers describing sediment 
composition were excluded because the process of extrapolating continuous gridded layers from point-
source sample data (from sediment cores) resulted in obvious artefacts.  
 
Trawl history was included as an explanatory variable because bottom-contacting fishing gear is known 
to affect seafloor fauna across broad spatial and temporal scales (Clark et al. 2016) and trawl intensity 
has emerged as an important predictor of benthic invertebrate faunal distributions on Chatham Rise 
(Bowden & Leduc 2017, Bowden et al. 2019a). However, this layer differs from the others in that it 
represents an anthropogenic disturbance that is spatially correlated with seabed type, productivity, and 
potentially other parameters and can be highly variable among years and across a wide range of spatial 
scales (Baird & Wood 2018). Trawl fishery data were provided by Fisheries New Zealand (Baird & 
Wood 2018), with trawl intensity calculated as the total cumulative area impacted by bottom trawling 
between 1 October 1989 and 30 September 2006 (i.e., all records up to the end of the last complete 
fishing year prior to the first of the camera surveys used in our models). The source data were calculated 
for a 5 x 5 km grid and these values were resampled for the 1 x 1 km grid used in the SDM models here. 
  
In total, 58 variables were considered but many of these were strongly correlated, particularly the 
bathymetry-derived window-size variants. Because of the wide range of taxa to be included in the 
models, each of which potentially responds to different characteristics of the physical environment at 
different scales, the number of variables was reduced by a conservative four-stage selection process. 
First, variables were grouped by four categories known to influence distributions of seabed fauna: 
seafloor characteristics, water chemistry, water physics, and productivity. Second, each variable was 
examined visually (in GIS) and any with obvious processing artefacts were excluded. Third, 
correlations were calculated for all pairwise combinations of the remaining variables and graphical 
representations and cluster dendrograms were used to exclude the most highly correlated variables 
while also ensuring representation of each of the four high-level categories. Finally, the ecological 
influence of the environmental variables within each category was assessed through a set of initial 
exploratory Boosted Regression Tree (BRT) models for representative taxa (a combination of those 
most commonly recorded and those recorded to a high taxonomic resolution). This process resulted in 
a reduced set of 23 environmental variables. 
 
These 23 variables were then offered as explanatory variables to an initial Chatham Rise GF model (GF 
is robust to large sets of correlated explanatory variables) and the ranked variable importance from this 
analysis was used to identify a subset of 18 variables on which to base the final GF models and as a 
starting point for the single-taxon models. Variables excluded in this process were either spatial scale 
variants (e.g., choice of the standard deviation of depth calculated using a 15 × 15 grid cell window 
rather than 3 × 3), one of a complementary pair (e.g., choice of percent gravel rather than percent mud), 
or strongly correlated with other more ecologically interpretable variables (e.g., choice of silicate rather 
than nitrate). 
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The eighteen predictor variables used in the final Chatham Rise GF model were used as the base set for 
development of models in the current project (Table 2). The full set of eighteen variables was included 
in GF analyses here, whereas for single-taxon ensemble models and jSDM models the number of 
variables was reduced using rationales and methods described under the relevant sections, below. 
 
Table 2: Environmental explanatory variables used for species distribution models. The 18 variables are 

grouped into four categories: seafloor characteristics, water chemistry, water physics, and 
productivity.  

Variable Name Units Native 
resolution 

 Reference 

Seafloor characteristics      
DepthG bathy metres 1 km2  NIWA bathymetry 
Depth standard deviation 2,G std – –  Derived from bathymetry 
Profile curvature G profcurv – –  Derived from bathymetry 
Bathymetric Position Index – 
broad G 

bpi_broad – –  Derived from bathymetry 

      
Trawl history 5 trawl m2 5 km2  Baird & Wood (2018) 
      
Water chemistry      
Dissolved oxygen G dissox ml l-1 1°  (Garcia et al. 2014a) 
Salinity G salinity – 0.25°  (Zweng et al. 2013) 
Silicate silicate µmol l-1 1°  (Garcia et al. 2014b) 
      
Water physics      
Temperature residuals tempres °C 0.25°  Derived from temperature and 

depth 
Dynamic topography dynoc m 0.25°  http://www.aviso.oceanobs.com 
Tidal current speed tidalcurr ms-1 1 km2 

 
 NIWA 

Sea surface temperature 
gradient 

sstgrad oC km-1 
 

1 km2 
 

 (Uddstrom & Oien 1999) 

      
Productivity      
Particulate organic carbon 
export to seabed G 

poc mg C m-2 d-1 0.08°  (Lutz et al. 2007) 

Eppley-VGPM 1, 4, G epp_mean 
epp_min 

mg C m-2 d-1 0.167°  Oregon State University3 

Carbon-Based Productivity 
Model-2 1, 4, G 

cbpm mg C m-2 d-1 0.167°  Oregon State University3 

Dissolved organic matter dom aDOM (443) m–1 1 km2  NIWA 
Seabed POC flux flux mg C m-2 d-1 9 km2  Matt Pinkerton, NIWA. Long-

term mean (1997–2019) 
1 Surface data derived from MODIS –Aqua (NASA) as the mean, minimum, maximum, and standard deviation from mid-
2002–2016. 
2 Terrain metrics calculated using window sizes of 3, 5, 7, and 15 grid cells. 
3 Data obtained from http://www.science.oregonstate.edu/ocean.productivity. 
4 Calculated as mean, minimum, maximum, and standard deviation, for the period 2002 to 2016; mean values used, plus 
minimum for EPP. 
5 Cumulative swept area per 5 x 5 km grid cell for the period 1989 to 2016. 
G Upscaled to 250 m bathymetry (Georgian et al. 2019). 
 
2.4 Single taxon ensemble models 
 
Single taxon SDMs were used to analyse and predict the spatial probability of occurrence and density 
of study taxa, based on inputs of taxon presence-absence  data, taxon abundance data, and spatially 
explicit explanatory variables (e.g., see Bowden et al. 2019a). To model distribution of abundance, a 
two-part hurdle model was used. In this procedure, a binomial model was used initially to predict the 
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probability of occurrence, followed by a separate model with a Gaussian distribution to estimate 
population density for locations where presence was predicted. The outcomes of these two models were 
then multiplied to create a final density prediction. Ensemble SDMs (i.e., the combination of results 
from more than one SDM method) were generated using outputs from three model types: BRT, random 
forest (RF), and generalised additive models (GAMs). The ensemble approach limits dependence on a 
single model type or structural assumption and enables a more robust characterisation of the predicted 
spatial variation and uncertainties (Robert et al. 2016). All statistical analyses were undertaken in R (R 
Core Team 2020). 

Selection of explanatory variables 
With most species distribution modelling methods, the inclusion of many explanatory variables (e.g., 
more than 20 variables) should be avoided because they generally only provide minimal improvement 
in predictive accuracy and complicate interpretation of model outcomes (Leathwick et al. 2006). Several 
explanatory variables in the set selected for this study showed some co-linearity but all were considered 
acceptable (Pearson correlation < 0.9) for tree-based machine learning methods. To ensure 
parsimonious models, an automated variable selection procedure was used. First, an RF model was 
fitted to the taxa data with all 18 explanatory variables (Table 2) using the extendedForest package in 
R (Liaw & Wiener 2002). This method accounts for any co-linearity in explanatory variables when 
determining the relative importance of each variable in the model through the implementation of a 
conditional approach to calculation of variable importance (Ellis et al. 2012). Only explanatory 
variables with a relative influence greater than 5% were retained ( Müller et al. 2013, Jouffray et al. 
2019). This procedure allowed explanatory variables that may have important localised influence but 
low overall importance to be retained whilst removing variables with very low, or negative influence. 
For each taxon, the set of explanatory variables selected through this approach was used in the final RF 
and BRT models, but for GAM models the numbers of explanatory variables were further reduced 
through a stepwise backward selection process (see section ‘Generalised Additive Models’, below). 

Random Forest models 
RF models (Breiman 2001) fit an ensemble of regression (abundance data) or classification tree 
(presence-absence  data) models describing the relationship between the distribution of an individual 
taxon and some set of explanatory variables (Ellis et al. 2012). Following explanatory variable selection 
using the initial RF model, a final RF model was tuned using the train function in the R package caret 
(Kuhn 2020). This function selects optimal values for the complexity parameters mtry (the number of 
variables used in each tree node), maxnodes (the maximum number of terminal nodes in each trees), 
and ntree (the number of trees to grow). RF models have previously been applied to demersal fish in 
the New Zealand EEZ and benthic invertebrates (Anderson et al. 2016, Stephenson et al. 2018a). 

Boosted Regression Tree models 
BRT modelling combines many individual regression trees (models that relate a response to their 
predictors by recursive binary splits) and boosting (an adaptive method for combining many simple 
models to give improved predictive performance) to form a single ensemble model (Elith et al. 2008). 
Detailed descriptions of the BRT method are given by Ridgeway (2007) and Elith et al. (2008). BRT 
models were fitted with a Bernoulli error distribution, a bag fraction of 0.6 and random 10-fold cross 
evaluation following recommendations from Leathwick et al. (2006) and Elith et al. (2008) (using the 
Dismo package (Hijmans et al. 2017)). A moderate tree complexity (2) was used. BRT models with 
decreasing learning rates were successively fitted (starting with a learning rate of 0.05) until a model 
with at least 2000 trees was fitted. The BRT method has been widely used in ecological applications 
and has performed well in previous studies of fish and invertebrate distributions in New Zealand 
(Leathwick et al. 2006, Compton et al. 2013, Anderson et al. 2016, Bowden et al. 2019a). 

Generalised additive models 
GAMs are generalised linear models where the linear response variable depends on smooth functions 
of some explanatory variables (Hastie & Tibshirani 1987). GAMs have different assumptions, strengths, 
and weaknesses than the flexible machine-learning tree-based approaches (RF and BRT) and provide a 
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complementary approach. All explanatory variables were fitted using smooth terms with 5 degrees of 
freedom, and each explanatory variable was tested for possible simplification of the fitted function or 
exclusion from the model using a stepwise backward selection method. The smoothing parameter was 
estimated using a Mixed model approach via restricted maximum likelihood (REML) using the mgcv 
package in R (Wood 2021). 

Hurdle models and uncertainty 
The two components of the hurdle models were 1) a presence-absence model based on a binary logistic 
regression, which predicts probability of presence, and 2) a regression model based only on the positive 
(i.e., non-zero) observations of species abundance, which predicts abundance at locations of species 
presence. For the regression model component, abundances were log transformed to provide a near-
normal distribution of the response. Final estimates of abundance were made by multiplying the 
probabilities from the first component by the abundances from the second component. 
 
To assess the relative confidence in predictions across the model extent, a bootstrap technique was used 
to produce spatially explicit uncertainty measures (Anderson et al. 2020b). Bootstrapping involved 
randomly drawing (with replacement) a ‘training’ sample with a sample size equal to the number of 
presence-absence or abundance records and then running the model. Presence-absence records which 
were not randomly selected were set aside for independent assessment of model performance (referred 
herein as ‘evaluation’ data). This process was repeated 100 times for each model type (RF, BRT, GAM) 
and each species with the exception of the taxa Cidaroidea and Volutidae, which were only bootstrapped 
20 times because of difficulty in model convergence most likely due to the heterogeneity in abundance 
observations. At each BRT, RF, and GAM model iteration, geographic predictions were made using 
predictor variables to a 1-km2 grid. Probability of occurrence and a spatially explicit measure of 
uncertainty (measured as the coefficient of variation, CV) were calculated for each grid cell using the 
100 bootstrapped layers for models tuned with presence-absence. Abundance estimates (individuals per 
1000 m2) were calculated for each grid cell by multiplying the spatial estimate of the probability of 
occurrence and the abundance (conditional on presence) estimate at each bootstrap. Mean abundance 
and a spatially explicit measure of uncertainty (CV) was calculated across the 100 bootstraps.  

Model performance 
Model performance was assessed at each bootstrap iteration for each of the BRT, RF, and GAM models. 
Probability of occurrence model performances were evaluated using AUC (area under the Receiver 
Operating Characteristic curve) and TSS (True Skill Statistic). AUC is an effective measure of model 
performance and a threshold-independent measure of accuracy, whereas the TSS is a threshold-
dependent measure of accuracy but is not sensitive to prevalence (Allouche et al. 2006, Komac et al. 
2016). AUC scores range from 0 to 1, with a score of 0.5 indicating model performance is equal to 
random chance, a score > 0.7 indicating adequate performance, and a score > 0.80 indicating excellent 
performance (Hosmer et al. 2013). TSS, which takes into account specificity and sensitivity to provide 
an index ranging from -1 to +1, where +1 equals perfect agreement and -1 is no better than random , 
and a  value > 0.6 is considered useful (Allouche et al. 2006). Model fit metrics were calculated using 
both the ‘training’ dataset and the ‘evaluation’ dataset. The latter is considered a more robust and 
conservative method of evaluating goodness-of-fit of a model than using the same data with which the 
model was trained (Friedman et al. 2001). Abundance model performance was evaluated using R2 
(coefficient of determination which measures the proportion of the variance in the dependent variable 
that is predictable from the independent variables) and the Pearson correlation between the predicted 
and the observed density values. 

Ensemble models 
The ensemble model was produced by taking weighted averages of the predictions from each model 
type, using methods adapted from Anderson et al. (2020b). This procedure derives a two-part weighting 
for each component of the ensemble model, taking equal contributions from the overall model 
performance (TSS value derived from the ‘evaluation’ for presence-absence models and R2 for 
abundance models) and the uncertainty measure (CV) in each cell (see Anderson et al. 2020b for further 
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details). The final predictions were restricted to depths between 100 and 1500 m (representing the depth 
range from which 99% of samples were collected).  
 
2.5 Joint species distribution models 
 
The full ecological community data were analysed using the joint species distribution modelling method 
Hierarchical Modelling of Species Communities (HMSC), which yields inference both at single-taxon 
and community levels from a single modelling process (Ovaskainen et al. 2017). HMSC partitions 
variation in species occurrences or abundances into components that can be interpreted in relation to 
environmental filtering, species interactions, and random processes. That is, in addition to modelling 
the relationship between biological data and explanatory variables, the HMSC framework can 
incorporate information on species biological trait data and the spatial context of the sampling design.  

Trait data 
Functional trait data for the modelled taxa were assembled by reference to a set of detailed trait 
assignments developed by Lundquist et al. (2018). A simplified suite of biological traits was selected 
based on the presumed sensitivity of the traits to perturbations or changes in the environment (Table 3). 
Trait categories were assigned using a fuzzy coding approach (Chevenet et al. 1994) in which each 
taxon can span more than one category for a given trait, with varying proportions or probabilities applied 
to each and the total summing to one. For instance, under feeding mode, whereas Bryozoa are obligate 
suspension feeders and thus would score ‘one’ against this category, the taxon Asteroidea encompasses 
species that can adapt their feeding between deposit, suspension, and predator-scavenger modes and 
thus scores 0.05, 0.20, and 0.75 against these categories. For traits with only a single category in the 
scheme used (Living position and Longevity), assignments were binary; i.e., all taxa are either erect or 
not erect, and either long-lived or not long-lived. 
 
Table 3: Functional traits scheme used in the jSDM analyses. See Appendix 1 for trait score assignments. 

Trait  Trait categories 
  
Adult size Small (x < 5 cm) 

Medium (5 cm > x < 25 cm) 
Large (> 25 cm) 

Feeding mode Filter 
Suspension 
Deposit 
Predator-scavenger 

Mobility Mobile 
Sessile 

Living position Erect 
Longevity Long-lived 

 

Selection of explanatory variables 
Six explanatory variables from the full set of eighteen (Table 2) were selected based on exploration of 
model fits and variable selections in the ensemble modelling process and expert knowledge: depth 
(bathy); tidal current speed (tidcurr); salinity (salinity); temperature residuals (tempres); profile 
curvature (profcurv); Eppley Primary Productivity (epp); and trawling history (trawl). This set included 
measures associated with food supply (epp, tidcurr), depth (bathy), water mass (salinity and tempres), 
and seafloor topography (profcurv) all of which were considered likely to influence distributions of 
fauna and community assembly processes.  

Statistical modelling 
HMSC from the hmsc R package (Tikhonov et al. 2020) was used to fit jSDMs to the benthic data 
combining simultaneously information on traits, environmental covariates, and random spatial effects 



 

Fisheries New Zealand Predictive models for benthic taxa using photographic data • 15 
 

in a single model. As with single-taxon models, hurdle model predictions were generated by combining 
jSDMs fitted with presence-absence and abundance data. 
 
A Bernoulli distribution was used for the presence-absence HMSC. For the (log transformed) 
abundance (conditional on presence) model, a Gaussian distribution was used. In addition to the 
explanatory variables (environmental data and trawling history) and trait data, a random spatial effect 
(that also models co-occurrence among species) was included at the level of sampling station using a 
latent factor approach (Ovaskainen et al. 2016a). The explained variation among the fixed and random 
effects was partitioned using methods described by Ovaskainen et al. (2017). The fitted models included 
parameters which measured the influences of the traits on the species-specific responses to the 
explanatory variables (see Ovaskainen et al. 2016b), and, therefore, it is possible to measure the portion 
of the among-species variation in responses to environmental covariates that is attributable to traits.  
 
The model was fitted to the data with Bayesian inference, using the posterior sampling scheme of 
Tikhonov et al. (2020). Four chains, each with 250 samples and thinning parameter of 10 were used, 
which ensured that there was convergence of the Markov chain Monte Carlo simulations.  
 
Model fit metrics included AUC and R2 for each taxon for the presence-absence and abundance models, 
respectively. Model fit metrics were calculated using the same input data as that used to tune the models 
(explanatory power) and withheld data (predictive power) by performing a fourfold cross-validation. 
Overall model performance was assessed by calculating the mean model fits across all taxa for both 
presence-absence and abundance models. 
 
Finally, the parameter estimates were explored. and spatial predictions and associated uncertainty 
(standard deviation of the mean) were made for the study area using the ‘constructGradient’ and 
‘predict’ functions in the hmsc package. Taxa richness was estimated by summing the individual taxa 
occurrence predictions. 
 
2.6 Community modelling 

Regions of Common Profile 
RCP is a multi-species, model-based approach to the delineation and mapping of species assemblages 
(Foster et al. 2013). RCP is a mixture model that is used to group sites based on their species profile 
(presence-absence or abundance) in relation to environmental conditions, thereby simultaneously 
grouping species and modelling the environmental variables which determine those groupings. The 
HMSC model (used to produce the jSDMs) is also a mixture model, although instead of grouping sites, 
it models continuous variation in species in their response (Ovaskainen & Abrego 2020). The two 
models (RCP and HMSC) share strong similarities, the clustering of community outputs from the 
HMSC models is referred to as RCP by its authors (Ovaskainen & Abrego 2020), and Scott Foster at 
CSIRO, the originator of RCP, was involved with the group that developed HMSC. Here, the 
implementation of RCP followed that given by Ovaskainen & Abrego (2020) using K-means clustering 
on the spatial predictions of the community abundances from an HSMC run using all 66 taxa available 
in the data, to define classifications at class levels from 2 to 75 classes.  

Gradient Forest 
GF is a method for modelling beta diversity (taxon turnover) based on relationships between sampled 
multi-species density data and environmental gradients ( Pitcher et al. 2011, Ellis et al. 2012). GF builds 
an aggregation of RF models, each describing the environmental correlations of an individual taxon. 
The information from these individual models is then used to develop a set of transformations of the 
environmental layers, such that the correspondence between each layer and the faunal occurrence data 
is maximised (Compton et al. 2013, Stephenson et al. 2018a). These transformed environmental layers 
can then be used to generate full-coverage maps of predicted taxon turnover across the study area. These 
predictions can then be used with statistical clustering techniques to define hard-boundary spatial 
classifications of the study area at a range of class levels, with each class defining areas likely to have 
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similar community composition. The classifications can be generated at any level of detail, but 
statistical uncertainty is not propagated through to the classification stage, so there is no formal test for 
the optimal number of classes. 
 
GF models were run using function gradientForest in R, with subsequent classification steps adapted 
from Snelder et al. (2007) and described by Stephenson et al. (2018a). Input data consisted of density 
measurements for 66 taxa at 467 sample sites across Chatham Rise and Campbell Plateau (see section 
2.2) and fifteen environmental predictor variables from the full set of eighteen available (Table 2), 
excluding silicate, cbpm_min, and poc because of their low contributions to initial trial models. A 
log10(1+x)  transformation was applied to the taxon density data to down-weight the influence of highly 
abundant taxa, enable a broader range of taxa to influence outcomes, and reduce the potential for 
artefacts arising from differences in density estimates derived from still image and video survey data. 
Models were run with 500 trees per taxon, the compact function set to false, and the correlation 
threshold for applying conditional permutation to allow for co-linear predictor variables set to 0.5. 
Model outputs include R2 values for all taxa for which correlations with environmental variables were 
greater than zero and ranking of predictor variables in terms of their contributions to both mean accuracy 
of the model and mean importance weighted by the taxon R2 values. 
 
The full grid of transformed environmental predictor values (4 043 320 grid cells) was classified in two 
stages. First, non-hierarchical k-medoids clustering (using clara in R) was used to assign cells to 500 
classes. Second, hierarchical agglomerative flexible UPGMA (unweighted pair group method with 
arithmetic mean) clustering with the Manhattan distance metric (using agnes in R) was used to 
summarise the 500 clara classes at 5-class intervals from 5 classes to 75 classes, from which maps were 
developed for selected class levels. 

Assessing the number of community classes 
Several broadscale marine environmental classifications have been developed for the New Zealand 
region, notably the Marine Environmental Classification (MEC, Snelder et al. 2007), the Benthic 
Optimised Marine Environmental Classification (BOMEC, Leathwick et al. 2012), and, more recently, 
GF models have been used to produce regional  and national-scale environmental classifications for 
marine benthos (e.g., Bowden et al. 2019a, Stephenson et al. 2020). Although these latter models are 
based on statistical transformations applied to environmental variables (Ellis et al. 2012), the resulting 
classifications can be interpreted as spatial summaries of variation in seafloor community composition. 
Environmental classifications of this type can be generated at levels of detail from two to more than 
500 classes, but a major limitation in their use for management is the lack of objective methods for 
defining the appropriate number of classes to use. Here, three methods for assessing the classification 
strength at different levels of detail were tested; two applied to the RCP outputs and the third to the GF 
output (any of these methods could be applied to either classification method but they are 
computationally demanding and the exploration here is based on what could be achieved with the 
resources available).  
 
Using the jSDM outputs that defined the RCP classifications, the ‘Elbow’ method implemented in the 
factoextra package (Kassambara & Mundt 2017) and the ‘Silhouette’ method implemented in the 
Nbclust package (Charrad et al. 2014) were applied. These are both visual methods that allow 
assessment of the ‘optimal’ group number by plotting changes in the within-class sum of squares (i.e., 
how similar samples within a given class are to each other based on the transformed environmental 
space) and the mean silhouette width (a measure of how similar an object, or sample, is to other samples 
in the same class), respectively, with increasing number of classes in the classification.  
 
In the elbow method, the optimal number of classes is taken to be the point in the graph at which the 
rate of decrease in the sum of squares metric begins to slow down. The concept is that definition of each 
of the first few or several classes will explain relatively large proportions of variability in the dataset 
but, as the number of classes begins to exceed the actual number of distinct groupings in the data, there 
will be no further reduction in the amount of variance explained. For a dataset in which there is a finite 
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number of clearly defined groupings, the plot will show a distinct change in gradient (an ‘elbow’) at the 
point at which this actual number of groups is reached. For ecological community data, as used here, 
however, is highly likely that there will be overlap among many classes and thus that the curve will 
show a gradual decline, rather than a sharp elbow, with no clearly-defined number of classes. 
 
In the silhouette method, silhouette values for individual samples range from -1 to +1, with higher 
positive values for a given sample indicating stronger similarity to other samples in its class. Mean 
silhouette width is then calculated across all samples, yielding a metric that describes how appropriately 
the data have been classified. In the resulting graph, therefore, the optimal number of classes can be 
identified as that for which mean silhouette width reaches its highest value. As with the elbow method, 
real-world ecological datasets may not have a clearly defined natural number of classes and the plots 
are, again, subject to interpretation. 
 
The ability of the GF classification to discriminate across classification levels with increasing group 
number was tested using analysis of similarities (ANOSIM, Clarke 1993), in an approach comparable 
with that of Snelder et al. (2007, 2010). This approach uses ANOSIM to assess how dissimilar two 
groups of samples are from each other. This is a similar approach to those described above, however, it 
differs in that the group dissimilarity is assessed using the multivariate taxon data rather than the 
transformed environmental space. ANOSIM calculates an R-value which ranges from -1 to +1, with 
higher positive values indicating greater similarity among samples within a given class than to those in 
other classes, and thus stronger support for the classification. Using the biological data used in the GF 
models, the discrimination across classification levels was assessed for each class level from 5 to 75 
classes in increments of 5. The global ANOSIM-R statistic was calculated as the difference in ranked 
biologic similarities arising from all pairs of replicate sites between different classes, and the average 
of all rank similarities within classes, adjusted by the total number of sites. Global R is equal to 1 if all 
replicates within classes are more similar to each other than to any replicates from other classes and is 
approximately 0 if there is no group structure. The significance of the ANOSIM-R statistic was tested 
by random permutation based on the null hypothesis of no group structure, i.e., sampled communities 
do not differ among classes (Clarke 1993). All ANOSIM analyses were undertaken in R using the vegan 
package (Oksanen et al. 2013). Varying proportions of classes at any particular classification level had 
either few biologic sites or lacked them altogether. Therefore, only classes represented by at least five 
sample sites were included.  
 

3. RESULTS 
 
3.1 Single-taxon ensemble models 

Model performance 
Most ensemble models were useful to predict taxon occurrence as assessed by the withheld evaluation 
data (AUC > 0.7) (Table 4). Abundance models had lower explanatory power and some species had 
large differences between the training and evaluation estimates, indicating that the models were not able 
to accurately predict variation in abundance (Table 4). The highest performing taxon probability of 
occurrence model as assessed by the evaluation data included: Metanephrops challengeri (AUC: 0.85 
and TSS: 0.60), Spatangidae (AUC: 0.84 and TSS: 0.58), Brachiopoda (AUC: 0.82 and TSS: 0.59), 
Foraminifera (AUC: 0.82 and TSS: 0.58), and Goniocorella dumosa (AUC: 0.81 and TSS; 0.58) 
(Table 4). The lowest performing taxon probability of occurrence models as assessed by the evaluation 
data included: Bryozoa (AUC: 0.67 and TSS: 0.35), Hexactinellida (AUC: 0.67 and TSS: 0.34), and 
volutidae (AUC: 0.64 and TSS: 0.26) (Table 4). The highest performing predicted abundance models 
as assessed by the R2 evaluation data were for Spatangidae (R2: 0.33), Euechinoidea (R2: 0.32), and 
Hyalinoecia sp. (R2: 0.28). The lowest performing predicted abundance models as assessed by the R2 
evaluation data were for G. dumosa, Foraminifera, Cidaroidea, and Volutidae, all of which had R2 
values of zero.  
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Explanatory variables 
The most frequently selected environmental predictor for both the probability of occurrence and 
predicted abundance models was seafloor profile curvature (profcurv), which accounted for up to 55% 
of influence in individual models and was the most important predictor for the probability of occurrence 
and predicted abundance of Brachiopoda and branching stony coral taxa (REEF corals) (Table 5). Other 
important environmental variables for all taxa included sea-surface primary productivity (epp_min), 
dissolved organic material (dom), and dynamic oceanography (variation in sea-surface height, dynoc). 
The least important predictors included depth (bathy), bathymetric position index (bpi broad), dissolved 
oxygen concentration (dissox), and silicate concentration (sil). Trawl history (trawl) was the most 
important predictor for probability of occurrence of the stony coral Goniocorella dumosa and was also 
important for the predicted abundance of paguridae, the probability of occurrence and predicted 
abundance of Hyalinoecia sp., and the predicted abundance of Spatangoida.  
 

Table 4: Mean cross-validated estimates of model performance for ensemble abundance and presence-
absence models for each of the 20 single-taxon models when assessed against the data used to train 
the model (Train.) and against evaluation data withheld from the training (Eval.) data. 

 Abundance Model  Presence-Absence Model 

 R2 Pearson Correlation  AUC TSS 
Taxon Train. Eval. Train. Eval.  Train. Eval. Train. Eval. 
          
Hyalinoecia sp. 0.60 0.28 0.78 0.57  0.85 0.73 0.65 0.42 
M. challengeri 0.53 0.09 0.76 0.41  0.92 0.85 0.80 0.60 
Paguridae 0.65 0.25 0.79 0.52  ̶ ̶ ̶ ̶ 
Brachiopoda 0.67 0.15 0.83 0.50  0.92 0.82 0.79 0.59 
Bryozoa 0.62 0.12 0.77 0.43  0.84 0.67 0.69 0.35 
G. dumosa 0.70 0.00 0.84 0.26  0.93 0.81 0.82 0.58 
REEF 0.62 0.09 0.79 0.43  0.86 0.77 0.66 0.50 
Pennatulacea 0.56 0.13 0.76 0.44  0.90 0.78 0.71 0.48 
Stylasteridae 0.55 0.24 0.74 0.54  0.86 0.80 0.64 0.51 
Euechinoida 0.76 0.32 0.87 0.60  0.89 0.74 0.74 0.44 
Spatangidae 0.65 0.33 0.81 0.59  0.91 0.84 0.73 0.58 
Cidaroida 0.56 0.00 0.73 0.22  0.88 0.77 0.75 0.47 
Holothuroidea 0.59 0.00 0.75 0.26  0.92 0.75 0.81 0.44 
Asteroidea 0.60 0.11 0.75 0.38  ̶ ̶ ̶ ̶ 
Xenophyophoroidea 0.66 0.00 0.82 0.22  0.91 0.82 0.77 0.58 
Hydroids 0.62 0.15 0.78 0.43  0.90 0.73 0.77 0.44 
Whelks 0.62 0.15 0.78 0.43  0.88 0.70 0.76 0.37 
Volutidae 0.24 0.00 0.52 0.22  0.83 0.64 0.59 0.26 
Demospongiae 0.62 0.10 0.77 0.42  0.91 0.75 0.80 0.47 
Hexactinellida 0.64 0.25 0.80 0.53  0.81 0.67 0.56 0.34 
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Table 5: Environmental predictor variables and their relative importance for each taxa and model type (presence-absence, P, and abundance, A). The most important 
predictor for each model is highlighted in dark grey and the second most important predictor is highlighted in light grey. Presence-absence results are not 
shown for Paguridae or Asteroidea because these taxa were present at all survey sites. (Continued over the page) 

   
  Seafloor characteristics Water chemistry Water physics Productivity 

Taxon Model bathy profcurv trawl 
bpi 

broad std15 salinity dissox silicate tempres dynoc 
sst 

grad 
tidal 
curr 

epp 
mean 

epp 
min 

cbpm 
mean dom poc flux 

                    
Hyalinoecia sp. P   22.5       11.7   17.2  29.1 19.5   
 A   20.3       17.8   13.6  28.0 20.3   
M. challengeri P    7.8 10.6  13.6   11.4 7.9   11.7 10.1 8.3 18.6  
 A    10.9 18.7  14.3   10.4 6.4   8.2 12.0 11.7 7.5  
Paguridae A 16.9  15.6 11.0  15.1       13.5 14.2 13.7    
Brachiopoda P  22.1     10.8      15.2  14.3 19.3  18.3 

 A  24.6     16.4      12.1  16.8 12.9  17.2 
Bryozoa P 17.0 15.4  15.4        16.9    19.1  16.1 

 A 15.8 21.8  13.1        21.3    15.0  13.1 
G. dumosa P  20.2 23.0   11.1   11.1    11.6 12.9    10.1 

 A  18.6 9.3   14.3   10.8    11.5 14.9    20.5 
REEF  P  30.6    15.6     12.1  17.4 15.1    9.2 

 A  23.7    14.4     13.0  17.5 19.1    12.3 
Pennatulacea P 20.3    8.6    6.9 16.5  12.8  8.1  9.3 6.4 11.1 

 A 11.9    7.7    22.6 8.0  12.3  13.2  10.7 7.4 6.3 
Stylasteridae P  55.3   21.1      23.6        
 A  35.4   26.7      37.8        
Euechinoidea P 13.7 8.7   11.2  10.0 15.2  12.8  11.8  8.5 8.2    
 A 14.5 8.2   21.6  6.1 7.0  20.2  7.8  5.8 8.8    
Spatangidae P   4.4  9.4    10.5 7.9 28.9 14.9 6.5   17.4   
 A   15.3  9.3    15.0 18.3 11.3 12.7 8.3   9.8   
Cidaroida P  19.0       13.6 13.0 19.2   15.6 19.6    
 A  18.8       16.1 14.5 18.2   16.5 16.0    
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Table 5 continued. 
  Seafloor characteristics Water chemistry Water physics Productivity 

Taxon Model bathy profcurv trawl 
bpi 

broad std15 salinity dissox silicate tempres dynoc 
sst 

grad 
tidal 
curr 

epp 
mean 

epp 
min 

cbpm 
mean dom poc flux 

                    
Holothuroidea P  11.8 10.5       18.1 11.9 22.3  12.2 13.2    
 A  12.3 11.0       15.8 14.3 14.4  15.6 16.5    
Asteroidea A 15.7   10.8 10.3  12.8 12.8   13.9  13.0   10.6   
Xenophyophoroida P  4.7   6.8      4.9 13.1  4.0 8.4 6.6 12.0 39.6 

 A  10.4   9.0      11.0 11.4  9.9 19.0 11.4 10.3 7.4 
Hydroids P  12.5   15.2 14.2  13.9       15.5 16.1 12.6  
 A  19.0   14.2 13.4  11.7       15.8 9.8 16.0  
Whelks P  13.4    18.3   16.9 20.0    15.8  15.6   
 A  12.1    15.6   13.0 16.8    17.2  25.2   
Volutidae P  15.5           31.2 14.6 21.9 16.8   
 A  12.8           19.5 15.7 41.5 10.4   
Demospongiae P  18.1  15.8  21.0   25.1 20.0         
 A  23.5  18.0  19.0   20.3 19.3         
Hexactinellida P  21.4   8.5     11.5 17.4      19.0 22.1 
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Spatial predictions 
Maps showing the probability of occurrence and the predicted abundance, with model certainty 
estimates for each (as coefficient of variation, CV) are shown for all twenty single-taxon ensemble 
models in Appendix 2 (Figures 2.1–2.28). Probability of occurrence was not estimated for Paguridae 
and Asteroidea because these taxa were observed at all survey sites, resulting in probability of presence 
of 100%. Here, mapped predictions for two mobile taxa, Metanephrops challengeri (scampi) and 
Buccinidae+Ranellidae (predatory snails, i.e., whelks), and two sessile taxa, Goniocorella dumosa (a 
branching stony coral) and Hexatinellida (glass sponges), are described as examples. Thus, for each 
pair there is one model at species level and the other at a coarser taxonomic level. 
 
Metanephrops challengeri. Probability of occurrence was highest on the crest of Chatham Rise in 
depths from approximately 300 to 500 m, with other areas of high probability of occurrence extending 
down the east coast of the South Island, around Stewart Island, and to the east and southeast of Auckland 
Island in similar depths (Figure 3). Uncertainty for these areas was generally low, with CVs increasing 
with depth. Abundance was predicted to be highest in areas on the western Chatham Rise crest, to the 
west of Stewart Island, southeast of Auckland Island, and across a broad area in the southwest of 
Campbell Plateau (Figure 4). Uncertainty was, again, generally low for the areas of high predicted 
abundane, increasing with depth. 
 
Buccinidae+Ranellidae. Probability of occurrence was high across much of the study area in depths 
greater than approximately 400 m but low in shallow areas of Chatham Rise and along western and 
central areas of its northern flank, and low on the Stewart-Snares and Auckland Islands shelves 
(Figure 5). Model uncertainty was highest on Chatham Rise, Bounty Plateau, the southern margin of 
Campbell Plateau and Stewart-Snares shelf. Predicted abundance (Figure 6) was highest on the 
northeastern, southern, and western flanks of Chatham Rise, in Mernoo Gap between Chatham Rise 
and the South Island, and extended southwards at similar depths along the east coast of the South Island 
and large areas of Campbell Plateau. Model uncertainty was highest throughout the northern half of the 
Chatham Rise, Stewart-Snares shelf and Puysegur, and around the Auckland Islands.  
 
Goniocorella dumosa. Probability of occurrence was confined to the crest and upper flanks of Chatham 
Rise and a few locations off the east coast of the South Island, on the Otago shelf, and off the southwest 
coast of the South Island (Figure 7). The taxon was predicted to be absent from the Campbell and 
Bounty plateaux, but model uncertainty was also high across these areas. Predicted abundance of 
Goniocorella dumosa was highest on central areas of Chatham Rise, northwest Stewart-Snares shelf, 
and on Macquarie Ridge but also with apparently anomalous high values at depths greater than 
approximately 1000 m in Bounty Trough and along the outer flanks of Campbell and Bounty plateaux 
(Figure 8). Model uncertainty was low for much of central Chatham Rise, high at shallower depths 
(< 200 m) particularly off Stewart-Snares and Auckland Islands shelves but, again, apparently 
anomalously low for the predictions of high abundance in deeper areas. 
 
Hexactinellida. Probability of occurrence was high throughout the study area in depths greater than 
approximately 1000 m, with highest values on the eastern and southern flanks of Chatham Rise, in 
Bounty Trough, and on the southern Campbell Plateau and Macquarie Ridge (Figure 9). Model 
uncertainty was highest across Chatham Rise, along the east coast of the South Island, on the Stewart-
Snares and Auckland Islands shelves, and Macquarie Ridge—locations where this taxon was observed 
as being present, but which were predicted to have low to moderate probability of occurrence (Figure 9). 
Predicted abundance covered similar areas and depths to the probability of occurrence model, with 
highest values on Bounty Trough and Bounty Plateau, and along the southeast margin of the Campbell 
Plateau. The taxon was also predicted to be found in moderate densities on the outer margins of 
southeast Chatham Rise, southwest South Island, and along the Macquarie Ridge (Figure 10). Model 
uncertainty was highest in areas of low predicted abundance, with highest values along the east coast 
South Island shelf break and across the interior of the Campbell Plateau. 
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Figure 3: Metanephrops challengeri. Predicted probability of occurrence (A) and associated uncertainty (B, 

coefficient of variation) from ensemble modelling. Black dots show sites at which the taxon was 
present in the photographic survey dataset. 

 
Figure 4: Metanephrops challengeri. Predicted abundance (A) and associated uncertainty (B, standard 

deviation) from ensemble modelling. 
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Figure 5: Buccindae+Ranellidae. Predicted probability of occurrence (A) and associated uncertainty (B, 

coefficient of variation) from ensemble modelling. Black dots show sites at which the taxon was 
present in the photographic survey dataset. 

 

 
Figure 6: Buccinidae+Ranellidae. Predicted abundance (A) and associated uncertainty (B, standard 

deviation) from ensemble modelling. 
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Figure 7: Goniocorella dumosa. Predicted probability of occurrence (A) and associated uncertainty (B, 

coefficient of variation) from ensemble modelling. Black dots show sites at which the taxon was 
present in the photographic survey dataset. 

 

 
Figure 8: Goniocorella dumosa. Predicted abundance (A) and associated uncertainty (B, standard 

deviation) from ensemble modelling. 
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Figure 9: Hexactinellida. Predicted probability of occurrence (A) and associated uncertainty (B, coefficient 

of variation) from ensemble modelling. Black dots show sites at which the taxon was present in the 
photographic survey dataset. 

 

 
Figure 10: Hexactinellida. Predicted abundance (A) and associated uncertainty (B, standard deviation) 

from ensemble modelling.  
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3.2 Joint species distribution models 

Model performance 
The overall explanatory power of the jSDMs for presence-absence results was high (AUC=0.84) with 
relatively high predictive power (AUC = 0.71). For abundance model results, the overall explanatory 
power was lower (R2 = 0.43) and predictive power was much lower (R2 = 0.12) (Table 6). The model 
fit metrics varied by taxon, but most models had at least some explanatory and predictive power in both 
presence-absence and abundance models (Table 6). Buccinidae+Ranellidae had the lowest explanatory 
power (AUC = 0.71) and hydroids and Bryozoa had almost no predictive power for the presence-
absence models (AUC = 0.59 and 0.51, respectively, Table 6). In contrast, presence-absence models for 
Goniocorella dumosa and REEF had both good explanatory and predictive power (Table 6). 
 
Volutidae abundance models had the lowest predictive and explanatory power (R2 = 0.09,Table 6). 
Hyalinoecia sp. abundance models had the highest explanatory and predictive power (R2 = 0.5 and 0.44, 
respectively, Table 6). However, for many abundance models there was a relatively large difference 
between explanatory and predictive power (Table 6). The biggest difference in explanatory and 
predictive power in abundance models were for Goniocorella dumosa and REEF which had very high 
explanatory power (R2 > 0.98) but no, or negligible, predictive power (R2 < 0.05, Table 6). 
 
Table 6: Joint species distribution model performance as assessed using the same input data as were used 

to tune the models (explanatory power) and withheld data from a fourfold cross-validation 
(predictive power) for both presence-absence and abundance models. 

 Presence-absence    Abundance  
Taxa AUC: Explanatory  AUC: Predictive  R2: Explanatory  R2: Predictive 
      
Asteroidea 0.78 0.65  0.25 0.06 
Brachiopoda 0.93 0.75  0.43 0.23 
Buccinidae+Ranellidae 0.71 0.64  0.26 0.19 
Cidaroida 0.86 0.72  0.38 0.06 
Stylasteridae 0.97 0.77  0.46 0.27 
Bryozoa 0.79 0.59  0.69 0.11 
Demospongiae 0.93 0.73  0.83 0.13 
Euechinoida 0.76 0.74  0.24 0.16 
Goniocorella dumosa 1.00 0.83  1.00 0.00 
Hydroids 0.85 0.51  0.46 0.06 
Hexactinellida 0.86 0.69  0.61 0.13 
Holothuroidea 0.71 0.65  0.11 0.02 
Hyalinoecia sp. 0.80 0.76  0.50 0.44 
Paguridae 0.78 0.74  0.25 0.17 
Pennatulacea 0.77 0.75  0.21 0.12 
REEF 1.00 0.74  0.98 0.05 
Metanephrops challengeri 0.82 0.75  0.32 0.01 
Spatangidae 0.83 0.79  0.24 0.09 
Volutidae 0.84 0.67  0.09 0.01 
Xenophyophoroidea 0.87 0.83  0.27 0.14 
Mean 0.84 0.71  0.43 0.12 
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Parameter estimates 

Explanatory variables 
There was strong evidence (95% posterior probability, or higher) of both positive and negative 
relationships between explanatory variables and taxon occurrence (Figure 11, left) and abundance 
(Figure 11, right). The variance explained by each explanatory variable and by the random spatial effect 
are shown in Appendix 3). The intercept provides information on relative rarity; blue cells indicate rare 
taxa (in the context of the dataset) and red cells indicate common or abundant taxa (Figure 11). 
Relationships with environmental explanatory variables varied by taxon but there were general patterns 
for both taxon occurrence and abundance to be negatively related to increasing depth and decreasing 
salinity, and positively related to increasing profile curvature of the seabed (profcurv) and primary 
productivity (epp_mean) (Figure 11). Trawl history (trawl) was negatively associated with the 
occurrence of Goniocorella dumosa and REEF), Demospongiae, Hexactinellida, hydroids, 
Brachiopoda, and hydrocorals (Stylasteridae) but positively associated with occurrence of 
Buccinidae+Ranellidae, Hyalinoecia sp., Paguridae, Pennatulacea, and Volutidae (Figure 11). 
 
 

 
 
Figure 11: Relationships between benthic taxa (y-axis) and explanatory variables (x-axis) that have at least 

95% posterior probability of being positive (red) or negative (blue) in the HSMC model using 
presence-absence data (left) and abundance data (right). Taxa codes used in the figure: ASR 
(Asteroidea), BPD (Brachiopoda), BUCC (Whelks), CID (Cidaroida), COR (Stylasteridae), COZ 
(Bryozoa), DEM (Demospongiae), EUE (Euechinoida), GDU (G. dumosa), HYD (Hydroids), HEX 
(Hexactinellida), HTH (Holothuroidea), HTU (Hyalinoecia sp.), PAG (Paguridae), PTU 
(Pennatulacea), branching corals (REEF), SCI (M. challenger), SPT (Spatangidae), VOL 
(Volutidae), ZFR (Xenophyophoroidea).  

Traits and environment 
Relationships between the occurrence of functional traits and predictor variables were mostly weak but 
there was evidence of moderately strong (at least 75% posterior probability) positive association for 
some traits when using both presence-absence (Figure 12, left) and abundance data (Figure 12, right). 
The strongest association was a positive relationship between salinity and traits representing maximum 
adult body size (medium, large) and longevity (long-lived) for both presence-absence and abundance 

Tid
al 

cu
rr

en
t

EP
P

(in
te

rc
ep

t)
 

De
pt

h

Tr
aw

l

Sa
lin

ity

Te
m

p 
Re

sid

Pr
of

 cu
rv

e

−1.0

−0.5

0.0

0.5

1.0

Tid
al 

cu
rr

en
t

EP
P

ZFR
VOL
SPT
SCI

REEF
PTU
PAG
HTU
HTH
HEX
HDR
GDU
EUE
DEM
COZ
COR
CID

BUCC
BPD
ASR

(in
te

rc
ep

t)
 

De
pt

h

Tr
aw

l

Sa
lin

ity

Te
m

p 
Re

sid

Pr
of

 cu
rv

e



 

28 •  Predictive models for benthic taxa using photographic data Fisheries New Zealand 
 

models (Figure 12). Despite the strong relationship between trawl history and taxa occurrence and 
abundance, the only association between traits and trawl history was a negative relationship with the 
abundance of large taxa (Figure 12, right). 
 

 
 
Figure 12: Association of taxa traits and species niches with at least 75% posterior probability of being 

positive (red) or negative (blue) for the HSMC model using presence-absence  data (left) and 
abundance data (right). 

Biotic interactions 
Three broad groups of pairwise taxon associations were observed when using presence-absence  data 
(Figure 13). Holothuroidea and M. challengeri  had a strong positive association (i.e., co-occurrence 
when accounting for the environmental niche as described by taxon traits and explanatory variables) 
and a negative association with most other taxa except Euechinoidea, Paguridae, Volutidae, and 
Pennatulacea (Figure 13), for which there were no strong associations (white cells in Figure 13). There 
was also strong support for positive association among a large number of other taxa: Brachiopoda, 
Demospongiae, Goniocorella dumosa, REEF, hydroids, Cidaroida, Spatangidae, Bryozoa, 
Stylasteridae, Hexactinellida, Xenophyophoroidea, Asteroidea, and Buccinidae+Ranellidae. 
 
There was also strong evidence of positive associations in the abundances of several, primarily 
epifaunal, taxa (Figure 13): Bryozoa, Hexactinellida, Demospongiae, Asteroidea, hydroids, 
Stylasteridae, Cidaroida, Goniocorella dumosa, and REEF). Paguridae abundance was also positively 
associated with the above group, except for Goniocorella dumosa and REEF, whereas M. challengeri 
was negatively associated with most of the above taxa (Figure 13).  
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Figure 13: Taxon-to-taxon association matrix identifying taxon pairs that show a positive (red) or negative 

(blue) association with at least a 95% posterior probability for the HSMC model using presence-
absence data (left) and abundance data (right). Taxa codes used in the figure: ASR (Asteroidea), 
BPD (Brachiopoda), BUCC (Whelks), CID (Cidaroida), COR (Stylasteridae), COZ (Bryozoa), 
DEM (Demospongiae), EUE (Euechinoida), GDU (G. dumosa), HYD (Hydroids), HEX 
(Hexactinellida), HTH (Holothuroidea), HTU (Hyalinoecia sp.), PAG (Paguridae), PTU 
(Pennatulacea), branching corals (REEF), SCI (M. challenger), SPT (Spatangidae), VOL 
(Volutidae), ZFR (Xenophyophoroidea). 

Spatial predictions 
Probability of occurrence, predicted abundance, and model certainty estimates (as coefficient of 
variation, CV) for all taxa are reported in Appendix 2 (Figures 2.29–2.58). As in section 3.1 (single- 
taxon models), example spatial predictions from the jSDMs distribution models are shown here for four 
taxa: Metanephrops challengeri, Buccinidae+Ranellidae, Hexatinellida, and Goniocorella dumosa. 
 
Across all taxa, the majority of spatial patterns predicted using the jSDMs were broadly similar to those 
predicted from the single-taxon models for both presence-absence and abundance models (Figures 14 
to 21). However, for some taxa this was not the case, e.g., the abundance of Goniocorella dumosa was 
predicted to be highest in shallower parts of the study area when using the jSDM compared with deeper 
parts of the study area (Bounty Trough) in the single-taxon model (compare Figure 19 A to Figure 8 A). 
As would be expected, the distribution of uncertainty also differed between the two model types 
(compare Figure 19 B to Figure 8 B).  
 
Overall, uncertainty predictions tended to be higher and cover larger areas for predictions made using 
the jSDM when compared with the uncertainty estimates predicted using the single-taxon models (e.g., 
compare Figure 17 B with Figure 7 B). In addition, there were marked localised differences between 
jSDM and single-taxon model predictions for those taxa predicted to be affected by trawling history 
with larger, more obvious, changes to predicted distributions in parts of the study area with high  
intensity of trawling (e.g., edge of the continental shelf, see low predicted abundance of Goniocorella 
dumosa in Figure 19 A and high predicted abundance for Buccinidae+Ranellidae in Figure 17 A). 
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Figure 14: Metanephrops challengeri. Predicted probability of occurrence (A) and associated uncertainty 
(B, coefficient of variation) from jSDM modelling. Black dots show sites at which the taxon was 
present in the photographic survey dataset. 

 
Figure 15: Metanephrops challengeri. Predicted abundance (A) and associated uncertainty (B, standard 

deviation) from jSDM modelling. 
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Figure 16: Buccindae+Ranellidae. Predicted probability of occurrence (A) and associated uncertainty (B, 
coefficient of variation) from jSDM modelling. Black dots show sites at which the taxon was present 
in the photographic survey dataset. 

 

Figure 17: Buccinidae+Ranellidae. Predicted abundance (A) and associated uncertainty (B, standard 
deviation) from jSDM modelling. 
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Figure 18: Goniocorella dumosa. Predicted probability of occurrence (A) and associated uncertainty (B, 
coefficient of variation) from jSDM modelling. Black dots show sites at which the taxon was present 
in the photographic survey dataset. 

 

Figure 19: Goniocorella dumosa. Predicted abundance (A) and associated uncertainty (B, standard 
deviation) from jSDM modelling. 
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Figure 20: Hexactinellida. Predicted probability of occurrence (A) and associated uncertainty (B, 
coefficient of variation) from jSDM modelling. Black dots show sites at which the taxon was present 
in the photographic survey dataset. 

 

Figure 21: Hexactinellida. Predicted abundance (A) and associated uncertainty (B, standard deviation) 
from jSDM modelling.  

  
3.3 Community models 

Community data from joint species distribution models 

Richness estimates  
Richness estimates from the jSDM using 66 taxa were highest along the shelf break of the South Island 
from Cook Strait to Kaikōura Canyon and south of Banks Peninsula, with high values extending around 
the western, northwestern, and southwestern flanks of Chatham Rise in depths of approximately 500 to 
1000 m (Figure 22). Richness was predicted to be lowest on the shallower areas of the Stewart-Snares 
and Auckland Islands shelves, around the Chatham Islands, and on Mernoo Bank (Figure 22). Highest 
uncertainty in richness estimates was in deep waters (1000 to 1500 m depth) north and south of the 
Chatham Rise and along the South Island shelf break, spanning the areas of highest predicted richness, 
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and in the bight west of Stewart Island. Lowest uncertainty in richness estimates was for areas with low 
predicted richness (Figure 22). 

Figure 22: Taxonomic richness (left) and associated uncertainty (standard deviation, right) estimated from 
occurrence predictions of the joint species distribution model using 66 taxa. 

Regions of common profile 
The interpretation of the classification strength of the grouped community abundance predictions from 
the jSDMs was similar between assessment methods (elbow method and silhouette method, Figure 23). 
The largest differences between groups were observed for low classification levels for both methods. 
Following a very rapid decline, the elbow method started to plateau with a classification detail (group 
number) of eight (Figure 23) coinciding with the highest average silhouette width (Figure 23). There 
were further smaller declines in the strength of inter-group differences although very little was observed 
past 25 groups (Figure 23). RCP estimates were therefore based on 8 and 25 with an intermediate 
number of groups at 16 groups. Broad patterns in RCP predictions were similar across classification 
levels (Figure 24). 
 

 
Figure 23: Results of the elbow (left) and silhouette (right) methods for selection of optimal class number 

in the Regions of Common Profile (RCP) classification. Dashed lines represent values at 
classifications with 8 groups, 16 groups, and 25 groups.  
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Figure 24: Regions of Common Profile (RCP) classification developed from abundance predictions of the 
joint species distribution model using 66 taxa, showing three classification levels: 8 (top left), 16 
(top right), and 25 (bottom left). 

Gradient Forest 
Of the 66 taxa available in the faunal dataset, 54 were represented adequately (R2 greater than 0) in the 
GF models, with a median value R2 of 0.38 and values per taxon ranging from 0.65 for 
Galatheidae/Chirostylidae (squat lobsters) to less than 0.01 for Corallimorpharia (a group of anemones), 
Enallopsammia sp. (a stony coral), and Enypniastes eximia (a swimming sea cucumber) (Figure 25). 
The most influential predictor variables for both the accuracy of the GF model and the R2 correlations 
with observed faunal distributions were profile curvature of the seabed (profcurv), trawl history (trawl), 
primary productivity (cbpm_mean), and dynamic oceanography (dynoc) (Figure 26). 
 
Classifications at all levels from 5 to 75 classes produced generally coherent, well-defined spatial 
classes, with little evidence of fragmentation into multiple instances of a given class or blurring of class 
boundaries, other than areas of complex seafloor topography, including the steep southeastern flank of 
Chatham Rise and the canyon-incised shelf break off the Otago coast (Figure 27). 
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Figure 25: Strength of correlations between faunal occurrence and transformed predictor variables in the 

Gradient Forest community analysis, showing the 54 taxa with correlations greater than zero. 
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There was adequate representation of faunal survey data points (at least five sites per class) for more 
than 70% of all classes in classifications up to 25-class level (Figure 28 and Table 7), decreasing to less 
than 50%, for classifications with more than 40 classes, and less than 40% at 75 classes (Table 7). 
Global ANOSIM-R values for all class levels were significant at the 1% level, indicating that at least 
some of the pairwise comparisons between classes were significant. Global ANOSIM-R values tended 
to increase as the classification detail was increased, with a rapid increase in global ANOSIM-R values 
from 5 to 20 classes, followed by a plateau from 25 classes until another, more gradual increase occurred 
from 50 classes, rising to a maximum of 0.87 at 70 to 75 classes (Figure 28). 
 
Although maximum ANOSIM-R values occurred at the highest class levels, the overall classification 
was progressively less well-informed by survey data as class level increased, with only 30 of 75 classes 
being represented by at least five survey sites at the highest class level. This pattern illustrates a trade-
off between data availability and classification detail, in which increasing detail comes at the cost of 
decreasing credibility. From this analysis of the GF results, the point of intersection between increasing 
ANOSIM-R values and decreasing values for the proportion of classes supported by survey data 
(Figure 28) presents as a potential criterion by which optimal trade-off in class level might be selected. 
By this criterion, the class level indicated for the GF would be 25 classes (Figure 28). 
 

 
Figure 26: Importance of predictor variables in the Gradient Forest community model.  
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Figure 27: Gradient Forest classification developed using quantitative benthic invertebrate observation 

data from Chatham Rise and Campbell Plateau, showing 5, 10, 15, 50, and 25 class levels.  
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Figure 28: Gradient Forest classification: mean significant global ANOSIM R-statistic (black line) in 

relation to the proportion of classes represented by at least 5 survey sites (blue line) at levels of 
classification detail from 5 to 75 classes. 

Table 7: Results of the pairwise ANOSIM-R analysis for the Gradient Forest model at class levels from 5 
to 75 classes. 

Classification detail 
(number of classes) 

Proportion of classes ≥ 5 
unique occurrences 

Proportion of significant 
inter-class differences 

Mean significant 
ANOSIM R-statistic 

    
5 1.00 1.00 0.22 
10 0.90 0.92 0.34 
15 0.87 0.91 0.36 
20 0.80 0.93 0.42 
25 0.72 0.88 0.44 
30 0.60 0.88 0.44 
35 0.57 0.87 0.44 
40 0.50 0.87 0.44 
45 0.47 0.87 0.43 
50 0.46 0.90 0.47 
55 0.44 0.92 0.49 
60 0.43 0.89 0.51 
65 0.43 0.87 0.51 
70 0.41 0.87 0.52 
75 0.39 0.83 0.52 
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4. DISCUSSION 

Progressing species distribution modelling for benthic fauna in the New Zealand region 
The model predictions presented here are the most recent stage in a process that began with development 
of an independent quantitative dataset of benthic invertebrate distributions from seafloor photographic 
surveys (Bowden et al. 2019b) to evaluate the usefulness of predictions from published SDMs for 
Chatham Rise (Bowden et al. 2021). Having used the novel dataset in this assessment, it was then used 
to inform new models for Chatham Rise that differed from all existing models of comparable spatial 
scale in the New Zealand region by being based on observations of taxon abundances (numbers of 
individuals per unit area of seabed), rather than just their presence at a given location (Bowden et al. 
2019a). The general reliance on presence-only data in existing SDM studies of seafloor taxa is not 
restricted to New Zealand; a recent review of 328 published studies worldwide finding that less than 
10% used abundance, density, or biomass data, most of which were modelling commercially exploited 
fish taxa (Melo-Merino et al. 2020). The lack of abundance-based models for seafloor invertebrate taxa 
is a consequence of the paucity of spatially consistent abundance data for non-commercial marine taxa. 
The lack of such data is a major limitation for use of SDM predictions to inform environmental 
management because patterns of occurrence (presence) alone cannot indicate the range of 
environmental conditions under which a species is likely to thrive, rather than just survive (Rullens et 
al. 2019). SDMs derived from abundance data (quantitative models), by contrast, can provide more 
ecologically nuanced information that is more useful for informing spatial management decisions 
(Dedman et al. 2015).  
 
The quantitative multivariate benthic dataset developed for this project and used here to generate new 
model predictions of distributions is novel in the context of marine ecological research in New Zealand 
because it is the first to enable use of abundance data recorded in a robust and consistent way across a 
large geographical area and spanning broad environmental gradients of ecological relevance. The initial 
formulation of this dataset, spanning Chatham Rise, was used to develop the first quantitative 
distribution models (as opposed to the predictions of suitable habitat derived from presence-only data) 
for marine benthos yet to be attempted at these spatial scales in the New Zealand region (Bowden et al. 
2019a). Here, the incorporation of quantitative observation data from Campbell Plateau enables 
expansion of these predictions to encompass much of the southeastern sector of New Zealand’s EEZ; a 
region that is of importance for fisheries, encompasses areas of oil and gas exploration, and is of 
potential future interest for extraction of seabed minerals. In the following sections, these predictions 
and the methods used to generate them are critically appraised. 

Single-taxon predictions 
In addition to the novelty of using abundance data to inform SDM predictions, the single-taxon model 
predictions here are also based on methods that represent the latest and most advanced techniques in 
the field. The ensemble predictions combine estimates from three modelling techniques, each of which 
has been shown to perform well for predicting the distribution of benthic taxa in New Zealand, and the 
combination of their predictions limits the dependence on a single model type or structural assumption, 
thus providing more robust characterisation of predicted spatial variation and uncertainties (Robert et 
al. 2016). Moreover, a weighted approach was used to combine model outputs, which accounts for the 
predicted uncertainty from each modelling method in a spatially explicit manner (Anderson et al. 
2020b). These ensemble model outputs are, therefore, likely to be the most reliable predictions of 
distributions for these taxa currently available across this region of New Zealand’s EEZ that can be 
achieved using established methods and available data. Results from earlier stages of this project 
suggest that the robustness of the predictions is likely to be more closely linked to the quality and 
quantity of the input data than to the modelling methods used (Bowden et al. 2021). However, 
application here of the recently developed jSDM methods to predict distributions for the same set of 
twenty taxa, using exactly the same data, provides a further opportunity to assess the influence of 
different modelling methods on the credibility of predictions.  
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The jSDM approach is of interest because it can incorporate interactions among taxa, environmental 
covariates, species traits, and phylogenetic relationships in a hierarchical Bayesian structure 
(Ovaskainen & Abrego 2020) and shows considerable promise in the ability to account for biotic 
interactions in community data. jSDMs have been shown to have higher predictive and explanatory 
power than many commonly used SDM methods (Norberg et al. 2019), with methodological advantages 
compared to other single taxon SDM methods including the capacity to provide simultaneous inferences 
at the species and community levels and thus allowing generation of individual species predictions and 
community predictions without having to rely on ‘stacking’ as would be needed for single-taxon SDM 
models (e.g., Calabrese et al. 2014). Furthermore, through its Bayesian approach, it can overcome (at 
least in part) some of the problems of modelling communities with sparse data (although GF—a form 
of stacking of single-taxon SDM models—also seems to be able to account for rare species in the way 
that it predicts turnover (Stephenson et al. 2021) (Stephenson et al. in review). jSDM overcomes the 
long-standing challenge in species distribution modelling of how to account for species interactions in 
explaining and predicting species occurrences or abundances. jSDM also provides functionality to 
easily investigate the partitioning of variation in species occurrence or abundance attributable to 
environmental variation in measured versus random (unmeasured) processes at different spatial scales, 
both at species level and community level, and can be applied to many kinds of study designs and data 
(presence-absence, abundance, counts, etc). Finally, jSDM can generate predictions of species, 
community, or traits whilst propagating uncertainty in the predicted parameter values. The latter is 
likely to be of particular importance for management applications.  
 
Although a formal comparison between the ensemble model and jSDM predictions was not conducted 
here, some specific and general points of interest are evident in the example taxa shown. As a general 
observation, estimates of prediction uncertainty are higher in the jSDM outputs than in the 
corresponding ensemble model outputs. This result is likely to be because, as described above, jSDM 
propagates uncertainty across all components of the input data simultaneously and is, thus, likely to 
present a more realistic estimate of the actual uncertainty in predictions by comparison with the 
ensemble methods that consider only the target taxon, resulting in potential underestimation of 
uncertainty. At the level of individual taxa, although most predictions are broadly comparable between 
the two modelling approaches, predictions for the stony coral G. dumosa appear to be more credible in 
the jSDM outputs than the ensemble model outputs in that its jSDM predictions do not show the 
improbable areas of high predicted abundance in deep waters of the Bounty Trough, and that their 
predictions of abundance align with their predictions of presence. Although this comparison is only for 
one taxon, it suggests that the general level of credibility of the jSDM predictions may be higher than 
that of the ensemble models. Once again, however, the actual reliability of the different models can 
only be estimated here based on the input data themselves; full evaluation of the predictions will come 
only with availability of sufficient independent survey data. 

Community methods 
The ability to predict community composition across space is important for input to conservation and 
spatial management of impacts (Compton et al. 2013, Stephenson et al. 2018a), but use of community 
level predictions and spatial classifications developed from them is hindered by the same questions 
about credibility as are single-taxon predictions. Using two independent methods (RCP and GF) to 
generate classifications from the same source data here provides an opportunity to assess how similar 
their predictions are and, thus, how useful they are for planning purposes (i.e., if both showed the same 
patterns, it would indicate an encouraging consensus, whereas if patterns differ markedly, there would 
be no way to determine which is more realistic without validation against independent data). Although 
both methods are environment-based, in terms of the outputs of their spatial predictions, the 
classifications can be understood as spatial summaries of variation in seafloor community composition 
(Stephenson et al. 2020).  
 
Defining the optimal level of detail at which to use a hierarchical community classification is 
challenging because ecological communities are rarely delimited by clear and consistent spatial 
boundaries. Nonetheless, it is useful from a spatial management perspective to produce classifications 
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with ‘hard’ community boundaries to enable allocation of protected areas among representative 
community types. However, because methods vary as to how to define an optimal level classification 
level, there is likely to be no single definitively correct answer. This study assessed optimal class level 
using three methods, two of which assess the dissimilarity in groups based on the differences in 
transformed environmental space (elbow and silhouette methods), whereas the third (ANOSIM) 
assesses class distinctions based on community measures from the biological data. Despite the different 
approaches, results from all three methods and for both classifications provided similar ranges of 
indicative class levels, spanning a range from 8 to 25 classes. While the agreement between class level 
assessment methods is to be expected, given that the underlying input data are the same for both models, 
it both indicates that there is some spatial structuring in community composition that can be represented 
in hard-boundary classes and provides support for direct comparison between the RCP and GF 
classifications at the same class levels. In terms of which class level assessment approach is to be 
preferred, the ANOSIM method has advantages in that it can also be applied to assess classification 
strength using independent faunal occurrence data, and thus provide objective tests of the credibility of 
the environmental classification (Bowden et al. in press). The silhouette and elbow methods, while 
providing results that are apparently equally valid, are less useful for assessing classification strength 
against new data because they are based on the transformed environmental data generated by the 
community models themselves.   
 
In both the RCP and GF classifications, predicted classes reflected broadscale patterns in environmental 
variables linked to well-defined oceanographic patterns. For example, there were distinct classes 
between the north and the south of the Chatham Rise, which are likely to be differentiated by the Sub-
Tropical Front (a highly productive zone of mixing between high salinity, nutrient poor, warm, northern 
waters, and colder, southern waters) and distinct groups on the Campbell Plateau likely driven by the 
low salinity, nutrient rich, cold, southern waters associated with the Sub-Antarctic Front. In terms of 
how these classifications might be interpreted, an 8-class representation might be viewed as a 
bioregionalisation, whereas the greater detail in the 25-class representation could be used to define 
communities at finer spatial scales.   
 
At the 25-class level, there were some similarities between the RCP and GF classifications but many 
points of difference (Figure 29). Similarities are most evident around western and southern flanks of 
Chatham Rise, extending into Bounty Trough, and in the grouping of Campbell Island Shelf, Pukaki 
Rise, and Bounty Islands shelf in the same class. Obvious differences are present on Campbell Plateau, 
however; the GF classification assigned fewer classes across central areas, particularly in the area 
spanning Campbell Island and Pukaki Rise, and the RCP delineated more depth-associated class 
boundaries. Because both classifications are based on the same input sample data, the differences 
between them result from the modelling methods. Without independent observations against which to 
test the two classifications, it is not possible to say which is the more reliable. In earlier analyses in this 
project, however, a GF classification developed from Chatham Rise data predicted community 
composition across Campbell Plateau more reliably than did the comparable RCP model developed for 
Chatham Rise, when tested against the TAN2004 survey data (Bowden et al. in press). Although this 
result suggests that GF may be the more reliable approach, the implementation of RCP in the current 
project is both more fully-developed and better-informed by data than was the case for Chatham Rise 
and, thus, is likely to be more reliable than the earlier iterations. 
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Figure 29: Comparison between the Regions of Common Profile (RCP) and Gradient Forest (GF) 

community classifications at 25-class level. 

5. MANAGEMENT IMPLICATIONS 
 
Failure to acknowledge sources of uncertainty can lead to poor management decisions (Regan et al. 
2005). Whilst uncertainty can readily be incorporated into single-taxon models, for example by 
quantifying the error around estimates as done here, incorporation of uncertainty into multi-taxa models 
or for ecosystem-based management is more challenging. The Bayesian inference used in the jSDMs 
does allow meaningful multi-taxa model uncertainty to be generated. That is, uncertainty for individual 
taxa is generated accounting for the occurrence or abundance of other taxa in the community. However, 
model uncertainty is only a portion of the uncertainty in the real world (Marcot 2020); much of the true 
underlying uncertainty remains unquantified because it stems from factors including the lack of 
predictor variables that are known to be of fundamental importance to benthic faunal distributions 
(notably substrate composition) and the reliability of the available input predictor variables (see 
Bowden et al. 2021). By comparison with existing SDMs that are based on relatively high densities of 
occurrence data accumulated from multiple sources over decades, the models presented here are 
informed by a lower density of sample data collected using consistent methods and over a shorter period. 
Although the lower spatial density of data is likely to have some influence on the reliability of the 
predictions, this must be weighed against the advantages that are conferred by the overall reliability of 
the new image-derived data and the capability for modelling relative abundance that they confer. In the 
results presented here, for instance, it is likely that the use of reliable abundance data enables a more 
nuanced picture of the influence of trawling on faunal distributions, and the shorter period over which 
the survey data were collected provides a more accurate picture of what current distributions actually 
look like in the present, rather than a composite representation of occurrences over several decades, 
some of which will pre-date any impacts from trawling. This latter point is particularly important in 
relation to environmental factors that vary in their influence over time. The relative intensity of trawling 
is the most immediate example of this, but the principle applies equally to any ecologically important 
variable that responds to global warming. 
 
In the results presented here, spatial variation in trawling history emerged as a key predictor of 
distributions for nine out of twenty taxa in the ensemble models and for twelve out of twenty taxa in 
the jSDM models and was the third most important variable in the GF community model. The jSDM 
results also showed that the influence of trawl fishing varies across taxa, with most taxa, particularly 
larger-bodied ones, being negatively affected (e.g., the relatively large and fragile stony coral 
Goniocorella dumosa) but smaller predatory or scavenging taxa positively affected (e.g., hermit crabs 
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and whelks); positive and negative responses to trawling impacts that have been observed consistently 
elsewhere (Sciberras et al. 2018). Bottom-contacting trawling has been a factor in the marine 
environment of New Zealand for many years and these results, and previous studies, indicate that it has 
influenced the distributions of benthic invertebrate taxa across broad spatial scales (Thrush et al. 1998, 
Cryer et al. 2002). Given this, trawl history should be included routinely as a candidate predictor 
variable in species distribution models designed to predict the distributions of benthic taxa in the region. 
The use of trawl history data in the present study is simplistic, in that the cumulative swept area over 
the full time-span of the available fisheries records was used. In future analyses, however, it would be 
instructive to examine correlations between species distributions and trawl history summaries spanning 
a range of periods (e.g., 1, 5, 10, 20, or 30 years before the date of the first faunal occurrence data). This 
approach could provide information about the duration of trawl impact effects on the benthos and thus 
help to inform estimates of recovery potential or resilience, which are key inputs to benthic risk 
assessment initiatives (e.g., Kaiser et al. 2016, Hiddink et al. 2017, Pitcher et al. 2017). 
 
Uncertainty of predictions is not unique to species distribution models; examples of this are seen in 
daily life (e.g., weather forecasts, insurance premiums, stock markets, interest rates, gambling odds). 
The level of uncertainty can be reduced to some extent by improvements in the sophistication of 
statistical methods, but the strongest advances will come only with increasing data density (in the same 
way that, for instance, weather forecasts improved dramatically with the advent of satellite remote 
sensing data). Although it is easy to focus only on the uncertainties associated with data-limited 
predictions, a more constructive perspective is to accept that the knowledge is incomplete but proceed 
on the basis that the most recent analyses are likely to provide the most reliable predictions. From this 
perspective, all predictive distribution maps can be viewed as hypotheses to be tested against new 
knowledge generated by future exploration. The maps and understanding of the world are not static; 
they develop through a continuing process in which speculation, exploration, data assimilation, and 
testing interact to inform the current ‘model’ of the global environment.   
 
In the context of the present work, the study has developed models that provide the best currently 
available predictions of benthic faunal distributions across a sector of the New Zealand EEZ 
encompassing two major fisheries areas: Chatham Rise and Campbell Plateau. These predictions are 
certain to be imperfect in some respects, but they can serve two key roles: first, to inform environmental 
management decisions for scenarios in which seafloor impacts are likely in the modelled regions and, 
second, to propagate predictions into other areas of the ECS that have comparable environmental 
ranges. The latter role is key to improving overall knowledge of the distributions of seafloor habitats 
and fauna in New Zealand waters because it generates hypotheses about distributions in unsampled 
areas that can be tested by subsequent surveys structured to assess the reliability of the extended 
predictions. Given the environmental characteristics of the combined Chatham Rise–Campbell Plateau 
region and the distributions of commercial deepwater fisheries around New Zealand, an obvious 
candidate area for the next iteration of this prediction-surveying-testing cycle would be Challenger 
Plateau, to the east of central New Zealand. This feature is one of three major offshore plateaux in the 
ECS (together with Chatham Rise and Campbell Plateau) and is of interest for management of fisheries 
impacts both within New Zealand’s EEZ and in high-seas areas in which New Zealand vessels operate. 
Challenger Plateau also has existing photographic survey data from the inaugural Ocean Survey 20/20 
initiative (Bowden 2011). Although relatively sparse, these data have already been incorporated into 
earlier SDM initiatives for the region (Compton et al. 2013) and thus would provide an immediate 
extension of the current photographic dataset, when merged using appropriate procedures, and basis on 
which to develop expanded model predictions. 
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APPENDIX 1 
 
Table 1.1: Biological traits used in the Joint Species Distribution Model. Traits assignments are based on those developed by Lundquist et al. (2018). A fuzzy coding 

approach is used, in which each taxon may be assigned to more than one trait, in proportions summing to 1 for each category of trait (Adult size, Feeding 
mode, etc.). Trait categories for which only a single trait level is shown are assumed here to be represented by only two levels; e.g., Growth form is either 
‘erect’ or ‘not erect’ and Longevity is either ‘long-lived’ or ‘not long-lived’.  

Taxon Traits        
 Growth form Motility   Feeding mode Adult size Longevity 

 erect sessile mobile filter suspension deposit predscav small medium large long-lived 
Asteroidea 0 0 1 0 0.05 0.2 0.75 0 0.1 0.9 0.2 
Brachiopoda 0.5 1 0 1 1 0 0 0 0.86 0.14 1 
Whelks 0 0 1 0 0 0 1 0.25 0.75 0 0.2 
Hydroids 1 1 0 0 1 0 0 0.5 0.5 0 0.53 
Stylasteridae 1 1 0 0 1 0 0 0 0.7 0.3 1 
Bryozoa 0.8 1 0 1 1 0 0 0 1 0 1 
Demospongiae 1 1 0 1 1 0 0 0 0.9 0.1 1 
Cidaroida 0 0 0.8 0 0 1 0 0 1 0 0.2 
Euechinoida 0 0 0.8 0 0.1 0.9 0 0 0.75 0.25 0.2 
Goniocorella dumosa 1 1 0 0 1 0 0 1 0 1 1 
Hexactinellida 1 1 0 1 1 0 0 0 0.5 0.5 1 
Holothuroidea 0 0 0.8 0 0 1 0 0 0.5 0.5 0.2 
Hyalinoecia tubicola 0 0 1 0 0 0.25 0.75 0.5 0.5 0 0.2 
Paguridae 0 0 1 0 0 0.25 0.75 1 0 0 0.2 
Pennatulacea 1 1 0 0 1 0 0 0 0 1 1 
REEF corals 1 1 0 0 1 0 0 0 0 1 1 
Scampi 0 0 1 0 0 0 1 0 1 0 1 
Spatangidae 0 0 0.7 0 0 1 0 0 0.75 0.25 0.2 
Volutidae 0 0 1 0 0 0 1 0 1 0 0.2 
Xenophyophoroidea 0 1 0 0 0.25 0.75 0 0 0.9 0.1 1 
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APPENDIX 2 
Single-taxon models  
 

 
 
Figure 2.1: Brachiopoda (lamp shells, BPD) - Predicted probability of occurrence (A) and associated uncertainty (B, 
coefficient of variation) from ensemble modelling. Black dots show sites at which the taxon was present in the 
photographic survey dataset. 
 
 

  
 
Figure 2.2: Brachiopoda (lamp shells, BPD) - Predicted abundance (A) and associated uncertainty (B, standard 
deviation) from ensemble modelling. 
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Figure 2.3: Bryozoa (COZ) - Predicted probability of occurrence (A) and associated uncertainty (B, coefficient of 
variation) from ensemble modelling. Black dots show sites at which the taxon was present in the photographic survey 
dataset. 
 
 

  
 
Figure 2.4: Bryozoa (COZ) - Predicted abundance (A) and associated uncertainty (B, standard deviation) from 
ensemble modelling.  
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Figure 2.5: Branching stony corals (REEF) - Predicted probability of occurrence (A) and associated uncertainty (B, 
coefficient of variation) from ensemble modelling. Black dots show sites at which the taxon was present in the 
photographic survey dataset. 
 
 

 
 
Figure 2.6: Branching stony corals (REEF) - Predicted abundance (A) and associated uncertainty (B, standard 
deviation) from ensemble modelling.  
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Figure 2.7: Pennatulacea (sea pens, PTU) - Predicted probability of occurrence (A) and associated uncertainty (B, 
coefficient of variation) from ensemble modelling. Black dots show sites at which the taxon was present in the 
photographic survey dataset. 
 
 

 
 
Figure 2.8: Pennatulacea (sea pens, PTU) - Predicted abundance (A) and associated uncertainty (B, standard deviation) 
from ensemble modelling.  
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Figure 2.9: Stylasteridae (hydrocorals, COR) - Predicted probability of occurrence (A) and associated uncertainty (B, 
coefficient of variation) from ensemble modelling. Black dots show sites at which the taxon was present in the 
photographic survey dataset. 
 
 

 
 
Figure 2.10: Stylasteridae (hydrocorals, COR) - Predicted abundance (A) and associated uncertainty (B, standard 
deviation) from ensemble modelling. 
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Figure 2.11: Euechinoida (regular urchins, EUE) - Predicted probability of occurrence (A) and associated uncertainty 
(B, coefficient of variation) from ensemble modelling. Black dots show sites at which the taxon was present in the 
photographic survey dataset. 
 
 

 
 
Figure 2.12: Euechinoida (regular urchins, EUE) - Predicted abundance (A) and associated uncertainty (B, standard 
deviation) from ensemble modelling.  
  



 

Fisheries New Zealand Predictive models for benthic taxa using photographic data • 59 
 

 
 
Figure 2.13: Spatangidae (burrowing urchins, SPT) - Predicted probability of occurrence (A) and associated 
uncertainty (B, coefficient of variation) from ensemble modelling. Black dots show sites at which the taxon was present 
in the photographic survey dataset. 
 
 

 
 
Figure 2.14: Spatangidae (burrowing urchins, SPT) - Predicted abundance (A) and associated uncertainty (B, standard 
deviation) from ensemble modelling.  
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Figure 2.15: Cidaroida (pencil urchins, CID) - Predicted probability of occurrence (A) and associated uncertainty (B, 
coefficient of variation) from ensemble modelling. Black dots show sites at which the taxon was present in the 
photographic survey dataset. 
 
 

 
 
Figure 2.16: Cidaroida (pencil urchins, CID) - Predicted abundance (A) and associated uncertainty (B, standard 
deviation) from ensemble modelling.  
  



 

Fisheries New Zealand Predictive models for benthic taxa using photographic data • 61 
 

 
 
Figure 2.17: Holothuroidea (sea cucumbers, HTH) - Predicted probability of occurrence (A) and associated uncertainty 
(B, coefficient of variation) from ensemble modelling. Black dots show sites at which the taxon was present in the 
photographic survey dataset. 
 
 

 
 
Figure 2.18: Holothuroidea (sea cucumbers, HTH) - Predicted abundance (A) and associated uncertainty (B, standard 
deviation) from ensemble modelling.  
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Figure 2.19: Xenophyophoroidea (giant foraminiferans, ZFR) - Predicted probability of occurrence (A) and associated 
uncertainty (B, coefficient of variation) from ensemble modelling. Black dots show sites at which the taxon was present 
in the photographic survey dataset. 
 
 

 
 
Figure 2.20: Xenophyophoroidea (giant foraminiferans, ZFR) - Predicted abundance (A) and associated uncertainty 
(B, standard deviation) from ensemble modelling.  
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Figure 2.21: Hydrozoa (hydroids, HDR) - Predicted probability of occurrence (A) and associated uncertainty (B, 
coefficient of variation) from ensemble modelling. Black dots show sites at which the taxon was present in the 
photographic survey dataset. 
 

 
 
Figure 2.22: Hydrozoa (hydroids, HDR) - Predicted abundance (A) and associated uncertainty (B, standard deviation) 
from ensemble modelling.  
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Figure 2.23: Volutidae (volute snails, VOL) - Predicted probability of occurrence (A) and associated uncertainty (B, 
coefficient of variation) from ensemble modelling. Black dots show sites at which the taxon was present in the 
photographic survey dataset. 
 
 

 
 
Figure 2.24: Volutidae (volute snails, VOL) - Predicted abundance (A) and associated uncertainty (B, standard 
deviation) from ensemble modelling. 
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Figure 2.25: Demospongiae (common sponges, DEM) - Predicted probability of occurrence (A) and associated 
uncertainty (B, coefficient of variation) from ensemble modelling. Black dots show sites at which the taxon was present 
in the photographic survey dataset. 
 
 

 
 
Figure 2.26: Demospongiae (common sponges, DEM) - Predicted abundance (A) and associated uncertainty (B, 
standard deviation) from ensemble modelling.  
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Figure 2.27: Asteroidea (sea stars, ASR) - Predicted abundance (A) and associated uncertainty (B, standard deviation) 
from ensemble modelling. 
 
 

 
 
Figure 2.28: Paguridae (hermit crabs, PAG) - Predicted abundance (A) and associated uncertainty (B, standard 
deviation) from ensemble modelling. 
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Joint Species Distribution Models 
 
 
 

  
 
Figure 2.29: Brachiopoda (lamp shells, BPD) - Predicted probability of occurrence (A) and associated uncertainty (B, 
coefficient of variation) from jSDM modelling. Black dots show sites at which the taxon was present in the photographic 
survey dataset. 
 
 

 
 
Figure 2.30: Brachiopoda (lamp shells, BPD) - Predicted abundance (A) and associated uncertainty (B, standard 
deviation) from jSDM modelling.  
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Figure 2.31: Bryozoa (COZ) - Predicted probability of occurrence (A) and associated uncertainty (B, coefficient of 
variation) from jSDM modelling. Black dots show sites at which the taxon was present in the photographic survey 
dataset. 
 
 

 
 
Figure 2.32: Bryozoa (COZ) - Predicted abundance (A) and associated uncertainty (B, standard deviation) from jSDM 
modelling.  
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Figure 2.33: Branching stony corals (REEF) - Predicted probability of occurrence (A) and associated uncertainty (B, 
coefficient of variation) from jSDM modelling. Black dots show sites at which the taxon was present in the photographic 
survey dataset. 
 
 

 
 
Figure 2.34: Branching stony corals (REEF) - Predicted abundance (A) and associated uncertainty (B, standard 
deviation) from jSDM modelling.  
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Figure 2.35: Pennatulacea (sea pens, PTU) - Predicted probability of occurrence (A) and associated uncertainty (B, 
coefficient of variation) from jSDM modelling. Black dots show sites at which the taxon was present in the photographic 
survey dataset. 
 
 

 
 
Figure 2.36: Pennatulacea (sea pens, PTU) - Predicted abundance (A) and associated uncertainty (B, standard 
deviation) from jSDM modelling.  



 

Fisheries New Zealand Predictive models for benthic taxa using photographic data • 71 
 

 
 
Figure 2.37: Stylasteridae (hydrocorals, COR) - Predicted probability of occurrence (A) and associated uncertainty (B, 
coefficient of variation) from jSDM modelling. Black dots show sites at which the taxon was present in the photographic 
survey dataset. 
 
 

 
 
Figure 2.38: Stylasteridae (hydrocorals, COR) - Predicted abundance (A) and associated uncertainty (B, standard 
deviation) from jSDM modelling.  
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Figure 2.39: Euechinoida (regular urchins, EUE) - Predicted probability of occurrence (A) and associated uncertainty 
(B, coefficient of variation) from jSDM modelling. Black dots show sites at which the taxon was present in the 
photographic survey dataset. 
 
 

 
 
Figure 2.40: Euechinoida (regular urchins, EUE) - Predicted abundance (A) and associated uncertainty (B, standard 
deviation) from jSDM modelling. 
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Figure 2.41: Spatangidae (burrowing urchins, SPT) - Predicted probability of occurrence (A) and associated 
uncertainty (B, coefficient of variation) from jSDM modelling. Black dots show sites at which the taxon was present in 
the photographic survey dataset. 
 
 

 
 
Figure 2.42: Spatangidae (burrowing urchins, SPT) - Predicted abundance (A) and associated uncertainty (B, standard 
deviation) from jSDM modelling.  
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Figure 2.43: Cidaroida (pencil urchins, CID) - Predicted probability of occurrence (A) and associated uncertainty (B, 
coefficient of variation) from jSDM modelling. Black dots show sites at which the taxon was present in the photographic 
survey dataset. 
 

 
 
Figure 2.44: Cidaroida (pencil urchins, CID) - Predicted abundance (A) and associated uncertainty (B, standard 
deviation) from jSDM modelling.  
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Figure 2.45: Holothuroidea (sea cucumbers, HTH) - Predicted probability of occurrence (A) and associated uncertainty 
(B, coefficient of variation) from jSDM modelling. Black dots show sites at which the taxon was present in the 
photographic survey dataset. 
 
 

 
 
Figure 2.46: Holothuroidea (sea cucumbers, HTH) - Predicted abundance (A) and associated uncertainty (B, standard 
deviation) from jSDM modelling.  
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Figure 2.47: Xenophyophoroidea (giant foraminiferans, ZFR) - Predicted probability of occurrence (A) and associated 
uncertainty (B, coefficient of variation) from jSDM modelling. Black dots show sites at which the taxon was present in 
the photographic survey dataset. 
 
 

 
 
Figure 2.48: Xenophyophoroidea (giant foraminiferans, ZFR) - Predicted abundance (A) and associated uncertainty 
(B, standard deviation) from jSDM modelling. 
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Figure 2.49: Hydrozoa (hydroids, HDR) - Predicted probability of occurrence (A) and associated uncertainty (B, 
coefficient of variation) from jSDM modelling. Black dots show sites at which the taxon was present in the photographic 
survey dataset 
 
 

 
 
Figure 2.50: Hydrozoa (hydroids, HDR) - Predicted abundance (A) and associated uncertainty (B, standard deviation) 
from jSDM modelling.  
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Figure 2.51: Volutidae (volute snails, VOL) - Predicted probability of occurrence (A) and associated uncertainty (B, 
coefficient of variation) from jSDM modelling. Black dots show sites at which the taxon was present in the photographic 
survey dataset. 
 
 

 
 
Figure 2.52: Volutidae (volute snails, VOL) - Predicted abundance (A) and associated uncertainty (B, standard 
deviation) from jSDM modelling.  
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Figure 2.53: Demospongiae (common sponges, DEM) - Predicted probability of occurrence (A) and associated 
uncertainty (B, coefficient of variation) from jSDM modelling. Black dots show sites at which the taxon was present in 
the photographic survey dataset. 
 
 

 
 
Figure 2.54: Demospongiae (common sponges, DEM) - Predicted abundance (A) and associated uncertainty (B, 
standard deviation) from jSDM modelling.  
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Figure 2.55: Asteroidea (sea stars, ASR) - Predicted probability of occurrence (A) and associated uncertainty (B, 
coefficient of variation) from jSDM modelling. Black dots show sites at which the taxon was present in the photographic 
survey dataset. 
 
 

 
 
Figure 2.56: Asteroidea (sea stars, ASR) - Predicted abundance (A) and associated uncertainty (B, standard deviation) 
from jSDM modelling.  
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Figure 2.57: Paguridae (hermit crabs, PAG) - Predicted probability of occurrence (A) and associated uncertainty (B, 
coefficient of variation) from jSDM modelling. Black dots show sites at which the taxon was present in the photographic 
survey dataset. 
 
 

 
 
Figure 2.58: Paguridae (hermit crabs, PAG) - Predicted abundance (A) and associated uncertainty (B, standard 
deviation) from jSDM modelling.  
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APPENDIX 3 
 

  
 
Figure 3.1: Variance partitioning of the explanatory variables and a random spatial effect for models fitted with 
presence / absence (left, units Tjur R2) and abundance data (right, units R2) for each taxon.  
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