

Fisheries New Zealand

A 2020 stock assessment update of ORH 3B East and South Chatham Rise

New Zealand Fisheries Assessment Report 2024/11
Deepwater Group Ltd.
ISSN 1179-5352 (online)
ISBN 978-1-991120-95-3 (online)
March 2024

Te Kāwanatanga o Aotearoa
New Zealand Government

Disclaimer

This document is published by Fisheries New Zealand, a business unit of the Ministry for Primary Industries (MPI). The information in this publication is not government policy. While every effort has been made to ensure the information is accurate, the Ministry for Primary Industries does not accept any responsibility or liability for error of fact, omission, interpretation, or opinion that may be present, nor for the consequence of any decisions based on this information. Any view or opinion expressed does not necessarily represent the view of Fisheries New Zealand or the Ministry for Primary Industries.

Requests for further copies should be directed to:
Fisheries Science Editor
Fisheries New Zealand
Ministry for Primary Industries
PO Box 2526
Wellington 6140
NEW ZEALAND
Email: Fisheries-Science.Editor@mpi.govt.nz
Telephone: 0800008333
This publication is also available on the Ministry for Primary Industries websites at:
http://www.mpi.govt.nz/news-and-resources/publications
http://fs.fish.govt.nz go to Document library/Research reports

© Crown Copyright - Fisheries New Zealand

Please cite this report as:
Deepwater Group Ltd. (2024). A 2020 stock assessment update of ORH 3B East and South Chatham Rise. New Zealand Fisheries Assessment Report 2024/11. 34 p.

TABLE OF CONTENTS

EXECUTIVE SUMMARY 1

1. INTRODUCTION 2
2. METHODS 2
2.1 Catch history 2
2.2 Data quality, input data, and statistical assumptions 4
2.3 Model structure 7
2.4 Estimation methods and model runs 8
3. RESULTS 9
3.1 Model diagnostics 9
3.2 MCMC results 12
3.3 Projections 14
4. DISCUSSION AND CONCLUSIONS 15
5. ACKNOWLEDGEMENTS 16
6. REFERENCES 16
APPENDIX 1: MCMC chain diagnostics for the current model 18
APPENDIX 2: CASAL input files 20

Deepwater Group Ltd. (2024). A 2020 stock assessment update of ORH 3B East and South Chatham Rise.

New Zealand Fisheries Assessment Report 2024/11. 34 p.
The East and South Chatham Rise (ESCR) stock was one of four orange roughy (Hoplostethus atlanticus) stocks assessed in 2014. The assessment was updated in 2017 using data up to the end of the 2016-17 fishing year. That assessment was then immediately updated to the end of 2017-18 to allow application of the orange roughy Harvest Control Rule (HCR) to provide a recommended catch limit for the 2018-19 fishing year of 5970 t . The increase in catch limit determined to be sustainable by the HCR was not applied in full in 2018-19, but was staged over three fishing years. The first two stages of the increase in the catch limit were made in the 2018-19 and 2019-20 fishing years. The staging of the increase in catch limit will have reduced effective fishing mortality compared with the assumed catch used in the earlier HCR run and previous projections, and would be expected to have had a positive impact on stock status compared with the previously projected stock status trajectory. Industry planned for this update to the stock assessment and re-estimation of the third and final stage of the catch limit increase in time for implementation during the 2020-21 fishing year.

The assessment was updated in 2020 to apply the HCR to calculate a catch limit recommendation for 2020-21. As in previous assessments an age-structured population model was fitted to biomass and composition data using Bayesian estimation. As well as the updated base model (denoted as the 'current model'), there were two additional models. The q -ratio model addressed three issues with the current model: the complex fishery structure; the poor fit to the acoustic indices; and the absence of a priori information linking the two acoustic time series. The LowMhighq model was constructed as a 'worst case' scenario having natural mortality (M) reduced by 20% and the mean of the acoustic q priors increased by 20% (in relation to the current model).

As in previous assessments, virgin biomass $\left(B_{0}\right)$ was estimated to be about $300000-350000 \mathrm{t}$ for the three models. Current stock status was similar for the current and q-ratio models, with the 95% CIs ranging from 30 to $44 \% B_{0}$. The pessimistic LowMhighq run has stock status estimated just below 30% B_{0}.

The HCR was applied to the current model and the q -ratio model. The medians of the marginal posterior distributions are used in the calculation. As current stock status is estimated to be less than $40 \% B_{0}$ in both runs, the exploitation rates applied to estimated vulnerable biomass are less than 0.045 (the exploitation rate applied at $40 \% B_{0}$). The slightly higher stock status for the q -ratio model gives a higher exploitation rate than the current model but, because of the lower vulnerable biomass, the recommended catch limit from both models is similar.

Model	Stock status $\left(\% B_{0}\right)$	Exploitation rate	Vulnerable biomass (t)	HCR-derived catch limit (t)
Current model	36	0.04050	156735	6348
q-ratio model	38	0.04275	146977	6283

For both models, if the recommended catch limit is taken for the next 8 years, stock status is predicted to slowly increase and stay within the target biomass range of $30-50 \% B_{0}$. If the 'worst case' scenario of the LowMhighq model is assumed and the highest recommended catch limit is taken for the next 8 years, stock status is expected to slowly increase and there is close to zero probability of it being below the soft limit $\left(20 \% B_{0}\right)$ in any year.

1. INTRODUCTION

The East and South Chatham Rise (ESCR) stock was one of four orange roughy (Hoplostethus atlanticus) stocks assessed in 2014 with the return to model-based assessment for orange roughy (Cordue 2014a). The assessment was updated in 2017 using data up to 2016-17 (Dunn \& Doonan 2018). That assessment was then immediately updated to the end of 2017-18 to allow application of the orange roughy Harvest Control Rule (HCR) to provide a recommended catch limit for the 2018-19 fishing year (Cordue 2014b, 2018). The HCR gave a catch limit recommendation of 5970 t (Cordue 2018). However, the increase in catch limit determined to be sustainable by the HCR was not applied in full in 2018-19, but was staged over three fishing years. The first two stages of the increase in the catch limit were made in the 2018-19 and 2019-20 fishing years, with an updated assessment (this assessment) planned prior to determining the catch limit for the third and final stage.

The assessment has been updated in 2020 to apply the HCR to calculate a catch limit recommendation for 2020-21. As in previous assessments, an age-structured population model was fitted to biomass and composition data using Bayesian estimation implemented in CASAL (Bull et al. 2012). No new data, other than annual catches, have been added since the 2017 assessment.

2. METHODS

The 2014 assessment for this stock was one of four orange roughy assessments carried out in 2014 which all used similar methods (Cordue 2014a). The same approach has been used in the updates since then and is continued in this update. An age-structured population model is fitted to acoustic estimates of spawning biomass, trawl survey biomass indices, age frequencies from spawning plumes, and length frequencies from the commercial fisheries.

2.1 Catch history

The catch history used in the 2017 assessment was updated to the end of the 2019-20 fishing year. The total ORH 3B reported catch was apportioned across areas and into the four model fisheries using catch proportions from estimated catch on TCEPR forms following Dunn \& Doonan (2018). The catch in 2019-20 was assumed to be in the same proportions across fisheries as the 2018-19 catch. As in past assessments for the ESCR, an annual 5% over-run was assumed (for the years where the catch was updated).

Figure 1 shows the recognised stocks and main orange roughy fishing grounds in management area ORH 3B; this assessment addresses only the East and South Chatham Rise stock (East Rise and South Rise areas of Figure 1).

Figure 1: The ORH 3B fishery area. The recognised stocks are indicated by bold text. The rectangles mark the main fishing grounds, with those on Chatham Rise shaded: A, Graveyard (180) hills; B, Spawning Box; C, northeast hills; D, Andes; E, Chiefs; F, south Rise (Mt. Kiso \& Hegerville). Copied with permission from Dunn (2018).

The total catch over the history of the fishery has generally been dominated by catches in the 'spawning box' and on the eastern flats ('Boxflat' in Figure 2; see Dunn 2007). The exception to this was a period from the early 1990s to the early 2000s (Figure 2). The spawning box was closed to commercial fishing in the three years from 1992-93 to 1994-95.

Figure 2: The catch history (including over-runs) used in the update of ORH 3B ESCR. Catches are shown for the four fisheries used in the model and the total catch.

2.2 Data quality, input data, and statistical assumptions

As in the 2014 stock assessment, a high quality threshold was imposed on data before they were allowed to be used in the assessment.

There were four main data sources for observations fitted in the assessment: acoustic-survey spawning biomass estimates from the Old plume (2002-2014, 2016), Rekohu (2011-2014, 2016), and the Crack (2011, 2013, 2016); age frequencies from the spawning areas (2012, 2013, and 2016); trawl survey biomass indices and length frequencies; and length frequencies collected from the commercial fisheries.

Acoustic estimates

The Old plume was acoustically surveyed as early as 1996, but the survey estimates are only considered to represent a consistent time series during 2002-2012 (see Cordue 2008; Hampton et al. 2008, 2009, 2010; Doonan et al. 2012). Like the Rekohu plume, which was first noted in 2010 and first surveyed in 2011, the Old plume occurs on an area of flat bottom and can be adequately surveyed using a hullmounted transducer. In 2011, 2013, and 2016, the spawning area known as the Crack (also known as Mt. Muck) was also surveyed. It is an area of rough terrain which requires a towed-body or trawlmounted system to be used to reduce the height of the shadow or dead zone (i.e., with the transducer at a depth of about 500-700 m).

The estimates selected by the Deepwater Working Group (DWWG) for use in the stock assessment are shown in Table 1. In order to make the estimates as comparable as possible across years, only biomass estimates from 38 kHz transducers were used and those from the hull-mounted system were weatheradjusted in the same way as earlier estimates (see Cordue 2010, 2014a).

A key question evaluated in the 2014 assessment was how long the Rekohu plume had been in existence (Cordue 2014a). If the Rekohu plume had always existed (and was not discovered until 2010) then it would be one of three major spawning sites and could be modelled as such along with the Old plume and the Crack. This would imply that the Old plume time series was tracking a consistent part of the spawning biomass (and its decline over time was therefore an important indicator of stock status). If, on the other hand, the Rekohu plume had very recently formed, this would imply that the Old plume time series was a biomass index only up until the year before the Rekohu plume came into existence.

As described for the base model by Cordue (2014a), it is assumed that the Old plume time series cannot be relied on to provide a consistent index for any part of the spawning biomass. In 2011, 2013, and 2016, the estimates of average spawning biomass across the three areas were summed to form comparable indices for each year. The 2012 and 2014 estimates from Rekohu and the Old plume were summed to provide a 2012 and 2014 index with a different proportionality constant or q. The Old plume indices for 2002-2010 were used, but each point in the time series was given its own q. Informed priors were used for all of the q s in the Old plume series, for the 2012 and 2014 biomass indices, and the indices comprising the 2011, 2013, and 2016 observations.

For 2011, 2013, and 2016, it was assumed that 'most' of the biomass was being indexed so the 'standard' acoustic q prior was used for this proportionality constant (q_{1}): lognormal (mean $=0.8$, $\mathrm{CV}=19 \%$) (Cordue 2014a). The mean of the q prior for 2012 and 2014 was derived from the observed biomass proportions across the three areas and the assumption that 80% of the spawning biomass was indexed in 2011, 2013, and 2016. This gave a mean of 0.7 for the proportionality constant $\left(q_{2}\right)$ of the 2012 and 2014 indices, a reflection that this index did not include an estimate for the Crack. For 2002 to 2010 the means of the q priors were assumed to decrease linearly from 0.7 (2002) down to 0.3 (2010), reflecting the gradual increase in the relative importance of the Rekohu plume. The linear sequence was derived by assuming 0.7 in 2002 (i.e., assuming that the Rekohu plume did not exist and only the Crack was missing from the survey estimate) and using the observed biomass proportions in 2011 with the 80% assumption (which gave the Old plume about 25% of the total spawning biomass). To reflect the increased uncertainty in the acoustic q s in years before 2011, the priors were given an increased CV of 30%.

Table 1: Acoustic estimates of average pluming spawning biomass in the three main spawning areas as used in the assessment. All estimates were obtained from surveys on FV San Waitaki from 38 kHz transducers. Each estimate is the average of a number of snapshots. Some estimates have been revised since the 2014 assessment (see Dunn \& Doonan 2018).

	Old plume		Rekohu		Crack	
	Estimate (t)	CV (\%)	Estimate (t)	CV (\%)	Estimate (t)	CV (\%)
2002	63950	6	-	-	-	-
2003	44316	6	-	-	-	-
2004	44968	8	-	-	-	-
2005	43923	4	-	-	-	-
2006	47450	10	-	-	-	-
2007	34427	5	-	-	-	-
2008	31668	8	-	-	-	-
2009	28199	5	-	-	-	-
2010	21205	7	-	-	-	-
2011	16422	8	28113	18	6794	21
2012	19392	7	27121	10	-	-
2013	15554	14	33348	10	5471	16
2014	19360	18	44421	25	-	-
2015	-	-	-	-	-	-
2016	11192	13	27027	13	5341	10

As well as updating the base model, two additional runs were made which had different assumptions with regard to the acoustic q s. In the standard LowMhighq sensitivity run, the means of the acoustic q priors were all increased by 20% and the value of M was decreased by 20% (see Cordue 2014a). In the ' q -ratio model' a prior was placed on the ratio q_{1} / q_{2}. The standard prior was used for q_{1} and a uniform prior for q_{2}. A lognormal prior was used for the ratio with the mean equal to $1.14(0.8 / 0.7)$ and a CV of 7.5% which strongly encouraged the ratio to be greater than 1 (reflecting that three areas had been surveyed for the first time series but only two of those areas for the second time series) (Figure 3).

There was no agreement in the DWFAWG as to whether the updated base model or the q-ratio model was to be preferred. The LowMhighq model was run relative to the updated base model as that had the lowest estimated stock status and therefore the LowMhighq model would be a 'worst case' scenario as intended. The updated base model is denoted as the 'current model' rather than the base model.

Figure 3: The prior used for the ratio of the two acoustic q s in the q-ratio model. It is lognormal with a mean of 1.14 and a CV of 7.5%.

Trawl survey data

Research trawl surveys of the Spawning Box during July were completed from 1984 to 1994, using three different vessels: FV Otago Buccaneer, FV Cordella, and RV Tangaroa (Figure 4). A consistent area was surveyed using fixed station positions (with some random second phase stations each year).

The biomass indices were fitted as relative indices with a separate time series for each vessel (with uninformed priors on the $q \mathrm{~s}$). The second point in the Tangaroa time series, although very large (driven by a single high catch), has a large CV and so is unlikely to have had much effect on the assessment results.

Data from two wide-area surveys by Tangaroa in 2004 and 2007 were also used. These surveys covered the area which extends from the western edge of the Spawning Box around to the northern edge of the Andes. The area surveyed did not include the Old plume, the Northeast Hills, or the Andes. The survey used a random design over sixteen strata grouped into five sub-areas. The trawl net used was the fullwing and relatively fine mesh 'ratcatcher' net. The surveys covered the same survey area as the Spawning Box trawl surveys from 1984 to 1994 as well as additional strata to the east. In 2007, the survey ran from 4 to 27 July and 62 trawl tows were completed. In 2004, the survey ran from 7 to 29 July and 57 trawl tows were completed. The surveys had almost identical estimates of total biomass in each year (17000 t) with low CVs (10% and 13%, respectively). They were fitted as relative biomass with an uninformed prior on the q.

Figure 4: The Spawning Box trawl survey biomass indices (assuming a catchability of 1 for each vessel), with 95% confidence intervals shown as vertical lines. Vessels indicated as B, FV Otago Buccaneer; C, FV Cordella; T, RV Tangaroa.

Length frequencies

The length frequencies from all trawl surveys were fitted in the model as multinomial random variables. Effective sample sizes (N) were taken from Dunn (2007) for the Spawning Box surveys and were assumed equal to the number of tows for the wide-area surveys (across all surveys the effective Ns ranged from about 20 to 80). Trawl survey length frequencies were fitted assuming that all mature fish were selected, but immature fish were selected assuming capped-logistic ogives. A single selectivity ogive for immature fish was shared by the Buccaneer, Cordella, and Tangaroa Spawning Box surveys, with a second ogive for the immature fish caught in the Tangaroa wide-area survey.

Length frequencies from the commercial fisheries developed by Hicks (2006) were also fitted in the model. For the Spawning Box and associated flat ground fishery, three years of length frequency data from the period 1989-91 were combined into a single length frequency that was centred on 1990, and four years 2002-05 were combined and centred on 2004. In a similar way, for Andes four years 199295 were combined and centred on 1993, three years 1997-99 were combined and centred on 1998, and five years were combined 2001-05 and centred on 2003. For the eastern hills, seven years 1991-97 were combined and centred on 1995, and five years 2001-05 were combined and centred on 2003. These were fitted as multinomial with effective sample sizes ranging from 8-38.

Age frequencies

Age frequencies were developed for the Old plume and Rekohu plume in 2012 and for the Old plume, Rekohu, and the Crack in 2013 and 2016 (Doonan et al. 2014a, b, 2018). Approximately 300 otoliths were randomly selected from each area in 2012 and 2016 and 250 from each area in 2013. The fish in the Old plume were noted to be generally older than those in the Rekohu plume. The fish from the Crack showed a mixture of ages from new spawners (20-30 years old) to much older fish ($80-100$ years old). The age frequencies were combined across areas and fitted as multinomial with effective sample sizes of 50 (2012) and 60 (2013 and 2016), respectively, reflecting the low number of trawls from which samples were taken.

2.3 Model structure

The model was single-sex and age-structured (1-100 years with a plus group), with maturity estimated separately (i.e., fish were classified by age and as mature or immature). A single time step was used and, in the updated base model, four year-round fisheries, with logistic selectivities, were modelled: Box \& flats, Eastern hills, Andes, and South Rise. These fisheries were chosen following Dunn (2007) who assessed the Box \& flats, Eastern hills, and Andes as separate stocks. No length frequencies were
available from the South Rise fishery and its selectivity was assumed to be the same as the Andes (so effectively there were three fisheries in the model). Spawning was taken to occur after 75% of the mortality and 100% of mature fish were assumed to spawn each year.

Natural mortality was fixed and the stock-recruitment relationship was assumed to follow a BevertonHolt function.

The fixed biological parameters were:

Natural mortality:	0.045
Beverton-Holt steepness:	0.75
Length-weight $(a, b):$	$8.0 \mathrm{e}-5,2.75(\mathrm{~cm}$ to kg$)$
von Bertalanffy $\left(L_{\infty}, k, t_{0}\right):$	$37.78 \mathrm{~cm}, 0.059,-0.491$ years

2.4 Estimation methods and model runs

The estimation methods were almost identical to those used in the 2014 orange roughy assessments (Cordue 2014a). The stock assessments were done using the general Bayesian estimation package CASAL (Bull et al. 2012). The final model results used the marginal posterior distributions of parameters and derived values of interest (e.g., virgin biomass (B_{0}), current biomass (B_{2020}), and current stock status $\left(s s_{2020}=B_{2020} / B_{0}\right)$). The marginal posterior distributions were produced using Markov chain Monte Carlo methods (hence termed 'MCMC' runs). Preliminary analysis was performed using the Mode of the Posterior Distribution (MPD) which can be obtained much more quickly than the full posterior distribution (hence 'MPD' runs). An MPD estimate is associated with the 'best fit' that can be obtained - it is useful to check that the 'best fit' is not too bad otherwise there would be concerns about the appropriateness of the model.

As well as the updated base model (denoted as the 'current model') there were two additional models: the q -ratio model which assumed a single fishery on mature fish, had a prior on $q_{/} / q_{2}$, and added 20% process error to the associated acoustic biomass indices; and the standard LowMhighq model (see Cordue 2014a). The CASAL input files for the q-ratio and current model are given in Appendix 2.

In all three models, the main parameters estimated were: virgin (unfished, equilibrium) biomass (B_{0}), the maturity ogive, trawl-survey selectivities, fisheries selectivities, CV of length-at-mean-length-atage for ages 1 and 100 years (linear relationship assumed for intermediate ages), and year class strengths (YCS) from 1930 to 1990 (with the Haist parameterisation and 'nearly uniform' priors on the free parameters). There were also the numerous acoustic and trawl survey q s.

The general approach taken to data weighting within the stock assessment was to down-weight age and length frequency data relative to biomass indices to allow any scale and trend information in the biomass indices to drive the assessment results. This broadly follows the ideas of Francis (2011) who argued that composition data were generally given far too much weight in stock assessment models and were often allowed to dominate the signals from biomass indices.

MCMC chain diagnostics

Mathematical theory proves that MCMC chains will eventually converge to provide the joint posterior distribution. However, one can never be certain that a chain, or multiple chains, have been run long enough to achieve 'sufficient' convergence. There is never proof that a chain has converged but there may be evidence that a chain has not yet converged. Many diagnostics exist to help determine whether a chain has achieved sufficient convergence.

In New Zealand, a common approach to judge convergence is to use multiple chains (each with a different random number seed) and to compare the marginal posterior distributions for the (derived) parameters of interest. The idea is that the chains are sufficiently converged when all of the chains give
the 'same' answer. For each model, three chains of fifteen million iterations were run. One sample in each one thousand iteration was stored and the first one thousand samples were discarded as a 'burnin' (the chains start near the MPD estimate and early samples may be unrepresentative of the posterior distribution). The traces of the main free parameters were checked to make sure that they did not exhibit any long-term trends and the estimates of B_{0} and current stock status (stock status ${ }_{2020}=B_{2020} / B_{0}$) from each chain were checked to see that they were the same to two significant figures. Point estimates (median) and 95% credibility intervals (95% CIs) were constructed using all three chains combined after the burn-in (a total of 42000 samples). MCMC chain diagnostics for this assessment are shown in Appendix 1.

Fishing intensity

Fishing intensity was estimated in each year as the total exploitation rate (total catch over beginning of year vulnerable biomass - which was a catch-weighted average in the current model).

The exploitation rate associated with the fishing intensity reference points $U_{30 \% B O}$ and $U_{50 \% B O}$ were determined for the catch split assumed in 2018-19. Note, in general, the fishing intensity that forces the stock to deterministic equilibrium at $\mathrm{x} \% B_{0}$ is denoted as $U_{x \% B O}$.

Projections

Projections at the HCR recommended catch limits (plus 5\% to allow for incidental mortality) were performed for the current model and the q-ratio model. The highest of the two catch limits was used in a projection for the LowMhighq model. This was to check that the highest HCR recommended catch limit was still safe even if the pessimistic scenario represented by the LowMhighq model was true. Projections were done over 8 years as the HCR was intended to be applied about every four years. Random recruitment was brought in from 1991 by resampling from the last ten years of estimated YCS (1981-1990).

3. RESULTS

3.1 Model diagnostics

MPD fits and MCMC fits and residuals and marginal posterior distributions for the q s were examined for the current model and the q-ratio model. In general, the fits were excellent and the standardised residuals were acceptable (e.g., see Figures 5-7). The main exception was for the current model where the normalised residuals for the 2016 acoustic estimate are well outside the expected range (Figure 8). In the q-ratio model the residuals are much improved because of the addition of 20% process error (the CV is only 10% in the current model which is measure of observation error only).

Figure 5: Current model: the MCMC fits and normalised residuals for the trawl survey biomass estimates in the spawning box. The observations are plotted with $\mathbf{9 5 \%}$ confidence intervals (left plot, red vertical lines). The MCMC predictions (left plot) and normalised residuals (right plot) are plotted as a 'box and whiskers'. The middle 50% of the distribution is in the box with the whiskers extending to a 95% C.I.

Figure 6: Current model: the MCMC fits and normalised residuals for the 2016 spawning population age frequency distribution (left plot, histogram in black). The MPD fit is shown as the red line in the left plot. The MCMC predictions (left plot) and Pearson residuals (right plot) are plotted as a 'box and whiskers'. The middle 50% of the distribution is in the box with the whiskers extending to a 95% C.I.

Figure 7: Current model: the MCMC fits and normalised residuals for the 2007 wide-area trawl survey length frequency distribution (left plot, histogram in black). The MPD fit is shown as the red line in the left plot. The MCMC predictions (left plot) and Pearson residuals (right plot) are plotted as a 'box and whiskers'. The middle 50% of the distribution is in the box with the whiskers extending to a 95% C.I.

Figure 8: Current model: the MCMC fits and normalised residuals for the acoustic survey biomass estimates since 2011. The observations are plotted with $\mathbf{9 5 \%}$ confidence intervals (left plot, red vertical lines). The MCMC predictions (left plot) and normalised residuals (right plot) are plotted as a 'box and whiskers'. The middle 50% of the distribution is in the box with the whiskers extending to a $\mathbf{9 5 \%}$ C.I.

The marginal posterior distributions for the two main acoustic q s are individually unremarkable being well within their prior distributions (Figure 9). However, in the current model the ratio of the two q s has a probability for being less than 1 of 39%. A value less than 1 must be considered very unlikely as an extra area is surveyed for the q_{1} time series. This is the main reason for the q-ratio model which corrects this diagnostic through the informed prior (and has a marginal posterior distribution with only a 5% probability of being less than 1).

Figure 9: Current model: the prior distributions (red lines) and marginal posterior distributions (histograms) for the two main acoustic $q s$.

3.2 MCMC results

Virgin biomass, B_{0}, was estimated to be about $300000-350000 \mathrm{t}$ for the three models (Table 2). Current stock status was similar for the current and q-ratio models, both having the 95% CIs above $30 \% B_{0}$ (Table 2). The pessimistic LowMhighq run has stock status estimated just below $30 \% B_{0}$ (Table 2).

Table 2: ESCR, MCMC estimates of virgin biomass (B_{0}), current biomass (B_{2020}), and stock status (B_{2020} as $\% B_{0}$) for the three models.

	$B_{0}(000 \mathrm{t})$		$B_{2020}(000 \mathrm{t})$		Stock status (\% B_{0})	
	Median	95\% CI	Median	95\% CI	Median	95\% CI
Current	312	281-346	111	91-135	36	30-41
model						
q-ratio model	354	331-380	135	109-164	38	32-44
LowMhighq	337	308-363	90	71-111	27	22-32

The estimated YCS show little variation across cohorts but do exhibit a long-term trend (Figure 10). The stock status trajectory shows a steady decline from the start of fishery until the mid-1990s, where it remained in the $20-30 \%$ range until an upturn in about 2010 (Figure 11).

Figure 10: ESCR current model, MCMC estimated 'true' YCS ($\left.R_{y} / R_{0}\right)$. The box in each year covers 50% of the distribution and the whiskers extend to $\mathbf{9 5 \%}$ of the distribution.

Figure 11: ESCR current model, MCMC estimated spawning-stock biomass trajectory. The box in each year covers 50% of the distribution and the whiskers extend to 95% of the distribution. Horizontal lines are plotted at the hard limit $\left(\mathbf{1 0 \%} \boldsymbol{B}_{0}\right)$, the soft limit $\left(\mathbf{2 0 \%} \boldsymbol{B}_{0}\right)$, and the biomass target range ($\mathbf{3 0}-\mathbf{5 0 \%} \mathrm{B}_{0}$).

For the current model, fishing intensity was approximated using an average exploitation rate (total catch divided by catch-weighted beginning-of-year vulnerable biomass). Estimated exploitation rates were within or above the target range $\left(U_{30 \% B O-} U_{50 \% B 0}\right)$ up to 2009-10. Since 2010-11 they have generally been below the target range (Figure 12).

Figure 12: ESCR current model, MCMC estimated exploitation rates. The box in each year covers 50% of the distribution and the whiskers extend to 95% of the distribution. The exploitation rates associated with the biomass target of $\mathbf{3 0}-\mathbf{5 0 \%} B_{0}$ are marked by horizontal lines at $U_{30 \% B O}$ and $\boldsymbol{U}_{50 \% \text { BO }}$.

Biological reference points, management targets and yield

Catch limits for the ESCR stock are recommended from the Harvest Control Rule (HCR) that was developed in 2014 using a Management Strategy Evaluation (MSE) (Cordue 2014b). The HCR has a target management range of $30-50 \% B_{0}$. Within that range there is a linear relationship between current estimated stock status and the instantaneous fishing mortality (exploitation rate) that is applied to next year's beginning-of-year vulnerable biomass to obtain the recommended catch limit (Figure 13).

Figure 13: The orange roughy HCR showing the relationship between current estimated stock status and the instantaneous fishing mortality rate (or exploitation rate) applied to next year's beginning-of-year vulnerable biomass to derive the recommended catch limit. The target biomass range is $\mathbf{3 0}-\mathbf{5 0 \%} B_{0}$ and the limit reference point (LRP) is $\mathbf{2 0 \%} B_{0}$ (see Cordue 2014b).

The HCR was applied to the current model and the q-ratio model. The medians of the marginal posterior distributions are used in the calculation. As estimated stock status is less than $40 \% B_{0}$ in both runs the exploitation rates are less than $F_{\text {mid }}=0.045$ (Figure 13, Table 3). The slightly higher stock status for the q-ratio model gives a higher exploitation rate than the current model but because of the lower vulnerable biomass the recommended catch limit from both models is similar (Table 3).

Table 3: The estimated stock status in 2019-20, the catch-weighted vulnerable biomass at the beginning of 2020-21, and the associated exploitation rate and recommended catch limit from the HCR for the current model and the q-ratio model.

Model	Stock status $\left(\% B_{0}\right)$	Exploitation	Valnerable biomass (t)	HCR-derived catch limit (t)
Current model	36	0.04050	156735	6348
q-ratio model	38	0.04275	146977	6283

3.3 Projections

Projections at the recommended catch limits (plus 5\% to allow for incidental mortality) were performed for the current model and the q-ratio model. The highest of the two catch limits was used in a projection for the LowMhighq model. This was to check that the highest HCR recommended catch limit was still safe even if the pessimistic scenario represented by the LowMhighq model was true.

In each case, stock status was projected to rise slowly from the current estimated stock status and there was close to zero probability of the stock status being below $20 \% B_{0}$ over the next 8 years (Figure 14).

Figure 14: Projected stock status for catches at the HCR recommended catch limits plus 5\% to allow for incidental mortality. Top: q-ratio model projected at 6283 t (plus 5\%). Middle: current model projected at 6348 t (plus 5\%). Bottom: LowMhighq model projected at 6348 t (plus 5\%). Each box covers the middle $\mathbf{5 0 \%}$ of the distribution and the whiskers extend to $\mathbf{9 5 \%}$ CIs.

4. DISCUSSION AND CONCLUSIONS

This was an unscheduled update for the ESCR and as such the number of models considered was kept to a minimum. The current model had two obvious problems which were addressed in the q-ratio model. In addition, the q-ratio model also simplified the structure of the commercial fisheries by moving to a single fishery on mature fish instead of having three different estimated selectivities. In an interim model, where the only change from the current model was a move to the single fishery, the MPD fits to the data were identical.

The addition of process error to the main acoustic indices used in the q -ratio model is best practice for two reasons. First, there are known processes which would be expected to produce annual variability in the acoustic q s (e.g., variation in: the proportion of spawning biomass surveyed; the proportion of mature biomass spawning; the signal lost due to vessel motion and absorption; calibration errors; target identification errors; species contamination). Second, it is usually best to have the input variance assumptions matching the output variance (which is not the case for the current model with the huge residuals for the acoustic index in 2016).

The use of a q-ratio penalty for the two acoustic q s is also an obvious modification to supply the model with known a priori information (i.e., that one series surveys an additional area and would be expected to have a higher q).

The q -ratio model shows a better fit to the data than the current model and has a slightly higher estimate of current stock status. However, the recommended catch limits from both models are very similar as the higher stock status of the q-ratio model is cancelled out by having a lower vulnerable biomass (as maturity is to the right of the average commercial selectivity when selectivities are estimated).

For both models, if the recommended catch limit is taken for the next 8 years, stock status is predicted to slowly increase and stay within the target biomass range. If the 'worst case' scenario of the LowMhighq model is assumed and the highest recommended catch limit is taken for the next 8 years, stock status is expected to slowly increase and there is close to zero probability of it being below the soft limit ($20 \% B_{0}$) in any year.

5. ACKNOWLEDGEMENTS

This work was funded by the Deepwater Group Ltd. With thanks to the analyst, P. L. Cordue. Thanks also to members of Fisheries New Zealand's DWWG for providing useful comments and guidance on the assessment and to NIWA for the use of their stock assessment package CASAL. This report was finalised for publication by G. A. Tingley working for Deepwater Group Ltd.

6. REFERENCES

Bull, B; Francis, R.I.C.C; Dunn, A.; Gilbert, D.J.; Bian, R.; Fu, D. (2012). CASAL (C++ algorithmic stock assessment laboratory): CASAL User Manual v2.30-2012/03/21. NIWA Technical Report 135. 280 p .
Cordue, P.L. (2008). Review of estimates of Chatham Rise orange roughy biomass from plume surveys. (Unpublished report prepared for the New Zealand Ministry of Fisheries, 30 August 2008, and held by Fisheries New Zealand.) 39 p.
Cordue, P.L. (2010). Linear-model derived bottom-referenced corrections for the Chatham Rise orange roughy plume acoustic time series 2002-2009. (Unpublished report held by Fisheries New Zealand, Wellington.) 38 p .
Cordue, P.L. (2014a). The 2014 orange roughy stock assessments. New Zealand Fisheries Assessment Report 2014/50. 135 p.
Cordue, P.L. (2014b). A management strategy evaluation for orange roughy. ISL Client Report for Deepwater Group Ltd. 42 p . https://deepwatergroup.org/wp-content/uploads/2021/11/Cordue-2014.-Management-Strategy-Evaluation-for-OrangeRoughy.pdf
Cordue, P.L. (2018). A brief update of the ORH3B ESCR and NWCR stock assessments to the end of the 2016-17 and 2017-18 fishing years with application of the Harvest Control Rule in both years. ISL Client Report for Deepwater Group Ltd. 59 p. https://deepwatergroup.org/wp-content/uploads/2021/11/Cordue-2018.-A-brief-update-of-ORH3B-ESCR-NWCR-stockassessments.pdf

Doonan, I.J.; Hart, A.C.; Bagley, N.; Dunford, A. (2012). Orange roughy abundance estimates of the north Chatham Rise Spawning Plumes (ORH3B), San Waitaki acoustic survey, June-July 2011. New Zealand Fisheries Assessment Report 2012/28. 35 p.

Doonan, I.J.; Horn, P.L.; Ó Maolagáin, C. (2014a). Orange roughy age estimates: Chatham Rise (ORH 3B) spawning plumes in 2012, and mid-east coast North Island (ORH 2A) fishery from 1989-91 and 2010. New Zealand Fisheries Assessment Report 2014/24. 19 p.
Doonan, I.J.; Horn, P.L.; Ó Maolagáin, C. (2014b). Age composition of orange roughy from ORH 3B (Chatham Rise: northwest ,1994, and northeast,2013), and from ORH 7A (Challenger Plateau in 1987, 2006 and 2009). New Zealand Fisheries Assessment Report 2014/59. 33 p.
Doonan, I.J.; Horn, P.L.; Ó Maolagáin, C.; Datta, S. (2018). Age composition of orange roughy from ORH 3B, Chatham Rise, 2016: Mount Muck, Old Plume, Rekohu Plume, and Morgue. New Zealand Fisheries Assessment Report 2018/48. 17 p.
Dunn, M.R. (2007). CPUE analysis and assessment of the Northeast Chatham Rise orange roughy stock (part of ORH 3B) to the end of 2004-05 fishing year. New Zealand Fisheries Assessment Report 2007/8. 75 p.
Dunn, M.R. (2018). Orange roughy fisheries on Chatham Rise and Campbell Plateau (ORH 3B). New Zealand Fisheries Assessment Report 2018/52. 54 p.
Dunn, M.R.; Doonan, I.J. (2018). Assessment of the Chatham Rise orange roughy stocks for 2017. New Zealand Fisheries Assessment Report 2018/59. 60 p.
Francis, R.I.C.C. (2011). Data weighting in statistical fisheries stock assessment models. Canadian Journal of Fisheries and Aquatic Sciences 68: 1124-1138.
Hampton, I; Soule, M; Nelson, J. (2008). Standardisation of acoustic estimates of orange roughy biomass in the North Chatham Rise Spawning Plume between 1996 and 2007, made with vessel-mounted transducers. 20 p. (Unpublished working group presentation DWWG 0860 held by Fisheries New Zealand, Wellington.)
Hampton, I; Soule, M; Nelson, J. (2009). Corrections to time series of acoustic estimates of orange roughy spawning biomass in the Spawning Plume in area ORH3B from vessel-mounted transducers, 1996 to 2008.29 p. WG-Deepwater-09/14. (Unpublished report DWWG200914 held by Fisheries New Zealand, Wellington.)
Hampton, I; Soule, M.A.; Nelson, J.C. (2010). Standardised acoustic estimates of orange roughy biomass in the Spawning Plume in area ORH 3B from vessel-mounted and towed transducers, 1996-2009. (Unpublished report DWWG-2010-47-FRS held by Fisheries New Zealand, Wellington.)
Hicks, A.C. (2006). Changes in lengths from the commercial catch in the Spawning Box. (Unpublished working group presentation DWWG 06-28 held by Fisheries New Zealand, Wellington.)

APPENDIX 1: MCMC chain diagnostics for the current model

The chains for the objective function show the need for a burn-in as the chains move away from the MPD estimate (Figure A1). The objective function values appear to mix well - they are not getting stuck at high or low values for an extended period (Figure A1). The same is true for the B_{0} and current stock status chains although they show some 'medium frequency' structure (Figures A2 \& A3). The three chains gave almost identical median estimates of B_{0} and current stock status (Figure A4).

Figure A1: MCMC current model: objective function values for the first 5000 retained samples for each of the three chains including the burn-in (the first 1000 retained samples).

Figure A2: MCMC current model: B_{0} estimates for the first 5000 retained samples for each of the three chains including the burn-in (the first 1000 retained samples).

Figure A3: MCMC current model: current stock status estimates (B_{2020} / B_{0}) for the first 5000 retained samples for each of the three chains including the burn-in (the first $\mathbf{1 0 0 0}$ retained samples).

Figure A4: MCMC current model: density distribution of estimates of B_{0} (left) and current stock status (B_{2020} / B_{0}, right) for the retained samples for each of the three chains excluding the burn-in (the first 1000 retained samples).

APPENDIX 2: CASAL input files

The population and estimation files used in the MCMC q-ratio model are given below. The variations needed for the current model are noted at the end of the appendix.

```
population.csl
# Commercial selectivities set equal to maturity
@size_based False
@min_age 1
@max_age 100
@plus_group True
@sex partition False
@mature_partition True
@n_areas 1
@initial 1911
@current 2020
@final 2028
@annual_cycle
time steps 1
aging_time 1
recruitment_time 1
fishery_names boxflat hills andes south
fishery_times 1111
spawning_time 1
spawning_p 1
spawning_part_mort 0.75
M_props 1
baranov False
n_maturations 1
maturation_times 1
@y_enter 1
@standardise_YCS True
@recruitment
YCS_years 1910 1911191219131914191519161917 191819191920192119221923192419251926 1927
19281929 193019311932193319341935193619371938193919401941 19421943 194419451946 1947
194819491950 1951 1952195319541955195619571958 19591960 19611962 19631964 1965 1966 1967
1968196919701971 1972197319741975 1976197719781979 1980 19811982 198319841985 1986 1987
1988198919901991 199219931994199519961997199819992000 2001 2002 2003 2004 2005 2006 2007
200820092010201120122013201420152016201720182019
YCS 1111111111111111111111111111111111111111111111111111111111
11111111111111111111111111111111111111111111111111111
SR BH
steepness 0.75
sigma_r 1.1
first_free 1930
last_free 1990
year_range 19811990
# recruitment variability
@randomisation_method empirical
@first_random_year 1991
@natural_mortality
all 0.045
@fishery boxflat
```

years 1979198019811982198319841985198619871988198919901991199219931994199519961997 19981999200020012002200320042005200620072008200920102011201220132014201520162017 201820192020
catches 153383766020910225606760213602535026720282701922023710203207570259019090570 18001800257012801640150034603720502654825711585752604625378719661659155817912451 16801794.8751974 .9473156 .2803616 .096
selectivity matsel
U_max 0.67
future_constant_catches 4749.948
@fishery hills
years 1979198019811982198319841985198619871988198919901991199219931994199519961997 19981999200020012002200320042005200620072008200920102011201220132014201520162017 201820192020
catches 01602060090029020037040020063703100128012501740810117071011209308801040 870616543544836383686247202218591504614842.03642185 .37908211 .32850242 .11543
selectivity matsel
U_max 0.67
future_constant_catches 329.8575
@fishery andes
years 1979198019811982198319841985198619871988198919901991199219931994199519961997 19981999200020012002200320042005200620072008200920102011201220132014201520162017 201820192020
catches 000000000050240100862038204060190013808201550139022701300254028701528 13811776144813075145775585295288755241132845.3546855 .8804531 .2104608 .5986
selectivity matsel
U_max 0.67
future_constant_catches 857.6295
@fishery south
years 1979198019811982198319841985198619871988198919901991199219931994199519961997 19981999200020012002200320042005200620072008200920102011201220132014201520162017 201820192020
catches 010404810650624066301027067846174843211224132007935242059405610168013651470 178512601155178511551575140917571310127314191231976484320307528412376581.9388 456.8088477 .3924546 .9403
selectivity matsel
$\mathrm{U} \max 0.67$
future_constant_catches 659.715
@selectivity_names Bucsel Corsel Tansel Tanwidesel matsel
@selectivity Bucsel
mature constant 1
immature logistic_capped 1030.1
@ selectivity Corsel
mature constant 1
immature logistic_capped 1030.1
@selectivity Tansel
mature constant 1
immature logistic_capped 1030.1
@selectivity Tanwidesel
mature constant 1
immature logistic capped 1740.8
@selectivity matsel
mature constant 1
immature constant 0

```
@size_at_age_type von_Bert
@size_at_age_dist normal
@size_at_age
k 0.059
t0 -0.491
Linf 37.78
cv1 0.10
cv2 0.06
by_length True
@size_weight
a 8.0e-8
b }2.7
@maturation
rates_all logistic_producing 10100 374.56
@initialization
B0 350000
estimation.csl
# Commercial selectivities set equal to maturity
# 20% process error added to plume+rekohu, plume+rekohu+crack
# A q-ratio penalty for plume+rekohu+crack vs plume+rekohu
@estimator Bayes
@max_iters 4000
@max_evals 4000
@grad_tol 0.0001
@MCMC
start 0.2
length 15000000
keep }100
stepsize 0.02
proposal_t True
df 2
burn_in 1000
@relative abundance aco
step 1
proportion_mortality 0.75
biomass True
ogive matsel
years 201120132016
201151329
201354363
201643560
cv_2011 0.22
cv_2013 0.22
cv_2016 0.22
dist lognormal
q acoq
@estimate
parameter q[acoq].q
prior lognormal
mu 0.8
cv 0.19
lower_bound 0.1
upper_bound 1.5
```

@relative_abundance aco2012
step 1
proportion_mortality 0.75
biomass True
ogive matsel
years 20122014
201246513
201463781
cv_2012 0.21
cv_2014 0.27
dist lognormal
q acoq2012
@estimate
parameter q[acoq2012].q
prior uniform
lower_bound 0.1
upper_bound 1.5
@ratio_qs_penalty
label qratpen
q1 acoq
q2 acoq2012
mu 1.143
cv 0.075
@relative abundance aco2002
step 1
proportion_mortality 0.75
biomass True
ogive matsel
years 2002
200263950
cv 0.06
dist lognormal
q acoq2002
@estimate
parameter q[acoq2002].q
prior lognormal
mu 0.70
cv 0.30
lower_bound 0.1
upper_bound 1.5
@relative_abundance aco2003
step 1
proportion_mortality 0.75
biomass True
ogive matsel
years 2003
200344316
cv 0.06
dist lognormal
q acoq2003
@estimate
parameter q[acoq2003].q
prior lognormal
mu 0.65
cv 0.30
lower_bound 0.1
upper_bound 1.5
@relative_abundance aco2004
step 1
proportion_mortality 0.75
biomass True
ogive matsel
years 2004
200444968
cv 0.08
dist lognormal
q acoq2004
@estimate
parameter q[acoq2004].q
prior lognormal
mu 0.60
cv 0.30
lower_bound 0.1
upper_bound 1.5
@relative_abundance aco2005
step 1
proportion_mortality 0.75
biomass True
ogive matsel
years 2005
200543923
cv 0.04
dist lognormal
q acoq2005
@estimate
parameter q[acoq2005].q
prior lognormal
mu 0.55
cv 0.30
lower bound 0.1
upper_bound 1.5
@ relative_abundance aco2006
step 1
proportion_mortality 0.75
biomass True
ogive matsel
years 2006
200647450
cv 0.10
dist lognormal
q acoq2006
@estimate
parameter q[acoq2006].q
prior lognormal
mu 0.50
cv 0.30
lower_bound 0.1
upper_bound 1.5

```
@relative_abundance aco2007
step 1
proportion_mortality 0.75
biomass True
ogive matsel
years 2007
200734427
cv 0.05
dist lognormal
q acoq2007
@estimate
parameter q[acoq2007].q
prior lognormal
mu 0.45
cv 0.30
lower_bound 0.1
upper_bound 1.5
@relative_abundance aco2008
step 1
proportion_mortality 0.75
biomass True
ogive matsel
years 2008
200831668
cv 0.08
dist lognormal
q acoq2008
@estimate
parameter q[acoq2008].q
prior lognormal
mu 0.40
cv 0.30
lower_bound 0.1
upper_bound 1.5
@relative_abundance aco2009
step 1
proportion_mortality 0.75
biomass True
ogive matsel
years 2009
200928199
cv 0.05
dist lognormal
q acoq2009
@estimate
parameter q[acoq2009].q
prior lognormal
mu 0.35
cv 0.30
lower_bound 0.1
upper_bound 1.5
@relative_abundance aco2010
step 1
proportion_mortality 0.75
```

```
biomass True
ogive matsel
years 2010
201021205
cv 0.07
dist lognormal
q acoq2010
@estimate
parameter q[acoq2010].q
prior lognormal
mu 0.30
cv 0.30
lower_bound 0.1
upper_bound 1.5
@relative_abundance Buc
step 1
proportion_mortality 0.75
biomass True
ogive Bucsel
years 1984198519861987
1984130000
1985111000
198677000
198760000
cv_1984 0.17
cv_1985 0.15
cv_1986 0.16
cv_19870.15
dist lognormal
q Bucq
@estimate
parameter q[Bucq].q
prior uniform
lower_bound 0.1
upper_bound 2
@relative_abundance Cor
step 1
proportion_mortality 0.75
biomass True
ogive Corsel
years 198819891990
198873000
198954000
1990 34000
cv_1988 0.25
cv_1989 0.18
cv_1990 0.19
dist lognormal
q Corq
@estimate
parameter q[Corq].q
prior uniform
lower_bound 0.1
upper_bound 2
```

@relative_abundance Tan
step 1
proportion_mortality 0.75
biomass True
ogive Tansel
years 19921994
199222000
199461000
cv_1992 0.34
cv_1994 0.67
dist lognormal
q Tanq
@ estimate
parameter $\mathrm{q}[$ Tanq].q
prior uniform
lower_bound 0.1
upper_bound 2
@ relative_abundance Tanwide
step 1
proportion_mortality 0.75
biomass True
ogive Tanwidesel
years 20042007
200416878
200717000
cv_2004 0.10
cv_2007 0.13
dist lognormal
q Tanwideq
@estimate
parameter q [Tanwideq].q
prior uniform
lower_bound 0.01
upper_bound 1
@proportions_at LFbuc
years 1984198519861987
step 1
proportion_mortality 0.75
sexed F
sum_to_one True
at_size True
plus_group False
ogive Bucsel
class_mins 1011121314151617181920212223242526272829303132333435363738394041
424344454647
19840 2e-05 5e-05 0.000140 .000210 .000350 .000610 .000620 .001360 .001370 .0020 .003780 .005120 .00461
0.006010 .00730 .007160 .007950 .01140 .011020 .02230 .040370 .069360 .10730 .15320 .156730 .13640 .1093
$0.06560 .03750 .019590 .007850 .003120 .000141 \mathrm{e}-0500$
$1985004 \mathrm{e}-0501 \mathrm{e}-057 \mathrm{e}-050.000140 .000270 .000390 .000690 .000550 .001190 .001880 .002830 .0049$
 0.066240 .044920 .025180 .007830 .003750 .000938 8-05 00
$\begin{array}{lllllllll}1986 & 0.000363809 & 0.000201576 & 0.000313044 & 0.000724497 & 0.000961107 & 0.000762717 & 0.001089252\end{array}$ 0.0019024460 .0022279840 .0030253470 .0030482810 .0065732740 .0070093170 .0083613350 .009664961 0.010681340 .012478020 .011664680 .010137350 .013807180 .016502850 .03695610 .057669670 .1023416 0.12399620 .14793080 .14703530 .11124060 .070098390 .048606110 .021086140 .0078556710 .002766081 0.0004154240 .00049026300
19870.0003046290 .001016680 .0024885070 .0032821070 .0038914750 .0027382690 .0017775530 .001785247 0.0032571060 .0032442540 .0029070470 .0050526890 .0057266290 .0055689480 .0062095990 .006486545 $\begin{array}{lllllllllll}0.007462302 & 0.007626307 & 0.008204232 & 0.008299334 & 0.01408508 & 0.02623393 & 0.05483458 & 0.07969361\end{array}$ $\begin{array}{llllllllllllll}0.121034 & 0.1483798 & 0.1625132 & 0.126157 & 0.08036137 & 0.06211313 & 0.02218157 & 0.01085796 & 0.002392455\end{array}$ $0.0014859950 .00026971503 .17607 \mathrm{e}-05$
dist multinomial
r 0.00001
N 198450
N_1985 50
N_1986 50
N 198750
@proportions_at LFcor
years 198819891990
step 1
proportion_mortality 0.75
sexed F
sum_to_one True
at size True
plus_group False
ogive Corsel
class_mins 1011121314151617181920212223242526272829303132333435363738394041 424344454647
$19885.55404 \mathrm{e}-050.000215370 .0009219290 .0019982690 .0027651540 .0025121290 .0016290950 .001407058$ 0.0011794290 .0013840990 .0015374450 .0021580940 .0026743440 .0031050220 .0045713680 .005076823 0.0062532960 .0073321350 .010638350 .016055560 .025345790 .042034810 .074592230 .11501540 .1517476 0.15265840 .13478460 .099429180 .063549440 .036554820 .019465030 .0080076250 .0027123820 .000611234 000
$1989 \quad 0 \quad 0 \quad 9.46743 \mathrm{e}-05 \quad 0.000475164 \quad 0.00128098 \quad 0.0015580010 .000982196 \quad 0.0008741030 .000634979$ 0.0006598820 .0008025370 .0005556260 .0013810850 .0016036550 .0019348730 .0024146140 .003675653 0.0047002430 .0070550170 .012422350 .020619240 .040794660 .074016080 .10855420 .13802760 .1627439 $\begin{array}{llllllll}0.1465626 & 0.1139847 & 0.07534233 & 0.04350086 & 0.02223969 & 0.006993559 & 0.002610414 & 0.000208229\end{array}$ 0.0005355470 .0001606990
$\begin{array}{lllllllll}1990 & 0.000179169 & 0.000377355 & 0.000613896 & 0.000710887 & 0.002620261 & 0.004827357 & 0.004456357\end{array}$ $\begin{array}{llllllllllll}0.003130915 & 0.002112392 & 0.003132623 & 0.00306085 & 0.004006348 & 0.004517943 & 0.00516196 & 0.007964616\end{array}$ 0.0073380770 .0094364760 .0085558760 .013656260 .018486240 .03156140 .04515310 .076095210 .1193685 0.13441040 .14772830 .12762510 .089772520 .064889260 .036250160 .016633720 .0044066530 .001629912 0.000126773000
dist multinomial
r 0.00001
N_1988 58
N_1989 63
N-1990 83.5
@proportions_at LFtan
years 19921994
step 1
proportion_mortality 0.75
sexed F
sum_to_one True
at size True
plus_group False
ogive Tansel
class_mins 1011121314151617181920212223242526272829303132333435363738394041 424344454647
$\begin{array}{llllllll}1992 & 2.34854 \mathrm{e}-05 & 0.000308678 & 0.000262086 & 0.000657547 & 0.000931968 & 0.001690054 & 0.003369972\end{array}$ $\begin{array}{lllllllllllll}0.006752543 & 0.006809377 & 0.00415511 & 0.003710767 & 0.003929743 & 0.003134993 & 0.005071809 & 0.004991473\end{array}$ 0.0069981840 .011686470 .011121790 .020593670 .016762070 .023336660 .032437430 .049169830 .07676098 0.1196920 .13125380 .13038230 .12846470 .083517150 .058906090 .031928490 .015404220 .004831111 $0.0006702460 .0002087281 .61971 \mathrm{e}-051.67119 \mathrm{e}-05$
$199401.67578 \mathrm{e}-050313.64622 \mathrm{e}-05 \quad 0.0003244720 .0005087160 .0016323220 .0023638050 .002149121$ $\begin{array}{llllllllll}0.001742358 & 0.001213862 & 0.00117852 & 0.001621137 & 0.00418043 & 0.008015245 & 0.008473403 & 0.01426134\end{array}$ $\begin{array}{llllllllllllllllllll}0.01209774 & 0.04239483 & 0.05211802 & 0.07447671 & 0.08996584 & 0.1133403 & 0.1321768 & 0.1354024 & 0.1045433\end{array}$ 0.07639960 .060152970 .029455130 .015549210 .010478460 .001671650 .0008570030 .00115050700 dist multinomial r 0.00001
N_1992 33
N-1994 20
@proportions_at LFtanwide
years 20042007
step 1
proportion_mortality 0.75
sexed F
sum to_one True
at size True
plus_group False
ogive Tanwidesel
class_mins 8910111213141516171819202122232425262728293031323334353637383940
41424344
20040.0004210040 .0003497670 .0001081160000000725570 .0028150560 .0030469280 .004835874 0.0035712280 .0045456560 .012836270 .01999080 .029801890 .045576780 .054738990 .065309360 .0635782 0.077216690 .069468450 .063369890 .074092590 .069497580 .06713610 .064233140 .055369750 .04549367 0.031753470 .027723960 .020599190 .012093410 .0060353550 .0032961780 .0003690690
$\begin{array}{lllllllllll}2007 & 0.000131565 & 0 & 0.000406217 & 0.000344372 & 0.001935977 & 0.000353429 & 0.001273066 & 0.001071211\end{array}$ $\begin{array}{lllllllllll}0.00228752 & 0.003119033 & 0.003255851 & 0.005738309 & 0.005860219 & 0.00906548 & 0.01789553 & 0.02890255\end{array}$ 0.046173050 .058112920 .065435890 .085624230 .0827460 .085214320 .077280440 .070570580 .08244385 $\begin{array}{lllllllll}0.08325518 & 0.06330442 & 0.04462165 & 0.03071825 & 0.01817436 & 0.01150342 & 0.005737993 & 0.005422786\end{array}$ 0.0009292050 .0007027420 .000388387
dist multinomial
r 0.00001
N 200457
N_2007 62
@proportions_at LFboxflat
years 19902004
step 1
proportion_mortality 0.5
sexed F
sum to_one True
at_size True
plus_group False
ogive matsel
class_mins 202122232425262728293031323334353637383940414243444546
$199000.0001589099 .95 \mathrm{e}-050.0002105330 .0002381960 .0004954220 .0012545320 .0021549190 .004169252$ 0.0060912420 .012822020 .02266350 .040297220 .070249160 .11235350 .14682390 .16107290 .1426804 0.11725520 .076055260 .049771890 .020112130 .0086196680 .0032469830 .0007736890 .000250078
$2004 \quad 4.39 \mathrm{e}-05 \quad 7.18 \mathrm{e}-05 \quad 0.0002059810 .000496509 \quad 0.0012274370 .0023274530 .00524418 \quad 0.01091408$ $\begin{array}{llllllllllll}0.02208171 & 0.03721626 & 0.06004503 & 0.08323687 & 0.1132216 & 0.1275185 & 0.1350955 & 0.1320566 & 0.1049201\end{array}$ $0.077217670 .047621570 .023283430 .01075140 .0039917440 .0009626570 .0001942691 .26 \mathrm{e}-052.76 \mathrm{e}-06$ dist multinomial
r 0.00001
N_1990 23
N_2004 25
@proportions_at LFhills years 19952003
step 1
proportion_mortality 0.5
sexed F
sum_to_one True
at_size True
plus_group False
ogive matsel
class_mins 19202122232425262728293031323334353637383940414243444546474849
19950000000.0001771280 .000588550 .001588030 .0023573020 .0063237790 .013744480 .02131003 $\begin{array}{llllllllllllllllll}0.03786901 & 0.06439271 & 0.08601061 & 0.1088883 & 0.1443275 & 0.1420557 & 0.1316293 & 0.09576356 & 0.06591011\end{array}$ $0.039482150 .020379940 .0093718130 .005338470 .0013983990 .0009317980 .000136528002 .49 \mathrm{e}-05$
$200300009.86 \mathrm{e}-064.13 \mathrm{e}-05 \quad 9.86 \mathrm{e}-06 \quad 0.000830730 .0032582310 .0043682760 .013686350 .02907073$
$\begin{array}{llllllllllll}0.04286291 & 0.07000064 & 0.1160458 & 0.1456387 & 0.1474501 & 0.1219139 & 0.1185394 & 0.0766867 & 0.04986246\end{array}$ 0.033117330 .014275630 .007293510 .0040205970 .0001609940 .00042801400 .00042801400
dist multinomial
r 0.00001
N_1995 24
N_2003 8
@proportions_at LFandes
years 199319982003
step 1
proportion_mortality 0.5
sexed F
sum_to_one True
at size True
plus_group False
ogive matsel
class_mins 2021222324252627282930313233343536373839404142434445464748
$19930005.04 \mathrm{e}-05 \quad 5.58 \mathrm{e}-050.0003605390 .001017490 .0052785280 .0095478970 .018549130 .03644313$ $\begin{array}{lllllllllll}0.05575062 & 0.07536409 & 0.1091069 & 0.1356637 & 0.1534083 & 0.1440175 & 0.1090498 & 0.07130127 & 0.04002192\end{array}$ $0.022314780 .0087878280 .0029379210 .0007775960 .000136161 .42 \mathrm{e}-0504.45 \mathrm{e}-05$
$1998 \quad 0 \quad 0 \quad 0 \quad 0.0002773540 .001005618 \quad 0.0014534530 .0044519080 .0084183770 .014619910 .0254765$
$\begin{array}{llllllllll}0.04570758 & 0.06874018 & 0.1018215 & 0.1143803 & 0.1274731 & 0.1433809 & 0.1262028 & 0.1047362 & 0.0577463\end{array}$ 0.033659680 .0097457410 .0082214940 .0019233340 .0004406360 .000117207000
$20037.56 \mathrm{e}-0500.000298120 .0002062310 .0005579530 .0015269290 .0032633050 .0088838880 .0173093$ $\begin{array}{llllllllllllll}0.02899803 & 0.04480842 & 0.06650869 & 0.1006612 & 0.1357634 & 0.1542982 & 0.1395754 & 0.1213635 & 0.08102189\end{array}$ $0.053080410 .024423910 .010898410 .0046854550 .0013378970 .0001708280 .0002321715 .09 \mathrm{e}-0500$ dist multinomial
r 0.00001
N_1993 38
N_1998 8
N-2003 29
@proportions_at AFplumes12
years 2012
step 1
proportion_mortality 0.75
sexed F
sum_to_one True
at_size False
plus_group True
ogive matsel
min_class 20
max_class 100
ageing_error True
2012000000.0049342270 .0050493070 .014268010 .010748360 .013157940 .0032894840 .03476975 0.031480260 .027541030 .019087160 .035114990 .03786980 .024901290 .042228630 .040698970 .03293557 0.03469540 .019547480 .045024170 .042804030 .028305860 .025361610 .030180760 .029761170 .0226068 0.032055660 .024711860 .013618260 .021841970 .027121440 .016488150 .014728330 .012853430 .01009861 $\begin{array}{lllllllll}0.01197352 & 0.008799111 & 0.003519644 & 0.015263 & 0.002524653 & 0.01702282 & 0.01009861 & 0.008799111\end{array}$ 0.00087991110 .0086840310 .0025246530 .0026397330 .0061593780 .0060442980 .0060442980 .002639733 0.0017598220 .0043995560 .0060442980 .0043995560 .0035196440 .00175982200 .0017598220 .0008799111
$\begin{array}{lllllllllll}0.002524653 & 0 & 0.003519644 & 0.002639733 & 0 & 0.001644742 & 0.0008799111 & 0.0008799111 & 0.0008799111\end{array}$ 0.000879911100 .0017598220 .00175982200 .002639733000 .01197352
dist multinomial
r 0.00001
N_2012 50
@proportions_at AFplumes1316
years 20132016
step 1
proportion_mortality 0.75
sexed F
sum to one True
at_size False
plus_group True
ogive matsel
min_class 20
max_class 100
ageing_error True
201300.0007814836000 .0067261650 .0077215610 .0054576470 .0057307680 .015297010 .01899051 0.023725890 .021836960 .039575510 .04320980 .040799770 .034486480 .057539110 .050469810 .05509916 0.042081030 .055533360 .031453820 .033177860 .045920650 .022751820 .029865710 .026572330 .01854391 0.015390280 .017942280 .015483560 .013045830 .025248750 .011349490 .023806420 .010000430 .009284529 $\begin{array}{llllllllllll}0.007677311 & 0.002632531 & 0.01363473 & 0.007956802 & 0.007742889 & 0.01036683 & 0.005898211 & 0.00355376\end{array}$ 0.0087382860 .0068872380 .0034881820 .0032742690 .0029206110 .0025583640 .0034881820 .005398438 0.00078148360 .0027808660 .0012093090 .00433524400000641738300000163713500001423222 0.0015629670000 .00085565110 .00433524400 .0015629670 .00185104800 .000855651100 .001069564 0.00078148360000 .003200102
2016000.0070566930 .003475770 .0071618460 .0044093420 .004195270 .015851270 .0051529480 .01261368 0.017378850 .023736390 .036350070 .039639630 .026941140 .050806780 .03726330 .028464950 .0159477 0.047072490 .037012620 .041571570 .036431110 .024423050 .046271950 .025563160 .023323620 .0212665 0.026572820 .031952330 .020401490 .021844250 .015753960 .021275240 .0045386020 .015757730 .01140533 $\begin{array}{lllllllll}0.01418194 & 0.01363991 & 0.003487382 & 0.009239299 & 0.01655828 & 0.005448069 & 0.005848342 & 0.006324699\end{array}$ 0.012573310 .0067490790 .0058965550 .0050353010 .0079536650 .00095767860 .0034632750 .006215780 0.0012527990 .0023522310 .0047044620 .0098690230 .0049870880 .003605030 .000957678600 .0049147680 0.0031199440 .0012286920 .0043245290 .003900150 .00493887600 .00063845240 .0012769050 .002186371 0.0012527990 .00127690500 .00095767860 .001596132000 .008203457
dist multinomial
r 0.00001
N_2013 60
N-2016 60
@ageing_error
type normal c 0.1
@q_method free
@q acoq
q 1
@q acoq2012
q 0.5
@q acoq2002
q 0.6
@q acoq2003
q 1
@q acoq2004
q 0.8

```
@q acoq2005
q 1
@q acoq2006
q 0.6
@q acoq2007
q 0.5
@q acoq2008
q 0.4
@q acoq2009
q 0.6
@q acoq2010
q 0.6
@q Bucq
q1
@q Corq
q 0.8
@q Tanq
q 1
@q Tanwideq
q 0.1
@estimate
parameter selectivity[Bucsel].immature
same selectivity[Corsel].immature selectivity[Tansel].immature
lower bound 110.001
upper_bound 30 50 0.2
prior uniform
@estimate
parameter selectivity[Tanwidesel].immature
lower_bound 110.1
upper_bound 30301.0
prior uniform
@estimate
parameter maturation[1].rates_all
lower_bound 102.5
upper_bound 100 100
prior uniform
@estimate
parameter initialization.B0
lower_bound le5
upper_bound 6e5
prior uniform-log
@estimate
parameter size_at_age.cv1
lower_bound 0.03
```


@catch_limit_penalty

```
label boxflatCP
fishery boxflat
multiplier 200
log_scale True
@catch_limit_penalty
label hillsCP
fishery hills
multiplier 200
log_scale True
@catch_limit_penalty
label andesCP
fishery andes
multiplier 200
log_scale True
@catch_limit_penalty
label southCP
fishery south
multiplier 200
log_scale True
```


Variations needed for the current model

In the population file extra selectivities are needed for the commercial fisheries. The names and initial values are:
@selectivity_names boxflatsel hillssel andessel
@selectivity boxflatsel
all logistic 374.56
@ selectivity hillssel
all logistic 374.56
@selectivity andessel
all logistic 374.56
Each selectivity is specified for the corresponding commercial fishery with andessel used for fishery south as well as andes.

In the estimation file the commercial selectivities need to be specified as the ogives for the commercial length frequencies. Also, the commercial selectivities need to be estimated:

```
@estimate
parameter selectivity[boxflatsel].all
lower_bound 103
upper_bound 50 50
prior uniform
@estimate
parameter selectivity[hillssel].all
lower_bound 103
upper_bound 50 50
prior uniform
@ estimate
parameter selectivity[andessel].all
lower_bound 103
upper_bound 50 50
prior uniform
```

