HAKE (HAK)

(Merluccius australis)

1. FISHERY SUMMARY

(a) Commercial fisheries

Hake are widely distributed throughout the middle depths of the New Zealand EEZ, mostly south of latitude $40^{\circ} \mathrm{S}$. Adults are mainly distributed from $250-800 \mathrm{~m}$, though some have been found as deep as 1200 m , while juveniles ($0+$) are found in shallower inshore regions less than 250 m (Hurst et al. 2000). Hake are taken by large trawlers - often as bycatch in fisheries targeting hoki, although target fisheries also exist.

The largest fishery has been off the west coast of the South Island (HAK 7) with the highest catch (17000 t) recorded in 1977, immediately before the establishment of the EEZ. The west coast South Island hake fishery has generally consisted of bycatch in the much larger hoki fishery, but it has undergone a number of changes during the last 15 years. These include changes to the TACCs of both hake and hoki, and also changes in fishing practices such as gear used, tow duration, and strategies to limit hake bycatch. In some years, notably in 1992 and 1993, there was a hake target fishery in September after the peak of the hoki fishery was over; more than $2000 t$ of hake were taken in this target fishery during September 1993. Bycatch levels of hake early in the fishing season in the years 1994-95, 1995-96, and 1997-89 to 2000-01 were relatively high.

In HAK 1 (where most of the catch is taken from the Sub-Antarctic) and HAK 4 (Chatham Rise), hake have also been caught mainly as bycatch by trawlers targeting hoki. However, in both areas some targeting for hake occurs, particularly in Statistical Area 404 in HAK 4, which is a known spawning area for hake north-west of the Chatham Islands.

Increases in TACC's from 2610 t to 3632 t in HAK 1, and from 1000 t to 3500 t in HAK 4, from the 1991-92 fishing year allowed the fleet to increase their reported landings of hake from these fish stocks. Reported catches rose over a number of years to the levels of the new TACC's in both HAK 1 and HAK 4, with catches in HAK 1 remaining relatively steady since. Landings from HAK 4 steadily declined from 1998-99 to a low of 811 t in 2002-03. However, catches increased to 2275 t in 200304. In 2003-04, the TACC for HAK 4 was reduced from 3500 t to 1800 t . From 1 October 2005 the TACC for HAK 7 was increased to 7700 t within an overall TAC of 7777 t . This new catch limit was
set equal to the average catch level over the last 12 years, as the latest stock assessment indicated that the current catch levels were sustainable in the short term..

An unusually large aggregation of possibly mature or maturing hake was fished on the western Chatham Rise, west of the Mernoo Bank (HAK 1) in October 2004. Over a four week period, approximately 2000 t of hake were caught from that area. In previous years, catches from this area have typically been between $100-800 \mathrm{t}$. These unusually high catches resulted in the TACC for HAK 1 being over-caught during the 2004-05 fishing year (4795 t against a TACC of 3701 t) and a substantial increase in the landings ($>3300 \mathrm{t}$) associated with the Chatham Rise. The reasons for the presence of the large aggregation are not known, although periodic and minor aggregations of premature and mature hake have been found in that area in previous years.

Reported catches from 1975 to 1987-1988 are shown in Table 1. Reported landings for each Fishstock since 1983-84 and TAC's since 1986-87 are shown in Table 2.

Table 1: Reported hake catches (t) from 1975 to 1987-88. Data from 1975 to 1983 from MAF; data from 1983-84 to 1985-86 from FSU; data from 1986-87 to 1987-88 from QMS.

		New Zealand				Foreign licensed		
Fishing year	Domestic	Chartered	Total	Japan	Korea	USSR	Total	Total
$1975{ }^{1}$	0	0	0	382	0	0	382	382
$1976{ }^{1}$	0	0	0	5474	0	300	5774	5774
$1977{ }^{\text { }}$	0	0	0	12482	5784	1200	19466	19466
1978-79 ${ }^{2}$	0	3	3	398	308	585	1291	1294
1979-80 ${ }^{2}$	0	5283	5283	293	0	134	427	5710
1980-81 ${ }^{2}$				data av				
1981-82 ${ }^{2}$	0	3513	3513	268	9	44	321	3834
1982-83 ${ }^{2}$	38	2107	2145	203	53	0	255	2400
$1983{ }^{3}$	2	1006	1008	382	67	2	451	1459
1983-84 ${ }^{4}$	196	1212	1408	522	76	5	603	2011
1984-85 ${ }^{4}$	265	1318	1583	400	35	16	451	2034
1985-86 ${ }^{4}$	241	2104	2345	465	52	13	530	2875
1986-87 ${ }^{4}$	229	3666	3895	234	1	1	236	4131
1987-88 ${ }^{4}$	122	4334	4456	231	1	1	233	4689
1. Calendar year.								
2. April 1 to March 31.								
3. April 1 to September 30.								
4. October 1	ptember 30							

Table 2: Reported landings (t) of hake by Fishstock from 1983-84 to 2004-05 and actual TAC's (t) for 1986-87 to 2004-05.

Fish stock QMA(s)	$1,2,3,5,6,8 \& 9$		HAK 4			HAK 7	HAK 10			
				$\underline{4}$		$\underline{7}$		10		Total
	Landings	TAC	Landings	TA $\overline{\mathbf{C}}$	Landings	TA $\overline{\mathbf{C}}$	Landings	T $\overline{\text { AC }}$	Landings	TAC
1983-84 ${ }^{1}$	886	-	180	-	945	-	0	-	2011	-
1984-85 ${ }^{1}$	670	-	399	-	965	-	0	-	2034	-
$1985-86{ }^{1}$	1047	-	133	-	1695	-	0		2875	-
1986-87 ${ }^{2}$	1022	2500	200	1000	2909	3000	0	10	4131	6510
1987-88 ${ }^{2}$	1381	2500	288	1000	3019	3000	0	10	4689	6510
1988-89 ${ }^{2}$	1487	2513	554	1000	6835	3004	0	10	8876	6527
1989-90 ${ }^{2}$	2115	2610	763	1000	4903	3310	0	10	7781	6930
1990-91 ${ }^{2}$	2603	2610	743	1000	6148	3310	0	10	9494	6930
1991-92 ${ }^{2}$	3156	3500	2013	3500	3027	6770	0	10	8196	13780
1992-93 ${ }^{2}$	3525	3501	2546	3500	7154	6835	0	10	13225	13846
1993-94 ${ }^{2}$	1803	3501	2587	3500	2974	6835	0	10	7364	13847
1994-95 ${ }^{2}$	2572	3632	3369	3500	8841	6855	0	10	14782	13997
$1995-96{ }^{2}$	3956	3632	3466	3500	8678	6855	0	10	16100	13997
1996-97 ${ }^{2}$	3534	3632	3524	3500	6118	6855	0	10	13176	13997
1997-98 ${ }^{2}$	3810	3632	3524	3500	7416	6855	0	10	14749	13997
1998-99 ${ }^{2}$	3845	3632	3324	3500	8165	6855	0	10	15334	13997
1999-00 ${ }^{2}$	3899	3632	2803	3500	6898	6855	0	10	13599	13997
2000-01 ${ }^{2}$	3628	3632	2784	3500	7698	6855	0	10	14111	13997
2001-02 ${ }^{2}$	2870	3701	1424	3500	7519	6855	0	10	11813	14066
2002-03 ${ }^{2}$	3336	3701	811	3500	7433	6855	0	10	11580	14066
2003-04 ${ }^{3}$	3466	3701	2275	3500	7945	6855	0	10	13686	14066
2004-05 ${ }^{3}$	4795	3701	1264	1800	7317	6855	0	10	13376	12366
1. FSU data. 2. QMS data. 3. MHR data										

(b) Recreational fisheries

The recreational fishery for hake is negligible.

(c) Maori customary fisheries

The amount of hake caught by Maori is not known but is believed to be negligible.

(d) Illegal catch

In late 2001, a small number of fishers admitted misreporting of hake catches between areas, pleading guilty to charges of making false or misleading entries in their catch returns. As a result, the reported catches of hake in each area were reviewed in 2002 and suspect records identified. Dunn (2003) provided revised estimates of the total landings by stocks, estimating that the level of hake overreporting on the Chatham Rise (and hence under-reporting on the west coast South Island) was between 16 and 23% (700-1000 t annually) of landings between 1994-95 and 2000-01, predominantly in the months of June, July, and September. Probable levels of area misreporting prior to 1994-95 and between the west coast South Island and sub-Antarctic were estimated as small (Dunn 2003). There is no evidence of similar area misreporting since 2000-01 (A. Dunn, NIWA, pers comm.).

In earlier years, before the introduction of higher TACC's in 1991-92, there is some evidence to suggest that catches of hake were not always fully reported. Comparison of catches from vessels carrying observers with those not carrying observers, particularly in HAK 7 from 1988-89 to 1990-91, suggested that actual catches were probably considerably higher than reported catches. For these years, the ratio of hake to hoki in the catch of vessels carrying observers was significantly higher than in the catch of vessels not carrying observers (Colman \& Vignaux 1992). The actual hake catch in HAK 7 for these years was estimated by multiplying the total hoki catch (which was assumed to be correctly reported by vessels both with and without observers) by the ratio of hake to hoki in the catch of vessels carrying observers. Reported and estimated catches for 1988-89 were respectively 6835 t and 8696 t ; for $1989-90,4903 \mathrm{t}$ reported and 8741 t estimated; and for $1990-91,6189 \mathrm{t}$ reported and 8246 t estimated. More recently, the level of such misreporting has not been estimated and is not known. No such corrections have been applied to either the HAK 1 or HAK 4 fishery.

For the purposes of stock assessment, the Chatham Rise stock was considered to include the whole of the Chatham Rise (including the western end currently forming part of the HAK 1 management area). Therefore catches from this area were subtracted from the Sub-Antarctic stock and added to the Chatham Rise stock. The revised estimates used in the stock assessment for 1974-75 to 2003-04 are given in Table 3.

Table 3: Revised landings 1974-75 to 2003-04 (t) for the west coast South Island, sub-Antarctic and Chatham Rise stocks.

Fishing year	West coast S.I.	Sub-Antarctic	Chatham Rise
1974-75	71	120	191
1975-76	5005	281	488
1976-77	17806	372	1288
1977-78	498	762	34
1978-79	4737	364	609
1979-80	3600	350	750
1980-81	2565	272	997
1981-82	1625	179	596
1982-83	745	448	302
1983-84	945	722	344
1984-85	965	525	544
1985-86	1918	818	362
1986-87	3755	713	509
1987-88	3009	1095	574
1988-89	8696	1237	804
1989-90	4903	1920	957
1990-91	6201	2387	906
1991-92	3027	2754	2415
1992-93	7154	3260	2810
Table 3 (Continued)			
1993-94	2974	1453	2935
1994-95	9543	1905	3330
1995-96	9308	2896	3916

$1996-97$	7056	2273	3667
$1997-98$	7924	2629	4045
$1998-99$	9037	2797	3378
$1999-00$	7374	3028	3184
$2000-01$	8738	2857	2510
$2001-02$	7504	2516	1778
$2002-03$	7432	2732	1416
$2003-04$	7940	3252	2484
$2004-05$		2384	3311

1. Note: West coast South Island revised estimates for 1989-90 and 1990-91 are taken from Colman \& Vignaux (1992) who corrected for underreporting in 1989-90 and 1990-91, and not from Dunn (2003) who ignored such underreporting.

(e) Other sources of mortality

There is likely to be some mortality associated with escapement from trawl nets, but the level is not known and is assumed to be negligible.

2. BIOLOGY

The New Zealand hake reach a maximum age of at least 25 years. Males, which rarely exceed 100 cm total length (TL), do not grow as large as females, which can grow to 120 cm TL or more. Both sexes reach sexual maturity between 6 and 10 years of age, at lengths of about 67-75 cm TL (males) and 7585 cm TL (females). Colman (1998) suggested that hake reached 50% maturity at between 6-8 years for HAK 1, and 7-8 years for HAK 4.

Horn (1997) validated the use of otoliths to age hake. Readings of otoliths have been used in age-length keys to scale length frequency distributions for hake collected from trawl surveys in HAK 1 and HAK 4 and from commercial vessels in the HAK 4 fishery to produce catch at age distributions.

Estimates of natural mortality (M) and the associated methodology are given in Dunn et al. (2000); M is estimated as $0.18 \mathrm{y}^{-1}$ for females and $0.20 \mathrm{y}^{-1}$ for males. Colman et al. (1991) previously estimated M as $0.20 \mathrm{y}^{-1}$ for females and $0.22 \mathrm{y}^{-1}$ for males using the maximum age method of Hoenig (1983) (the maximum ages at which 1% of the population survives in an unexploited stock were estimated at 23 years for females and 21 years for males). These are similar to the values proposed by Horn (1997), who determined the age of hake by counting zones in sectioned otoliths and concluded that M was likely to be in the range of $0.20-0.25 \mathrm{y}^{-1}$.

Data collected by observers on commercial trawlers and data from trawl surveys suggest that there are at least three main spawning areas for hake (Colman 1998). The best known area is off the west coast of the South Island, where the season can extend from June to October, usually with a peak in September. Spawning also occurs to the west of the Chatham Islands during a prolonged period from at least September to January. Spawning on the Campbell Plateau, primarily to the north-east of the Auckland Islands, occurs from September to February with a peak in September-October. Spawning fish have been recorded occasionally on the Puysegur Bank, with a seasonality that appears similar to that on the Campbell Plateau (Colman 1998).

Juvenile hake have been taken in coastal waters on both sides of the South Island and on the Campbell Plateau. They reach a length of about $15-20 \mathrm{~cm}$ total length at one year old, and about 35 cm total length at 2 years (Colman 1998). The biological parameters relevant to the stock assessment are given in Table 4.

Table 4: Estimates of biological parameters.

Parameter 1. Natural mortality (M)				Estimate	Source
	Males	$M=0.20$			(Dunn et al. 2000)
	Females	$M=0.18$			(Dunn et al. 2000)
2. Weight $=\mathbf{a} \cdot(\text { length })^{\mathbf{b}}($ Weight in t , length in cm$)$					
Sub-Antarctic	Males	$\mathrm{a}=3.95 \times 10^{-9}$	$\mathrm{b}=3.130$		(Horn 1998)
	Females	$\mathrm{a}=1.86 \times 10^{-9}$	$\mathrm{b}=3.313$		(Horn 1998)
Chatham Rise	Males	$\mathrm{a}=2.49 \times 10^{-9}$	$\mathrm{b}=3.234$		(Horn 1998)
	Females	$\mathrm{a}=1.70 \times 10^{-9}$	$\mathrm{b}=3.328$		(Horn 1998)
West coast South Island	Males	$\mathrm{a}=2.75 \times 10^{-9}$	$\mathrm{b}=3.230$		(Horn 1998)
	Females	$\mathrm{a}=1.33 \times 10^{-9}$	$\mathrm{b}=3.410$		(Horn 1998)
3. von-Bertalanffy growth parameters					
Sub-Antarctic	Males	$k=0.263$	$\mathrm{t}_{0}=-0.06$	$\mathrm{L}_{\infty}=90.8$	(Horn 1998)
	Females	$k=0.188$	$\mathrm{t}_{0}=-0.13$	$\mathrm{L}_{\infty}=115.0$	(Horn 1998)
Chatham Rise	Males	$k=0.277$	$\mathrm{t}_{0}=-0.11$	$\mathrm{L}_{\infty}=90.3$	(Horn 1998)
	Females	$k=0.202$	$\mathrm{t}_{0}=-0.20$	$\mathrm{L}_{\infty}=113.4$	(Horn 1998)
West coast South Island	Males	$k=0.308$	$\mathrm{t}_{0}=-0.00$	$\mathrm{L}_{\infty}=83.5$	(Horn 1998)
	Females	$k=0.194$	$\mathrm{t}_{0}=-0.16$	$\mathrm{L}_{\infty}=111.1$	(Horn 1998)
4. Age at 50% maturity					
Males		$\mathrm{A}_{50}=6-7$			(Colman 1998)
Females		$\mathrm{A}_{50}=7-8$			(Colman 1998)

3. STOCKS AND AREAS

There are three main hake spawning areas; off the west coast of the South Island, on the Chatham Rise and on the Campbell Plateau. Juvenile hake are found in all three areas. There are differences in size frequency of hake between the west coast and other areas, and differences in growth parameters between all three areas (Horn 1997). There is good evidence, therefore, to suggest that at least three separate stocks may exist in the EEZ. In addition, the recent high catches of hake on the western Chatham Rise have raised concerns that the Chatham Rise stock may consist of two stocks.

Analysis of morphometric data (Horn 1998) shows little difference between hake from the Chatham Rise and hake from the east coast of the North Island, but shows highly significant differences between these fish and those from the Sub-Antarctic, Puysegur and on the west coast. No studies have been done on morphometric differences of hake across the Chatham Rise. The Puysegur fish are most similar to those from the west coast South Island, although, depending on which variables are used, they cannot always be distinguished from the Sub-Antarctic hake. However, the data are not unequivocal so the stock affinity is uncertain.

Present management divides the fishery into three Fishstocks: (a) the Challenger QMA (HAK 7), (b) the Chatham Rise QMA (HAK 4) and (c), the remainder of the EEZ comprising the Auckland, Central, Southeast (Coast), Southland and Sub-Antarctic QMAs (HAK 1). An administrative fish stock (with no recorded landings) exists for the Kermadec QMA (HAK 10).

4. STOCK ASSESSMENT

The most recent stock assessments were completed in 2004 for the Chatham Rise, sub-Antarctic, and west coast South Island stocks. For the purposes of stock assessment modelling, the Chatham Rise stock was considered to include the whole of the Chatham Rise (including the western end currently forming part of the HAK 1 management area). The sub-Antarctic stock was considered to contain hake in the Southland and sub-Antarctic management areas; although fisheries management areas around the North Island are also included in HAK 1, catches of hake in these areas are very small.

4.1 HAK $1 \& 4$ (Sub-Antarctic and Chatham Rise stocks)

The 2004 stock assessment was carried out with data up to the end of the 2003-04 fishing year for the sub-Antarctic and Chatham Rise stocks. The stock assessment of hake on the sub-Antarctic and Chatham Rise was implemented as a Bayesian two stock model using the general-purpose stock assessment program CASAL v2.06 (Bull et al. 2004). The assessment used research time series of
abundance indices (trawl surveys of the Chatham Rise and sub-Antarctic), catch-at-length and catch-atage from the commercial fishery, and estimates of biological parameters.

The new information included in the assessment for the sub-Antarctic stock included data from a trawl survey in November-December 2003 (O'Driscoll \& Bagley 2004) and an additional year of observer proportions-at-age data (2003). New information for the Chatham Rise stock included data from the January 2004 trawl survey (Livingston \& Stevens 2005) and an additional year of observer proportions-at-age data (2003). In addition, commercial catch-at-age data were included, for the first time, for the years 1992-1997 (Chatham Rise) and 1991, 1993, and 1994 (sub-Antarctic) using resource survey age-length keys. Commercial catch-at-length data were included from 1990 onwards where appropriate resource survey age-length keys were unavailable.

In addition, sensitivity runs employed CPUE indices (N.L. Phillips, NIWA, pers comm.), using the Statistical Area 404 indices as an index of vulnerable abundance for the Chatham Rise stock, and similarly, the sub-Antarctic indices for the sub-Antarctic stock. The WG preferred the CPUE indices from Statistical Area 404 as this area has a target fishery for hake during the spawning season.

(a) Model structure

The stock assessment model partitioned the sub-Antarctic and Chatham Rise stock populations into mature and immature fish, two sexes, and age groups $1-30$ with the last age group considered a plus group. Each stock was considered to reside in a single area (sub-Antarctic or Chatham Rise), with no interaction between the stocks. The models were initialised assuming an equilibrium age structure at an unfished equilibrium biomass $\left(B_{0}\right)$, i.e. with constant recruitment set equal to the mean of the recruitments over the period 1974-2000 (sub-Antarctic) or 1975-2000 (Chatham Rise).

The model used ten selectivity at age ogives; male and female commercial fishing selectivities on the sub-Antarctic and Chatham Rise, male and female survey selectivities for each of the NovemberDecember and April-May trawl survey series (with the September 1992 survey assumed to have a selectivity equal to the November-December series), and male and female survey selectivities for the Chatham Rise January trawl survey series. The trawl survey and fishing selectivities were all assumed to be logistic, with female selectivity estimated relative to male selectivity. Selectivities were assumed constant over all years in each fishery, and hence there was no allowance for possible annual changes in selectivity.

Where model runs included the two 1989 Amaltal Explorer surveys, their catchability constants were assumed to differ from that of the Tangaroa survey series but were constrained so that the ratio of the qs from the Chatham Rise and the November-December sub-Antarctic Tangaroa surveys was equal to the ratio of the catchability constants from the Chatham Rise and sub-Antarctic Amaltal Explorer surveys. The constraint was imposed in the form of a prior on the ratio and is described below. Selectivities for these surveys, when used, were assumed equal to the selectivity for an appropriate Tangaroa series (i.e., the January series for the Chatham Rise or the November-December series for the sub-Antarctic).

Maximum exploitation rates for hake are assumed to be 0.7 for both the sub-Antarctic and Chatham Rise stocks. As this applies to those age classes that are fully selected, the maximum catch/biomass ratio would be lower than this value. The choice of the maximum exploitation rate has the effect of determining the minimum possible virgin biomass allowed by the model.

The catch histories assumed in all model runs (Table 3) include the revised estimates of catch for the sub-Antarctic and Chatham Rise reported by Dunn (2003) and updated by Phillips (2004). The assumed catch for the 2003-04 fishing year was assumed to be (a) for the Chatham Rise, the sum of the reported landings for HAK 4 in 2003-04, plus HAK 1 landings that were made on the Chatham Rise in 2002-03, and (b) for the sub-Antarctic, the same as that recorded for the sub-Antarctic in 2002-03.

Five-year biomass projections were made assuming future catches in the sub-Antarctic to be either equal to the current HAK 1 TACC of 3632 t ("high catch scenario") or half the current TACC i.e., 1816 t ("low catch scenario"). For the Chatham Rise, future catches were assumed to be either the sum of the current HAK 4 TACC plus half the HAK 1 TACC i.e. 3616 t ("high catch scenario") or just equal to the current HAK 4 TACC of 1800 t ("low catch scenario"). For each projection scenario, recruitment variability was assumed to be lognormally distributed, with variability (σ_{R}) assumed to be equal to σ_{R} from the estimated year class strengths for each MCMC sample. For the base case subAntarctic model, σ_{R} had mean 0.68 (95% intervals $0.53-0.88$), and for the base case Chatham Rise model, σ_{R} had mean 0.71 (95% intervals 0.57-0.88).

(b) Fixed biological parameters and observations

Estimates and assumed values for biological parameters used in the assessments are given in Table 4 and Table 5 respectively. The stock-recruitment relationship assumed was the Beverton-Holt relationship with steepness 0.9 . Variability was assumed in the von-Bertalanffy age-length relationship, assumed to be lognormal with a constant c.v. (coefficient of variation) of 0.1.

The proportion of males at recruitment was assumed to be 0.5 of all recruits. Maturity was estimated for the Chatham Rise and sub-Antarctic within the assessment model from data derived from those resource survey samples with information on the gonosomatic index, gonad stage, and age. Individual hake were then classified as either immature or mature at sex and age, where maturity was determined from the gonad stage and gonosomatic index (the ratio of the gonad weight to body weight).

Catch-at-age observations were available for each survey on the sub-Antarctic and Chatham Rise, and for the commercial fisheries from observer data in some years. A plus group for all the catch-at-age data was set at 30 with the lowest age set at 3 .

Resource survey abundance indices are given in Table 6 and Table 7 for the Chatham Rise and subAntarctic stocks respectively, and CPUE indices are given in Table 10.

Table 5: Fixed biological parameters assumed for the sub-Antarctic and Chatham Rise stock assessment model.

Parameter	Value
Steepness (Beverton \& Holt stock- recruitment relationship)	0.90
Proportion spawning	1.0
Proportion of recruits that are male \quad Male, Female	0.5
Natural mortality $(M) \quad 0.20 \mathrm{y}^{-1}, 0.18 \mathrm{y}^{-1}$	
Maximum exploitation rate $\left(U_{\max }\right)$	0.7
Ageing error	Normally distributed, with c.v. $=0.08$

Table 6: Research survey indices (and associated c.v.s) for the Chatham Rise stock.

Year	Vessel	Biomass (t)	c.v.
1989	Amaltal Explorer	3576	0.19
1992	Tangaroa	4180	0.15
1993	Tangaroa	2950	0.17
1994	Tangaroa	3353	0.10
1995	Tangaroa	3303	0.23
1996	Tangaroa	2457	0.13
1997	Tangaroa	2811	0.17
1998	Tangaroa	2873	0.18
1999	Tangaroa	2302	0.12
2000	Tangaroa	2090	0.09
2001	Tangaroa	1589	0.13
2002	Tangaroa	1567	0.15
2003	Tangaroa	890	0.16
2004	Tangaroa	1547	0.17
2005^{*}	Tangaroa	1049	0.18
2006^{*}	Tangaroa	1384	0.19
*Not used in the most recent assessment.			

Table 7: Research survey indices (and associated c.v.s) for the sub-Antarctic stock.

Fishing Year	Vessel	Nov-Dec series ${ }^{1}$		Apr-May series ${ }^{2}$		Sep series ${ }^{2}$	
		Biomass (t)	c.v.	Biomass (t)	c.v.	Biomass (t)	c.v.
1989	Amaltal Explorer	2660	0.21				
1992	Tangaroa	5686	0.43	5028	0.15	3760	0.15
1993	Tangaroa	1944	0.12	3221	0.14		
1994	Tangaroa	2567	0.12				
1996	Tangaroa			2026	0.12		
1998	Tangaroa			2554	0.18		
2001	Tangaroa	2657	0.16				
2002	Tangaroa	2170	0.20				
2003	Tangaroa	1777	0.16				
2004*	Tangaroa	1672	0.23				
2005*	Tangaroa	1694	0.21				
2006*	Tangaroa	1459	0.17				

* Not used in the most recent assessment.

Notes (1) Series based on indices from 300-800 m core strata, including the $800-1000 \mathrm{~m}$ strata in Puysegur, but excluding Bounty Platform), (2) Series based on the biomass indices from 300-800 m core strata, excluding the $800-1000 \mathrm{~m}$ strata in Puysegur and the Bounty Platform).

Table 8: Hake CPUE indices (and associated c.v.s) for the Chatham Rise, Statistical Area 404, and the subAntarctic (N.L. Phillips, NIWA, pers. comm.).

Year	Chatham Rise		Statistical Area 404		Sub-Antarctic	
	Index	c.v.	Index	c.v.	Index	c.v.
1989-90	1.96	0.085			1.27	0.073
1990-91	1.09	0.086			1.05	0.063
1991-92	1.30	0.069	4.85	0.193	1.00	-
1992-93	0.95	0.059	2.54	0.150	0.75	0.057
1993-94	1.27	0.068	1.68	0.165	0.75	0.072
1994-95	1.15	0.047	3.27	0.180	0.67	0.075
1995-96	1.52	0.054	3.20	0.180	0.66	0.078
1996-97	1.30	0.044	2.78	0.192	0.61	0.067
1997-98	1.07	0.036	2.42	0.176	0.47	0.070
1998-99	1.00	-	2.25	0.147	0.41	0.081
1999-00	1.04	0.038	1.73	0.204	0.50	0.071
2000-01	0.98	0.039	1.13	0.173	0.51	0.075
2001-02	1.03	0.037	1.00	-	0.44	0.077
2002-03	0.84	0.038	0.92	0.142	0.43	0.075

(c) Model estimation

Model parameters were estimated using Bayesian estimation implemented using the CASAL software (Bull et al. 2004). Only the mode of the joint posterior distribution (MPD) was estimated in preliminary runs. For final runs, the full posterior distribution was sampled using Markov Chain Monte Carlo (MCMC) methods, based on the Metropolis-Hastings algorithm.

Catch-at-age data were fitted to the model as proportions-at-age with a multinomial likelihood, where estimates of the proportions-at-age and associated c.v.s by age were estimated using the NIWA catch-at-age software by bootstrap (Bull \& Dunn 2002). Biomass indices were fitted with lognormal likelihoods with assumed c.v.s set equal to the sampling c.v.

The effective sample sizes (in the case of observations fitted with multinomial likelihoods) or c.v.s (for observations fitted with lognormal likelihoods) are assumed to have allowed for sampling error only. Additional variance, assumed to arise from differences between model simplifications and real world variation, was added to the sampling variance for all observations in all model runs. The additional variance, termed process error, was estimated from MPD runs of the each model, and the total error assumed in each run for each observation was calculated by adding process error and observation error. Estimates of the effective sample size for proportions-at-age and proportions-at-length data applied in the model were made via a two-step process; (a) first, the sample sizes were derived by assuming the relationship between the observed proportions, E_{i}, and estimated c.v.s, c_{i}, followed that for a multinomial distribution with unknown sample size N_{j}. The estimated sample size was then derived using a robust non-linear least squares fit of $\log \left(c_{i}\right) \sim \log \left(P_{i}\right)$, and (b) by estimating an effective sample size, N^{\prime}, by adding additional process error, $N_{P E}$, to the sample size calculated in (a) above. The values for process error were then fixed for the MCMC runs. An exception to this was for the CPUE and Cvs
runs (described later), where additional process error was included over and above any estimated process error from the initial MPD run (Table 9).

Year class strengths were assumed known (and equal to one) for years prior to 1974 (sub-Antarctic) or 1975 (Chatham Rise) and after 2000, when inadequate or no catch-at-age data were available. Otherwise year class strengths were estimated under the assumption that the estimates from the model should average one.

MCMCs were estimated using a burn-in length of 1×10^{6} iterations, with every $5000^{\text {th }}$ sample taken from the next 5×10^{6} iterations (i.e., a final sample of length 1000 was taken from the Bayesian posterior).

Table 9: Minimum and maximum of the observation error (c.v.s for lognormal and \boldsymbol{n} 's for multinomial likelihoods), and the effective error assumed after the addition of process error for the base case and sensitivity case, by stock and observation type.

Stock	Data series	Likelihood	Observation			Base case		CPUE case
			Min	Max		Min	Max	Min
Chatham Rise	Max							
	Survey biomass	Lognormal	0.09	0.23	0.09	0.23	-	-
	Survey age	Multinomial	49	223	49	223	-	-
	Catch-at-age	Multinomial	152	417	97	163	97	163
	Catch-at-age -additional	Multinomial	67	447	47	116	47	116
	Catch-at-length-additional	Multinomial	28	956	25	191	25	191
	CPUE	Lognormal	0.14	0.2	-	-	0.24	0.28
Sub-Antarctic	Survey biomass (Nov)	Lognormal	0.12	0.43	0.12	0.43	-	-
	Survey age (Nov)	Multinomial	75	189	60	118	-	-
	Survey biomass (Apr)	Lognormal	0.12	0.18	0.12	0.18	-	-
	Survey age (Apr)	Multinomial	56	88	56	88	-	-
	Survey biomass (Sep)	Lognormal	0.15	0.15	0.15	0.15	-	-
	Survey age (Sep)	Multinomial	85	85	76	76	-	-
	Catch-at-age	Multinomial	178	522	115	201	115	201
	Catch-at-age -additional	Multinomial	105	176	14	15	14	15
	Catch-at-length-additional	Multinomial	12	388	9	42	9	42
	LPUE	Lognormal	0.06	0.08	-	-	0.21	0.22

(d) Prior distributions and penalty functions

The assumed prior distributions used in the assessment are given in Table 10. Most priors were intended to be relatively uninformed, and were estimated with wide bounds. The exceptions were the choice of informative priors for the survey q s.

The priors for survey q s were estimated by assuming that the relativity constant was the product of areal availability, vertical availability, and vulnerability. A simple simulation was conducted that estimated a distribution of possible values for the relativity constant by assuming that each of these factors was uniformly distributed. A prior was then determined by assuming that the resulting, sampled, distribution was lognormally distributed. Values assumed for the parameters were; areal availability ($0.50-1.00$), vertical availability $(0.50-1.00)$, and vulnerability $(0.01-0.50)$. The resulting (approximate lognormal) distribution had mean 0.16 and c.v. 0.79 , with bounds assumed to be ($0.01-$ 0.40). Note that the values of survey relativity constants are dependant on the selectivity parameters, and the absolute catchability can be determined by the product of the selectivity by age and sex, and the relativity constant q.

The prior on natural mortality (when estimated) was determined by assuming that the current estimate of natural mortality was a reasonable approximation to the true value with the assumption that the true value could differ from the current point estimate by about 0.05 , and not more than 0.1 . Natural mortality was parameterised by the average of male and female, with the difference estimated with an associated normal prior with mean 0.0 , standard deviation of 0.05 , and bounds $(-0.2,0.2)$.

As described earlier, the catchability constants for the Amaltal Explorer surveys were constrained so that the ratio of the $q \mathrm{~s}$ from the Chatham Rise and the November-December sub-Antarctic Tangaroa surveys was equal to the ratio of the catchability constants from the Chatham Rise and sub-Antarctic

Amaltal Explorer surveys. The constraint was imposed in the form of a lognormal prior on the relative ratio, r, with mean 1.0 and c.v. 0.05 , where the r was defined as;

$$
r=\frac{q_{\text {Chatham Rise(Tangaroa) }}}{q_{\text {Sub-Antarctic(Tangaroa) }}} / \frac{q_{\text {Chatham Rise(Amaltal Explorer) }}}{q_{\text {Sub-Antarctic(Amaltal Explorer) }}}
$$

Penalty functions were used to constrain the model so that any combination of parameters that did not allow the historical catch to be taken were strongly penalised.

Table 10: The assumed priors assumed for key distributions (when estimated). The parameters are mean (in natural space) and c.v. for lognormal; and mean and s.d. for normal.

Stock Chatham Rise	Parameter	Distribution	Parameters		Bounds	
	B_{0}	Uniform-log	-	-	2500	250000
	Survey q	Lognormal	0.16	0.79	0.01	0.40
	YCS	Lognormal	1.0	1.1	0.01	100
	M (mean)	Lognormal	0.20	0.20	0.10	0.35
	M (difference)	Normal	0.0	0.05	-0.20	0.20
Sub-Antarctic	B_{0}	Uniform-log	-	-	2500	250000
	Survey q	Lognormal	0.16	0.79	0.01	0.40
	YCS	Lognormal	1.0	1.1	0.01	100
	M (mean)	Lognormal	0.20	0.20	0.10	0.35
	M (difference)	Normal	0.0	0.05	-0.20	0.20

(e) Model estimates

Estimates of biomass were produced for an agreed bases case run using the biological parameters and model input parameters described earlier. One sensitivity run is also reported; ("CPUE") where the trawl survey biomass indices were replaced with CPUE abundance indices. Other sensitivity runs evaluated included the inclusion of the Amaltal Explorer data ("AEX"); estimating natural mortality M over both stocks simultaneously ("estimate M "); adding additional process error to the resource survey series (c.v. 20\%, "Cvs"); and excluding the November-December resource survey series from the subAntarctic model ("November") (Table 11).

For all runs, MPD fits were obtained and qualitatively evaluated. In addition, for the base and two CPUE sensitivity runs, MCMC estimates of the median posterior and 95% percentile credible intervals are reported for current and virgin biomass, and projected states based on either the high or low catch scenarios.

Table 11: Model run labels and descriptions for the base case and sensitivity model runs.

Model run	Description Base case case model
CPUE	Same as the base case, but excluding survey data and including CPUE indices
AEX	Same as the base case model, with the inclusion of Amaltal Explorer data
Estimate M	Same as the base case, but also estimating natural mortality (M)
Cvs	Same as the base case, but with the addition of process error (20%) on survey abundance indices
November	Same as the base case, but excluding the November sub-Antarctic survey series

Sub-Antarctic results

The estimated MCMC marginal posterior distributions for each year for year class strength and biomass for the sub-Antarctic stock are shown in Figures 1 and 2. Year class strength estimates were poorly estimated at ages where only older fish were available to determine age class strength (i.e., before about 1980, see Figure 1). The estimates suggested that the sub-Antarctic stock is characterised by a group of relatively strong relative year class strengths in the late 1970s, followed by a period of moderate or slightly less than average recruitment. Consequently, biomass estimates for the stock have slightly declined, in particular since the early 1990s. Biomass estimates for the stock appear relatively healthy, with estimated current biomass at about 65% of B_{0} (95% credible intervals $55-75 \%$) (Figure 2 and Table 12). The CPUE sensitivity run suggested a similar status to that for the base case (Table 12). Exploitation rates for the sub-Antarctic appear to be low as a consequence of the high estimated stock size in relationship to the level of relative catches.

Trawl survey selectivities for males and females diverged, with males less selected that females at older ages in both the November-December and the April-May survey series. Nevertheless, the posterior density estimates of selectivities indicated considerable uncertainty in the estimates of selectivity by age and sex. Estimated fishing selectivities were also very uncertain.

The base case assessment relied on biomass data from the sub-Antarctic trawl survey series. In this model run, estimated trawl survey relativity constants were very low (about $1-10 \%$) and were constrained by the lower bound on the prior for q, suggesting that the absolute catchability of the subAntarctic trawl survey series was extremely low. It is not known if the catchability of the sub-Antarctic trawl survey series is as low as estimated by the stock model, but the working group noted that higher estimates of the relativity constant q (although confounded with selectivity) would likely result in lower current and virgin biomass estimates. A plausible explanation for the estimated values is that there is little contrast in the biomass indices from the sub-Antarctic trawl survey series, and that the model has little information on which to determine an appropriate "scale" of biomass estimates.

The most optimistic MPD run ("estimate M") was when natural mortality was estimated within the model - although this resulted in unlikely estimates of natural mortality (i.e., $0.28 \mathrm{y}^{-1}$ and $0.29 \mathrm{y}^{-1}$ for females and males respectively). MPD model estimates that excluded the November-December trawl survey series ("November") suggested lower estimates of B_{0}, although this model also indicated above average year class strengths in the early 1980s. For this model, estimated (MPD) estimates of biomass in 2004 were about $63 \% \mathrm{~B}_{0}$.

Estimates of the status of the sub-Antarctic stock suggest that there has been a small decline in the stock size since the early 1990s, and consequently, projections with either "high" or "low" catches (3612 and 1816 t respectively) had little effect on the projected stock size to 2009 (see Tables 13 and 14). The lack of contrast in abundance indices since 1991 indicates that while the status of the subAntarctic stock is probably similar to that in the early 1990s, the absolute level of current biomass is difficult to determine. The working group noted that the relative biomass estimate from the 2004 survey (1694 t) was similar to the estimate for the previous year (1672 t).

Table 12: MPD and Bayesian median (95% credible intervals) (MCMC) of $\mathbf{B}_{0}, \mathbf{B}_{2004}$, and \mathbf{B}_{2004} as a percentage of B_{0} for the sub-Antarctic base and sensitivity case.

Model run	B_{0}	B_{2004}	$\mathrm{B}_{2004}\left(\% \mathrm{~B}_{0}\right)$
	MCMC	MCMC	MCMC
Base case	68810 (52 620-94 270)	45410 (29 050-70 100)	65.7 (54.1-75.3)
CPUE	81750 (53 260-202 500)	57510 (33 210-168 590)	70.7 (54.5-88.7)

Table 13: Bayesian median (95% credible intervals) projected biomass in $2009\left(\mathbf{B}_{2009}\right), \mathbf{B}_{2009}$ as a percentage of \mathbf{B}_{0}, and $\mathbf{B}_{2009} / \mathbf{B}_{2004}(\%)$ for the sub-Antarctic base and sensitivity case where future catches are assumed to be 3632 t and 1816 t .

Future catch	Model run	$\mathbf{B}_{\mathbf{2 0 0 9}}$	$\mathbf{B}_{\mathbf{2 0 0 9}}\left(\boldsymbol{\%} \mathbf{B}_{\mathbf{0}}\right)$	$\mathbf{B}_{\mathbf{2 0 0 9}} / \mathbf{B}_{\mathbf{2 0 0 4}}(\boldsymbol{\%})$
High $(3632 \mathrm{t})$	Base case	$42930(23110-77060)$	$62.0(42.1-90.2)$	$93.6(72.4-129.8)$
	CPUE	$43460(16690-143130)$	$52.8(30.0-82.8)$	$73.7(51.3-105.2)$
Low $(1816 \mathrm{t})$	Base case	$48860(30130-79230)$	$69.9(53.0-91.7)$	$106.7(88.0-136.6)$
	CPUE	$49220(22240-152250)$	$59.4(39.0-87.6)$	$82.7(64.2-119.9)$

Table 14: Estimates of stock risk for the sub-Antarctic for 2005-2009, i.e., the probability that the stock will fall below $20 \% B_{0}$, for the base and sensitivity case where future catches are assumed to be 3632 t and 1816 t.

				Year		
Future catch	Model run	$\mathbf{2 0 0 5}$	$\mathbf{2 0 0 6}$	$\mathbf{2 0 0 7}$	$\mathbf{2 0 0 8}$	$\mathbf{2 0 0 9}$
High $(3632 \mathrm{t})$	Base case	0.00	0.00	0.00	0.00	0.00
	CPUE	0.00	0.00	0.00	0.00	0.00
Low $(1816 \mathrm{t})$	Base case	0.00	0.00	0.00	0.00	0.00
	CPUE	0.00	0.00	0.00	0.00	0.00

Figure 1: Estimated posterior distributions of year class strengths for the base case for the sub-Antarctic stock. The grey horizontal line indicates the year class strength of one. Individual distributions show the marginal posterior distribution, with horizontal lines indicating the median.

Figure 2: Estimated posterior distributions of spawning stock biomass trajectories for the base case for the subAntarctic stock. Individual distributions show the marginal posterior distribution, with horizontal line indicating the median, and the dashed line indicating the MPD trajectory.

Chatham Rise results

The estimated MCMC marginal posterior distributions for selected parameters for the Chatham Rise stock are shown in Figure 3 and Figure 4. Year class strength estimates were poorly estimated at ages where only older fish were available to determine age class strength (i.e., before about 1980). The year class strength estimates suggested that the Chatham Rise stock was characterised by a group of relatively strong relative year class strengths in the late 1970s, and again in the late 1980s and early 1990s, followed by a period of rapidly declining recruitment. Consequently, biomass estimates for the stock have declined. Current biomass estimates for the stock were estimated at about 35% of $\mathrm{B}_{0}(95 \%$ credible intervals $29-41 \%$) (see Figure 4 and Table 15). Exploitation rates (catch over vulnerable
biomass) for the Chatham Rise appear to be increasing, with upper estimates bounded at 0.7 in the most recent year.

As with the sub-Antarctic trawl survey selectivity estimates, selectivities for males and females diverged, with the selectivities for males higher than females in the trawl surveys at older ages (15+) in the January survey series. Survey selectivities on the sub-Antarctic and Chatham Rise both showed a very similar pattern, although the posterior density estimates of selectivities indicated considerable uncertainty in the estimates of selectivity by age and sex. Fishing selectivities were also very uncertain.

The CPUE sensitivity run (using the Statistical Area 404 CPUE indices) did not suggest any great departure from the base case estimate of biomass (Table 15). All sensitivity runs showed a similar pattern of reducing recruitment in recent years, and rapidly declining stock status.. The most optimistic run was when natural mortality was estimated within the model - although this resulted in unlikely estimates of natural mortality (i.e., $0.28 \mathrm{y}^{-1}$ and $0.29 \mathrm{y}^{-1}$ for females and males respectively).

Base case model projections with "high" catches (3616 t) suggested that biomass will decline to about $6-26 \% B_{0}$ by 2009 (Table 15). At "low" catches (1800 t), projections suggested that biomass will decline more slowly ($12-43 \% \mathrm{~B}_{0}$). Risks that the stock will fall below $20 \% \mathrm{~B}_{0}$ are given in Table 16 . Under both catch scenarios, the risks to the stock increase with time - reaching about 88% in 2009 at higher catch levels and 28% at current catch levels.

Table 15: MPD and Bayesian median and 95% credible intervals (MCMC) of $\mathbf{B}_{0}, \mathbf{B}_{2004}$, and \mathbf{B}_{2004} as a percentage of $\mathbf{B}_{\mathbf{0}}$ for the Chatham Rise base and sensitivity case.

Model run	B_{0}	B_{2004}	$\mathrm{B}_{2004}\left(\% \mathrm{~B}_{0}\right)$
	MCMC	MCMC	MCMC
Base case	26920 (25 040-29 500)	9410 (7460-12 020)	35.0 (29.2-41.4)
CPUE	24200 (22 050-28 230)	6220 (3900-10 350)	25.7 (17.5-37.5)

Table 16: Bayesian median and 95% credible intervals of projected B_{2009}, B_{2009} as a percentage of B_{0}, and $B_{2009} / \mathbf{B}_{2004}(\%)$ for the Chatham Rise base and sensitivity case where future catches are assumed to be 3616 t and 1800 t.

Future catch	Model run	$\mathbf{B}_{\mathbf{2 0 0 9}}$	$\mathbf{B}_{\mathbf{2 0 9 9}}\left(\boldsymbol{\%} \mathbf{B}_{\mathbf{0}}\right)$	$\mathbf{B}_{\mathbf{2 0 0 9}} / \mathbf{B}_{\mathbf{2 0 0 4}}(\boldsymbol{\%})$
High $(3616 \mathrm{t})$	Base case	$3430(1640-7230)$	$12.8(6.1-25.9)$	$36.7(18.1-70.6)$
	CPUE	$2430(1250-5100)$	$9.9(5.3-19.8)$	$38.5(22.0-70.1)$
Low $(1800 \mathrm{t})$	Base case	$6360(3230-11820)$	$23.6(12.3-43.0)$	$66.9(38.9-117.2)$
	CPUE	$4410(1380-10040)$	$17.9(5.9-37.2)$	$68.7(29.8-126.0)$

Table 17: Estimates of stock risk for $2005-2009$, i.e., the probability that the stock will fall below $20 \% \mathbf{B}_{\mathbf{0}}$, for the Chatham Rise base and sensitivity case where future catches are assumed to be 3616 t and 1800 t .

				Year		
Future catch	Model run	$\mathbf{2 0 0 5}$	$\mathbf{2 0 0 6}$	$\mathbf{2 0 0 7}$	$\mathbf{2 0 0 8}$	$\mathbf{2 0 0 9}$
High $(3616 \mathrm{t})$	Base case	0.01	0.47	0.82	0.88	0.88
	CPUE	0.60	0.91	0.97	0.98	0.98
Low $(1800 \mathrm{t})$	Base case	0.00	0.04	0.18	0.28	0.28
	CPUE	0.45	0.60	0.64	0.62	0.59

Figure 3: Estimated posterior distributions of year class strengths for the base case for the Chatham Rise stock. The grey horizontal line indicates the year class strength of one. Individual distributions show the marginal posterior distribution, with horizontal lines indicating the median.

Figure 4: Estimated posterior distributions of spawning stock biomass for the base case for the Chatham Rise stock. Individual distributions show the marginal posterior distribution, with horizontal line indicating the median, and the dashed line indicating the MPD trajectory.

(f) Estimates of sustainable yields

Estimates of sustainable yields were carried out for both the Chatham Rise and sub-Antarctic stocks. CAY yield estimates were based on the 1000 samples from the Bayesian posterior for each stock with stochastic simulations run over 100 years (Francis 1992), and is such that yields were maximised subject to the constraint that spawning stock biomass should not fall below 20% of B_{0} more than 10% of the time.

For the sub-Antarctic, the base case model estimates of MAY and CAY were 6300 t and 13800 t respectively ($\mathrm{B}_{\mathrm{MAY}}=19810 \mathrm{t}$). For the Chatham Rise, base case model estimates of MAY and CAY were 2230 t and 2330 t respectively $\left(\mathrm{B}_{\mathrm{MAY}}=7500 \mathrm{t}\right)$.

4.2 HAK 7 (West coast, South Island)

A preliminary investigation of the stock status of the west coast South Island stock was reported to the Working Group. A stock assessment was carried out, using data up to the end of the 2003-04 fishing year, and implemented as a Bayesian stock model using the general-purpose stock assessment program CASAL v2.06 (Bull et al. 2004).

The stock assessment for HAK 7 had been last updated by Dunn (1998). Dunn (1998) attempted a MIAEL model using the least squares and MIAEL estimation techniques of Cordue (1995) with a single stock model as detailed in Cordue (1998). That model estimated that the virgin (equilibrium) spawning stock biomass was about 85000 t (with range $42000-185000 \mathrm{t}$), but conclusions on current stock status were very uncertain, and further, that the estimates of stock size were unlikely to be reliable. No time series of biomass indices are available for the west coast South Island stock, and CPUE indices previously calculated for the stock have been highly suspect (Annala et al. 1999). In addition, the commercial catch-at-age data lack any sign of year class tracking - either because the commercial catch sampling of hake has been inadequate to detect such trends, or (less likely) that west coast South Island hake have had very low recruitment variability.

(a) Model structure

The stock assessment model partitioned the population into two sexes and age groups $1-30$, with the last age class considered a plus group. The west coast South Island stock was considered to reside in a single area (Colman 1998), with the proportion mature considered to be a constant proportion at age. The model was implemented in CASAL (Bull et al. 2004), as a Bayesian two-sex single-stock singlearea model with three time steps. The models were initialised assuming an equilibrium age structure at an unfished equilibrium biomass $\left(\mathrm{B}_{0}\right)$, i.e. with constant recruitment set equal to the mean of the recruitments over the period 1974-1999.

The model's annual cycle was based on the fishing year, with the time steps describing the spawning, recruitment, fishing, and nominal age increment. The spawning stock-recruitment relationship was assumed to be a Beverton-Holt relationship with steepness equal to 0.9 .

The models used four selectivity ogives; male and female fishing selectivities, and male and female survey selectivities for resource survey series. Selectivities were assumed to either be logistic (with female selectivity curves estimated relative to male selectivity) or domed (parameterised by a double normal selectivity, with female selectivity curves estimated relative to male selectivity), depending on the model run. Selectivity values for males at age were defined to have maximum selectivity at 1 , and female selectivity set relative to males. Annual selectivity shifts were also used in some model runs that allowed the selectivity to 'shift' to the left or right with changes in an exogenous variable (i.e, the mean depth of the fishery). Recruitment was assumed to occur at the beginning of the first (summer) time step.

In total, five model runs were conducted (Table 18). In the first ("initial") model, and model runs 3-5, recruitment was parameterised as a year class strength multiplier (assumed to have mean equal to one over a defined range of years), multiplied by an average (unfished) recruitment (R_{0}) and a spawning stock-recruitment relationship. For the second model ("YCS"), year class strength multipliers were assumed to be constant and equal to 1 . The third model scenario ("depth shifted") assumed that the annual fishing selectivity was shifted by $a(E-\bar{E})$, where a is a shift factor and E was the mean depth fished (weighted by the catch) of all hake tows in each year. The fourth ("domed") and fifth ("domedshift") model runs used domed selectivities, with the latter also employing the same depth shift algorithm as described above.

Table 18: Model run labels and descriptions for the initial and alternative model runs.

Model run	Description
Initial	Initial model
YCS	Initial case, but assuming constant YCS
Depth shifted	Initial case, but with fishing selectivity shifted by mean depth fished each season
Domed	Initial case, but with domed fishing selectivity
Domed shift	Initial case, but with domed fishing selectivity and shifted by mean depth fished each season

(b) Fixed biological parameters and observations

Estimates and assumed values for biological parameters used in the assessments are given in Table 4 and Table 19 respectively. The stock-recruitment relationship assumed was the Beverton-Holt relationship with steepness 0.9 . Variability was assumed in the von-Bertalanffy age-length relationship, assumed to be lognormal with a constant c.v. (coefficient of variation) of 0.1.

Colman (1988) found that hake reach sexual maturity between 6 and 10 years of age, at total lengths of about $67-75 \mathrm{~cm}$ (males) and $75-85 \mathrm{~cm}$ (females). He concluded that hake reached 50% maturity at between 6 and 8 years in HAK 1, and $7-8$ years in HAK 4. We assume 50% maturity at ages between 6-7 with full maturity at age 9 , where the relative proportions mature at age were those estimated by Dunn (1998) for the west coast South Island.

Catch-at-age observations were available for commercial observer data from 1989-90 to 2002-03. These data, along with the proportions-at-age data from the Wesermünde in 1979, were fitted to the model as proportions-at-age, where estimates of the proportions-at-age were estimated using the NIWA catch-at-age software by bootstrap (Bull \& Dunn 2002). Age data from each year were compiled into year-specific age-length keys, and these were applied to the stratified, scaled length-frequency distributions to produce proportions-at-age distributions. Strata were determined using the tree-based regression methods described in Francis (2002), with three strata defined as (i) depth $\geq 620.5 \mathrm{~m}$, (ii) depth $<620.5 \mathrm{~m}$ and latitude $\geq 42^{\circ} 33^{\prime} \mathrm{S}$, and (iii) depth $<620.5 \mathrm{~m}$ and latitude $<42^{\circ} 33^{\prime} \mathrm{S}$. Tows where less than 5 fish were measured were ignored. Ageing error was assumed to occur for the observed proportions-at-age data, by assuming a discrete normally distributed error with c.v. 0.08 .

Table 19: Fixed biological parameters assumed for the west coast South Island assessment model.

Parameter	Value
Steepness (Beverton \& Holt stock- recruitment relationship)	0.90
Proportion spawning	1.0
Proportion of recruits that are male \quad Male, Female	0.5
Natural mortality $(M) \quad 0.20 \mathrm{y}^{-1}, 0.18 \mathrm{y}^{-1}$	
Maximum exploitation rate $\left(U_{\max }\right)$	0.5
Ageing error	Normally distributed, with c.v. $=0.08$

(c) Model estimation

Model parameters were estimated using Bayesian estimation implemented using CASAL (Bull et al. 2004). However, only the mode of the joint posterior distribution (MPD) was estimated in preliminary runs. For final runs, the full posterior distribution was sampled using Monte Carlo Markov Chain (MCMC) methods, based on the Metropolis-Hastings algorithm.

Multinomial errors, with estimated sample sizes, were assumed for the proportions-at-age observations. The effective sample sizes are assumed to have allowed for sampling error only. Additional variance, assumed to arise from differences between model simplifications and real world variation, was added to the sampling variance for all observations in all model runs. Hence, estimates of the effective sample size applied in the model were made via a two-step process; (a) first, the sample sizes for the proportions-at-age data were derived by assuming the relationship between the observed proportions, E_{i}, and estimated c.v.s, c_{i}, followed that for a multinomial distribution with unknown sample size N_{j}. The estimated sample size was then derived using a robust non-linear least squares fit of $\log \left(c_{i}\right) \sim \log \left(P_{i}\right)$, and (b) by estimating an effective sample size, N^{\prime}, by adding additional process error,
$N_{P E}$, to the sample size calculated in (a) above. The values for process error were then fixed for the MCMC runs (Table 20).

Year class strengths were assumed known (and equal to one) for years prior to 1974 and after 1999, when inadequate or no catch-at-age data were available. Otherwise year class strengths were estimated under the assumption that the estimates from the model must average one.

MCMCs were estimated using a burn-in length of 1×10^{6} iterations, with every $5000^{\text {th }}$ sample taken from the next 5×10^{6} iterations (i.e., a final sample of length 1000 was taken from the Bayesian posterior). Convergence diagnostics for the MCMC for the parameters of the model were not formally investigated, but visual inspection suggested no strong evidence of lack of convergence.

Table 20: Number of tows, number of fish measured, and number of fish aged from observer sampled tows on the west coast South Island hake fishery, and the estimated sample size (N). The effective sample size used for the multinomial likelihood (Effective N) in the initial case with a process error of $N_{P E}=254$ is shown in the last column.

Year	Tows	No. fish measured		No. fish aged		Sample size	
		Male	Female	Male	Female	N	Effective N
1990	57	578	567	210	261	351	147
1991	146	2288	1653	286	358	540	173
1992	121	2592	1193	196	261	441	161
1993	93	2129	979	188	163	303	138
1994	174	1598	1643	151	272	227	120
1995	152	2528	2769	271	342	386	153
1996	193	2862	1753	287	326	440	161
1997	234	3286	1720	262	198	414	157
1998	237	2339	1497	257	253	400	155
1999	307	4186	3744	269	240	728	188
2000	285	2705	2330	258	269	454	163
2001	192	1529	1723	176	280	412	157
2002	380	2281	2434	93	385	347	147
2003	296	1917	2063	227	234	674	184

(d) Prior distributions and penalty functions

The assumed prior distributions used in the model were intended to be relatively uninformed or conservative. Priors for B_{0} were assumed to be uniform-log, with bounds $2500-250000 \mathrm{t}$; priors for the relative year class strengths were assumed to be lognormal with mean 1.0 and c.v. 1.1 ; and priors on selectivity parameters were assumed to be uniform with arbitrary wide bounds. Penalty functions were used to constrain the model so that any combination of parameters that did not allow the historical catch to be taken was strongly penalised. A small penalty was applied to the estimates of year class strengths to encourage estimates that average to 1.0 .

(e) Model estimates

The estimated MCMC marginal posterior distributions for selected parameters of the initial model for the west coast South Island stock are shown in Figure 5 and Figure 6. Year class strength estimates (Figure 5) were poorly estimated for most years, particularly where only old or young fish were available to determine age class strength. In addition, it is difficult to determine any evidence of year classes tracking through the commercial catch proportions-at-age data. Biomass for the initial model declined from 1990 (Figure 6). Current biomass estimates for the stock were estimated at about 45$50 \%$ of B_{0} (with range $33-70 \%$) (Table 21).

Fishing selectivities for males and females were divergent; with the selectivities for males significantly higher than for females in all cases. While the relative proportions of male to females is unusual, the selectivities are representative of the input data; proportions of male fish in the catch suggest that 59% of the catch (by number) was male, though the ratio has declined in recent years. Under the logistic assumption (cases 1-3), maximum selectivity was typically at about ages $8-10$ for both males and females.

Alternative model runs suggested that there was considerable uncertainty in the shape of the selectivity function. For the "domed" scenario, selectivities were significantly dome shaped, with the maximum selectivity at ages 10-12, and rapidly declining right hand limbs.

The initial case model fits showed considerable evidence of poor fit to observations of the number of older aged fish, with MCMC runs predicting greater numbers of fish aged over 15 and over 20 in the population than that supported by the catch proportions-at-age observations. However, domed selectivities appeared to fit the observations more closely, and gave more satisfactory diagnostics. Inclusion of a shift parameter ("depth-shifted" and "domed shift") suggested that there appears to be an increase in mean fish age with depth.

Table 21: Bayesian median and $\mathbf{9 5 \%}$ credible intervals of $\mathbf{B}_{\mathbf{0}}, \mathbf{B}_{2004}$, and \mathbf{B}_{2004} as a percentage of $\mathbf{B}_{\mathbf{0}}$ for the initial and sensitivity cases.

Model run	B_{0}	$\mathrm{~B}_{2004}$	$\mathrm{~B}_{2004}\left(\% \mathrm{~B}_{0}\right)$
Initial case	$92280(81100-107750)$	$49210(32220-74780)$	$53(39-70)$
YCS	$90760(82310-99040)$	$41230(32340-49680)$	$45(39-50)$
Depth shifted	$92350(79790-106920)$	$49730(30550-74790)$	$54(38-70)$
Domed	$114200(99370-152870)$	$53900(34670-101650)$	$47(33-70)$
Domed shift	$110930(97900-135080)$	$50740(34220-86050)$	$46(34-65)$

Figure 5: Estimated posterior distributions estimated year class strengths for the initial case. The grey horizontal line indicates the mean year class strength of one. Individual distributions show the marginal posterior distribution, with horizontal lines indicating the median.

Figure 6: Estimated posterior distributions of the spawning stock biomass trajectories for the initial case. Individual distributions show the marginal posterior distribution, with horizontal lines indicating the median.

6. OTHER FACTORS THAT MAY MODIFY ASSESSMENT RESULTS

The WG considered that there were a number of other factors that should be considered in relation to the stock assessment results presented here:

Chatham Rise

- In 2004-05, large catches were taken in the HAK 1 area of the Mernoo Bank at the start of the fishing year. This has not been included in the model and represented a large change in the fishery in the last year from the historical pattern.
- The large catches have raised concerns that the assessment model may not be adequately reflecting the stock status. In particular,
- The model estimates of the exploitation rate (i.e., catch divided by vulnerable biomass), for 2005 were estimated to be unrealistically high.
- If the aggregation found on the western Chatham Rise was a spawning aggregation, this might indicate that there was more than one stock on the Chatham Rise. Hence, the model estimates resulting from an assumption of a single homogeneous stock on the Chatham Rise would be incorrect.
- In the most recent trawl surveys (2004 and 2005), more small hake have been taken in the survey suggesting the 2002 year class may be stronger than average. This year class was also found to be strong in the 2006 survey. The projections use estimates of YCS with a mean of one, which may be more pessimistic in the short term.
- There are strong selectivity patterns fitted in the model that may be the result of poor sampling of the fishery rather than representing real selectivity differences between the sexes.
- Following the decline in catches from HAK 4 in the previous 2 years catches increased to 2275 t in 2003-04, although these dropped to 1264 t in 2004-05.

Sub-Antarctic

- The lack of contrast in abundance indices collected since 1991 suggests that while the status of the sub-Antarctic stock is probably similar to that in the early 1990s, the absolute level of current biomass may difficult to determine. Model structural improvements since the previous assessment have resulted in lower estimates of current biomass that reflect the recent small decline in the survey abundance estimates, but are still at relatively high levels.
- There are strong selectivity patterns fitted in the model that may be the result of poor sampling of the fishery rather than representing real selectivity differences between the sexes.

West coast, South Island

- There are no abundance estimates in the stock assessment; the model relies on changes in the catch data to determine the fishing mortality rates for the stock.
- There are strong selectivity patterns fitted in the model that may be the result of poor sampling of the fishery rather than representing real selectivity differences between the sexes.

7. STATUS OF THE STOCKS

Since the 2005 Plenary report was published, no new stock assessments for hake have been completed. The stock assessments reported here for the Chatham Rise, sub-Antarctic, and west coast South Island stocks were carried out in 2004. For the purposes of stock assessment modelling, the Chatham Rise stock was considered to include the whole of the Chatham Rise (including the western end currently forming part of the HAK 1 management area). The sub-Antarctic stock was considered to contain hake in the Southland and sub-Antarctic management areas; although fisheries management areas around the North Island are also included in HAK 1, catches of hake in these areas are very small.

(a) Sub-Antarctic stock (HAK 1, excluding the Chatham Rise)

Model estimates of the state of the sub-Antarctic stock suggest that there has been only small reduction in the available biomass since the mid-199s. Although estimates of current and reference spawning stock biomass may not be reliable, it is likely that the current TACC is sustainable, as current catches do not appear to be having a measurable impact on biomass levels.

(b) Chatham Rise stock (HAK 4 and western Chatham Rise HAK 1)

Since the assessment was completed in 2004 there have been changes in the pattern of this fishery which are discussed in "Other factors" (section 6 above). The Working Group was not able to finalise an updated model for the 2005 fishing year that adequately addressed those issues.

The 2004 model results suggested a decline in biomass, with biomass in 2004 at about $35 \% \mathrm{~B}_{0}$. Year class strengths from 1995 to 2000 are estimated to be weaker than average. In the projections, the model assumes average year class strength since 2001, although more small hake have been caught in the most recent trawl surveys, suggesting that the 2002 year class may be above average. Projections for the Chatham Rise stock estimated the risk of reducing the stock below 20% B $_{0}$ in 2009 to be 88% with catches of 3616 t , and 28% with catches of 1800 t . The higher assumed catch of 3616 t represents the current HAK 4 TACC plus half the HAK 1 TACC, while the lower catch level of 1800 t represents the HAK 4 TACC only (see section 4.1 a).

(c) West coast South Island stock (HAK 7)

An attempt was made in 2004 to determine the stock status of this stock by inclusion of all the available data in a Bayesian assessment model. The assessment suffers from a lack of an independent abundance index for the stock. Hence these results should be treated with caution (see section 6 above).

The model was fitted to catch at age data from the commercial fishery with the catch history and biological parameters (including M) assumed to be known without error. Selectivity assumptions were
varied to determine the sensitivity of the model results to the catch at age data. In the initial case the logistic assumption for the selectivity ogives is considered a conservative assumption. This run suggested current biomass was between 30% and $70 \% \mathrm{~B}_{0}$. The other runs gave similar estimates of biomass and stock status. All the model results indicated that current catches appear to be sustainable in the short term.

Summary of TACCs (\mathbf{t}) and reported landings for the most recent fishing year.

Fishstock ${ }^{1}$	QMA	$\underline{B}_{\text {MAY }}$	MAY	CAY	$\begin{array}{r} \mathbf{2 0 0 4 - 0 5} \\ \text { actual TACC } \\ \hline \end{array}$	$\underline{\text { reported } \frac{2004-05}{\text { landings }}}$
HAK 1	Auckland, Central Southeast, Southland, Sub-Antarctic (QMA 1, 2, 3, 5, 6, 8, 9)	19810	6300	13800	3701	4795
HAK 4	Chatham Rise (QMA 4)	7500	2230	2330	1800	1264
HAK 7	Challenger (QMA 7)				6855^{2}	7317
HAK 10					10	-
Total					12366	13376

1. Estimates based on stock areas used in the assessment, i.e., Chatham Rise stock includes HAK 4 and that part of HAK 1 on the western end of the Chatham Rise, and sub-Antarctic stock includes the remainder of HAK 1.
2. The TACC for HAK 7 was increased to 7700 t for the 2005-06 fishing year.

8. FOR FURTHER INFORMATION

Annala, J.H.; Sullivan, K.J.; O'Brien, C.J. (comps.) (1999). Report from the Fishery Assessment Plenary, April 1999: stock assessments and yield estimates. 430 p. Ministry of Fisheries. (Unpublished report held in NIWA library, Wellington.)
Bull, B.; Dunn, A. (2002). Catch-at-age: User manual v1.06.2002/09/12. NIWA Internal Report 114. 23 p. NIWA. (Unpublished report held in NIWA library, Wellington.)
Bull, B.; Francis, R.I.C.C.; Dunn, A.; McKenzie, A.; Gilbert, D.J.; Smith, M.H. (2004). CASAL (C++ algorithmic stock assessment laboratory): CASAL user manual v2.06-2004/19/26. NIWA Technical Report 126. 261 p.
Chapman, D.G.; Robson, D.S. (1960). The analysis of a catch curve. Biometrics 16: 354-368.
Colman, J.A. (1988). Hake. New Zealand Fisheries Assessment Research Document 88/31. 23 p. MAF (Fisheries). (Unpublished report held in NIWA library, Wellington.)
Colman, J.A. (1998). Spawning areas and size and age at maturity of hake (Merluccius australis) in the New Zealand Exclusive Economic Zone. New Zealand Fisheries Assessment Research Document 98/2. 17 p. MAF (Fisheries). (Unpublished report held in NIWA library, Wellington.)
Colman, J.A.; Stocker, M.; Pikitch, E. (1991). Assessment of hake (Merluccius australis) stocks for the 1991-92 fishing year. New Zealand Fisheries Assessment Research Document 91/14. 29 p. MAF (Fisheries). (Unpublished report held in NIWA library, Wellington.)
Colman, J.A.; Vignaux, M. (1992). Assessment of New Zealand hake (Merluccius australis) stocks for the 1992-93 fishing year. New Zealand Fisheries Assessment Research Document 92/17. 23 p. MAF (Fisheries). (Unpublished report held in NIWA library, Wellington.)
Dunn, A. (1998). Stock assessment of hake (Merluccius australis) for the 1998-99 fishing year. New Zealand Fisheries Assessment Research Document $98 / 30.19$ p. Ministry of Fisheries. (Unpublished report held in NIWA library, Wellington.)
Dunn, A. (2003). Revised estimates of landings of hake (Merluccius australis) for the west coast South Island, Chatham Rise, and sub-Antarctic stocks in the fishing years 1989-90 to 2000-01. New Zealand Fisheries Assessment Report 2003/39. 36 p.
Dunn, A.; Horn, P.L.; Cordue, P.L.; Kendrick, T.H. (2000). Stock assessment of hake (Merluccius australis) for the 1999-2000 fishing year. New Zealand Fisheries Assessment Report 2000/50. 50 p.
Francis, R.I.C.C. (1992). Recommendations concerning the calculation of Maximum Constant Yield (MCY) and Current Annual Yield (CAY). New Zealand Fisheries Assessment Research Document 92/8. 23 p. MAF (Fisheries). (Unpublished report held in NIWA library, Wellington.)
Francis, R.I.C.C. (2002). Estimating catch at age in the Chatham Rise hoki fishery. New Zealand Fisheries Assessment Report 2002/9. 22 p.
Hoenig, J.M. (1983). Empirical use of longevity data to estimate mortality rates. Fisheries Bulletin 81: 899-903.
Horn, P.L. (1997). An ageing methodology, growth parameters, and estimates of mortality for hake (Merluccius australis) from around the South Island, New Zealand. Marine and Freshwater Research 48(3): 201-209.
Horn, P.L. (1998). The stock affinity of hake (Merluccius australis) from Puysegur Bank, and catch-at-age data and revised productivity parameters for hake stocks HAK 1, 4, and 7. New Zealand Fisheries Assessment Research Document 98/34. 18 p. Ministry of Fisheries. (Unpublished report held in NIWA library, Wellington.)
Hurst, R.J.; Bagley, N.W.; Anderson, O.F.; Francis, M.P.; Griggs, L.H.; Clark, M.R.; Paul, L.J.; Taylor, P.R. (2000). Atlas of juvenile and adult fish and squid distributions from bottom and midwater trawls and tuna longlines in New Zealand waters. NIWA Technical Report 84. 162 p.

Livingston, M.E.; Stevens, D.W. (2005). Trawl survey of hoki and middle depth species on the Chatham Rise, January 2004 (TAN0401). New Zealand Fisheries Assessment Report 2005/21. 62 p.
O'Driscoll, R.L.; Bagley, N.W. (2004). Trawl survey of middle depth species in the Southland and sub-Antarctic areas, November-December 2003 (TAN0317). New Zealand Fisheries Assessment Report 2004/49. 58 p.
Phillips, N.L.; Livingston, M.E. (2004). Catch-per-unit-effort (CPUE) analysis of hake (Merluccius australis) for the Chatham Rise and subAntarctic from 1989-90 to 2000-01. New Zealand Fisheries Assessment Report 2004/19. 39 p.

