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Plain language summary 
 
This project used simulation modelling to explore potential bias in snapper SNA 8 stock assessments 
when there has been a change in stock productivity (i.e., regime-shift), as may be expected under climate 
change.  
 
Three SNA 8 stock productivity-change scenarios were investigated: the first assumed an upward shift 
in productivity after 2000; the second assumed a downward productivity shift after 2000; the third had 
no productivity shift. 
 
Various SNA 8 stock assessment models were run under these productivity shift scenarios including 
one that explicitly allowed for a post-2000 productivity shift. Assessment bias was investigated specific 
to two important management metrics: current-stock-biomass; current-stock-status (being the ratio of 
current-stock-biomass to stock virgin (unexploited) biomass).  
 
All assessment models produced unbiased estimates of current-stock-biomass under the no-regime-shift 
scenario. Only the post-2000 productivity shift model produced unbiased current-stock-biomass 
estimates under increasing and decreasing productivity scenarios.  
 
All model current-stock-status estimates were biased under increasing and decreasing productivity 
scenarios. Although the post-2000 productivity shift model current-stock-status estimates were 
markedly less biased that those of the other models. An important finding from the study was all models 
were substantively less biased in their estimates of current-stock-biomass than current-stock-status.  
 
An important conclusion from the simulation work was that we should not be using model predicted 
stock-status ratios as stock assessment measures when it is suspected that stock productivity is likely to 
have changed. Instead, we should be placing more ‘faith’ in assessment model predictions of current-
stock-biomass and therefore be measuring sustainability solely against these estimates. 
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EXECUTIVE SUMMARY 

 
Marsh, C.1; McKenzie, J.R.1; Langley, A.D.2 (2024). Simulation testing recruitment productivity 
shifts based on the 2021 SNA 8 stock assessment. 
 
New Zealand Fisheries Assessment Report 2024/24. 27 p. 
 
The effect of a mean recruitment regime shift on a stock with similar productivity dynamics to the west 
coast New Zealand snapper stock (SNA 8) was investigated using simulation modelling. Agent-based 
operating models (OMs) were used to generate fishery age compositional and Catch-Per-Unit-Effort 
(CPUE) observational data sets, which were then used by Stock Synthesis estimation models (EMs) to 
conduct assessments and explore assessment robustness to recruitment regime shifts.  
 
Three OM scenarios were explored: the first assumed an upward shift in mean recruitment (R0) after 
2000; the second assumed a downward R0 shift after 2000; the third assumed R0 was constant (no shift). 
Three Stock Synthesis EMs were applied to each OM scenario, the EMs were structured as follows: 
EM-0 assumed R0 was constant pursuant to the usual fitting constraint that the model estimated 
recruitment deviates must sum to zero, which is equivalent to constraining year class strengths to average 
one; EM-1 was structured to estimate a regime shift offset on R0 (i.e., regime shift B0) after 2000; EM-
2  was structured as per the EM-0 but with the “average to one” constraint relaxed; Assessment results 
from the nine OM/EM combinations were compared against the “known” OM “realities” on the basis 
of fits to 100 independently generated datasets from each OM scenario.    
 
All three EMs produced unbiased Spawning Stock Biomass predictions (SSB) from “no regime shift” 
OM data.  SSB estimates from the regime shift EM-1 fitted to regime shift OM data were only slightly 
biased, whereas SSB predictions for the “average to one” fixed R0 EM-0 were markedly biased. The 
SSB predictions from the “fixed R0 no average constraint” EM-2 were only very slightly biased for 
regime shift OM data 
  
Of more relevance to New Zealand fisheries management were the EM stock status estimates relative 
to mean productivity (B0) thresholds, i.e., the Fisheries New Zealand harvest strategy standard  𝑆𝑆𝑆𝑆𝑆𝑆%𝐵𝐵0

𝑦𝑦  
target reference points. When OM mean productivity was constant over time, 𝑆𝑆𝑆𝑆𝑆𝑆%𝐵𝐵0

𝑦𝑦  estimates from 
all three EMs were relatively unbiased. However, all three EM estimates of current stock status  
(𝑆𝑆𝑆𝑆𝑆𝑆%𝐵𝐵0

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) were biased under both dynamic R0 OM scenarios. Although, bias in the 𝑆𝑆𝑆𝑆𝑆𝑆%𝐵𝐵0
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 

estimate was lowest with regime shift EM-1 as only this model could estimate a regime-shifted B0 
reference value. However, SSB predictions from two of the EMs (EM-1 & EM-2) were relatively robust 
(unbiased) to the recruitment shifts in our OMs.  The lack of bias in SSB predictions from the explicit 
regime shift estimation model (EM-1 type) and the relaxed R0 averaging constraint model (EM-2 type) 
is strong justification for using these types of models to assess SNA 8 and other stocks where it is 
suspected that productivity has been changing over the model history, and for adopting F-based 
(exploitation rate) reference points.   
  

 
1 National Institute of Water and Atmospheric Research (NIWA), New Zealand. 
2 Trophia Ltd., New Zealand. 
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1. INTRODUCTION  

New Zealand snapper (Chrysophrys auratus) is a high-value commercial finfish species and important 
recreational species that has been managed under the Quota Management System (QMS) since 1986 
(Fisheries New Zealand 2023). It occurs predominantly within North Island coastal and near-shore 
waters out to 200 m. Snapper quotas are set relative to four Quota Management Areas (QMAs).  The 
west coast North Island SNA 8 QMA (Figure 1) is New Zealand’s second largest biological snapper 
stock.  
  

 
 
Figure 1: SNA 8 Quota Management Area spatial extent. 
 
Commercial exploitation of SNA 8 dates to at least the start of the 20th century. Catch records exist from 
1931 onwards (Fisheries New Zealand 2023). These records suggest annual commercial catches (taken 
mostly by trawlers) were relatively low (<100 t) up to the early 1950s, after which the trawl fishery 
began to expand its operations. From the mid-1950s to the mid-1960s the annual SNA 8 commercial 
catch had stabilised at around 1300 t. Annual catch increased after 1965 to around 4000 t, mostly due to 
the operation of Japanese longliners outside New Zealand territorial waters (i.e., beyond 12 miles). 
SNA 8 catches then increased further during the early 1970s with the introduction of domestic pair 
trawling, peaking at over 6000 t in the mid-1970s. Japanese longliners were excluded from the fishery 



 

Fisheries New Zealand Simulation testing recruitment regime shifts based on the 2021 SNA 8 stock assessment • 3 
  

after 1975 with the establishment of the 200 nautical mile New Zealand Exclusive Economic Zone. 
Domestic catches fell sharply in the early 1980s due to falling catch rates. In recognition that SNA 8 
was highly exploited, a Total Allowable Commercial Catch (TACC) of 1300 t was established for SNA 
8 when it was introduced to the QMS in 1986. Since 1986 the SNA 8 TACC has fluctuated in response 
to quota appeals and stock assessment advice. The current TACC of 1600 t, set in 2022 in response to 
increasing biomass largely driven by above average recruitment after 2005, is the highest since 1986.   
 
The SNA 8 recreational catch history is uncertain before surveys began in the early 1990s but is thought 
to have been significantly lower prior to 1990 (Langley 2021). Surveys suggest SNA 8 annual 
recreational catches (mostly lining) were in the order of 300 t between 1990 and 2005. The recreational 
catch appears to have mirrored the significant increase in SNA 8 biomass after 2005; recent annual 
recreational catches are believed to be in the order of 800 t (Langley 2021). 
 
SNA 8 stock monitoring data (age composition, trawl survey, CPUE, tagging) date from 1963 onwards 
(Davies et al. 1993, Langley 2021). There are two recognised CPUE relative abundance series: a pair 
trawl series covering the period 1974–1991; a bottom trawl series covering the period 1997 to current 
day (Langley 2021). Commercial catch at-age observations are available from the mid-1970s but age 
collection prior to 1989 was sporadic. Annual catch at-age sampling of the spring-summer peak trawl 
fisheries began in 1989 and continued to 2010, after which a triennial sampling regime was adopted.  
 
Research trawl surveys within the SNA 8 stock boundary date from the 1970s. Lack of comparability in 
the design of these early surveys means the time series of comparable surveys only dates back to 1990 
(Langley 2021). Four SNA 8 surveys were conducted between 1990 and 2000, after which surveys were 
curtailed and were not resumed until 2018. Four surveys have been conducted since 2018, the latest 
being in October 2023. The spatial extent of the recent surveys has been compromised by bans on 
trawling within near-shore Māui dolphin habitat areas that were first introduced in 2008 and 
subsequently extended in 2020. Not being able to survey with the Māui exclusion zones has cast doubt 
on the utility of the recent surveys to monitor adult stock abundance (Langley 2021). The full trawl 
survey series does, however, appear to adequately monitor relative cohort abundance for ages two to 
five (Langley 2021).  
 
Tagging programmes conducted in 1990 and 2002 provide estimates of absolute spawning stock 
biomass for those years (Davies et al. 2013).  
 
The most recent accepted SNA 8 stock assessment was conducted by Langley (2021) using Stock 
Synthesis (SS) software (Methot & Wetzel 2013). The Langley (2021) SNA 8 assessment model was a 
fully age-structured total catch history model and covered the period 1932–2021. The model assumes 
the SNA 8 stock to have been in a relatively virgin unexploited state in 1932. The model age structure 
covers ages 1–30 (both sexes combined with the sex ratio assumed to be 1:1 and time-invariant) with 
the 30-year age class being a plus group.  The model uses externally derived von Bertalanffy (vB) growth 
curves to calculate mean weight at-age and to derive growth transition matrices for fitting to length 
observational data (largely recreational fishery data). The model accounts for three time periods of 
differing growth (1931–1979, 1980–2005, 2005–2021) by applying different vB parametrisations to 
each. The model assumes a Beverton and Holt stock recruitment relationship with steepness (h) value 
of 0.95. Natural mortality is assumed to be 0.075 and time-invariant. Maturity (both sexes) is assumed 
to be knife-edged at age three.  
 
The model catch history recognises five fisheries: Japanese longline fishery, bottom trawl fishery, 
bottom pair trawl fishery, outside harbours recreational line fishery, inside harbours recreational line 
fishery.  
 
Observational abundance data fitted in the model were: 1990 and 2002 tag biomass estimates, bottom 
pair trawl CPUE indices, bottom trawl CPUE indices, and trawl survey abundance indices for 2,3,4, and 
5 year-old cohorts. Observational compositional data fitted in the model were: bottom pair trawl annual 
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catch at-age, bottom trawl annual catch at-age, outside harbours recreational annual length frequency, 
inside harbours recreational annual length frequency, tagging programme length frequency.  
 
Parameters estimated by the Langley (2021) base-case model were: R0 mean number of one year-olds 
entering the model in the absence of fishing; recruitment deviates 1960–2019 (N = 60); bottom trawl 
and pair bottom trawl selectivity function (five parameter double normal plateau function); five 
abundance series catchability coefficients (q), one for each of the trawl survey pre-recruit cohorts and 
the two CPUE series. All the other model parameters were fixed having been derived outside the model. 
Model parameter estimates were constrained by suitable priors; for example, recruitment deviates were 
constrained in log-space to come from a distribution with a mean of 0 and a standard deviation (sigmaR) 
of 0.6. An important point is that the model estimate of R0 was strongly determined by length of interval 
where free recruitment deviates are estimated; specifically, the implicit constraint within the model that 
the mean of the estimated recruitment deviates should be close to one in natural space. 
 
The 2021 SNA 8 assessment suggested that by 2021 the stock had rebuilt to 54% B0, up from 10% B0 
in 2002, despite catches being relatively constant over this period (Langley 2021). The main driver of 
the rebuild appears to have been several strong recruitment cohorts entering the fishery post 2005 
(Figure 2), average recruitment over this period being 65% higher than the model predicted equilibrium 
recruitment level (R0) (Langley 2021). 
 

 
Figure 2:  Estimated recruitment deviates from the 2021 SNA 8 assessment model expressed in natural 

space show a period of higher-than-average recruitment after 2005. 
 
The recent period of above average SNA8 recruitments is consistent with a shift to a higher productivity 
regime and potentially challenges the validity of using yield-based targets and limits (e.g., % B0) based 
on long-term recruitment averages to manage the stock.  
 
This report explores the impact of recruitment regime shift on SNA 8 assessment by fitting a modified 
version of the 2021 assessment model to simulated data from Agent Based Operating models (ABMs). 
The ABM incorporated trends in recruitment consistent with those estimated in the 2021 stock 
assessment (Figure 2), in addition to other trends. The purpose of the simulation work was to investigate 
the potential for bias in SNA 8 assessments against yield-biased sustainability criteria under mis-
specified recruitment assumptions, as well as to explore potential methods to account for regime shifts 
within the recruitment dynamic. 
 
Simulations were conducted to explore three alternative recruitment scenarios. All three scenarios made 
different assumptions regarding mean recruitment in the last 20 years of the assessment period, these 
being: an increase, decrease, and constant mean recruitment. A range of Stock Synthesis (Methot & 
Wetzel 2013) estimation models (EMs) were developed and they also made different assumptions in the 
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recruitment dynamic. The aim was to identify model assumptions that are robust under regime shifts 
with respect to estimating spawning stock biomass and related reference points. 
 
This work was conducted under Fisheries New Zealand research project SNA2019-03A. 
 
 
2. METHODS 

2.1 Operating model 

The operating model (OM) chosen for this simulation was the C++ agent-based model (CABM) 
developed by Marsh (2022). CABM is an agent-based model (ABM) that expresses a fish stock as a 
collection of agents. An agent is defined as one or more fish with homogenous characteristics, i.e., 
length, weight, and sex. When an agent represents a single individual, the ABM becomes an individual-
based model (Grimm & Railsback 2013). Given fish stocks consist of millions if not billions of 
individuals, ABMs are often more practical than individual-based models due to computational 
limitations; i.e., it requires large amounts of memory to record and modify millions of agents. CABM 
uses functions to grow, move, create, and kill agents over time, termed agent dynamics. When 
summaries are made over all agents, stock level quantities are observed. Simulating stocks with this 
high level of detail allows heterogeneity in key dynamics such as growth and mortality. This is an 
advantage of ABMs as this heterogeneity is often approximated in other OM frameworks. However, the 
main advantage of the ABM simulation approach used is that the model is capable of dealing reliably 
with length-age integrated observational data. 
 
CABM repeatedly applies an annual cycle over a user defined number of years. An annual cycle consists 
of discrete time steps that contain user defined agent dynamics. The CABM model developed for this 
simulation assumed a single area with an annual cycle consisted of three time-step with the following 
agent-dynamics. 
  

Time step 1 
Recruitment and Spawning stock biomass calculations 

Time step 2 
Half annual growth 
Half natural mortality 
Fishing mortality 
Remaining natural mortality 

Time step 3 
Remaining annual growth 
Ageing 

 
The agent dynamics outlined in the above annual cycle are described in more detail in Appendix A. The 
CABM operating model structure was primarily based on the 2021 SNA 8 assessment model (Langley 
2021); however, there were four deviations from this assessment model. The first, related to how 
recruitment was parameterised and was the main dynamic under investigation (Section 2.3). The second 
related to time-varying growth. The 2021 assessment assumed three periods with different von 
Bertalanffy (vB) growth parameters (Langley 2021). For this simulation we assumed only a single vB 
growth curve that was consistent over the entire time series. Third, we converted length-frequency 
observations and selectivities for the recreational fishery to age-frequency observations and age-based 
selectivities.  Early exploration found the estimation model (EM, see Section 2.2) generated a small bias 
when simulating length frequency observations with length-based selectivities for the recreational 
fisheries from CABM. Due to resource constraints this small bias was never fully resolved, and the 
compositional data were changed from length to age by use of appropriate age-length keys derived from 
commercial catch sampling (Walsh et al. 2019). The fourth change dropped the tag abundance 
observations. The resulting changes meant the OM specifications, although ‘similar’ to the SNA 8 2021 
assessment model in productivity assumptions, did not exactly replicate the assessment.  
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The remaining OM dynamics were consistent with the 2021 stock assessment with parameter values set 
to the estimated (i.e., selectivity parameters as MCMC median values) and fixed values (i.e., M, 
steepness, maturity, etc).  The sex ratio in the OM was 50:50 with equivalent growth and maturity for 
male and female fish (i.e., unisex).  
 
The CABM OM fisheries were as per the 2021 SNA 8 assessment model (Figure 3). The OM similarly 
commenced in an assumed virgin equilibrium state in 1932 extending to a terminal or current fishing 
year of 2020. CABM applies an annual fishing mortality and, due to the stochastic nature of CABM, 
produces varying catches for the same fishing mortality. 
 
The CABM OM was tasked with producing stock assessment observational and catch history simulated 
data consistent with those used by the 2021 SNA 8 assessment model (Figure 3).  The OM simulated 
data were generated at a higher precision than was assumed in the 2021 assessment model with age-
compositional data simulated with an effective sample size of 500 and abundance data with a coefficient 
of variation (CV) of 0.1. We do not anticipate the main results to differ if the simulation was rerun with 
less precise data. However, we would expect more variable results.  
 

 
Figure 3: Observation and catches generated from CABM OM. BT = bottom trawl fishery, BPT = bottom 

pair trawl fishery, JP = Japanese longline fishery, RECO = outside harbours recreational line 
fishery, RECI =  inside harbours recreational line fishery.  

 
 

2.2 Estimation model 

The estimation model (EM) framework used for the simulation was Stock Synthesis (version 
V3.30.17.00) (Methot & Wetzel 2013) as this was the modelling software used for the 2021 assessment 
(Langley 2021). The EM structural configuration and parameterisation was the same as the CABM OM 
(Section 2.1 and Appendix A), with the exception of recruitment. The three EMs made different 
assumptions regarding recruitment.  
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EM-0: Assumed a constant 𝑅𝑅0 and applied a hard constraint that the mean of the observed recruitment 
deviates is zero (∑ 𝜀𝜀𝑦𝑦 = 0)𝑦𝑦 . This is the most common assumption in age-based stock assessments 
(Marsh et al. 2021). This is equivalent to applying the Haist parameterisation for year class strength 
parameters in the CASAL modelling platform (Bull et al. 2012). 
 
EM-1: Assumed a regime shift occurred in 2000. SS allows users to apply a regime shift for  𝑅𝑅0 by 
introducing a multiplier denoted by  𝛾𝛾𝑦𝑦 
 

𝑅𝑅0
𝑦𝑦 = 𝑅𝑅0 exp (𝛾𝛾𝑦𝑦) 

 
where, 𝛾𝛾𝑦𝑦  is the regime parameter (Methot 2000). From 1932 to 1999, 𝛾𝛾𝑦𝑦 was set equal to 0; i.e., it had 
no contribution. Whereas between 2000 and 2020 a single parameter was estimated and assumed for all 
𝛾𝛾𝑦𝑦. 
 
EM-2: Like EM-0 but without the hard constraint ∑ 𝜀𝜀𝑦𝑦 = 0𝑦𝑦 . There is a note in the SS user manual that 
“the [recruitment] deviations do not have an explicit constraint to sum to zero, although they still should 
end up having close to a zero sum. The difference in model performance between options ∑ 𝜀𝜀𝑦𝑦 = 0𝑦𝑦  or 
not has not been fully explored to date”. This suggested that this was experimental functionality in SS. 

2.3 Simulation scenarios 

Three CABM OMs were developed, each representing a different mean recruitment regime-shift 
dynamic: ‘increasing R0’ scenario; ‘decreasing R0’ scenario; ‘constant R0’ scenario (Figure 4). The 
‘constant R0’ was primarily added for validation purposes, and the ‘decreasing R0’ scenario was added 
to explore the ‘other side of the coin’ in terms of regime shifts. Although this trend is not observed in 
SNA 8, with climate change there are expected to be both winners and losers (Free et al. 2019), where 
the decreasing trends explore a decreasing shift in recruitment productivity. 

 
Figure 4:  Assumed values for time-varying mean recruitment (𝑹𝑹𝟎𝟎

𝒚𝒚), for three CABM OMs used in the 
simulation. 

 
Estimated recruitment from the 2021 SNA 8 assessment was consistently higher during the later years 
when compared with earlier estimates (Figure 2). A Fisheries New Zealand Inshore Working Group 
suggested that a logistic step-change was a plausible representation of the upward trend seen in year 
class strength deviates from the 2020 SNA 8 assessment model (Figure 2) for simulation purposes. 
Therefore, a logistic curve was fitted to the 2020 SNA 8 assessment model recruitment deviates 
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(Appendix B). The fitted curve was then rescaled to have a starting estimation year (1960) scalar factor 
of 1.0 (Appendix B). The final scaled logistic curve (𝜀𝜀�̂�𝑦) was then multiplied by the median MCMC 
estimate for 𝑅𝑅0 from the 2020 SNA 8 assessment model, to derive the OM’s time-varying mean 
recruitment parameter 
 

𝑅𝑅0
𝑦𝑦 = 𝑅𝑅0  exp�𝜀𝜀�̂�𝑦�. 

 
This was input to a CABM OM which created the ‘increasing R0’ scenario (Figure 4). Two other 
recruitment assumptions were explored which were the ‘constant R0’ scenario and ‘decreasing R0’ 
scenario. The estimated values of  𝜀𝜀�̂�𝑦 from the ‘increasing R0’ scenario were used to derive values of 
‘decreasing R0’ scenario which were denoted as 𝜀𝜀�̂�𝑦∗  this was to ensure the magnitude was similar 
 

𝜀𝜀�̂�𝑦∗ =  1 −  0.5 × (𝜀𝜀�̂�𝑦 − 1) . 
 
This formula was somewhat arbitrary but resulted in the shift in 𝑅𝑅0 shown in Figure 4, which is close to 
an inverse relationship. In the future it is recommended to use the inverse  
 

𝜀𝜀�̂�𝑦∗ = log�
1

exp (𝜀𝜀�̂�𝑦)�
. 

 
Each OM scenario was run 100 times with a different set of year class strengths generated for each 
simulated a data set. This resulted in 300 simulated data sets (three CABM models × 100 simulations) 
that were then used by three SNA 8 estimation models (Section 2.2) to estimate and assess the 
assessment models bias, accuracy, and robustness. 
 
Each simulated data set was re-estimated by all three EMs (Section 2.2) and a range of summaries are 
provided in Section 3. These included spawning stock biomasses (SSB) along with relevant reference 
points. We also explored model fits for some realisations of the EMs to ensure we were not presenting 
results from models that are not plausible due to poor fits to the data.  
 
Relative error was used to describe bias in parameters and derived quantities, 
 

𝑅𝑅𝑅𝑅(𝜗𝜗) =  
�̂�𝜗 − 𝜗𝜗
𝜗𝜗

 × 100. 
 
SS static SSB reference point has the following formula, 
 

𝑆𝑆𝑆𝑆𝑆𝑆%𝐵𝐵0
𝑦𝑦  =

𝑆𝑆𝑆𝑆𝑆𝑆𝑦𝑦

𝑆𝑆0
 . 

 
 
SS regime shift SSB reference point has the following formula, 
 

𝑆𝑆𝑆𝑆𝑆𝑆%𝐵𝐵0
𝑦𝑦  =

𝑆𝑆𝑆𝑆𝑆𝑆𝑦𝑦

𝑆𝑆0exp (𝛾𝛾𝑦𝑦)
  

 
 
where 𝛾𝛾𝑦𝑦 is the estimated R0 regime shift multiplier as described above.  
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3. RESULTS 

All EMs produced unbiased SSB estimates under the constant R0 scenario (Figure 5), as were the 
𝑆𝑆𝑆𝑆𝑆𝑆%𝐵𝐵0

𝑦𝑦  estimates from all three EMs (Figure 6). 
 

 Estimated SSB Relative error (%) SSB 

EM
-0

 

 
 

EM
-1

 

  

EM
-2

 

 
 

 
Figure 5:  EM SSB estimates and relative error under constant R0 scenario (EM-0 mean recruitment 

deviance constrained to zero (∑ 𝜺𝜺𝒚𝒚 = 𝟎𝟎)𝒚𝒚 ; EM-1 mean recruitment scalar (estimated) applied 
after 2000; EM-2 mean recruitment error unconstrained).   
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Figure 6: Comparisons of 𝑺𝑺𝑺𝑺𝑺𝑺%𝑺𝑺𝟎𝟎

𝒚𝒚  using a static R0 scenario. Median (line) and 95% confidence intervals 
(shaded) from SSB median posterior density fits to 100 OM data simulations (EM-0 mean 
recruitment deviance constrained to zero (∑ 𝜺𝜺𝒚𝒚 = 𝟎𝟎)𝒚𝒚 ; EM-1 mean recruitment scalar 
(estimated) applied after 2000; EM-2 mean recruitment error unconstrained).  

 
For the increasing dynamic R0 scenario the zero-mean constraint EM (EM-0) was markedly biased with 
respect to estimating SSB, recent SSBs being biased low (Figure 7), the level of bias observed likely 
proportional to the degree recent recruits depart from the long-term average (in this case ~64%). As 
expected, the recruitment scalar EM (EM-1) produced the least biased SSB trajectory; the final 2020 
model estimate being virtually unbiased (Figure 7). However, the unconstrained recruitment error EM 
(EM-2) SSB predictions were almost as good as the recruitment scaler EM (EM-1), SSB being only 
marginally biased low in 2020 (Figure 7).    
 
All three EMs over-estimated stock status in the 2020 model year (𝑆𝑆𝑆𝑆𝑆𝑆%𝐵𝐵0

2020; Figure 8). The level of 
over-estimation in the recruitment scalar EM (EM-1), however, was not as extreme as the other two 
models (Figure 8). Despite being only marginally biased in its SSB predictions (Figure 7), the 
recruitment scaler EM (EM-2) produced the most biased 2020 stock status prediction (𝑆𝑆𝑆𝑆𝑆𝑆%𝐵𝐵0

2020) of the 
three EMs (Figure 8). The reason why EM-0 2020 model year 2020 stock status prediction is less biased 
than the unconstrained mean EM-2 model is due to the EM-0 model over-estimating B0 and under-
estimating B2020 which results in a 2020 stock status prediction closer to the “true” operating model stock 
status biomass ratio.  
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Figure 7: EM SSB estimates and relative error under the increase R0 regime-shift scenario (EM-0 mean 

recruitment deviance constrained to zero (∑ 𝜺𝜺𝒚𝒚 = 𝟎𝟎)𝒚𝒚 ; EM-1 mean recruitment scalar 
(estimated) applied after 2000; EM-2 mean recruitment error unconstrained).   
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Figure 8: Comparisons of 𝑺𝑺𝑺𝑺𝑺𝑺%𝑺𝑺𝟎𝟎

𝒚𝒚  under the increase R0 regime-shift. Median (line) and 95% confidence 
intervals (shaded) from SS3 median posterior density fits to 100 OM data simulations (EM-0 
mean recruitment deviance constrained to zero (∑ 𝜺𝜺𝒚𝒚 = 𝟎𝟎)𝒚𝒚 ;     EM-1 mean recruitment scalar 
(estimated) applied after 2000; EM-2 mean recruitment error unconstrained). 

 
The SSB and 2020 stock status bias patterns seen in the EM fits to decreasing dynamic R0 OM scenarios 
were of similar magnitude to those of the R0 increasing OM scenarios but, understandably, in the reverse 
direction (Figures 9 & 10).  
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Figure 9: EM SSB estimates and relative error under the decrease R0 regime-shift scenario (EM-0 mean 

recruitment deviance constrained to zero (∑ 𝜺𝜺𝒚𝒚 = 𝟎𝟎)𝒚𝒚 ; EM-1 mean recruitment scalar 
(estimated) applied after 2000; EM-2 mean recruitment error unconstrained).   
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Figure 10: Comparisons of 𝑺𝑺𝑺𝑺𝑺𝑺%𝑺𝑺𝟎𝟎

𝒚𝒚  under the decrease R0 regime-shift scenario. Median (line) and 95% 
confidence intervals (shaded) from SS3 median posterior density fits to 100 OM data simulations 
(EM-0 mean recruitment deviance constrained to zero (∑ 𝜺𝜺𝒚𝒚 = 𝟎𝟎)𝒚𝒚 ; EM-1 mean recruitment 
scalar (estimated) applied after 2000; EM-2 mean recruitment error unconstrained). 

 

4. DISCUSSION 

This work explored three alternative recruitment assumptions that are readily available in stock 
assessment models and investigated how well they estimated abundance and biological reference points 
(BRPs) under varying recruitment assumptions using simulations.  
 
Most stock assessments (SA) are predicated on equilibrium productivity assumptions, specifically that 
recruitment, growth, natural mortality, and steepness, although sometimes variable or cyclic when 
viewed over the relative ‘short term’ (e.g., multiple years), are adequately represented in SA models by 
‘long-term’ (e.g., multiple decades) averages; e.g., mean recruitment under unexploited conditions (R0). 
If we accept the equilibrium assumptions for a given stock by inference, we also must accept that these 
in combination give rise to a static B0 (Appendix C) being the largest average biomass a stock can be 
expected to attain under unexploited conditions. Violation of the equilibrium assumption in respect to 
one or more model productivity parameters could result in B0 being labile which may call into question 
the validity of using static B0 BRPs for making sustainability decisions (Berger 2019).   
 
In most stock assessment models, R0 and B0 are linearly related such that if R0 doubles, the model 
prediction of B0 also doubles (see Appendix C). Consequently, most dynamic productivity research 
focus has been on detecting and accounting for dynamism in stock recruitment (e.g., A’mar et al. 2009, 
Haltuch et al. 2009, Hollowed et al. 2009, Punt et al. 2012, Szuwalski et al. 2015, Perälä et al. 2017, 
Berger 2019, Maunder & Thorson 2019, Holt & Michielsens 2020, Tang et al. 2021).  
 
Although synonymous with the dynamic productivity concept, it should be noted that the term 
“dynamic-B0” has a specific BRP definition in the literature (MacCall et al. 1985, Punt et al. 2014a, 
Berger 2019). The derivation of dynamic-B0 BRPs requires re-running the final “accepted” stock 



 

Fisheries New Zealand Simulation testing recruitment regime shifts based on the 2021 SNA 8 stock assessment • 15 
  

assessment model in the absence of fishing (F = 0) after fixing model recruitment and other productivity 
parametrisations at their estimated values, the implicit assumption being that the environmental factors 
responsible for historical dynamic productivity were independent of fishing (Berger 2019). A logic flaw 
in the dynamic-B0 BRP approach, overlooked by most authors, is that the initial starting B0 in the F = 0 
in the BPR deterministic model run is the model static B0 estimate as derived over all observed 
recruitments under equilibrium assumptions; i.e., that the observed mean recruitment variation is zero 
in log-space. If we believe recent observed recruitments represent a departure from the long-term 
average in the model, then bias inherent in the model static B0 estimate will also bias the model projected 
dynamic-B0 BRPs. Specifically, the dynamic-B0 BRP series will be biased low under increasing 
recruitment and biased high under decreasing recruitment. Assuming growth, maturity, natural 
mortality, and steepness are constant under variable recruitment, which they might not be, may serve to 
exacerbate the level of bias in model predictions. 
 
In this study, SSBs were initially compared with a dynamic 𝑆𝑆0𝑦𝑦 (𝑆𝑆0𝑦𝑦|𝐹𝐹𝑦𝑦=0) that was automatically 
generated by SS. However, it was not clear how this dynamic 𝑆𝑆0𝑦𝑦 was calculated, particularly 
considering the recruitment bias correction term was turned off during this simulation. Models that had 
unbiased estimates of SSB and 𝑆𝑆𝑆𝑆𝑆𝑆%𝐵𝐵0

𝑦𝑦  with static 𝑆𝑆0𝑦𝑦 generated biased estimates of 𝑆𝑆𝑆𝑆𝑆𝑆%𝐵𝐵0
𝑦𝑦  when 

using a dynamic 𝑆𝑆0𝑦𝑦, which was unexplainable. We recommend bias in SS derived dynamic 𝑆𝑆0𝑦𝑦 BRPs 
be investigated further in future studies of this nature.  
 
There was no apparent bias in the SSB2020 predictions from the regime shift EM-1 under both increasing 
and decreasing recruitment scenarios. In contrast, the SSB2020 predictions from the enforced equilibrium 
R0 EM (EM-0) were significantly biased under both increasing and decreasing recruitment scenarios. 
An interesting finding, however, was that bias in the SSB2020 predictions from the two static B0 models 
(EM-0 & EM-2) reduced to within ‘acceptable’ ranges when the mean constraint on R0 was relaxed 
(EM-2). These results suggest we should probably not be enforcing equilibrium constraints on R0 in 
assessment models where we think mean recruitment has been changing. However, recent exploration 
of recruitment assumptions did highlight that for some stock assessments, relaxing this constraint can 
lead to failed model convergence issues due to lack of data and/or large observation error (Marsh et al. 
2021). 
 
In contrast to the model SSB predictions, both static B0 model predictions of current stock status 
(𝑆𝑆𝑆𝑆𝑆𝑆%𝐵𝐵0

2020) were strongly biased. These models significantly underestimated the magnitude of increase 
or decline, which would likely have had serious management implications had these been real 
assessments. The regime shift EM (EM-1) predictions of current stock status (𝑆𝑆𝑆𝑆𝑆𝑆%𝐵𝐵0

2020) were also biased 
under both increasing and decreasing recruitment scenarios, despite being structurally able to account 
the shift in R0. However, the important aspects of this model were that the level of bias seen would have 
been unlikely to have led to poor management advice and, more importantly, the model was able to 
illustrate that a regime shift had occurred, albeit predicated on specifying when the regime breakpoint 
occurred in the model.  
 
Overall, the best performing EM across all recruitment scenarios was EM-1 which had an explicit regime 
shift mechanism in the recruitment dynamic. There was a caveat for this result, that is we did not explore 
the effect of a mis-specified regime period. There was a slight mis-specification because the CABM 
model assumed a ramping change (logistic function) in recruitment, whereas the regime shift in SS was 
knife edge. Also, the period of the regime shift was ‘known’ by EM-1 in that the shift was fixed to occur 
in 2000. Allowing estimator models to have more freedom to estimate the shape and period of 
recruitment regime shifts is something to explore further in future research. Berger (2019) compared 
static and dynamic-B0 BRP assessment predictions from hake, sardine, tuna, and rockfish assessment 
models under random, trending, auto-correlated, and cyclic (predator/prey) recruitment dynamics. 
Berger (2019) found major differences between static and dynamic model BRPs under trending and 
regime change recruitment variation. Whereas dynamic and static BRPs preformed similarly under auto-
correlated and cyclic recruitment dynamics, this almost certainly was due to the lack of overall trend in 
Berger’s data over the model observation period.  
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The present study focused on a regime change based on the estimated trends in recruitment from the 
2021 SNA 8 assessment. In case of regime shifts, Maunder & Thorson (2019) suggest it is possibly more 
appropriate to estimate and account for the productivity shift by estimating a new B0, specific to this 
period, as an alternative to the dynamic-B0 approach; i.e., EM-1 model in this report. However, this 
presupposes that the regime shift assumption is appropriate; i.e., sufficiently distinct when viewed in the 
context of the recruitment history (Szuwalski et al. 2015, Maunder & Thorson 2019). The challenge is 
to identify when a regime shift has occurred in the recruitment series. Punt et al. (2014) advocate use of 
the STARS algorithm (Rodionov & Overland 2005) as an appropriate objective method for identifying 
regime shift interval periods (i.e., periods of uniform average recruitment) in recruitment series. 
  
The shift to higher recruitment in SNA 8 after 2000, seen in Figure 2, is also consistent with a non-
equilibrium upward recruitment trend which is a more challenging dynamic for stock assessment models 
to account for,  particularly when undertaking future projections (Punt et al. 2014a, Maunder & Thorson 
2019). Options for deriving BRPs differ depending on the type of change being observed; i.e., regime 
shift or trend (Maunder & Thorson 2019). Punt et al. (2014) suggest that a “moving window” approach 
to the derivation of “recent” productivity BRPs may perform better than the dynamic-B0 approach both 
being preferable to long-term average-based productivity BRPs. Again, the challenge is the choice of 
an appropriate “moving window” interval.  
 
In situations where there is a strong ecological basis to assume that the observed productivity changes 
are being driven by environmental factors other than fishing, the use of covariate-based BRPs might be 
applicable; e.g., water temperature (Maunder & Watters 2003, Haltuch et al. 2009, Punt et al. 2014a, 
Maunder & Thorson 2019, Berger 2019, Crone et al. 2019). The difficulty with the use of environmental 
covariates in stock assessment models is that it pre-supposes the relationship between the covariate and 
model productivity (e.g., recruitment) is both well established and quantifiable (Rose 2000). Maunder 
& Thorson (2019) state that although there have been numerous studies comparing recruitment estimates 
from stock assessment models to environmental variables, few have integrated the environmental index 
into the stock assessment model and very few have been used for management. One of the main 
impediments to the wider use of covariates in stock assessments is that observed covariate-stock 
productivity relationships typically breakdown over time (Rose 2000, Maunder & Thorson 2019).  
 
There is also a range of alternative population dynamics that are susceptible to regime shifts that were 
not considered in this study, such as growth, maturity, natural mortality, and steepness. Shifts in growth 
and maturity are more easily accounted for in stock assessment models because they can be directly 
observed (Langley 2021). In contrast, dynamics such as natural mortality and steepness are more 
difficult to estimate because they are not directly observable and must be estimated/inferred from 
multiple data sources (Peterman et al. 2000, Punt et al. 2012, Punt et al. 2014b). 
 
Accounting for recent productivity change in stock assessments is a significant challenge for stock 
assessment, particularly in providing suitable BRPs for management. The number of New Zealand 
stocks undergoing productivity changes in response to climate change-induced shifting environmental 
baselines is likely to increase over the coming decades. This project has demonstrated the utility of 
simulation modelling to illustrate the potential biases in EM model-derived BRPs for SNA 8 under 
dynamic productivity change, but the finding has general applicability to other New Zealand stocks 
undergoing productivity shifts (e.g., SNA 7 and SNA 1).  
 
Modelling approaches to account for productivity shifts, their relative merits, and underlying 
assumptions have been well described in the literature (e.g., Haltuch et al. 2009, Thorson et al. 2015, 
Perälä et al. 2017, Maunder & Thorson 2019, Holt & Michielsens 2020, O’Leary et al. 2020, Tang et al. 
2021, Silvar-Viladomiu et al. 2022). The prerequisites for use of all these models is the need for long 
time series of observational data, in particular age-composition and abundance. We strongly adocate 
further use of simulation analysis for SNA 8, and other similarly dynamic stocks, for assessing the utility 
of alternative BRP assessment approaches. Simulation analysis, when framed in the broader context of 
Management Strategy Evalaution (Punt et al. 2016), should enable managers to assess the relative 
robustness of alternative EMs, BRPs, harvest control rule strategies, and, most importantly, appropriate 
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monitoring frequencies (i.e., trawl surveys and catch at-age sampling), under a range of  OM dynamic 
productivity assumptions (Punt et al. 2014a, Punt 2023). 
 
 
5. POTENTIAL RESEARCH 

A key finding from this work is that it illustrates the dangers of providing stock assessment advice 
pursuant to yield-based (B0) BRP predictions from equilibrium stock assessment models where there 
has been clear evidence of recent change in recruitment patterns. This could possibly lead to an 
inappropriate catch limit that may be either unsustainable under conditions of a decreased mean 
recruitment productivity, or a missed opportunity during periods of higher productive times of increased 
mean recruitment. These results highlight the need for further exploration of dynamic reference points.  
 
However, although all three models were biased in their current stock-status predictions (𝑆𝑆𝑆𝑆𝑆𝑆%𝐵𝐵0

2020) 
under increasing or decreasing recruitment trends, SSB predictions from two of the EMs (EM-1 & EM-
2) were relatively robust (unbiased). This finding is strong justification for using explicit regime-shift 
estimation models (EM-1 type) or relaxed R0 averaging constraint models (EM-2 type) and for adopting 
interim F-based (exploitation rate) reference points for SNA 8 and other stocks where it is suspected 
productivity has been changing over the model history.   
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8. APPENDIX A 

Specific equations for CABM OM in the SNA 8 simulations. 

8.1 Growth 

When the von Bertalanffy growth model is assumed, each agent is assigned an asymptotic length 
parameter denoted by 𝐿𝐿𝑖𝑖,∞ from the following normal distribution 
 

𝐿𝐿𝑖𝑖,∞~𝑁𝑁(𝐿𝐿�∞,𝐶𝐶𝐶𝐶), 
 
where CV denotes the coefficient of variation, and 𝐿𝐿�∞ is the population mean asymptotic length. 
  
When growth is specified in the annual cycle for time step 𝑡𝑡, CABM will iterate over all agents and 
increment each agent’s length following:  
 

𝑙𝑙𝑖𝑖,𝑐𝑐+∆ =  𝑙𝑙𝑖𝑖,𝑐𝑐 + 𝑝𝑝∆𝑐𝑐(𝐿𝐿𝑖𝑖,∞ − 𝑙𝑙𝑖𝑖,𝑐𝑐)(1− exp (−𝑘𝑘) 
 
where 𝑘𝑘 is the global growth coefficient, 𝑙𝑙𝑖𝑖,𝑐𝑐is the ith agent’s length in time step 𝑡𝑡 and 𝑝𝑝∆𝑐𝑐  denotes the 
proportion of annual increment to be added in time step 𝑡𝑡. 
 
The growth dynamic changes an agent’s weight after changing its length using the following allometric 
length-weight relationship, 
 

𝑤𝑤𝑖𝑖 =  𝛼𝛼𝑙𝑙𝑖𝑖
𝛽𝛽 

 
where 𝛼𝛼 and 𝛽𝛽 are length-weight coefficients which are equal for all agents in the system. 

8.2 Natural mortality 

All agents were assumed to have the same natural mortality rate denoted by  
 

𝑝𝑝𝑖𝑖 = exp (−𝑀𝑀𝑝𝑝∆𝑐𝑐)   ,∀ 𝑋𝑋𝑐𝑐,𝑖𝑖  ∈ 𝑿𝑿𝑐𝑐, 
𝐼𝐼𝑖𝑖~𝑆𝑆𝐵𝐵𝐵𝐵𝐵𝐵(𝑝𝑝𝑖𝑖) 

𝐼𝐼𝑖𝑖    �
 0            agent lived
 1             agent dies 

 
𝑝𝑝∆𝑐𝑐  is the proportion of annual natural mortality that is applied in time step 𝑡𝑡. 

8.3 Fishing mortality 

The Baranov catch equation was used to apply fishing mortality (F) to agents over time. Annual values 
of F are required for each fishing, denoted by 𝐹𝐹𝑦𝑦

𝑓𝑓 along with an assumed selectivity for each fishery 
denoted by 𝑆𝑆𝑓𝑓(. ). If all selectivity’s are age based CABM calculates an annual F by age as  
 

𝐹𝐹𝑦𝑦,𝑎𝑎 =  �𝐹𝐹𝑦𝑦
𝑓𝑓

𝑓𝑓

𝑆𝑆𝑓𝑓(𝑎𝑎) 

In addition to an annual F, the probability of an agent being caught by fishery 𝑓𝑓 at age 𝑎𝑎 is defined as 
 

𝑝𝑝𝑎𝑎
𝑓𝑓 =  

𝐹𝐹𝑦𝑦
𝑓𝑓𝑆𝑆𝑓𝑓(𝑎𝑎)
𝐹𝐹𝑦𝑦,𝑎𝑎
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Fishing iterates over all agents and applies the following  
 

𝑝𝑝𝑖𝑖 = exp (−𝐹𝐹𝑦𝑦,𝑎𝑎𝑖𝑖)   ,∀ 𝑋𝑋𝑐𝑐,𝑖𝑖  ∈ 𝑿𝑿𝑐𝑐, 
𝐼𝐼𝑖𝑖~𝑆𝑆𝐵𝐵𝐵𝐵𝐵𝐵(𝑝𝑝𝑖𝑖) 

𝐼𝐼𝑖𝑖    �
 0                                    agent lives
 1             agent dies from fishing 

 
If an agent dies from fishing, it is then assigned to a specific fishery using the multinomial distribution 
denoted by the indicator variable 𝑰𝑰 = �𝐼𝐼1, … , 𝐼𝐼𝑐𝑐𝑓𝑓�, where 𝐵𝐵𝑓𝑓 denotes the number of fisheries. 
 

𝑰𝑰~ 𝑚𝑚𝑚𝑚𝑙𝑙𝑚𝑚𝐵𝐵𝑚𝑚𝑚𝑚𝑚𝑚𝑎𝑎𝑙𝑙(𝑁𝑁 = 1,𝒑𝒑) 
 
where, 𝒑𝒑 = (𝑝𝑝𝑎𝑎𝑖𝑖

𝑓𝑓 , … , 𝑝𝑝𝑎𝑎𝑖𝑖
 𝑐𝑐𝑓𝑓 ) is the probability that an agent with age 𝑎𝑎𝑖𝑖. If 𝐼𝐼𝑓𝑓 is assigned a 1, the agent is 

assigned to the 𝑓𝑓th fishery. This agent will contribute to reported catch and compositional observations 
for this fishery. 

8.4 Ageing 

Ageing is an implicit process in CABM. Each agent that is created or recruited gets assigned a birth 
year. The age of an agent is a calculation  
 
Age = Current year – birth year 
 
thus, there is no explicit ageing dynamic occurs in CABM. 

8.5 Spawning stock biomass (SSB) 

𝑆𝑆𝑐𝑐 =  𝑆𝑆𝑐𝑐
𝑝𝑝𝑐𝑐𝑐𝑐 𝑝𝑝∆𝑐𝑐 + 𝑆𝑆𝑐𝑐

𝑝𝑝𝑝𝑝𝑝𝑝𝑐𝑐(1− 𝑝𝑝∆𝑐𝑐) 
 
The method for calculating SSB for 𝑆𝑆𝑐𝑐

𝑝𝑝𝑐𝑐𝑐𝑐 and 𝑆𝑆𝑐𝑐
𝑝𝑝𝑝𝑝𝑝𝑝𝑐𝑐 was the same and is shown below for 𝑆𝑆𝑐𝑐

𝑝𝑝𝑐𝑐𝑐𝑐 
 

𝑝𝑝𝑖𝑖 = 𝑆𝑆(𝑎𝑎𝑖𝑖)  ,∀ 𝑿𝑿𝑐𝑐∀ 𝑋𝑋𝑐𝑐,𝑖𝑖  ∈ 𝑿𝑿𝑐𝑐, 
𝐼𝐼𝑖𝑖~𝑆𝑆𝐵𝐵𝐵𝐵𝐵𝐵(𝑝𝑝𝑖𝑖) 
𝑆𝑆𝑐𝑐
𝑝𝑝𝑐𝑐𝑐𝑐 = � � 𝑤𝑤𝑖𝑖𝐵𝐵𝑖𝑖𝐼𝐼𝑖𝑖

∀ 𝑋𝑋𝑟𝑟,𝑖𝑖∈𝑿𝑿𝑟𝑟𝑐𝑐

 

𝐼𝐼𝑖𝑖~𝑆𝑆𝐵𝐵𝐵𝐵𝐵𝐵(𝑝𝑝𝑖𝑖) 
𝑝𝑝𝑖𝑖 = 𝑆𝑆(𝑎𝑎𝑖𝑖)   

where, 𝑆𝑆(. ) Is the mature selectivity ogive. 

8.6 Recruitment 

Recruitment was the dynamic that was of interest during the simulation where multiple recruitment 
scenarios were explored (see Section 2.3) and was the only dynamic that differed between OM and EM. 
CABM created the following number of agents each year assuming, 
 

𝑅𝑅𝑦𝑦 =  𝑅𝑅0
𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 

 

Where, 𝑅𝑅0
𝑦𝑦 was a time-varying parameter and  𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦are the annual year class strength parameters, where 

 

𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 = exp (𝜀𝜀𝑦𝑦) 
𝜀𝜀𝑦𝑦~𝑁𝑁(0,𝜎𝜎𝑅𝑅2). 

See Section 2.3 for details on 𝑅𝑅0
𝑦𝑦. 
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8.7 INITIALISATION 

CABM calculates the number of individuals that an agent represents during initialisation. It is derived 
following, 

𝑁𝑁� =  � 𝑅𝑅0exp (−𝑀𝑀𝑎𝑎)
4 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚

𝑎𝑎= 𝑎𝑎𝑚𝑚𝑖𝑖𝑚𝑚

 

 

𝐵𝐵� =
𝑁𝑁�

𝐵𝐵𝑎𝑎𝑎𝑎𝑐𝑐𝑐𝑐𝑐𝑐𝑝𝑝
 

 
where, 𝑎𝑎 is the age, 𝑎𝑎𝑚𝑚𝑖𝑖𝑐𝑐 is the minimum age, 𝑎𝑎𝑚𝑚𝑎𝑎𝑚𝑚 is the maximum age, 𝑀𝑀 is the initial natural 
mortality rate, 𝑅𝑅0 is the average number of individuals expected in the absence of fishing, and 𝐵𝐵𝑎𝑎𝑎𝑎𝑐𝑐𝑐𝑐𝑐𝑐𝑝𝑝 is 
the number of agents assumed from the users to model the initial stock. The choice of 𝐵𝐵𝑎𝑎𝑎𝑎𝑐𝑐𝑐𝑐𝑐𝑐𝑝𝑝 is a 
tradeoff between model run time and agent resolution of the stock. As 𝐵𝐵𝑎𝑎𝑎𝑎𝑐𝑐𝑐𝑐𝑐𝑐𝑝𝑝 increases CABM moves 
towards an IBM (𝐵𝐵�  → 1) but this comes at computational cost and larger model run times. 
 
Once CABM calculates 𝐵𝐵�, it creates the number of agents for the first age (𝑎𝑎𝑚𝑚𝑖𝑖𝑐𝑐). This is calculated as 
 

𝑅𝑅𝑎𝑎𝑚𝑚𝑖𝑖𝑚𝑚 = 𝐵𝐵𝑚𝑚𝑚𝑚𝐵𝐵𝑟𝑟 �
𝑅𝑅0
𝐵𝐵�
�.  

 
When agents are created, they are also assigned agent attributes based on their age and agent specific 
attributes. The above actions from CABM assume an equilibrium age structure of agents in each cell, 
but ignore movement and other dynamics that may affect starting conditions. To account for these 
dynamics, CABM then iterates over the annual cycle without fishing dynamics for a user defined number 
of cycles denoted by 𝐵𝐵𝑖𝑖𝑐𝑐𝑖𝑖𝑐𝑐. This populates the agents around the spatial domain according to the annual 
cycle assumptions. 
 
Appendix Table 1: OM parameters assumed during simulations. 
 

Parameter Value 
  
𝐵𝐵𝑎𝑎𝑎𝑎𝑐𝑐𝑐𝑐𝑐𝑐𝑝𝑝 1𝐵𝐵6 
𝑀𝑀 0.075 
𝜎𝜎𝑅𝑅 0.6 
𝐿𝐿�∞ 57.48 
CV 0.08 
𝑘𝑘 0.146 
𝛼𝛼 4.467𝐵𝐵8 
𝛽𝛽 2.793 
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Appendix Figure 1: OM Maturity selectivity. 
 
 

 
Appendix Figure 2: OM fishery selectivity. BT = bottom trawl, JPL = Japanese longline. 
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Appendix Figure 3: Catches produced from OM for one simulated realisation. BT = bottom trawl fishery, 

BPT = bottom pair trawl fishery, JP = Japanese longline fishery, RECO = outside harbours 
recreational line fishery, RECI =  inside harbours recreational line fishery. 

 
 
Estimation information for the Stock Synthesis EMs. Catchability coefficients were treated as ‘nuisance’ 
parameters and analytically calculated (Appendix Table 2,  Bull et al. 2012) 
  
Appendix Table 2: Estimated parameter information. BT = bottom trawl fishery, RECO = outside harbours 

recreational line fishery, RECI =  inside harbours recreational line fishery. 
 

Parameters  Number of estimable parameters Estimation phase 
   
ln 𝑅𝑅0  1 1 
𝜺𝜺 = (𝜀𝜀1960, … , 𝜀𝜀2019)   59 2 
BT selectivity 4 3 
RECO selectivity 2 1 
RECI selectivity  2 1 
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9. APPENDIX B 

A logistic function was fitted using least-squares minimisation to the Stock Synthesis SNA 8 base-case 
model predicted recruitment deviates, these estimates being in log-space (Appendix Figure 4). 
 

 
Appendix Figure 4: SNA 8 2021 assessment model predicted recruitment log deviates. 
 
The form of dynamic R0 logistic curve fitted to SNA 8 model log estimated recruitment deviates had 
four estimable parameters: a,b,c,d.   

log (𝑅𝑅0𝑦𝑦) = 𝑎𝑎 + (1 +
𝑏𝑏

𝒆𝒆�
−(𝑦𝑦−𝑐𝑐)

𝑑𝑑 �
) 

The dynamic log(R0) logistic curve least-squares fit to the 2021 SNA 8 model estimated log (year class 
strength) parameters is given in Appendix Figure 5. 

 
Appendix Figure 5: Fitted log(R0) dynamic recruitment curve (red line). Circles are estimated recruitment 

deviates from the 2021 SNA 8 assessment model. Derived Equation 1 parameter values are: a, -
0.18562; b, 0.79688; c, 2003.5273; d, 1.17279. 

 
The fitted dynamic log(R0y) curve was converted into natural space in accordance with:  

𝑅𝑅0𝑦𝑦 = 𝐵𝐵
�log (𝑅𝑅0𝑦𝑦)+

𝑦𝑦𝑚𝑚𝑠𝑠𝑚𝑚𝑎𝑎𝑅𝑅2

2 � 

where 𝑦𝑦𝑚𝑚𝑠𝑠𝑚𝑚𝑎𝑎𝑅𝑅 = 0.6. (This sigmaR value is from the 2021 SNA 8 assessment model.) 
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The ABM input dynamic R0 scalar vector 𝜀𝜀�̂�𝑦 (Appendix Figure 6) was derived by rescaling the 
𝑅𝑅0𝑓𝑓𝑦𝑦𝑐𝑐𝑎𝑎𝑐𝑐 vector to have a scalar value of 1.0 in the 1960 commencing year as follows: 

𝜀𝜀�̂�𝑦 = 𝑅𝑅0𝑦𝑦 ∗ (
1

𝑅𝑅01960
) 

 

Appendix Figure 6: Final scaled ABM dynamic R0 input vector 𝜺𝜺�𝒚𝒚 (red line) and scaled 2020 SNA 8 model 
recruitment deviates. 
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10. APPENDIX C 

The basic algebra by which B0 is derived from R0 in most static equilibrium stock assessment models is 
as follows: 
 
Unexploited numbers N0 at age a  
 
𝑁𝑁𝑎𝑎0 = 𝑅𝑅0𝐵𝐵𝑎𝑎𝑎𝑎 
 

where  

M = natural mortality 

R0 = mean number of recruits entering the population at age 0 under un-exploited conditions. 

  

The unexploited population biomass (B0) is the biomass sum of all age classes 0 and above in the 
population 

𝑆𝑆0 = �𝑁𝑁𝑎𝑎0
∞

𝑎𝑎

𝑤𝑤𝑎𝑎 

 
 

𝑆𝑆0 = �𝑅𝑅0𝐵𝐵𝑎𝑎𝑎𝑎𝑤𝑤𝑎𝑎

∞

𝑎𝑎

 

 

where 𝑤𝑤𝑎𝑎 is the mean weight of an age a fish.  

 

It follows from above that a proportional increase ∆  in 𝑅𝑅0 will result in an equalvalent proportional 
increase in 𝑆𝑆0 such that: 

∆𝑆𝑆0 = �∆𝑅𝑅0𝐵𝐵𝑎𝑎𝑎𝑎𝑤𝑤𝑎𝑎

∞

𝑎𝑎
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