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PĀUA (PAU 2) − Wairarapa / Wellington / Taranaki  
 

(Haliotis iris) 
Pāua 

 

 
 
1. FISHERY SUMMARY 
 
PAU 2 was introduced into the Quota Management System in 1986–87 with a TACC of 100 t. As a result 
of appeals to the Quota Appeal Authority, the TACC was increased to 121.19 t in 1989 and has remained 
unchanged to the current fishing year (Table 1). There is no TAC for this QMA; before the Fisheries Act 
(1996), a TAC was not required. When changes have been made to a TACC after 1996, stocks have 
been assigned a TAC. 
 
Table 1:  Total allowable catches (TAC, t), allowances for customary fishing, recreational fishing, and other sources of 

mortality (t), and Total Allowable Commercial Catches (TACC, t) declared for PAU 2 since introduction to 
the Quota Management System (QMS). 

 
Year TAC Customary Recreational Other mortality TACC 
1986–1989 – – – – 100 
1989–present – – – – 121.19 

 
1.1 Commercial fisheries 
The fishing year runs from 1 October to 30 September. Most of the commercial catch comes from the 
Wairarapa and Wellington South coasts between Castlepoint and Turakirae Head. The western area 
between Turakirae Head and the Waikanae River is closed to commercial fishing. 
 
On 1 October 2001 it became mandatory to report catch and effort on PCELRs using the fine-scale 
reporting areas that had been developed by the New Zealand Pāua Management Company for their 
voluntary logbook programme (Figure 1). Landings for PAU 2 are shown in Table 2 and Figure 2. 
Landings have been at or very close to the TACC since 1988–89. 
 
1.2 Recreational fisheries 
The most recent recreational fishery survey “The National Panel Survey of Marine Recreational Fishers 
2017–18: Harvest Estimates” Wynne-Jones et al (2019), estimated that about 83 t of pāua were harvested 
by recreational fishers in PAU 2 in 2017–18. 
 
Because pāua around Taranaki are naturally small and never reach the minimum legal size (MLS) of 
125 mm, a new MLS of 85 mm was introduced for recreational fishers from 1 October 2009. The new 
length was on a trial basis for five years and now applies between the Awakino and Wanganui rivers. 
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For further information on recreational fisheries refer to the introductory PAU Working Group Report. 
 

 
Figure 1:Map of fine-scale statistical reporting areas for PAU 2. 
 
Table 2: TACC and reported landings (t) of pāua in PAU 2 from 1983–84 to the present. 
 

Fishing year Landings TACC 
1983–84* 110 – 
1984–85* 154 – 
1985–86* 92 – 
1986–87* 96.2 100 
1987–88* 122.11 111.33 
1988–89* 121.5 120.12 
1989–90 127.28 121.19 
1990–91 125.82 121.19 
1991–92 116.66 121.19 
1992–93 119.13 121.19 
1993–94 125.22 121.19 
1994–95 113.28 121.19 
1995–96 119.75 121.19 
1996–97 118.86 121.19 
1997–98 122.41 121.19 
1998–99 115.22 121.19 
1999–00 122.48 121.19 
2000–01 122.92 121.19 
2001–02 116.87 121.19 
2002–03 121.19 121.19 
2003–04 121.06 121.19 
2004–05 121.19 121.19 
2005–06 121.14 121.19 
2006–07 121.20 121.19 
2007–08 121.06 121.19 
2008–09 121.18 121.19 
2009–10 121.13 121.19 
2010–11 121.18 121.19 
2011–12 120.01 121.19 
2012–13 122.00 121.19 
2013–14 120.00 121.19 
2014–15 115.00 121.19 
2015–16 123.74 121.19 
2016–17 123.69 121.19 
2017–18 113.87 121.19 
2018–19 122.89 121.19 
2019–20 122.28 121.19 

* FSU data. 
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Figure 2:Historical landings and TACC for PAU 2 from 1983–84 to the present. QMS data from 1986 to present.  
 
1.3 Customary fisheries 
Estimates of customary catch for PAU 2 are given in Table 3. These numbers are likely to be an 
underestimate of customary harvest because only the catch in kilograms and numbers are reported in 
the table. 
 
Table 3: Fisheries New Zealand records of customary harvest of pāua (reported as weight (kg) and numbers) of pāua 

in PAU 2 between 1998-99 and 2018-19. – no data. 
 

 Weight (kg)  Numbers 
Fishing year Approved Harvested  Approved Harvested 
      
1998–99 40 40  – – 
1999–00 – –  1 400 820 
2000–01 – –  – – 
2001–02 – –  – – 
2002–03 – –  – – 
2003–04 – –  4 805 4 685 
2004–05 – –  2 780 2 440 
2005–06 – –  5 349 4 385 
2006–07 – –  7 088 3 446 
2007–08 – –  11 298 6 164 
2008–09 – –  30 312 24 155 
2009–10 – –  5 505 4 087 
2010–11 – –  20 570 17 062 
2011–12 243 243  29 759 23 932 
2012–13 10 6  51 275 27 653 
2013–14 – –  61 486 30 129 
2014–15 – –  25 215 16 449 
2015–16 – –  11 540 6 383 
2016–17 – –  13 698 6 877 
2017–18 – –  6 960 1 942 
2018–19 – –  8 565 3 189 

 
For further information on customary fisheries refer to the introductory PAU Working Group Report. 
 
1.4 Illegal catch 
It is widely believed that the level of illegal harvesting is high around Wellington and on the Wairarapa 
coast. For further information on illegal catch refer to the introductory PAU Working Group Report. 
 
 
1.5 Other sources of mortality 
For further information on other sources of mortality refer to the introductory PAU Working Group 
Report.  
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2. BIOLOGY 
 
For further information on pāua biology refer to the introductory PAU Working Group Report. A 
summary of published estimates of biological parameters for PAU 2 is presented in Table 3.  
 
Table 4: Estimates of biological parameters (H. iris) 
 

Area  Estimate Source 
1. Size at maturity (shell length)    
Wellington 50% mature 71.7 mm  Naylor et al (2006) 
Taranaki 50% mature 58.9 mm Naylor & Andrew (2000) 
Meta-analysis for fished areas (all 
QMAs) 

50% mature 90.5 mm Neubauer & Tremblay-Boyer (2019a) 

   
2. Fecundity = a (length)b (eggs, shell length in mm)   
Taranaki  a = 43.98 b = 2.07 Naylor & Andrew (2000) 
    
3. Exponential growth parameters (both sexes combined)   
Wellington g50  30.58 mm Naylor et al (2006) 
 g100  14.8 mm  
Taranaki G25  18.4 mm Naylor & Andrew (2000) 
 G75  2.8 mm  
Assessment fit for commercially 
fished area 

G75 14.01 mm 
(SE 1.36mm) 

Neubauer (in press) 

 G125 2.00 mm 
(SE 0.30 mm) 

 

 
 
3. STOCKS AND AREAS 
 
For further information on stocks and areas refer to the introductory PAU Working Group Report. 
 
 
4.  STOCK ASSESSMENT 
 
In 2020, the Shellfish Fisheries Assessment Working Group evaluated the overall CPUE trend and 
concluded (given experience with other QMAs) that the data were potentially sufficient to conduct a 
full length-based stock assessment in line with those run for other QMAs (e.g., Neubauer & Tremblay-
Boyer 2019b, Neubauer 2020a). However, the Fisheries Assessment Plenary considered the stock 
assessment results to be insufficiently robust given concerns about the choice of the base-case scenario 
and sensitivities, and issues with use of the early CPUE data (i.e., FSU and CELR data). Concerns were 
also raised about the validity of region-wide CPUE and Catch Sampling Length-Frequency (CSLF) 
trends given the fine-scale stock structure of pāua.  An updated model addressing concerns raised in the 
2020 plenary was presented to plenary in May 2021, including updated data to the 2020 fishing year. 
 
4.1  Relative abundance estimates from standardised CPUE analyses 
A combined series of standardised CPUE indices CELR (1990–2001) data and PCELR (2002–2020) data 
was considered for the 2021 stock assessment. However, the Plenary concluded that the CELR analysis 
was unlikely to represent biomass trends and also that the 2019–2020 PCELR data were likely to be 
inconsistent with earlier years in the series, because of COVID-19 effects on export markets and 
Electronic Reporting System (ERS) reporting issues, and should therefore be excluded.  
 
There was little evidence in the data for serial depletion at statutory reporting scales; all main areas (i.e., 
excluding sporadically fished northern areas) were fished consistently throughout the time series 
(Figure 3). 
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Figure 3: Relative trend in pāua catch (kg) over time by statistical areas in quota management area PAU 2 for the 

period from 2002 to 2020, with mean commercial catch over the same time period (right-hand side). Statistical 
areas used for the stock assessment within PAU 2 are colour-coded as gold for Statistical Areas 015 & 016 
and blue for the northern Statistical Area 014; the latter area is small and less consistently fished, and was 
excluded from the stock assessment (but included in CPUE analyses). 

 
CPUE standardisation was carried out using Bayesian Generalised Linear Mixed Models (GLMM) which 
partitioned variation among fixed (research strata) and random variables. CPUE was defined as the log of 
daily catch within a statistical area. Variables in the model were fishing year, estimated fishing effort, 
client number, research stratum, dive condition, diver ID (PCELR), and fine-scale statistical area.  
 
Following recommendations from the 2020 plenary, the 2021 CPUE analysis introduced a client 
experience effect, estimated as a smoothing spline across years that individual clients (usually referring to 
ACE-holders/boat-owners) had been active in the fishery. The latter was determined across CELR and 
PCELR data. This effect was found to have a large influence on the CPUE index for CELR data, and the 
plenary chose not to retain this index because it is unclear to what degree changes in abundance and 
changes in the fishery at the time are confounded, and in how far the standardisation model can correct 
for the latter, even in the presence of an experience effect (this effect may itself be confounded with trends 
in biomass).  
 
For the retained PCELR index, changes over time in ACE-holders present in the fishery had the strongest 
influence on CPUE (Figure 4). An initial decline was evident from the early part of the PCELR time 
series, with relatively stable but fluctuating CPUE since 2007 (Figure 5). In some circumstances, 
commercial CPUE may not be proportional to abundance because it is possible to maintain catch rates of 
pāua despite a declining biomass. This occurs because pāua tend to aggregate and divers move between 
areas to maximise their catch rates. The apparent stability in the CPUE should therefore be interpreted 
with caution. 
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Figure 4: Influence of client number (usually ACE holders) turnover on the PCELR CPUE index through time. A 

positive influence for any given year suggests that the raw CPUE is inflated because most effort came from 
clients with higher catch rates in the fishery. 

 

 
 

Figure 5: Standardised CPUE index for PCELR data, with posterior mean and standard errors. 
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4.2 Stock assessment methods  
The 2021 stock assessment for PAU 2 used an updated version of the length-based population dynamics 
model described by Breen et al (2003), catch and  commercial length-frequency data up to the 2019–20 
fishing year, as well as the above-mentioned CPUE index for fishing years 2002–2019 (Neubauer 
2020b). Although the overall population dynamics model remained unchanged from Breen et al (2003), 
the PAU 2 stock assessment incorporates changes to the previous methodology first introduced in the 
2018 assessment of PAU 5D (Neubauer & Tremblay-Boyer 2019b). In addition, illegal and recreational 
catch were, for the first time, split from commercial catch, and illegal catch was modeled as taking pāua 
in proportion to abundance rather than according to commercial selectivity. 
 
The model structure assumed a single-sex population residing in a single homogeneous area, with length 
classes from 70 mm to 170 mm in groups of 2 mm, although a spatial version of the assessment model 
(Neubauer 2020a) was also tried in 2019. The latter provided near identical results to the non-spatial 
model and was not pursued in 2021. 
 
Growth was length-based, without reference to age, mediated through an estimated growth transition 
matrix that describes the probability of each length class to change at each time step. A growth prior 
was formulated from a meta-analysis of pāua growth across fished areas in New Zealand (Neubauer & 
Tremblay-Boyer 2019a), and the functional form of the resulting growth was encoded in a multivariate 
normal (Gaussian process) prior on the growth transition matrix. Pāua entered the partition following 
recruitment and were removed by natural mortality and fishing mortality. 
 

 
Figure 6: Assumed catch histories for southern (gold circles in Figure 3) and northern (blue circles in Figure 3) 

statistical areas. Grey shading indicates components of the total catch, with the dotted line showing the base 
case assumption of total catch, including unreported catches prior to QMS entry of PAU 2, and the dashed 
line showing a sensitivity with high assumed pre-QMS catches. The reported catches (grey area only) were 
taken as a second sensitivity. 

 
The model simulates the population from 1965 to 2020. Catches were available for 1974–2020, though 
catches before 1990 are considered highly uncertain. Interviews with divers at the time suggested that 
mis-reporting was prevalent in early years preceding the Quota Management System (i.e., before 1986), 
and that a considerable amount of catch was unreported at the time. Three different catch levels were 
tried to account for this uncertainty in the assessment, and catches were assumed to increase linearly 
from 0 in 1965 to the 1974 catch level (Figure 6). Catches included commercial, recreational, 
customary, and illegal catch, and all catches occurred within the same time step. Illegal catch was 
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assumed to be constant at 10 t for the commercially fished area (South Wairarapa), whereas recreational 
catch increased from the start of the fishery to 1974 and remained at 10 t for the remainder of the time 
series. 
 
Recruitment was assumed to take place at the beginning of the annual cycle, with recruitment deviates 
estimated from 2000 to 2017, and length-at-recruitment was defined by a uniform distribution with a 
range between 70 and 80 mm. Natural mortality was fixed at 0.11, with sensitivities at 0.06 and 0.16 
bracketing a priori assumptions about natural mortality. The model estimated the commercial fishing 
selectivity, assumed to follow a logistic curve, with increases in recent years due to changes in the 
minimum harvest size in some areas. Models with variable (random effect) selectivity were also tried, 
and though they improved fits to commercial length frequency data, they did not markedly change the 
overall assessment of biomass trends. The model was initiated with likelihood weights that were found 
to lead to subjectively appropriate fits to both CPUE and CSLF inputs in other areas (PAU 5, PAU 7), 
and relative fits for CPUE and CSLF data were examined, based on model fits and residuals.  
 
The assessment calculates the following quantities from the marginal posterior distributions of various 
partitions of the biomass: the equilibrium (unfished) spawning stock biomass (SSB0) assuming that 
recruitment is equal to the average recruitment, and the relative spawning and available biomass for 
2019 (SSB2019 and BProjAvail) and for the projection (Proj) period (SSBProj and 𝐵𝐵𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴). This assessment 
also reports the following fishery indicators: 
 
Relative SSB Estimated spawning stock biomass in the final year relative to unfished spawning stock biomass 

Relative BAvail Estimated available biomass in the final year relative to unfished available stock biomass 

P(SSB2019 > 40% SSB0) Probability that the spawning stock biomass in 2019 was greater than 40% of the unfished 
spawning stock 

P(SSB2019 > 20% SSB0) Probability that the spawning stock biomass in 2019 was greater than 20% of the unfished 
spawning stock (soft limit) 

P(SSBProj > 40% SSB0) Probability that projected future spawning stock biomass will be greater than 40% of the 
unfished spawning stock given assumed future catches 

P(SSBProj > 20% SSB0) Probability that projected future spawning stock biomass will be greater than 20% of the 
unfished spawning stock given assumed future catches 

P(BProj > B2018) Probability that projected future biomass (spawning stock or available biomass) is greater than 
estimated biomass for the 2018 fishing year given assumed future catches 

 
4.2.1 Estimated parameters  
Parameters estimated in the assessment model and their assumed Bayesian priors are summarized in 
Table 4. 

Table 4: A summary of key model parameters, lower bound, upper bound, type of prior, (U, uniform; N, normal; LN 
= lognormal; Beta = beta distribution), and mean and standard deviation of the prior. 

      Bounds 
Parameter Prior µ sd Lower Upper 
ln(R0) LN 14 10   
ln(q) LN -14 100   
M fixed 0.11  0.06 0.16 
Steepness (h) Beta 0.8 0.17 0 1 
Growth MVN From Neubauer & Tremblay-Boyer (2019) 
D50 (Length at 50% selectivity for recreational and commercial 
catch before adjustments for commercial minimum harvest size) LN 125 6.25 100 145 

D95-50 (Length between 50% and 95% selectivity the commercial 
catch) LN 5.6 3 0.01 50 

ln(ϵ) (Recruitment deviations; 2000-2017)  LN 0 0.4  - 
 
The observational data were: 

• A standardised CPUE series covering 2002–2019 based on PCELR data. 
• Commercial catch sampling length frequency from 2006 to 2020 
• Catches were assumed known at three levels 
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4.3 Stock assessment results 
The base model with M=0.11 and estimated growth gave a relatively good fit to CPUE and CSLF data, 
although the first year of PCELR CPUE was not fitted well by this model or any sensitivities. This lack 
of fit is due to constraints on recruitment deviations that were estimated from 2000, given LF data are 
available in sufficient numbers since 2006. Since recruitment into the model occurs between 70 and 
80 mm (assumed to be 3 year olds), these individuals would only appear in the commercial data as 
about 6 year olds, and recruitment would likely need to be freed up back to 1996 to fit these points. Fits 
to recent CSLF data (2019, 2020) were also slightly worse than for other years, potentially due to 
changes in markets and resulting selectivity. Model sensitivities with low M (0.06) fitted CSLF data 
poorly, and estimated very slow growth, indicating that this assumption is not consistent with data and 
assumptions about growth in fished areas. 
 

 
Figure 7: Posterior distributions of relative spawning stock biomass (SSB, left panel) and trends in relative commercial 

exploitation rate (right panel) in the base case model. Exploitation rate (U) is relative to the exploitation rate 
that would result in a stock depletion to 40% of unfished spawning biomass (U40). The dark purple line shows 
the median of the posterior distribution, the 25th and 75th percentiles are shown as dark ribbons, with light 
ribbons representing the 95% confidence range of the distribution. 

 

 
Figure 8: Posterior median of spawning stock biomass (SSB; left panel) from model with different levels of natural 

mortality. 
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Figure 9: Posterior median of relative spawning stock biomass (SSB; left panel) from model with different levels of 
natural mortality. 

 
Table 5: Projections for key fishery indicators from the base case model: probabilities of being above 40% and 20% 

of unfished spawning biomass (SSB) [P(SSBProj > 40% SSB0) and P(SSBProj > 20% SSB0)], the probability that 
SSB in the projection year is above current SSB, the posterior mean relative to SSB, the posterior mean 
relative available spawning biomass 𝑩𝑩𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨, and the probability that the exploitation rate (U) in the projection 
year is above U40% SSB0, the exploitation rate that leads to 40% SSB0. The total commercial catch (TCC) 
marked with * corresponds to current commercial catch (TACC at 121 t). Other projection scenarios show 
20% catch reduction to 97 t and a 20% TACC increase (145 t). 

 

TACC (t) Year 
P(SSBProj > 

 40% SSB0) 
P(SSBProj > 

 20% SSB0) 
P(SSBProj > 

 SSB2020) 
Median rel. 

SSBProj  
Median rel. 
𝐵𝐵𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 

P(U > 
 U40% SSB0) 

97 2021 0.96 1 0.04 0.53 0.37 0.04 
 2022 0.96 1 0.27 0.53 0.37 0.04 
 2023 0.96 1 0.44 0.54 0.38 0.04 
 2024 0.96 1 0.54 0.54 0.38 0.03 
 2025 0.96 1 0.57 0.55 0.39 0.03 

121 2021 0.96 1 0.04 0.53 0.37 0.08 
 2022 0.95 1 0.13 0.53 0.37 0.08 
 2023 0.94 1 0.22 0.53 0.36 0.09 
 2024 0.93 1 0.28 0.53 0.36 0.09 
 2025 0.92 1 0.32 0.53 0.36 0.09 

145 2021 0.96 1 0.04 0.53 0.37 0.14 
 2022 0.94 1 0.05 0.52 0.36 0.16 
 2023 0.92 1 0.11 0.52 0.35 0.19 
 2024 0.89 1 0.14 0.51 0.34 0.21 
 2025 0.86 1 0.15 0.5 0.33 0.23 

 
The base model estimated a steady reduction in spawning biomass from the beginning of the fishing 
history (assumed to be 1965) to the mid-2000s (Figure 7), with a relatively steady biomass since, 
reflecting the relatively stable CPUE (Figure 5) and catch (Figure 6) since then. The model estimates 
that the stock stabilised near 50% of the unfished spawning biomass, with a relatively stable recent 
exploitation rate (Figure 8). 
 
Alternative models investigated uncertainty in M. These models differed in the estimated growth, with 
the low-M model estimating very slow growth to fit commercial length frequency data. As a 
consequence, the model estimates much higher biomass than at higher M to sustain observed catches at 
stable CPUE. Despite these differences, all models suggest that current stock status is above the target 
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of 40% of unfished biomass. Projections for the base case model suggest unchanged biomass at current 
exploitation levels (121 t of commercial catch, Table 5). 
 
4.5 Other factors 
To run the stock assessment model, a number of assumptions must be made, one of these being that CPUE 
is a reliable index of abundance. The literature on abalone fisheries suggests that this assumption is 
questionable and that CPUE is difficult to use in abalone stock assessments due to the serial depletion 
behaviour of fishers along with the aggregating behaviour of abalone. Serial depletion is when fishers 
consecutively fish-down beds of pāua but maintain their catch rates by moving to new unfished beds; 
thus CPUE stays high while the overall population biomass is actually decreasing. The aggregating 
behaviour of pāua results in the timely re-colonisation of areas that have been fished down, as the cryptic 
pāua, that were unavailable at the first fishing event, move to and aggregate within the recently depleted 
area. Both serial depletion and aggregation behaviour cause CPUE to have a hyperstable relationship 
with abundance (i.e., abundance is decreasing at a faster rate than CPUE) thus potentially making CPUE 
a poor proxy for abundance. The strength of the effect that serial depletion and aggregating behaviour 
have on the relationship between CPUE and abundance in PAU 2 is difficult to determine. However, 
because fishing has been consistent in for a number of years and effort has been reasonably well spread, 
it could be assumed that CPUE is not as strongly influenced by these factors, relative to the early CPUE 
series. 
 
The assumption of CPUE being a reliable index of abundance in PAU 2 can also be upset by exploitation 
of spatially segregated populations of differing productivity. This can conversely cause non-linearity 
and hyper-depletion in the CPUE-abundance relationship, making it difficult to accurately track 
changes in abundance by using changes in CPUE as a proxy.  
 
Another source of uncertainty is the data. The commercial catch is unknown before 1974 and is 
estimated with uncertainty before 1990. The model assumes that catches were higher than those 
reported for the early period of the fishery (1980s) to account for large discrepancy between export and 
reported catch by QMA. Major differences may exist between the catches assumed in the model and 
what was actually taken. Non-commercial catch trends, including illegal catch, are also very poorly 
determined and could be substantially different from what was assumed.  
 
The model treats the whole of the assessed area of PAU 2 as if it were a single stock with homogeneous 
biology, habitat, and fishing pressure. The model assumes homogeneity in recruitment and natural 
mortality. Heterogeneity in growth can be a problem for this kind of model (Punt 2003). Nevertheless, 
the spatial three area model trialed in 2019 showed near identical trends to the single area model, and 
variation in growth is likely addressed to some extent by having a stochastic growth transition matrix; 
similarly the length frequency data are integrated across samples from many places. Nevertheless, 
length frequency data collected from the commercial catch may not represent the available biomass 
represented in the model with high precision. 
 
The effect of these factors is likely to make model results imprecise at a local scale. For instance, if 
some local stocks are fished very hard and others not fished, recruitment failure can result because of 
the depletion of spawners, because spawners must breed close to each other, and the dispersal of larvae 
is unknown and may be limited. Recruitment failure is a common observation in overseas abalone 
fisheries, and the current model does not account for such local processes that may decrease recruitment. 
 
4.2  Future research considerations 
The Plenary considered that the stock assessment model was promising, but that it needed extra work 
before it could be accepted.  Accordingly, the following research considerations are split into those that 
should be implemented using existing data, and those related to longer term considerations (most of 
which are also applicable to other PAU stocks). 
 
Short term 

• Investigation of alternative non-informative priors in CPUE analysis 
• Explore changes in fisher catachability over time (including changing fisher experience, new 

technology, increasing professionalism) across all PAU fisheries 
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• Describe effective scaling, and how it’s used to estimate size composition of removals (relevant 
for all PAU assessments). Explore the potential of incorporating seasonal effects into the 
standardisation model for length compositions. 

• More tagging is needed in a larger number of representative strata/areas to estimate growth. 
• It is unclear whether a single area model (and an aggregate CPUE index) can adequately 

represent biomass trends for the many sub-populations in PAU stocks. Spatial use trends and 
variability in biomass trends can induce both positive and negative bias in CPUE, and more 
sophisticated models may be needed to counter these biases (e.g., spatio-temporal models, 
Neubauer 2017). Similarly, finer-scale assessment models should be considered to account for 
potentially different trends within small-scale populations components, although this is difficult 
when there are inadequate data to support spatial assessments. 

• Re-investigation of value of fishery-independent data (timed swim surveys) for PAU, with view 
to develop series for PAU 2. This might include sub legal population surveys/sampling. 

• Explore sensitivity to alternative growth assumptions and growth rates. 
• Investigate implications of non-stationary selectivity 

 
Longer term 

• It is unclear to what degree large scale aggregate statistics of commercial length frequency 
distributions represent changes in the overall length composition of the fishery. Although 
standardisation of CSLF was carried out for the attempted stock assessment, systematic 
deviations from stock assessment model expectations point to potential problems with the use 
of aggregate CSLF data. 

• Paua growth is known to be temperature dependent. With warming and increasing heat waves 
linked to global warming, pāua fisheries could see reductions in long-term productivity linked 
with direct (physiological) and indirect (bottom-up) changes in the environment. The extent of 
these changes and potential fishery interactions should be investigated. 

 
 
5. STATUS OF THE STOCKS 
 
Stock Structure Assumptions 
A genetic discontinuity between North Island and South Island pāua populations was found 
approximately around the area of Cook Strait (Will & Gemmell 2008).  
 
The PAU 2 assessment described here applies to the south east component of the region (Wairarapa 
coast), encompassed by the region between pāua statistical reporting areas P212–P236.   
 
• PAU 2 - Haliotis iris 
 
Stock Status 
Year of Most Recent Assessment 2021 
Assessment Runs Presented Base case: length-based Bayesian stock assessment 
Reference Points Target: 40% B0 (Default as per HSS) 

Soft Limit: 20% B0 (Default as per HSS) 
Hard Limit: 10% B0 (Default as per HSS) 
Overfishing threshold: U40%B0 

Status in relation to Target Likely (> 60%) to be at or above 
Status in relation to Limits B2020 is Very Unlikely (< 10%) to be below the soft and 

hard limits 
Status in relation to Overfishing Overfishing is Very Unlikely (< 10%) to be occurring 
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Historical Stock Status Trajectory and Current Status 

 
 Posterior medians of relative stock status (spawning stock biomass (SSB) depletion level relative to unfished biomass 
(SSB0)) and exploitation rate (U), relative to the exploitation rate that would result in a stock depletion to 40% of 
unfished biomass (U40).  

 
Fishery and Stock Trends 
Recent Trend in Biomass or Proxy Spawning stock biomass has fluctuated without a long-term 

trend since the early 2000s. 
Recent Trend in Fishing Mortality or 
proxy Fluctuating without trend 

Other Abundance Indices - 
Trends in Other Relevant Indicators or 
Variables 

Commercial length frequency data (CSLF) have shown 
stable length frequency distributions since the early 2000s, 
with slight increases in recent CSLF lengths possibly due to 
market demands and catch-spreading arrangements. 

 
Projections and Prognosis 

Stock Projections or Prognosis At current catch levels and given the recent trend, the stock 
would continue to fluctuate without trend. 

Probability of Current Catch or TACC 
causing Biomass to remain below or to 
decline below Limits 

Soft Limit: Very Unlikely (< 10%) 
Hard Limit: Very Unlikely (< 10%) 

Probability of Current Catch or TACC 
causing Overfishing to continue or 
commence 

Very Unlikely (< 10%) 
 

 
Assessment Methodology 
Assessment Type Level 1 - Full Quantitative Stock Assessment 
Assessment Method Bayesian length-based stock assessment 
Period of Assessment Latest assessment: 2021 Next assessment: 2025 
Overall assessment quality 
rank 1 – High Quality 

Main data inputs (rank) - CPUE indices PCELR 
series 
- Commercial sampling 
length frequencies  

1 – High Quality 
 
1 – High Quality 
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Data not used (rank) CELR CPUE series 
 
 
 
FSU CPUE series 

3 – Low Quality: variable 
catchability and changes in 
technology 
 
3 – Low Quality: poor recording 

Changes to Model Structure 
and Assumptions This represents the first accepted assessment model for PAU 2  

Major Sources of Uncertainty Growth is known to vary spatially over small scales, and it is 
unclear how representative the available samples are of the PAU 2 
fishery area. 
Recruitment: length composition data available to the stock 
assessment provide little information about relative year class 
strengths. 
The assessment model is sensitive to natural mortality, which is 
poorly quantified. 
Early catch history: Pre QMS pāua exports exceeded catches 
reported to FMAs, and it is unclear which areas these catches came 
from. 
Selectivity in the commercial fishery has varied spatially and over 
time as voluntarily agreed Minimum Harvest Size (MHS) has 
changed. Different MHSs have been applied to different statistical 
areas within the assessed area in the same year. 

 
Qualifying Comments 
A large proportion of PAU 2, including the Wellington south coast and west of Turakirae, is either a 
marine reserve or voluntarily closed to commercial fishing. This means that the data collected from 
the commercial fishery are exclusive of this large area and therefore the assessment only applies to 
the south east component of PAU 2 (Wairarapa). 
Lack of contrast in catch, CPUE, and length frequency makes estimation of stock status and biomass 
trajectories difficult. 
The 2019–20 year was excluded from the PCELR CPUE series owing to concerns about the 
comparability with previous years due to the effects of COVID-19 on export markets, and ERS 
reporting issues. This may continue into the future. 

 
Fishery Interactions 
- 
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