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PLAIN LANGUAGE SUMMARY

Arrow squid represent an important fishery resource, but their fast growth and relatively short lifespan
make stocks difficult to assess and manage. This study focused on developing a novel method to
distinguish different squid cohorts based on size and catch-per-unit-effort (CPUE), across different
areas and over time. Using information from trawl fisheries on the Stewart-Snares-shelf and at
Auckland Islands, the assessment assumed two dominant cohorts in each area, occurring in autumn
(early season) and spring (late season). This assumption was used to develop a mixture model (i.e., a
probabilistic model) to determine the proportional contribution of each cohort to a given fishing event,
which, in turn, allowed simultaneous estimation of CPUE for each cohort. The model indicated
consistent depletion (i.e., decreases in squid over time) for the late-season cohort, but there was no
consistent trend for the early-season cohort. This proof of concept highlights the potential to further
develop this approach for providing stock assessments for squid in these trawl fisheries.



EXECUTIVE SUMMARY
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This analysis modelled observed length distributions of the New Zealand arrow squid (Nototodarus
sloanii) fishery in an attempt to separate length cohorts in space and time, with a view to deriving
catch-per-unit-effort (CPUE) indices that may track the successive depletion of these cohorts by the
trawl fishery in SQU 1T (Stewart-Snares shelf) and SQU 6T (Auckland Islands).

To gain an understanding of length distributions over spatial and temporal scales, a range of plots were
inspected for patterns in length (presented in a companion report, characterising the fishery). These
analyses suggested coherent, but somewhat temporally separated, length dynamics at Auckland Islands
and the Stewart-Snares shelf. The patterns further suggested the presence of two dominant cohorts in
most years in each area; however, this pattern was not evident in all years, and, in some years, more
than two length cohorts may be present.

Based on the descriptive analyses, we constructed a mixture model to predict whether a fishing event
was fishing on an early-season (e.g., autumn) or late-season (e.g., spring) cohort. The model was then
used to estimate cohort-specific CPUE, providing a proof-of-concept for jointly estimating cohort
contributions to fishing events based on fishery length frequencies, and estimating within-season CPUE
from these cohorts. The model was applied to a subset of years with considerable observer coverage,
for which patterns in CPUE suggested consistent depletion of numbers in the late cohort, while also
showing little consistency in trends for the early cohort in both areas (although the early cohort was
only consistently fished at Auckland Islands for the years considered in the present model).

The development of an integrated model to capture fishing on separate cohorts, and the temporal
evolution of CPUE within seasons, opens the possibility to apply within-season DeLury depletion type
models for SQU 1T and SQU 6T. Although there are a number of improvements and extensions to the
present model that would likely improve the accuracy of estimated trends by providing a closer match
to data, the present model demonstrates the potential to develop such models, and to derive potentially
valuable indices of cohort abundance.

'Dragonfly Data Science, Wellington, New Zealand
Zpisces Research, Wellington, New Zealand
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1. INTRODUCTION

The southern arrow squid (Nototodarus sloanii) is fished in New Zealand’s southern waters around
Auckland Islands and the Stewart-Snares shelf. Although information on its fishery biology and
ecology was comprehensively summarised by successive characterisation reports (Uozumi 1998, Hurst
et al. 2012, Middleton et al. 2026), important questions about the species’ biology and ecology remain.
Previous attempts to develop assessment and management approaches have been unsuccessful
(McGregor & Large 2016), primarily owing to the complexity of the squid population structure and
limited information on the parts of the life cycle when the squid is not being fished.

Although no recent squid ageing data are available, Uozumi (1998) provided ageing and growth
information for this species. Both fishery and biological data were reviewed in detail by Hurst et al.
(2012) and Middleton et al. (2026). The lifespan of N. sloanii is considered to be close to one year, with
highly variable growth and cohort strength — here, cohort is loosely defined as squid hatching at a
similar time of year. While there may be dominant spawning times, available information suggests
year-round spawning and recruitment to juvenile and adult habitat (Uozumi 1998). Nevertheless, the
location of spawning is largely unknown: observations of late-stage squid are rare in fisheries observer
data (Middleton et al. 2026), suggesting that spawning occurs outside of fished areas or seasons.

The targeted fishery on the Stewart-Snares shelf and around Auckland Islands mainly occurs in late
summer and autumn, often on what appears to be two relatively large length cohorts (i.e., squid of
similar size, which may or may not be of similar age). The first cohort observed in the fishery is
presumed to have spawned in autumn or winter of the previous season, whereas fishing later in the
season may target a potentially strong spring cohort (Middleton et al. 2026); however, these patterns
appear somewhat variable between years and areas. Given this lack of knowledge, no assessment and
management strategy has been adopted for New Zealand’s squid fisheries to date.

Internationally, management of effort, coupled with in-season assessment of cohort size, with the
objective of allowing sufficient escapement has been suggested as the most appropriate form of
management for squid fisheries (Beddington et al. 1990, Arkhipkin et al. 2015, 2021). This suggestion
was due to the short-lived nature of these species, and the delay in assessment and management cycles
often used for longer-lived finfish and crustaceans Hurst et al. (2012). This context suggested that this
kind of approach may be worth investigating for New Zealand’s target fisheries.

McGregor & Tingley (2016) and McGregor & Large (2016) attempted to apply DeLury-type depletion
models, based on models successfully applied at Falkland Islands, to fisheries in SQU 1T and SQU 6T.
Although the approach showed potential, these studies could not obtain consistent depletion estimates
for these fisheries when applied to nearly two decades of in-season fisheries data. This finding suggests
that additional complexities in New Zealand’s squid fisheries may preclude a straightforward
application of these methods.

A key difficulty with the DeLury depletion approach is that cohorts are assumed to be independent and
fished down over time. Although extensions to the model have been made to accommodate in-season
recruitment events (Arkhipkin et al. 2021), defining the timing and presence of these events in “noisy”
in-season fisheries data provides a challenge. McGregor & Large (2016) used in-season increases in
catch-per-unit-effort (CPUE) to suggest the presence of additional recruitment to the fishery.
Nevertheless, there are a number of alternative hypotheses that can lead to increases in CPUE within
season (e.g., vessel movement to new areas with unfished squid aggregations from the same cohort).
Determining which cohort a given fishing event targeted, therefore, remains unknown, with likely
significant implications for the applicability of DeLury depletion modelling, and the application of
in-season effort controls.

We used visualisations of lengths collected by observers to understand where and when cohorts may
appear in space and time (making the assumption that squid of similar length were spawned at a similar
time). Based on these empirical data visualisations, we constructed a mixture model to predict whether

2 @ Cohort-specific CPUE for squid Fisheries New Zealand



a fishing event was fishing on an early (e.g., autumn) or late (e.g., spring) cohort. The model was then
used to estimate cohort-specific CPUE. The model provides a proof-of-concept for jointly estimating
cohort contributions to fishing events, based on fishery length frequencies, and estimating
within-season CPUE from these cohorts. We applied this model to a subset of years with considerable
observer coverage; we also suggest ways in which the application of the model could be further
investigated, and discuss potential improvements that could allow within-season depletion methods to
be applied.

The development of the models was part of project SQU2020-1b, with the overall objective to “develop
and test a management strategy for arrow squid in SQU 1T and SQU 6T based on historical data”.

2. METHODS
2.1 Data

Squid are caught predominantly during the late summer and autumn months (February to April;

Figure 1), by a target fleet which has orders of magnitude higher catch rates of squid than other
fisheries within which squid are regularly caught (Figure 2). The fishery also predominantly operates in
particular areas and depths (Middleton et al. 2026), distinguishing it from other bottom- and
midwater-traw] fisheries in the region. For this reason, the present project focused on targeted squid
fishing effort, and did not consider other fisheries which may not fish the same component of the squid
stock.

For observer data for all bottom and midwater trawl in SQU 1T and SQU 6T were extracted, for any
trips between 2008 and 2020 that caught SQU (arrow squid, N. sloanii and N. gouldi), NOS (New
Zealand southern arrow squid, V. sloanii), or NOG (New Zealand northern arrow squid, N. gouldi). For
mixture analyses, only statistical areas covering the Stewart-Snares shelf (Statistical Areas 024, 025,
026, 027, 028, 029, 030, 504) and Auckland Islands (Statistical Area 602) were retained, which
represented fisheries targeting New Zealand southern arrow squid (NOS). Areas of potential species
mixtures were not retained for this purpose (i.e., Chatham Rise). Nearly all observed effort (98%) in the
over-all area was from squid target trawls, using bottom (73%) and midwater trawls (23%). All
remaining observed effort with squid catches (i.e., barracouta, hoki target effort) accounted for less than
1% of observed effort. Data for analyses were limited to years post 2008, when observer data covered a
greater proportion of the fishery than in earlier years (Figure 3).

Trends in catch per tow in the observed portion of the targeted squid fishery (Figure 4) largely
corresponded to seasonal CPUE trends in the wider fishery (see Figure 1) for squid, owing to the high
proportion of squid catch occurring in the target fishery.
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Figure 1: Monthly distribution of the proportion of events reporting squid (NOS, SQU) catch, and of
allocated catch (t) per tow. Data are for tows reporting squid catch in Fisheries Management Areas

SQU 1T and SQU 6T, for the period between 2008 and 2020.
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Figure 2: Monthly distribution of the proportion of fishing events reporting squid (NOS, SQU) catch, and
of allocated catch (t) per tow. Data are for tows with reported squid catch in Fisheries Management Areas
SQU 1T and SQU 6T, by target species, for the period between 2008 and 2020. Fisheries targets were: FLA,
flatfish; HOK, hoki; LIN, ling; SBW, southern blue whiting; SCI, scampi; SQU, squid. Transparency
indicates the number of events within each target fishery.
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SQU 6T by month for the period from 2008 to 2020.

Fisheries New Zealand Cohort-specific CPUE for squid ® 7



2.2 Mixture model of in-season cohort proportions

Based on empirical data visualisations (Figures 5, 6), we observed that the observed lengths were
spatially variable, with length progressions of dominant cohorts evident through time in most areas and
years. In addition, it appeared as though in most years, a dominant cohort of large squid was fished
early in the fishery (e.g., prior to about week 20), with a second cohort being fished later in the season.
Based on these observations, we hypothesised that: 1) there are usually two dominant cohorts in all
areas; but ii) fishing of these cohorts is not synchronised between areas, and may be spatially separated
within areas at relatively small spatial scales. Fishing events in a given area (e.g., Auckland Islands) at
a given time may, therefore, target either of these cohorts, or a mix of both cohorts.

Mantle length (cm)
w B - n w S - n w S
s &8 & 8 8 & &5 © &8 &

n
o

=)

2014

SPUE|S| pUEpONY

MN SPUE[S| puEpjony.

J|ays saseus

Mantle length (cm)
w P - n w B - n w B
8 &8 s 8 8 & 5 © &8 &

2
S

=)

—
20
Fishing Week
A
[
- -
—— -

40

2015

MN SPUE[S| pUEpjony SpUE|S| puEony

Jleys sareug

20

Fishing Week

40

Proportion

0.5
0.4
0.3
0.2

0.1
0.0

Proportion
05
0.4
03
02
01
0.0

Figure 5: Aggregate length proportion distributions of squid for the 2014 and 2015 fishing years in each of
three fishing areas. Colours indicate the proportion of squid at each length by fishing week (with week 1
beginning on 1 October each year). The Auckland Island NW area corresponds to the northwestern
exposure of the Auckland Islands, compared with the more regularly fished south-eastern side of the
islands. Areas are shown separately to illustrate the spatial variability in catch-at-length.

The above assumptions led to a mixture model over catch-at-length within a fishing event, with mixture
proportions given by the proportional contribution of each cohort to the catch in the fishing event.
Provided that observer catch sampling and measurements are unbiased, then observer length
frequencies should be sufficient to estimate the mixing proportions, as long as the length distributions
or catch rates of the cohorts are sufficiently separate for all locations and times.
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Figure 6: Aggregate length proportion distributions of squid for the 2019 and 2020 fishing years in each of
three fishing areas. Colours indicate the proportion of squid at each length by fishing week (with week 1
beginning on 1 October each year). The Auckland Island NW area corresponds to the northwestern
exposure of the Auckland Islands, compared with the more regularly fished south-eastern side of the
islands. Areas are shown separately to illustrate the spatial variability in catch-at-length.

To be temporally relevant (i.e., to be able to be applied in-season, for a given fishing event), the model
needs to account for in-season growth, which affects the expected length frequency for each cohort in
space for a given week of the fishing season. We, therefore, modelled the expected length frequencies
as arising from a von Bertalanfty growth model.

The mixture model aims to simultaneously estimate the parameters of the von Bertalanfty growth
equation for each of the two assumed cohorts in a year, while also estimating the proportions of each
cohort that contribute to fishing event. In addition, the model directly relates catch-at-length to CPUE
from each cohort, standardised for common variables such as fishing duration and vessel. This
modelling is accomplished by fitting the CPUE-at-length in observed fishing events with a mixture
model consisting of two mixture components that correspond to the expected CPUE-at-length, derived
by combining the von Bertalanffy models for each of the two cohorts for a given week and year, with
the expected CPUE (relative abundance) of that cohort. The mixing proportions (i.e., the probability,
for each cohort, that an individual with length / in a tow from a given event i came from cohort ¢) are

given by the mixture probabilities 6.

Fisheries New Zealand
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Conceptually, the model is most straightforwardly presented in terms of latent discrete parameters ¢;,
which represent the estimated cohort label for event 7, given mixture proportions &, which will vary
through time at each of the different areas (i.e., mixture proportions will be skewed towards early
cohorts early in the season, and late cohorts later in the season). This relationship can be represented as:

¢; ~ categorical(0;),

3 1
0; = logit ' (0, + B, week; + B area;), v

where ~ means “is distributed as”, and categorical is a categorical distribution with probabilities 6.
This model is a logistic regression at a lower level of a hierarchical model, and f,, estimates how
quickly fishing transitions from the first cohort (the “early” cohort) to the second cohort (the “late”
cohort) over the course of a season across fishing weeks w, and j, estimates an offset to the timing of
transition between cohorts depending on the area. Conditional on the estimated cohort label for event i,
¢;, the mean squid length of observed fishing event i is then modelled as coming from a von Bertalanfty
growth function:

A) = tllilng. ¢ v)

)
ey = M) (1 — exp(—k(wi = Ye))),

where 7. is the expected length in week wy, A is the asymptotic size (normally denoted Lo, k is the
growth coefficient, and Y. is the cohort-specific week when size is zero (normally denoted #;). Cohort
lengths in a given week are assumed to be distributed according to a student-t distribution with variance
2 and v degrees of freedom, both of which are estimated in the model. This basic model could, in the
future, be extended by allowing the timing and growth coefficients of the second cohort to vary across
years (random effect on Y, and k); however, since the present model was initially fitted to a limited
number of years, we assumed a single growth coefficient and growth varied only by timing for each of
the two cohorts across years.

Catch-at-length for each event (tow) was assumed to be distributed according to a negative-binomial
(NB) distribution with parameters o, (parametrised as 1/¢, the negative binomial dispersion parameter).
(Note that the negative binomial assumption here is a placeholder — its support over only integer values
is not aligned with catch-at-length values. Nevertheless, given large catches, the rounding error here
was expected to be small, and the current assumption avoided the need to model zeros separately in the
model — many length classes will have zero catch for each tow). In addition, catch-at-length was
derived by scaling observed length proportions to catch for each tow (note, that scaling
proportions-at-length to overall catch in numbers-at-length does not consider sampling error in length
proportions, which will lead to higher estimated dispersion for catch at length per tow (higher
over-dispersion of the negative binomial sampling distribution). The model for catch C;; at length / for
event 7 is then:

Ciy ~ NB(ty,; 120501

ity

_ 3)
log(t; . 1,) = B, + log(f(li)) + BXi + v, Zi + 7 Zess

where the log(f{/;)) in the linear predictor serves to scale catch according to Equation 2. The remaining
terms standardise catch with respect to effort variables in the same way as standard CPUE analyses are
generally conducted using generalised linear (mixed) models. Standardisation of cohort-specific
CPUE-at-length used event-level fixed (X;: main fishing areas) and random effects (Z;; vessel key,
cubic smoothing splines for bottom depth, and fishing duration), and also cohort-specific effects (Z,
fishing year, week within year, and area) in a linear predictor linked to the mean of the negative
binomial distribution.

10 @ Cohort-specific CPUE for squid Fisheries New Zealand



The cohort- and area-specific week-within-year effect served as the within-season index of interest
here, to assess if significant differences between areas and years exist in the timing each cohort’s CPUE
trends. Alternative indices could be formulated and compared, such as non-area specific indices for
season-weeks within years, reflecting the alternative assumption that cohorts appear simultaneously in
both areas.

The season-week index derived here only covered observed events (we suggest implications for
non-observed effort in the Discussion section). Due to the slow run time of the model, the model was
fitted to three years of data, for 2013—14, 201415, and 2018-19, to facilitate development. The model
was implemented in brms, using 16 cores per chain, and run in Stan using 1500 draws from Markov
chain Monte Carlo (MCMC; see the appendix for the full model code). Convergence was assessed
visually, and by inspecting uni- and multivariate Rhat statistics (Vehtari et al. 2021), which are
commonly used metrics to assess convergence based on multiple concurrent MCMC chains.

CPUE for depletion modelling needs to index number depletion, rather than biomass depletion. We
applied a model using observer length-frequency data to estimate length-weight relationships, and used
estimated relationships to predict the weight of individuals at each length. CPUE by cohort and length
was derived by partitioning cohort CPUE (catch C; per standardised tow) into length components
according to parameters estimated in Equation 2. The length-weight model took the form (using R
formula notation):

log(fish_weight) ~ 1 +
main_areas +
log(length) +
(11fishing event_key) +
(1|fyear) .

The model, therefore, allowed for variation in length-weight relationships among areas and years to be
accounted for in scaling CPUE in catch weight to CPUE in numbers.

3. RESULTS
3.1 Mixture model of cohort CPUE

The mixture model converged to a stable solution, as long as reasonable starting values were provided
(Figure 7). Once convergence was achieved, parameter estimates generally had relatively low
uncertainty. In particular, estimates of growth and asymptotic size were both lower than suggested by
the prior (Table 1; priors are given in Appendix A), which was derived from growth data presented by
Uozumi (1998).

Standardisation variables had relatively little effect; fishing depth and duration had negligible effects
due to an absence of clear within-season trends in fishing depth and duration (Figures 8, 9). Vessel,
often a proxy for gear configuration, also had a relatively low standard deviation, compared with
variation in individual fishing events, and between year and within-season changes (Table 1).

The model produced patterns of relative abundance-at-length that resembled patterns evident
empirically (Figures 10, 11); however modelled patterns were smoother and more constrained than the
observed data owing to the plotting in terms of standard tows. The model reproduced the incremental
growth for each cohort (Figure 12), and followed the transition in the fishery from the early cohort
(Cohort 1) to the later cohort (Cohort 2; Figure 13). The combination of these processes produced the
patterns that reflected patterns evident across most years in the fishery (see Figures 10, 11). Residual
patterns (Figures 14, 15) suggested that the 2019 cohort may have appeared slightly earlier; the model

Fisheries New Zealand Cohort-specific CPUE for squid ® 11
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Figure 7: Markov chain Monte Carlo traces for the mixture model of squid catch-per-unit-at-length across
cohorts.
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Table 1: Posterior estimates (mean, median, and 95% confidence), convergence (Rhat; should be close to
1), and effective sample size (ESS) for model parameters in the mixture model for squid
catch-per-unit-effort-(CPUE)-at-length.

Variable Mean Median SD CI Rhat ESS
6, Intercept -1.41 -1.41  0.07 [-1.52;—-1.30] 1.00 865.93
Cohort 1 CPUE Intercept 9.72 9.45 1.61 [7.98;12.08] 1.01  213.07
Cohort 1 Snaresshelf CPUE offset -0.41 -0.40 0.62 [-1.33;0.43] 1.00 496.30
Cohort 2 CPUE Intercept 10.02 9.74 157 [8.26;12.22] 1.01  239.67
Cohort 2 Snaresshelf CPUE offset -0.24 -021 043 [-0.85;0.29] 1.01  346.53
Linf 31.09 31.09 0.14 [30.87;31.33] 1.00 717.71
k 0.12 0.12  0.00 [0.11;0.12] 1.00  716.64
nu 0.08 0.08 0.01 [0.07;0.09] 1.00 1752.35
Y, -34.67  -3461 0.67 [-35.88;,-33.71] 1.00 903.57
Y, 27.51 27.47 077 [26.39;28.90] 1.00  792.78
¢ 2.79 254 1.88 [0.25;6.20] 1.01  254.17
0, Season-Week transition 0.37 0.37 0.01 [0.35;0.39] 1.00 523.15
0, Snaresshelf offset 3.31 3.31 0.09 [3.16;3.46] 1.00 1002.29
sd fyear Cohort 1 CPUE 0.52 0.31 0.62 [0.02;1.72] 1.01  572.17
sd main areas:fyear Cohort | CPUE 0.53 0.43 043 [0.07;1.33] 1.02  273.85
sd SeasonWeek:main areas:fyear Cohort 1 CPUE 0.81 0.80 0.08 [0.68;0.94] 1.00 276.87
sd fyear Cohort 2 CPUE 0.73 0.55 0.60 [0.10;1.98] 1.00  872.78
sd main areas:fyear Cohort 2 CPUE 0.32 0.21 0.35 [0.02;1.07] 1.01  309.38
sd SeasonWeek:main areas:fyear Cohort 2 CPUE 0.46 0.45 0.05 [0.38;0.54] 1.01 223.40
sd fishing event key CPUE std 0.84 0.84 0.01 [0.82;0.86] 1.02  193.35
sd vessel key CPUE std 0.29 0.29 0.05 [0.21;0.38] 1.01  378.20
o1 (residual error Cohort 1) 0.41 0.42 0.01 [0.40;0.43] 1.00 1515.94
07 (residual error Cohort 2) 0.48 0.48 0.00 [0.47;0.48] 1.00 1634.15
spline sd ffx start seabed depth 3.10 2.82  1.70 [0.95;6.10] 1.01  159.58
spline sd ffx log(fishing duration) 1.14 0.93 0.81 [0.31;2.71] 1.02 181.33
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Figure 8: Reported fishing duration by week in each of the analysed fishing years. Week 1 begins on 1
October each year.
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Figure 9: Reported fishing depth by week in each of the analysed fishing years. Week 1 begins on 1 October
each year.
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Figure 10: Expected catch (kg) per length and week in a standard tow in each of the two main areas and
fishing years in the mixture model. Snares shelf, Stewart-Snares shelf.

could not currently reproduce this slight shift as it did not currently have parameters for timing of the
second cohort that vary among years.

CPUE in weight showed a mixture of declining and increasing trends for the early cohort at both
Auckland Islands and on the Stewart-Snares shelf (Figure 16). For the late cohort, however, a more
clear systematic reduction in the in-season index was visible, particularly on the Stewart-Snares shelf.
CPUE in numbers, derived from the length-weight relationship (Figures 17, 18), magnified these trends
(Figure 19), with strong and consistent declining trends within season for the late cohort at the
Stewart-Snares shelf. In addition, patterns at Auckland Islands were also more variable, with weak
support for high early CPUE. Nevertheless, during the early weeks of the season, fishing was largely
concentrated on large-sized squid from the early cohort at Auckland Islands. For this reason, there was
considerable uncertainty about early trends.
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Figure 11: Expected proportions of catch weight at length by week in a standard tow in each of the two
main areas and fishing years in the mixture model. Snares shelf, Stewart-Snares shelf.
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Figure 12: Expected number per length and week for each cohort in each of the two main areas and fishing
years in the mixture model. Snares shelf, Stewart-Snares shelf.
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Figure 13: Estimated within-season transition between cohorts at each of the main areas. Snares shelf,
Stewart-Snares shelf.
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Figure 14: Residuals for length proportions by length and week for each of the two main areas and fishing
years in the mixture model. Week 1 begins on 1 October each year; Snares shelf, Stewart-Snares shelf.
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Figure 15: Residuals for catch-at-length by length and week for each of the two main areas and fishing
years in the mixture model. Week 1 begins on 1 October each year; Snares shelf, Stewart-Snares shelf
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Figure 16: Within-season catch-per-unit-effort (CPUE) index for biomass by week for estimated early and
late squid cohorts in the model, with shading indicating the proportional contribution of the cohort to catch
in each week. Week 1 begins on 1 October each year; Snares shelf, Stewart-Snares shelf.
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Figure 17: Effect size of area, fishing events, and fishing year in the length-weight model used to convert
catch to numbers of squid in the catch-per-unit-effort-at-length mixture model.
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Figure 18: Estimated length-weight curve and 95% confidence used to convert catch to number of squid in
the catch-per-unit-effort-at-length mixture model.
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Figure 19: Within-season catch-per-unit-effort (CPUE) index for number of squid by week for estimated
early and late cohorts in the model, with shading indicating the proportional contribution of the cohort to
catch in each week. The index is plotted relative to a weighted geometric mean, where the weight is
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4. DISCUSSION

The development of an integrated model to capture fishing on separate cohorts, and the temporal
development of CPUE within seasons, provides the possibility to apply within-season DeLury
depletion type models for squid in SQU 1T and SQU 6T. Although there are a number of improvements
and extensions to the present model that would likely improve the accuracy of estimated trends by
providing a closer match to data, the present model demonstrates the potential to develop these types of
models by deriving indices of cohort abundance.

Patterns in CPUE suggested consistent depletion of numbers in the late cohort, while showing little
consistency in trends for the early cohort in both areas. The early cohort was only consistently fished at
Auckland Islands for the years considered in the present model. There was some evidence for declining
numbers between weeks 15 and 20 in 2014 and 2015 in this first cohort. No such trend was evident for
2019. The second cohort was fished earlier on the Stewart-Snares shelf, and later at Auckland Islands.
Nevertheless, CPUE trends were largely similar between both areas, and showed a marked reduction in
numbers as squid grew from about 15 cm length in week 15 to about 20 cm length by week 20. These
trends, along with broad changes in length that were similar across the southern Stewart-Snares shelf
and at Auckland Islands over the following weeks, indirectly support the hypothesis of movement of
small squid from the Stewart-Snares Shelf to Auckland Islands area.

There are a number of relatively straightforward extensions and technical improvements that we
recommend be explored before the present model could be made operational for use in DeLury
depletion estimates. Model extensions include:

* The model should be run over additional years. Due to the high computational cost of the model,
this extension requires sufficient computing resources. It may be useful to split models into
individual years; however, this split would mean losing the ability to learn about relevant effects
across years, such as effects due to vessel differences or other standardising variables.

* CPUE derived from the present model (i.e., for a limited number of years) could be tested in a
DeLury depletion model, particularly for the more steadily and heavily fished second cohort.

* Models with additional cohorts could be tested in years when residual patterns suggest the
presence of an additional strong cohort.

Key technical improvements to further improve the model fit to data could also be explored:

* Uncertainty about catch-at-length should be better reflected in the model. Currently, length
proportions are scaled to catch, which does not consider sampling error.

» The response variable should be modelled as a continuous variable (here, a negative binomial
distribution was used to accommodate zero catch-at-length events, but this distribution was
largely a choice of convenience). The Tweedie distribution, a combination of Poisson and
Gamma distributions, would, at once, cover sampling error (a Poisson random variable over
sampled length classes) as well as catch variability (Gamma distribution), and allow for zero
catch in length classes; however, this distribution also adds an additional parameter and is
considerably more difficult to implement.

» Random effects for annually-varying growth and recruitment timing of the second cohort appear
warranted, but were not implemented here due the small number of years considered.
Nevertheless, including these effects would allow the model to fit the residual patterns evident in
the current analysis.

* The model could be directly fitted in numbers of squid rather than catch, by applying the
length-to-numbers conversion prior to fitting the model. However, a priori it would appear that
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this model would be equivalent to the present model in that the length-weight model is used to
the same effect.

Operational use in the context of a DeLury depletion model would require application of the
cohort-CPUE model on a continuous basis. In addition, it would need to be applied across the overall
catch effort, not just observed effort, since catch from any event needs to be proportionally allocated to
each cohort so that it is removed from the appropriate cohort in the DeLury model. Both of these
aspects are readily achievable given timely catch-effort reporting over electronic reporting systems, and
a two-stage application of the model. Given that not all effort is observed, and observer data are
currently not available in real time, the full posterior probability of any event fishing on one or the other
cohort (P(Cohort|data)), is not available at the same time as fishing information from catch and effort
data. Nevertheless, in the present form, the model can still provide a “prior” probability for a fishing
event targeting a given cohort in a given area and week using Equation 1. To improve this “prior”, the
model could be extended to involve more detail in the linear predictor for cohort proportion (see
Equation 1) if residuals point to greater spatial complexity in the transition between cohorts than was
currently assumed. For example, finer spatial detail, such as splitting the Auckland Islands area into
northwestern and eastern components, may improve prediction of cohort membership for individual
fishing events given fine-scale variation in cohort availability early in the season (see Figures 5, 6).
Once observer data for a given event area is available (i.e., currently with some weeks’ lag), the full
posterior distribution of the model can be updated. This two-stage strategy is common in the estimation
of time-series models such as Hidden Markov Models (HMMs; Scott (2002)) and related models. It
takes advantage of the natural two-stage hierarchy of these models—as long as all variables attributing
cohort membership in Equation 1 are available from catch effort data (e.g., detailed position if a more
detailed spatial model is used for Equation 1), then the two-stage strategy is applicable.

A key assumption in the present model was that identified length-progression in the catch-at-length is
due to growth of individual strong cohorts. An alternative hypothesis that cannot currently be
discarded, is that the process is significantly more complex, with length-based schooling and
continuous immigration (recruitment) and emigration (e.g., for spawning) of squid from areas where
individuals of similar size school. The present model, for example, estimated growth parameters that
are somewhat slower, and led to smaller squid than the prior based on estimates from statolith ageing
(Uozumi & Ohara 1993, Uozumi 1998). Nevertheless, squid growth can be highly variable (Uozumi
1998), and estimates of asymptotic length in the models here were likely biased, caused by emigration
from spawning aggregations of squid at larger sizes. In addition, the prior was derived in an ad-hoc way
from Uozumi (1998), where growth was presented as a suite of logistic growth curves by spawning
month. Visual comparisons of derived growth (see Figure 12) suggest our estimates are broadly
compatible with existing growth estimates; careful consideration of existing growth data and estimates
may improve the prior we used for the present model. Nevertheless, the present estimates were broadly
consistent with the hypothesis of strong cohorts growing, with females emigrating to spawning grounds
once they reach approximately 30 cm in mantle length.

While the present modelling provides a proof-of-concept rather than an operational tool, the modelling
showed that significant progress can be made on detecting cohort structure by integrating
catch-and-effort and length-composition data. The model, therefore, addressed some key difficulties
encountered in previous attempts to fit DeLury methods to data for arrow squid in the southern waters
of New Zealand (McGregor & Large 2016). Within the present framework, alternative formulations
could be tested to ensure that the currently employed two-cohort hypothesis provides the best fit to the
data on an annual basis. Uozumi (1998) suggested year-around spawning and recruitment for southern
arrow squid. In some years, there may be more “strong cohorts”, or, alternatively, no strong spring and
autumn cohorts, so that smaller recruitment events appear significant in the length proportions. It may
be possible to formulate the present model to accommodate this “background” recruitment into it, so
that only events that have clear length modes associated with dominant cohorts are attributed to those
cohorts; in contrast, events with inconsistent length composition are treated as coming from a
background distribution of minor cohorts. The overall approach, therefore, remains a plausible path
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towards the application of in-season DeLury depletion models, even in the context of more complex
recruitment patterns between years.
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APPENDIX A: BAYESIAN MIXTURE MODEL FOR COHORTS

vBFmix <- bf(cfish ~ 1,
theta2 ~ SW+main_areas,# + (1+SW||main_areas:fyear),
nl = TRUE) +
nlf (mul ~
lgamma ((v+1)/2)-1gamma(v/2)+log((1+(length-etal) ~2) /(vxsigma~2) ) * (- (v+1)/2)
+ ffx + rfx) + # £(1) + std effects
nlf (mu2 ~ lgamma((v+1)/2)-1gamma(v/2)+log((1+(length-eta2) 2)/(v*sigma™2))*(-(v+1)/2) + ffx
nlf(etal ~ Linf*(1.0-exp(-(k)*(SW-tnotl)))) + # singe k and tnot for
cohort 1 - limtied observations
nlf(eta2 ~ Linf*(1.0-exp(-(k*exp(kfx2))*(SW-tnot2)))) + # variable
tnot and k for cohort 2
nlf (tnot2 ~ tnotl+tnot2prexexp(tfx2)) + # force cohort 2 to start
after cohort 1 to enforce ordering
1f(rfx ~ main_areas + (1|fyear) + (1|main_areas:fyear) + (1|SeasonWeek:main_areas:fyear)) +
1f(rfx2 ~ main_areas + (1|fyear) + (1|main_areas:fyear) + (1|SeasonWeek:main_areas:fyear))
1f(ffx ~ (1|fishing event_key)+s(start_seabed_depth)+s(log(fishing duration))+(1|vessel_key
1f (kfx2 ~ (llfyear)) +
1f(tfx2 ~ (llfyear)) +
1f(Linf ~ 1,
k~1,
v~ 1,
tnotl ~ 1,
tnot2pre ~ 1,
sigma ~ 1)

# priors for each mixture component

priors =
set_prior('normal(-26,10)', nlpar = 'tnotl',ub=-20) + # force first

cohort start before current fishing year (SW-20) to enforce mixture order
set_prior('lognormal (log(26)-0.52/2,0.5)"', nlpar = 'tnot2pre',lb = 0) +
set_prior('lognormal(log(0.2)-0.372/2,0.3)"', nlpar = 'k') + # prior

on k from 1lit
set_prior('lognormal(log(1)-1"2/2,1)', nlpar = 'v') +
set_prior('normal(40,5)', nlpar = 'Linf',ub=50) + prior

on Linf from 1lit
set_prior('normal(2,2.5)', nlpar = 'sigma',1b=0) +
set_prior('normal(-2,2)', dpar = 'theta2',class = 'Intercept',1lb=-5)

+ # fishing starts on cohort 1 (theta2 Int <0)
set_prior('lognormal(log(5)-1"2/2,1)', dpar = 'theta2',class = 'b') +

set_prior('constant(1)', nlpar='ffx',class='b', coef = "Intercept") +
set_prior('constant(1)', nlpar='tfx',class='b', coef = "Intercept") +
set_prior('constant(1)', nlpar='tfx2',class='b', coef = "Intercept") +
set_prior('normal(0,5)', nlpar='ffx',class='b', coef = "slogfishing duration_1") +
set_prior('normal(0,5)', nlpar='ffx',class='b', coef = "sstart_seabed_depth_1") +
set_prior('normal(0,5)', nlpar='rfx',class='b') +

set_prior('normal(5,5)', nlpar='rfx',class='b', coef = "Intercept") +
set_prior('normal(5,5)', nlpar='rfx2',class='b', coef = "Intercept") +

set_prior('normal(0,5)', nlpar='rfx2',class='b') +
set_prior('normal(0,2)', class='sigmal') +
set_prior('normal(0,2)', class='sigma2') +
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set_prior('normal(0,2)', class='sd', nlpar='rfx') +
set_prior('normal(0,2)', class='sd', nlpar='rfx2') +
set_prior('normal(0,2)', class='sd', nlpar='ffx') +
set_prior('normal(-0.172/2,0.1)', class='sd', nlpar='kfx2') +

set_prior('normal(-0.172/2,0.1)"', class='sd', nlpar='tfx2')

inits <- function() list(b_k = 0.1,

b_tnotl -34,
b_tnot2pre = 26,
sigmal = 0.7,

sigma2=0.7,
b_sigma=2.5,
b_Linf = 30,

Intercept_theta2 = -3,
b_theta2 = ¢(2,0.3),
b_v = 0.075,
sds_ffx_1_1=0.001,
sds_ffx_2_1=0.001,
b_rfx=c(10,0),
b_rfx2=c(10,0),

bs_£ffx=0,
sd_1 = 0.01,
sd_2 = 0.01,
sd_3 = 0.01,
sd_4 = 0.01,
sd_b5 = 0.01,
sd_6 = 0.01,
sd_7 = 0.01,
sd_8 = 0.01,
sd_9 = 0.01,
sd_10 = 0.01,
sd_11 = 0.01,
sd_12 = 0.01
)

vBMix <- brm(vBFmix,

data = catch_at_length,

family = mixture(brmsfamily("negbinomial2"),
order = F,
nmix = 2),

prior = priors,

init = inits,

chains = 4,

cores = 64,

iter=1000,

threads = 64,

backend='cmdstanr',

refresh=10,

adapt_delta

= 0.95,
max_treedepth =

12)
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