(Haliotis iris)

Pāua

1. FISHERY SUMMARY

PAU 4 was introduced into the Quota Management System (QMS) in 1986-87 with a TACC of 261 t . The TACC was increased to 269 t in 1987-88, 271 t in 1988-89, and 287 in 1989-90. As a result of appeals to the Quota Appeal Authority, the TACC was further increased in 1995-96 to 326 t and has remained unchanged to the current fishing year (Table 1). Before the Fisheries Act (1996) a TAC was not required, and only a TACC was required when PAU 4 entered the QMS.

As a result of a court injunction a review of sustainability measures was undertaken for the 2019-20 fishing year, beginning 1 October 2019. The agreement reached resulted in a TAC, as well as allowances for Māori customary and recreational fishers being set. The TAC was set at 334 t , the TACC at 326.543 t , other mortality at 2 t , customary allowance at 3 t , and the recreational allowance at 3 t .

Because the pāua biomass appears to be declining, the PAU 4 Fishery Plan (approved in 2019 under section 11A of the Fisheries Act 1996) provides a commitment by PAU 4 quota owners to shelve 40% of the PAU 4 ACE.

Table 1: Total allowable catches (TAC, t) allowances for customary fishing, recreational fishing, and other sources of mortality (\mathbf{t}) and Total Allowable Commercial Catches (TACC, t) declared for PAU 4 since introduction into the QMS.

Year	TAC	Customary	Other Recreational mortality			TACC
$1986-1987$	-	-	-	-	261	
$1987-1988$	-	-	-	-	269	
$1988-1989$	-	-	-	-	271	
$1989-1995$	-	-	-	-	287	
$1995-2019$	-	-	-	-	326	
2019 onwards	334	3	3	2	326	

PĀUA (PAU 4)

1.1 Commercial fisheries

The fishing year runs from 1 October to 30 September. On 1 October 2001 it became mandatory to report catch and effort on PCELRs using fine-scale reporting areas that had been developed by the New Zealand Pāua Management Company for their voluntary logbook programme (see figure above).

At the beginning of the 2009-10 fishing year, reporting of catch in PAU 4 was changed from reporting in greenweight to reporting in meatweight. The TACC is still set in greenweight but fishers are now required to report greenweight catch that is estimated from the meatweight measured by the licensed fish receiver (LFR). The meatweight to greenweight conversion factor is 2.50 (equivalent to 40% meatweight recovery). The change was made to curb the practice of converting meatweight to landed greenweight after shucking to obtain artificially high recovery rates. It was also made to encourage catch spreading by making it commercially viable for fishers to harvest areas where shells are heavily fouled and meatweight recovery is low. Heavy fouling on shells is a problem that occurs in a number of areas around the Chatham Islands. However, this reporting requirement was changed back to greenweight at the beginning of the 2017-18 year.

Reported landings have remained below the TACC since 2010-11, averaging 276 t in 2010-11 to 201617 before decreasing to 203 t in 2017-18, 185 t in 2018-19 and 188 t in 2019-20. Landings for PAU 4 are shown in Table 2 and Figure 1.

Table 2: TACC and reported landings (t) of pāua in PAU 4 from 1983-84 to the present.

Year	Landings 1983-84*	TACC
1984-85*	409.00	-
1985-86*	278.00	-
$1986-87^{*}$	221.00	-
$1987-88^{*}$	267.37	261.00
$1988-89^{*}$	279.57	269.08
$1989-90$	284.73	270.69
$1990-91$	287.38	287.25
$1991-92$	253.61	287.25
$1992-93$	281.59	287.25
$1993-94$	266.38	287.25
$1994-95$	297.76	287.25
$1995-96$	282.10	287.25
$1996-97$	220.17	326.54
$1997-98$	251.71	326.54
$1998-99$	301.69	326.54
$1999-00$	281.76	326.54
$2000-01$	321.56	326.54
$2001-02$	326.89	326.54
$2002-03$	321.64	326.54
$2003-04$	325.62	326.54
$2004-05$	325.85	326.54
$2005-06$	319.24	326.54
$2006-07$	322.53	326.54
$2007-08$	322.76	326.54
$2008-09$	323.98	326.54
$2009-10$	324.18	326.54
$2010-11$	323.57	326.54
$2011-12$	262.15	326.54
$2012-13$	262.07	326.54
$2013-14$	263.33	326.54
$2014-15$	291.98	326.54
$2015-16$	295.16	326.54
$2016-17$	294.73	326.54
$2017-18$	264.63	326.54
$2018-19$	203.03	326.54
$2019-20$	185.06	326.54
* FSU data	188.47	326.54

Figure 1: Reported commercial landings and TACC for PAU 4 from 1983-84 to the present.

1.2 Recreational fisheries

There are no estimates of recreational catch for PAU4. The 1996, 1999-2000, and 2000-01 national marine recreational fishing surveys and the 2011-12 and the 2017-18 national panel surveys did not include PAU 4.

1.3 Customary fisheries

Estimates of customary catch for PAU 4 are shown in Table 3. These numbers are likely to be an underestimate of customary harvest because only the catch in kilograms and numbers are reported in the table.

For the 2004 stock assessment the customary catch was assumed to be zero.
For further information on customary fisheries refer to the introductory PAU Working Group Report.
Table 3: Reported customary landings (number of individuals) of pāua in PAU 4 from 2009-10 to 2018-19.- no data.

| | Weight (kg) | | | Numbers | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Fishing year | Approved | Harvested | | Approved | Harvested |
| $2009-10$ | - | - | | 635 | 635 |
| $2010-11$ | - | - | | - | - |
| $2011-12$ | - | - | | - | - |
| $2012-13$ | - | - | | - | - |
| $2013-14$ | - | - | | 110 | 110 |
| $2014-15$ | - | - | | 150 | 150 |
| $2015-16$ | - | - | | 320 | 120 |
| $2016-17$ | - | - | | 366 | 366 |
| $2017-18$ | 53 | 85 | | 820 | 764 |
| $2018-19$ | 330 | 330 | | - | - |
| $2019-20$ | - | - | | - | - |

1.4 Illegal catch

There are no estimates of illegal catch for PAU 4. For the 2004 stock assessment this catch was assumed to be zero. For further information on illegal catch refer to the introductory PAU Working Group Report.

1.5 Other sources of mortality

For further information on other sources of mortality refer to the introductory PAU Working Group Report.

2. BIOLOGY

For further information on pāua biology refer to the introductory PAU Working Group Report.

3. STOCKS AND AREAS

For further information on stocks and areas refer to the introductory PAU Working Group Report.

4. STOCK ASSESSMENT

4.1 Estimates of fishery parameters and abundance

A standardised CPUE analysis for PAU 4 (Fu 2010) from 1989-90 to 2007-08 was completed in February 2010.

The Shellfish Working Group (SFWG) agreed that, because of extensive misreporting of catch in PAU 4, catch and effort data from the Fisheries Statistical Unit and from the CELR and PCELR forms might be misleading in CPUE analyses and therefore, CPUE cannot be used as an index of abundance in this fishery.

4.2 Stock assessment 2004

The last stock assessment for PAU 4 was completed in 2004 (Breen \& Kim 2004). A Bayesian lengthbased stock assessment model was applied to PAU 4 data to estimate stock status and yield. A reference period from 1991-93 was chosen: this was a period after which exploitation rates increased and then leveled off, and after which biomass declined somewhat and then stabilised. It was not intended as a target. Assessment results suggested that then-current recruited biomass was just above $B_{A V}$, but with high uncertainty (83% to 125%). and current spawning biomass appeared higher than $S_{A V},(130 \%)$, but with cautions related to maturity ogives. Projections suggested that 2007 recruited and spawning biomasses could be above $B_{A V}$, but this was uncertain.

The SFWG advised that major uncertainties in the assessment required the results to be treated with great caution. The major uncertainties included very sparse research diver survey data, misreported CELR and PCELR data, growth and length frequency data most likely not being representative of the whole population, and the assumption that CPUE was an index of abundance.

In February 2010 the SFWG agreed that, because of the lack of adequate data as input into the Bayesian length-based model, a stock assessment for PAU 4 using this model was not appropriate.

4.3 Biomass estimates

There are no current biomass estimates for PAU 4.

4.4 Yield estimates and projections

There are no estimates of PAU 4.

5. STATUS OF THE STOCKS

Stock Structure Assumptions

H. iris individuals collected from the Chatham Islands were found to be genetically distinct from those collected from costal sites around the North and South Islands (Will \& Gemmell 2008).

PAU 4 - Haliotis iris

Stock Status	
Year of Most Recent Assessment	2004
Assessment Runs Presented	None
Reference Points	Target: $40 \% B_{0}$ (Default as per HSS) Soft Limit: $20 \% B_{0}$ (Default as per HSS) Hard Limit: $10 \% B_{0}$ (Default as per HSS) Overfishing threshold: U40\%B0
Status in relation to Target	Unknown

Status in relation to Limits	Unknown
Status in relation to Overfishing	Unknown

Historical Stock Status Trajectory and Current Status

In 2010 the SFWG rejected CPUE as an index of abundance, therefore the 2004 stock assessment (Breen \& Kim 2004) is no longer considered reliable.

Fishery and Stock Trends	
Recent Trend in Biomass or Proxy	Unknown
Recent Trend in Fishing Intensity or Proxy	Unknown
Other Abundance Indices	None
Trends in Other Relevant Indicators or Variables	None

Projections and Prognosis	
Stock Projections or Prognosis	The 2004 stock assessment is no longer considered reliable
Probability of Current Catch or TACC causing Biomass to remain below or to decline below Limits	Soft Limit: Unknown Hard Limit: Unknown
Probability of Current Catch or TACC causing Overfishing to continue or to commence	Unknown

Assessment Methodology and Evaluation

Assessment Type	Full Quantitative Stock Assessment, but subsequently rejected		
Assessment Method	Length-based Bayesian model		
Assessment Dates	Last assessment: 2004	Next assessment: No fixed date	
Overall assessment quality rank	3- Low Quality	3- Low Quality	
Main data inputs (rank)	Catch history CPUE indices	Tag recapture growth data Research diver abundance survey data 2- Medium Quality Research diver length frequency data	
	2- Medium Quality		
2- Medium Quality			

Fishery Interactions

6. FOR FURTHER INFORMATION

PĀUA (PAU 4)

Breen, P A; Kim, S W (2004) The 2004 stock assessment of paua (Haliotis iris) in PAU 4. New Zealand Fisheries Assessment Report 2004/55. 79 p .
Fu, D (2010) Summary of catch and effort data and standardised CPUE analyses for paua (Haliotis iris) in PAU 4, 1989-90 to 2007-08. New Zealand Fiseries Assessment Report 2008/01. 50 p.
Naylor, J R; Andrew, N L; Kim, S W (2003) Fishery independent surveys of the relative abundance, size-structure, and growth of paua (Haliotis iris) in PAU 4. New Zealand Fisheries Assessment Report 2003/08. 16 p.
Pirker, J G (1992) Growth, shell-ring deposition and mortality of paua (Haliotis iris Martyn) in the Kaikoura region. MSc thesis, University of Canterbury. 165 p .
Sainsbury, K J (1982) Population dynamics and fishery management of the paua, Haliotis iris. 1. Population structure, growth, reproduction and mortality. New Zealand Journal of Marine and Freshwater Research 16: 147-161.
Schiel, D R (1992) The paua (abalone) fishery of New Zealand. In: Shepherd, S A; Tegner, M J; Guzman del Proo, S (Eds.), Abalone of the World: Biology, fisheries, and culture. Blackwell Scientific, Oxford.
Schiel, D R; Breen, P A (1991) Population structure, ageing and fishing mortality of the New Zealand abalone Haliotis iris. Fishery Bulletin 89 : 681-691.
Will, M C; Gemmell, N J (2008) Genetic Population Structure of Black Foot paua. Final Research Report for project GEN2007A. 37 p. (Unpublished report held by Fisheries New Zealand).

