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1. FISHERY SUMMARY 
 
Before 1995, PAU 5D was part of the PAU 5 QMA, which was introduced into the QMS in 1986 with 
a TACC of 445 t. As a result of appeals to the Quota Appeal Authority, the TACC increased to 492 t 
for the 1991–92 fishing year; PAU 5 was then the largest QMA by number of quota holders and TACC. 
Concerns about the status of the PAU 5 stock led to a voluntary 10% reduction in the TACC in 1994–
95. On 1 October 1995, PAU 5 was divided into three QMAs (PAU 5A, PAU 5B, and PAU 5D; see 
figure above) and the TACC was divided equally among them; the PAU 5D quota was set at 148.98 t. 
 
On 1 October 2002 a TAC of 159 t was set for PAU 5D, comprising a TACC of 114 t, customary and 
recreational allowances of 3 t and 22 t respectively, and an allowance of 20 t for other mortality. The 
TAC and TACC have been changed since then, but customary, recreational and other mortality 
allowances have remained unchanged (Table 1). 
 
Table 1: Total allowable catches (TAC, t) allowances for customary fishing, recreational fishing, and other sources of 

mortality (t) and Total Allowable Commercial Catches (TACC, t) declared for PAU 5 and PAU 5D since 
introduction to the QMS. 

    

Year TAC Customary Recreational Other mortality TACC 

1986–1991* - - - - 445 

1991–1994* - - - - 492 

1994–1995* - - - - 442.8 

1995–2002 - - - - 148.98 

2002–2003 159 3 22 20 114 

2003–present 134 3 22 20 89 

*PAU 5 TACC figures 
 
1.1 Commercial fishery 
The fishing year runs from 1 October to 30 September. On 1 October 2001, it became mandatory to 
report catch and effort on Paua Catch Effort Landing Return (PCELR) forms using fine-scale reporting 
areas that had been developed by the New Zealand Pāua Management Company for their voluntary 
logbook programme (Figure 1). Since 2010, the commercial industry has adopted some voluntary 
management initiatives which include raising the minimum harvest size for commercial fishers over 
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specific statistical reporting areas. The industry has also voluntarily closed, to commercial harvesting, 
specific areas that are of high importance to recreational pāua fishers. In recent years commercial fishers 
have been voluntarily shelving a percentage of their Annual Catch Entitlement (ACE), which is 
reflected by the annual catch landings falling below the TACC (Figure 2, Table 2). 
 

 
Figure 1: Map of fine scale statistical reporting areas for PAU 5D.  
 
Commercial landings for PAU 5D are shown in Table 2 and Figure 2. Landings matched the TACC 
until 2012–13, and then declined to an average of 56 t in 2018–19 and 2019-20. 
 
Table 2: TACC and reported landings (t) of pāua in PAU 5D from 1995–96 to the present. 

Year Landings TACC 
1995–96 167.42 148.98 
1996–97 146.6 148.98 
1997–98 146.99 148.98 
1998–99 148.78 148.98 
1999–00 147.66 148.98 
2000–01 149.00 148.98 
2001–02 148.74 148.98 
2002–03 111.69 114.00 
2003–04 88.02 89.00 
2004–05 88.82 89.00 
2005–06 88.93 89.00 
2007–08 88.98 89.00 
2006–07 88.97 89.00 
2008–09 88.77 89.00 
2009–10 89.45 89.00 
2010–11 88.70 89.00 
2011–12 89.23 89.00 
2012–13 87.91 89.00 
2013–14 84.59 89.00 
2014–15 71.87 89.00 
2015–16 65.95 89.00 
2016–17 63.12 89.00 
2017–18 62.48 89.00 
2018–19 55.55 89.00 
2019–20 56.55 89.00 
2020–21 57.78 89.00 
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Figure 2: Reported commercial landings and TACC for PAU 5D from 1995–96 to present. For reported commercial 

landings in PAU 5 prior to 1995–96 refer to Figure 1 and Table 1 of the Introduction – Pāua chapter. 
 
1.2 Recreational fisheries 
The ‘National Panel Survey of Marine Recreational Fishers 2011–12: Harvest Estimates’ estimated that 
the recreational harvest for PAU 5D was 80 290 pāua and of 22.45 t with a CV of 30% (Wynne-Jones 
et al 2014). The National Panel Survey was repeated in the 2017–18 fishing year (Wynne-Jones et al 
2019). The estimated recreational catch for that year was 55 pāua and 19.28 tonnes with a CV of 21%. 
 
For the purpose of the 2019 stock assessment model, the SFWG agreed to assume that the recreational 
catch in 1974 was 2 t and that it increased linearly to 10 t by 2005, where it has remained unchanged to 
date. For further information on recreational fisheries refer to the Introduction – Pāua chapter. 
 
1.3 Customary fisheries 
Pāua is a taonga species and as such there is an important customary use of pāua by Maori for food, and 
the shells have been used extensively for decorations and fishing devices. 
 
For information on customary catch regulations and reporting refer to the Introduction – Pāua chapter. 
 
Estimates of customary catch for PAU 5D are shown in Table 3. These numbers are likely to be an 
underestimate of customary harvest as only the catch approved and harvested in numbers is reported in 
the table. In addition, many tangata whenua also harvest pāua under their recreational allowance and these 
are not included in records of customary catch. 
 
Table 3: Fisheries New Zealand records of customary harvest of pāua (approved and reported in numbers) in PAU 5D 

since 2000-01. – no data. 
 

 Numbers 
Fishing year Approved Harvested 
2000–01 665 417 
2001–02 5 530 3 553 
2002–03 2 435 1 351 
2003–04 – – 
2004–05 – – 
2005–06 1 560 1 560 
2006–07 2 845 2 126 
2007–08 5 600 5 327 
2008–09 6 646 6 094 
2009–10 4 840 4 150 
2010–11 15 806 15 291 
2011–12 7 935 7 835 
2012–13 10 254 8 782 
2013–14 5 720 5 358 
2014–15 – – 
2015–16 15 922 13 110 
2016–17 3 676 3 576 
2017–18 3 588 3 310 
2018–19 950 894 
2019–20 6 905 6 439 
2020–21 9 247 9 020 
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For the purpose of the stock assessment model, the SFWG agreed to assume that, for PAU 5D, the 
customary catch has been constant at 2 t from 1974 to the current stock assessment. The reported 
customary catch in 2018–19 was 894 kg. 
 
1.4 Illegal catch 
For the purpose of the stock assessment model, the SFWG agreed to assume that, for PAU 5D, illegal 
catches have been constant at 10 t from 1974 to the current stock assessment. For further information on 
illegal catch refer to the Introduction – Pāua chapter. 
 
1.5 Other sources of mortality 
For further information on other sources of mortality refer to the Introduction – Pāua chapter. 
 
 
2. BIOLOGY 
 
For further information on pāua biology refer to the Introduction – Pāua chapter. A summary of 
biological parameters used in the PAU 5D assessment is presented in Table 4. 
 
 
3. STOCKS AND AREAS 
 
For further information on stocks and areas refer to the Introduction – Pāua chapter. 
 
Table 4: Estimates of biological parameters (H. iris). 
 
 Estimate Source 
1. Natural mortality (M)   

 0.15(0.12-0.19) Median (5–95% range) of posterior estimated by the base case 
model 

   

2. Weight = a(length)b (Weight in g, length in mm shell length)   

All  a b  

  2.99 x 10 -5 3.303 Schiel & Breen (1991) 
   

3. Size at maturity (shell length)   

 50% maturity at 91 mm (89–93) Median (5–95% range) estimated outside of the assessment  
 95% maturity at 103 mm (103–105) Median (5–95% range) estimated outside of the assessment  
   

4. Estimated annual growth increments  (both sexes combined)   

16.65
 (15.96–24.29)

4.57
(3.27–6.40)

  

 
 
4. STOCK ASSESSMENT 
 
The stock assessment was implemented as a length-based Bayesian estimation model, with uncertainty 
of model estimates investigated using the marginal posterior distributions generated from Markov 
chain-Monte Carlo simulations. The most recent stock assessment was conducted for the fishing year 
ended 30 September 2018. A base case model (0.0 - referred to as the reference model henceforth) was 
chosen from the assessment. Data weighting had the strongest impact on assessment outcomes, and a 
range of scenarios with varying weights for CPUE and commercial length-frequency data were 
explored. QMA specific growth patterns remain highly uncertain due to high spatial variability in 
growth and relatively low spatial coverage of the tag-recapture programme to estimate pāua growth. 
This uncertainty translates into uncertainty about stock status and stock trajectories. 
 
4.1 Estimates of fishery parameters and abundance indices 
Parameters estimated in the assessment model and their assumed Bayesian priors are summarized in 
Table 5. 
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Table 5: A summary of estimated model parameters, lower bound, upper bound, type of prior, (U, uniform; N, normal; 
LN = lognormal; Beta = beta distribution), mean and CV of the prior. 

Parameter Prior µ sd   Bounds 
    Lower Upper 
ln(R0) LN exp(13.5) 0.5 10 20 
      
D50(Length at 50% selectivity for the commercial catch) LN 123 0.0

5 100 145 
D95-50(Length between 50% and 95% selectivity the commercial catch) LN 5 0.5 0.01 50 
Steepness (h) Beta     
ϵ  (Recruitment deviations)  LN 0 2 0 - 
The observational data were: 
1. A standardised CPUE series covering 1989–2018 based on combined CELR and PCELR data. 
2. A commercial catch sampling length frequency series for 1991–93, 1997, 1999–2016 
3. Tag-recapture length increment data. 
4. Maturity at length data 
 
4.1.1 Relative abundance estimates from standardised CPUE analyses 
The 2019 stock assessment used a combined series of standardised CPUE indices that included both 
CELR data covering 1990–2001, and PCELR data covering 2002–2018. CPUE standardisation was 
carried out using a Bayesian Generalised Linear Mixed Model (GLMM) which partitioned variation 
among fixed (research strata) and random variables, and between fine-scale reporting (PCELR) and larger 
scale variables (CELR). The variation explained by fine-scale variables (e.g. fine scale statistical areas or 
divers) in PCELR data was considered unexplained in the CELR portion of the model and therefore added 
to observation error. 
 
For the CELR data, there was ambiguity in what was recorded for estimated daily fishing duration: 
either incorrectly recorded as hours per diver, or correctly as total hours for all divers. For PAU 5D, 
fishing duration appeared to have been predominantly recorded as hours per diver. A model-based 
correction procedure was developed to detect and correct for misreporting, using a mixture model that 
determines the characteristics of each reporting type by fishing crew and assigns years to correct 
(reporting for all divers) or incorrect (by diver) reporting regimes with some probability. Only records 
with greater than 95% certainty of belonging to one or the other reporting type were retained for further 
analysis. 
 
CPUE was defined as the log of daily catch-per-unit-effort. Variables in the model were fishing year, FIN 
(Fisher Identification Number), Statistical Area (024, 026), dive condition, diver ID, and fine-scale 
statistical area. Variability in CPUE was mostly explained by differences among divers and crews (FINs), 
with dive conditions strongly affecting CPUE. The CPUE data showed a slight decline in the 1990s 
followed by a strong downturn in CPUE in the early 2000s, followed by a strong recovery of CPUE to 
levels above those seen in the early 1990s (Figure 3). However, CPUE subsequently declined to below-
average levels, where it has remained relatively stationary since 2013. In some circumstances, commercial 
CPUE may not be proportional to abundance because it is possible to maintain catch rates of pāua despite 
a declining biomass. This occurs because pāua tend to aggregate and divers move among areas to 
maximise their catch rates. Apparent stability in CPUE should therefore be interpreted with caution. The 
assumption of CPUE being proportional to biomass was investigated using the assessment model. 
 
4.1.2 Relative abundance estimates from research diver surveys 
The relative abundance of pāua in PAU 5D has also been estimated from a number of independent 
research diver surveys (RDSI) undertaken in various years between 1994 and 2004. The survey strata 
(Catlins East and Catlins West) cover the areas that produced about 25% of the recent catches in PAU 
5D. This data was not included in the assessment because there is concern that the data is not a reliable 
enough index of abundance and the data is not representative of the entire PAU 5D QMA. 
 
Concerns about the ability of the data collected in the independent Research Dive surveys to reflect 
relative abundance instigated reviews in 2009 (Cordue 2009) and 2010 (Haist 2010). The reviews 
assessed the reliability of the research diver survey index as a proxy for abundance and whether the 
RDSI, when used in the pāua stock assessment models, results in model outputs that adequately reflect 
the status of the stocks. Both reviews suggested that outputs from pāua stock assessments using the 
RDSI should be treated with caution. For a summary of the review’s conclusions refer to the 
Introduction – Pāua chapter. 
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Figure 3: The standardised CPUE indices with 95% confidence intervals (solid line and vertical error bars) and 

unstandardized geometric CPUE (dashed line) for the combined CELR and the PCELR series. 
 
4.2 Stock assessment methods 
The 2019 PAU 5D stock assessment used the length-based population dynamics model first described 
by Breen et al (2003). PAU 5D was last assessed using data up to the 2015–2016 fishing year (Marsh 
& Fu 2017), and the most recent assessment uses data up to the 2017–2018 fishing year (Neubauer & 
Tremblay-Boyer 2019). Although the overall population-dynamics model remained unchanged, the 
most recent iteration of the PAU 5D stock assessment incorporates a number of changes to the previous 
methodology:  
 

1. CPUE likelihood calculations reverted to predicting CPUE from beginning of year biomass 
since the previous change to mid-year predictions did not affect the assessment and caused 
potential for error and an increased computational burden. 

2. A Bayesian statistical framework across all data inputs and assessments (MPD runs were not 
performed; all exploration was performed using full Markov Chain Monte Carlo runs).  

3. The assessment model framework was moved to the Bayesian statistical inference engine Stan 
(Stan Development Team 2018), including all data input models (the assessment model was 
previously coded in ADMB).  

4. Catch sampling length-frequency (CSLF) data handling was modified to a model-based 
estimation of observation error with partitioning between observation and process error for 
CSLF and CPUE, and use of a multivariate normal model for centred-log-ratio-transformed 
mean CSLF and observation error. 

5. The data weighting procedure was to use a scoring rule (log score) and associated divergence 
measure (Kullbach-Liebler divergence) to measure information loss and goodness of fit for 
CPUE and CSLF. 

6. Growth and maturation were fit to data across all QMAs outside of the assessment model, and 
the resulting mean growth and estimate of proportions mature at age were supplied as an 
informed prior on growth to the model; no growth or maturation data were explicitly fitted in 
the model. 

 
The model structure assumed a single sex population residing in a single homogeneous area, with length 
classes from 70 mm to 170 mm, in groups of 2 mm. Growth is length-based, without reference to age, 
mediated through a growth transition matrix that describes the probability of each length class changing 
in each year. Pāua entered the partition following recruitment and were removed by natural mortality 
and fishing mortality. 
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The model simulates the population from 1965 to 2018. Catches were available for 1974–2018 although 
catches before 1995 must be estimated from the combined PAU 5 catch, and were assumed to increase 
linearly between 1965 and 1973 from 0 to the 1974 catch level. Catches included commercial, 
recreational, customary, and illegal catch, and all catches occurred within the same time step. 
 
Recruitment was assumed to take place at the beginning of the annual cycle, and length at recruitment 
was defined by a uniform distribution with a range between 70 and 80 mm. The stock-recruitment 
relationship is unknown for pāua. However, the Shellfish Working Group agreed to use a Beverton-
Holt stock-recruitment relationship, with steepness (h) estimated for this assessment. 
 
Growth, maturation and natural mortality were also estimated within the model, although no fitting to 
raw data was performed, and all inputs were provided as priors with mean and observation error. The 
model estimated the commercial fishing selectivity, which was assumed to follow a logistic curve and 
to reach an asymptote. 
 
The assessment proceeded iteratively by first replacing the previous growth formulation (i.e. fitting to 
growth data from PAU 5D only within the model) with an informed prior on mean growth and growth 
variability. Previous assessments noted that growth collected from a limited number of sites may not 
represent mean growth and true growth variability across the QMA. It was noted in the current 
assessment that PAU 5D growth data was almost exclusively from sites with very fast growth, and that 
alternative assumptions about growth lead to radically different estimates of stock status. To reflect 
uncertainty about true growth, a prior formulated from a South Island-wide meta-analysis was used in 
the model. 
 
Providing less information about growth to the model meant that more weight was placed on CPUE and 
CSLF data, and it was found that data weights were now the most influential uncertainty in the model. 
Previous methods to weight datasets give more weight to CPUE data by default because CPUE has a 
more direct link to abundance than CSLF data, and one can argue a lower potential for process error. 
However, for pāua in particular, CPUE is often seen as a risky index of abundance (see qualifications 
below). The current assessment therefore does not favour either dataset a priori, but rather attempts to 
explore scenarios where either dataset has high weight relative to the other. To more accurately quantify 
model fit and information loss from each data source, a new procedure was developed based on the log 
scoring rule (a scoring rule quantifies the predictive quality of a model). The log score provides a base 
to weight datasets (i.e. to penalise deviation from any dataset) and to measure information loss from 
data (e.g. the estimated CPUE and observation error) to model quantities. Models with various 
divergence penalty configurations for CPUE and CSLF were introduced and the resulting model fit and 
divergence between model and input were noted until a set of models with satisfactory fits and 
deviations was found. 
 
The reference model (model 0) excluded the RDSI and RDLF data, fitted the combined CPUE series 
and the mean CSLF and observation error, estimated process error for CPUE and CSLF, updated growth 
estimates within the model, and estimated M and steepness within the model. The data weights in this 
model led to slightly increased information loss from CSLF data relative to CPUE data, with satisfactory 
fits to both datasets. 
 
The sensitivity trials carried out used lower weight for the CPUE indices and a more restrictive prior 
for M as opposed to the base-case.   
 
The assessment calculates the following quantities from the marginal posterior distributions of various 
partitions of the biomass: the equilibrium (unfished) spawning stock biomass (SSB0) assuming that 
recruitment is equal to the average recruitment, and the relative spawning and available biomass for 
2018 (SSB2018 and 𝐵 ) and for the projection (Proj) period (SSBProj and 𝐵 . This assessment also 
reports the following fishery indictors: 
 
Relative SSB Estimated spawning stock biomass in the final year relative to unfished spawning stock biomass 

Relative BAvail Estimated available biomass in the final year relative to unfished available stock biomass 
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P(SSB2018 > 40% SSB0) Probability that the spawning stock biomass in 2018 was greater than 40% of the unfished 
spawning stock 

P(SSB2018 > 20% SSB0) Probability that the spawning stock biomass in 2018 was greater than 20% of the unfished 
spawning stock (soft limit) 

P(SSBProj > 40% SSB0) Probability that projected future spawning stock biomass will be greater than 40% of the unfished 
spawning stock given assumed future catches 

P(SSBProj > 20% SSB0) Probability that projected future spawning stock biomass will be greater than 20% of the unfished 
spawning stock given assumed future catches 

P(BProj > B2018) Probability that projected future biomass (spawning stock or available biomass) is greater than 
estimated biomass for the 2018 fishing year given assumed future catches 

 
4.3 Stock assessment results 
The base case model suggested a relatively flat trend in spawning stock biomass over the past seven 
years, following a slow downwards trend from 2005 to 2011 (Figure 4). The base case also indicated a 
high probability that the stock is currently near the target spawning stock biomass (Table 6), with little 
to no probability that it is below the soft limit of 20% SSB. This inference was supported by all 
sensitivity runs (Table 6). Nevertheless, relative available biomass was markedly lower than the 
spawning stock biomass, meaning that a considerable part of the spawning biomass was below the 
minimum harvest size, and is therefore not accessible to the fishery. 
 
Projections suggested relatively stable SSB for scenarios of current catch and 10% or 20% increased or 
decreased catch (Table 7). For all catch scenarios, available biomass was projected to slowly increase, 
although this increase is somewhat uncertain (there was a 60% likelihood of an increase in three years 
over current available biomass at current catch). 
 
Two sensitivity scenarios were agreed as the main sensitivity scenarios that bracketed estimated stock 
status in the base-case run. The first scenario was the base case with a more restrictive prior for M (log-
normal SD of 0.1 instead of 0.2) which forced M to a lower point in the assessment; it also led to lower 
recent stock status, all else being equal (Table 6; Figure 4). Nevertheless, this scenario also suggested 
a recent upturn in the fishery with increasing available biomass, despite a lower stock status estimate. 
This model run suggested a potentially stronger impact from recent shelving measures than the base 
case. Projections from this scenario largely agreed with those from the base-case. 
 
Table 6: Model runs for the stock assessment of pāua in management area PAU 5D. Posterior quantities for data fits 

in terms of the Kullback-Leibler divergence (KLD) for catch-per-unit-effort (CPUE) and catch sampling 
length frequency (CSLF), stock status (relative spawning stock biomass), relative available biomass and 
probability of the stock status being above the soft limit (P(SSBproj > 20% SSB0). Numbers are posterior 
medians, with the 0.025 and 0.975 posterior quantiles in parentheses. 

 
Run KLD CPUE KLD CSLF Stock status Available P(SSBproj > 20% SSB0) 
Base 0.67 (0.53;0.82) 0.73 (0.66;0.84) 0.40 (0.25;0.65) 0.25 (0.17;0.39) 1.00 
Constrain M 0.68 (0.53;0.92) 0.74 (0.66;0.84) 0.36 (0.24;0.56) 0.23 (0.16;0.35) 1.00 
Lower CPUE 
weight 

0.84 (0.70;1.05) 0.73 (0.65;0.83) 0.44 (0.28;0.71) 0.29 (0.19;0.46) 1.00 

 
The second main sensitivity scenario did not up-weight the CPUE and, therefore, only down-weighted 
CSLF data. This sensitivity scenario resulted in declining recent spawning stock biomass trends (Figure 
4), despite resulting in slightly higher estimates for current stock status (Table 6). The declining trend 
continued for projections in this scenario regardless of the applied catch. For both main sensitivity 
scenarios, the probability of stock status being at or falling below the soft limit was close to zero over 
the timeframe of projections. 
For a number of reasons (outlined below) reference points based on deterministic MSY or BMSY are not 
currently used for managing pāua stocks and were therefore not calculated. 
 
There are several reasons why deterministic BMSY is not considered a suitable target for management of 
the pāua fishery. First, it assumes a harvest strategy that is unrealistic in that it involves perfect 
knowledge of catch and biology and perfect stock assessments (because current biomass must be known 
exactly in order to calculate target catch), a constant-exploitation management strategy with annual 
changes in TACC (which are unlikely to happen in New Zealand and not desirable for most 
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stakeholders), and perfect management implementation of the TACC and catch splits with no under- or 
over-runs. Second, it assumes perfect knowledge of the stock-recruit relationship, which is actually very 
poorly known. Third, deterministic MSY is commonly much higher than realised catch for pāua stocks 
(e.g. Marsh & Fu 2017) and deterministic BMSY is estimated at biomass levels corresponding to very low 
available biomass levels. Management based on deterministic MSY-based reference points would likely 
lead to biomass occasionally falling below 20% B0, the default soft limit according to the Harvest 
Strategy Standard. Thus, the actual target needs to be above this theoretical deterministic biomass, but 
the extent to which it needs to be above has not been determined. 
 
In the meantime, an interim target of 40% B0 is used as a proxy for a more realistic interpretation of 
BMSY. 
 
Table 7: Projections for key fishery indicators from the base case model: probabilities of being above 40% and 20% 

of unfished spawning biomass (SSB) [P(SSBProj > 40% SSB0) and P(SSBProj > 20% SSB0)], the probability that 
SSB in the projection year is above current SSB, the posterior median relative to SSB, the posterior median 
relative available spawning biomass 𝑩𝑷𝒓𝒐𝒋

𝑨𝒗𝒂𝒊𝒍, and the probability that the exploitation rate (U) in the projection 
year is above U40% SSB0, the exploitation rate that leads to 40% SSB0. The total commercial catch (TCC) 
marked with * corresponds to current commercial catch under 35% shelving of the current TACC (89 t). 
Other TACC scenarios show 50% shelving (44.5 t), 20% shelving (71.2 t) and fishing at the current TACC. 
Simulation to equilibrium (assumed to have been reached after 50 projection years) are indicated with Eq. in 
the year column. 

 

TACC 
(t) Year 

P(SSBProj > 
 40% SSB0) 

P(SSBProj > 
 20% SSB0) 

P(SSBProj > 
 SSB2018) Median rel. SSBProj 

Median rel. 

𝐵𝑃𝑟𝑜𝑗
𝐴𝑣𝑎𝑖𝑙

 
P(U > 

 U40% SSB0) 

44.5 2018 0.52 1 0 0.41 0.46 0.46 
 2019 0.51 1 0.39 0.42 0.48 0.31 
 2020 0.52 1 0.45 0.43 0.5 0.26 
 2021 0.53 0.99 0.49 0.44 0.52 0.23 
 Eq.  0.63 0.87 0.61 0.52 0.53 0.24 

57.85 2018 0.52 1 0 0.41 0.46 0.46 
 2019 0.51 1 0.39 0.42 0.48 0.44 
 2020 0.5 0.99 0.42 0.42 0.5 0.42 
 2021 0.5 0.98 0.44 0.42 0.51 0.4 
 Eq.  0.53 0.81 0.52 0.47 0.48 0.4 

71.2 2018 0.52 1 0 0.41 0.46 0.46 
 2019 0.51 1 0.39 0.42 0.48 0.54 
 2020 0.48 0.99 0.39 0.41 0.49 0.53 
 2021 0.46 0.96 0.41 0.41 0.5 0.53 
 Eq.  0.46 0.75 0.44 0.42 0.42 0.57 

89 2018 0.52 1 0 0.41 0.46 0.46 
 2019 0.51 1 0.39 0.42 0.48 0.64 
 2020 0.45 0.99 0.36 0.4 0.48 0.66 
 2021 0.42 0.94 0.37 0.4 0.48 0.68 

 Eq.  0.37 0.68 0.34 0.36 0.37 0.73 
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Figure 4: Posterior distributions of spawning stock biomass from the base case model, the sensitivity scenario with a 

more constrained prior on natural mortality (M), and the sensitivity scenario with lower weight on CPUE. 
The box shows the median of the posterior distribution (horizontal bar), the 25th and 75th percentiles (box), 
with the whiskers representing the 95% confidence range of the distribution. 
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4.4 Other factors 
To run the stock assessment model a number of assumptions must be made, one of these being that CPUE 
is a reliable index of abundance. The literature on abalone fisheries suggests that this assumption is 
questionable and that CPUE is difficult to use in abalone stock assessments due to the serial depletion 
behaviour of fishers along with the aggregating behaviour of abalone. Serial depletion is when fishers 
consecutively fish-down beds of pāua but maintain their catch rates by moving to new unfished beds; 
thus CPUE stays high while the overall population biomass is actually decreasing. The aggregating 
behaviour of pāua results in the timely re-colonisation of areas that have been fished down, as the 
cryptic pāua, that were unavailable at the first fishing event, move to and aggregate within the recently 
depleted area. Both serial depletion and aggregation behaviour cause CPUE to have a hyperstable 
relationship with abundance (i.e. abundance is decreasing at a faster rate than CPUE) thus making 
CPUE a poor proxy for abundance. The strength of the effect that serial depletion and aggregating 
behaviour have on the relationship between CPUE and abundance in PAU 5D is difficult to determine. 
However, because fishing has been consistent in PAU 5D for a number of years and effort has been 
reasonably well spread, it could be assumed that CPUE is not as strongly influenced by these factors, 
relative to the early CPUE series. 
 
The assumption of CPUE being a reliable index of abundance in PAU 5D can also be upset by 
exploitation of spatially segregated populations of differing productivity. This can conversely cause 
non-linearity and hyper-depletion in the CPUE-abundance relationship, making it difficult to track 
changes in abundance by using changes in CPUE as a proxy. 
 
Another source of uncertainty is the data. The commercial catch is unknown before 1974 and is 
estimated with uncertainty before 1995. Major differences may exist between the catches we assume 
and what was actually taken. Non-commercial catch estimates, including illegal catch, are also poorly 
determined and could be substantially different from what was assumed. 
 
The model treats the whole of the assessed area of PAU 5D as if it were a single stock with homogeneous 
biology, habitat and fishing pressure. The model assumes homogeneity in recruitment and natural 
mortality. 
 
Heterogeneity in growth can be a problem for this kind of model (Punt 2003). Variation in growth is 
addressed to some extent by having a stochastic growth transition matrix based on increments observed 
in several different places; similarly the length frequency data are integrated across samples from many 
places. Thus, length frequency data collected from the commercial catch may not represent the available 
biomass represented in the model with high precision. 
 
The effect of these factors is likely to make model results optimistic. For instance, if some local stocks 
are fished very hard and others not fished, recruitment failure can result because of the depletion of 
spawners, as spawners must breed close to each other, and the dispersal of larvae is unknown and may 
be limited. Recruitment failure is a common observation in overseas abalone fisheries, so local 
processes may decrease recruitment, an effect that the current model does not account for. 
 
Another source of uncertainty is that fishing may cause spatial contraction of populations (Shepherd & 
Partington 1995), or that it may result in some populations becoming relatively unproductive after initial 
fishing (Gorfine & Dixon 2000). If this happens, the model will overestimate productivity in the 
population as a whole. Past recruitments estimated by the model might instead have been the result of 
serial depletion. 
 
 
5. FUTURE RESEARCH CONSIDERATIONS 
 

 Revisit PAU 5 catch reconstructions. 
 Examine the effects of removing historical catches from areas that are now closed. 
 Re-examine the diver surveys and length frequencies to determine their utility. 
 Further investigate method for representing potential increases in catchability over time; e.g. a 

linear trend. 
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 Consider the need for more tagging in certain areas to fill gaps in growth data; e.g. Colac Bay 
and Moeraki. 

 Further investigate data weighting procedures for pāua stocks. The prior on R0 previously used 
in the PAU 5D assessment implied a prior on stock status that may have biased assessments of 
pāua stock status high. Check this further and determine whether it may also be an issue for 
other pāua stocks. 

 
 
6. STATUS OF THE STOCK 
 
Stock Structure Assumptions 
PAU 5D is assumed in the model to be a discrete and homogenous stock 
 
 PAU 5D - Haliotis iris  
 

Stock Status 
Year of Most Recent Assessment 2019 
Assessment Runs Presented Reference case MCMC 
Reference Points Interim Target: 40% B0 

Soft Limit: 20% B0 
Hard Limit: 10% B0 
Overfishing threshold: U40%B0  

Status in relation to Target B2018 was estimated to be 42% B0. About as Likely as Not (40–
60%) to be at or above the target 

Status in relation to Limits Very Unlikely (< 10%) to be below the soft limit and Very 
Unlikely (< 10%) to be below the hard limit. 

Status in Relation to Overfishing Overfishing is About as Likely as Not (40–60%) to be 
occurring. 

Historical Stock Status Trajectory and Current Status 

 
Posterior distributions of spawning stock biomass from the base case model. The box shows the median of the 
posterior distribution (horizontal bar), the 25th and 75th percentiles (box), with the whiskers representing the 95% 
confidence range of the distribution. 
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Fishery and Stock Trends 
Recent Trend in Biomass or 
Proxy 

Biomass decreased up to about 1984 and has been fluctuating 
moderately around the target subsequently. 

Recent Trend in Fishing 
Mortality or Proxy  

Exploitation rate peaked in 2002 and has since declined. 

Other Abundance Indices 
Standardised CPUE generally declined until the early 2000s, 
recovered in the mid-2000s, and gradually decreased to a recent 
stable but below average level. 

Trends in Other Relevant 
Indicators or Variables 

Recruitment appears to pulse in approximately five year 
intervals, with two larger than average pulses in the mid-1990s 
and 2000. Increases in pāua areas closed to commercial fishing 
and voluntary increases in MHS both create buffers to fishing. 

 
Projections and Prognosis 

Stock Projections or Prognosis 
At the current catch level biomass is About as Likely as Not (40–
60%) to remain at current levels. Under the current TACC, 
biomass is likely to decline in the short term. 

Probability of Current Catch or 
TACC causing Biomass to 
remain below or to decline 
below Limits 

Results from all model assessment runs presented suggest it is 
Very Unlikely (< 10%) that current levels of catch will cause a 
decline below the soft or hard limits. 

Probability of Current Catch or 
TACC causing Overfishing to 
continue or to commence 

About as Likely as Not (40–60%) for current catch; Very 
Likely (> 90%) for current TACC 

 
Assessment Methodology and Evaluation 
Assessment Type 1- Full Quantitative Stock Assessment  
Assessment Method Length based Bayesian model 
Assessment Dates Latest: 2019 Next: 2022 
Overall assessment quality 
(rank) 

1 – High Quality  

Main data inputs (rank) - Catch History 2 – Medium or Mixed Quality: 
not believed to be fully 
representative of catch in the 
QMA 

- CPUE Indices early 
series 

2 – Medium or Mixed Quality: 
not believed to be fully 
representative of CPUE in the 
QMA 

- CPUE Indices later series 1– High Quality 
- Commercial sampling 
length frequencies 

1 – High Quality 

- Tag recapture data 2 – Medium or Mixed Quality: 
not believed to be representative 
of the whole QMA 

- Maturity at length data 1 – High Quality 
Data not used (rank) - Research Dive survey 

indices 
3 – Low Quality: not believed to 
be a reliable indicator of 
abundance in the whole QMA 

- Research Dive length 
frequencies 

3 – Low Quality: not believed to 
be a reliable indicator of length 
frequency in the whole QMA 

Changes to Model Structure and 
Assumptions 

- Both CPUE series combined to form a single index 
- Calculations for the CPUE likelihood were reverted to 
predicting CPUE from beginning of year biomass since the 
previous change to mid-year predictions did not affect the 
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assessment and caused potential for error and increased 
computational burden. 
- A Bayesian statistical framework across all data inputs and 
assessments (i.e. MPD runs were not performed, all exploration 
was performed using full Markov Chain Monte Carlo).  
- The assessment model framework was moved to the Bayesian 
statistical inference engine Stan (Stan Development Team 
2018), including all data input models (the assessment model 
was previously coded in ADMB).  
- Changed CSLF data handling to model-based estimation of 
observation error and partitioning between observation and 
process error for CSLF and CPUE, with use of a multivariate 
normal model for centred-log-ratio-transformed mean CSLF 
and observation error. 
- Changed data weighting procedure to use scoring rule (log 
score) and associated divergence measure (Kullbach-Liebler 
divergence) to measure information loss and goodness of fit for 
CPUE and CSLF. 
- Growth and maturation were fit to data across all QMAs 
outside of the assessment model, and the resulting mean growth 
and estimate of proportions mature at age were supplied as an 
informed prior on growth to the model; no growth or 
maturation data was explicitly fitted in the model.  

Major Sources of Uncertainty - Growth data were limited and may not be representative of 
growth within the entire QMA. This was mitigated by 
formulating a weakly informative prior about growth based on 
meta-analysis for all South Island pāua stocks. 
- Assuming CPUE is a reliable index of abundance for pāua 
- Sensitivity of the model to data weighting assumptions 
- Potential increases in q 

Qualifying Comments 
Uncertainties in the input data and model structure necessitate caution in the interpretation of the 
assessed status of the stock. However, the high MHS relative to length-at-maturity (along with closed 
areas) means that a relatively large proportion of the spawning stock is not available to the fishery and 
provides a buffer from the effects of fishing for the stock. 

 
Fishery Interactions 
- 
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