TARAKIHI (TAR)

(Nemadactylus macropterus)

1. FISHERY SUMMARY

(a) Commercial fisheries

Tarakihi are caught in coastal waters of the North and South Islands, Stewart Island and the Chatham Islands, down to depths of about 250 m . The fishery appears to have been relatively stable since the initial development phase. Between 1968 and 1985 domestic and foreign landings combined ranged between 4082 t and 6444 t , averaging 5042 t per year (Tables 1 and 2). Since the introduction of the QMS, the total landings have been around 5000-6000 t. Reported landings and actual TACCs are shown in Table 2.

Table 1: Reported total landings (t) of tarakihi from 1968 to 1982-83.

Year	Landings	Year	Landings	Year	Landings
1968	5683	1974	5294	$1980-81 *$	4990
1969	4082	1975	4941	$1981-82 *$	5193
1970	5649	1976	4689	$1982-83 *$	4666
1971	5702	1977	6444		
1972	5430	$1978-79 *$	4427		
1973	4439	$1979-80 *$	4344		
Source - MAF data.					
* Sums of domestic catch for calendar years 1978 to 1982, and foreign and chartered vessel catch for fishing year April 1 to March 31.					

Tarakihi are caught by commercial vessels in all areas of New Zealand from the Three Kings Islands in the north to Stewart Island in the south. The main fishing method is trawling. The major target trawl fisheries occur at depths of $100-200 \mathrm{~m}$ and tarakihi are taken as a by-catch at other depths as well. The major fishing grounds are west and east Northland (QMA 1), the western Bay of Plenty to Cape Turnagain (QMAs 1 and 2), Cook Strait to the Canterbury Bight (mainly QMA 3), and Jackson Head to Cape Foulwind (QMA 7). Around the North Island 70-80\% of the tarakihi catch is targeted. Around the South Island only about 30% of the tarakihi are targeted; much of the remainder is reported as bycatch in target barracouta and red cod bottom trawl fisheries. In addition, there is a small target tarakihi set net fishery off Kaikoura.

Table 2: Reported landings (t) of tarakihi by Fishstock from 1983-84 to 2004-05 and TACCs (t) from 1986-87 to 2004-05.

Fishstock	TAR 1		TAR 2		TAR 3		TAR 4		TAR 5	
FMA (s)		$1 \& 9$		2		3		4		$5 \& 6$
	Landings	TACC								
1983-84*	1326	-	1118	-	902	-	287	-	115	-
1984-85*	1022	-	1129	-	1283	-	132	-	100	-
1985-86*	1038	-	1318	-	1147	-	173	-	48	-
1986-87†	912	1210	1382	1410	938	970	83	300	42	140
1987-88†	1093	1286	1386	1568	1024	1036	227	314	88	142
1988-89†	940	1328	1412	1611	758	1061	182	314	47	147
1989-90†	973	1387	1374	1627	1007	1107	190	315	60	150
1990-91†	1125	1387	1729	1627	1070	1148	367	316	35	153
1991-92†	1415	1387	1700	1627	1132	1148	213	316	55	153
1992-93 \dagger	1477	1397	1654	1633	813	1168	45	316	51	153
1993-94†	1431	1397	1594	1633	735	1169	82	316	65	153
1994-95 \dagger	1390	1398	1580	1633	849	1169	71	316	90	153
1995-96 \dagger	1422	1398	1551	1633	1125	1169	209	316	73	153
1996-97†	1425	1398	1639	1633	1088	1169	133	316	81	153
1997-98 \dagger	1509	1398	1678	1633	1026	1169	202	316	21	153
1998-99†	1436	1398	1594	1633	1097	1169	104	316	51	153
1999-00†	1387	1398	1741	1633	1260	1169	98	316	80	153
2000-01 \dagger	1403	1398	1658	1633	1218	1169	242	316	58	153
2001-02†	1480	1399	1742	1633	1244	1169	383	316	75	153
2002-03†	1517	1399	1745	1633	1156	1169	218	316	92	153
2003-04†	1541	1399	1638	1633	1089	1169	169	316	53	153
2004-05 \dagger	1527	1399	1692	1796	905	1403	262	316	57	153
	TAR 7		TAR 8		TAR 10		Total			
		7		8		10				
	Landings	TACC	Landings	TACC	Landings	TACC	Landings§	TACC		
1983-84*	896	-	109	-	0	-	5430	-		
1984-85*	609	-	102	-	0	-	4816	-		
1985-86*	519	-	122	-	0	-	5051	-		
1986-87†	904	930	185	190	0	10	4446	5160		
1987-88†	840	1046	197	196	0	10	4855	5598		
1988-89 \dagger	630	1059	121	197	0	10	4090	5727		
1989-90†	793	1069	114	208	0	10	4473	5873		
1991-92†	710	1087	190	225	2	10	5417	5953		
1992-93 \dagger	929	1087	189	225	0	10	5158	5989		
1990-91†	629	1087	131	225	<1	10	5086	5953		
1993-94†	780	1087	191	225	0	10	4878	5990		
1994-95 \dagger	978	1087	171	225	0	10	5129	5991		
1995-96 \dagger	890	1087	105	225	0	10	5375	5991		
1996-97†	1013	1087	133	225	0	10	5512	5991		
1997-98†	685	1087	153	225	0	10	5287	5991		
1998-99 \dagger	1041	1087	175	225	0	10	5501	5991		
1999-00 \dagger	964	1087	189	225	0	10	5719	5991		
2000-01†	1178	1087	178	225	0	10	5935	5991		
2001-02†	1000	1088	223	225	0	10	6119	5993		
2002-03†	1069	1088	211	225	0	10	6008	5993		
2003-04†	1116	1088	197	225	0	10	5723	5993		
2004-05 \dagger	1056	1088	184	225	0	10	5683	6390		
$\begin{array}{ll} * & \text { FSU da } \\ \dagger & \text { QMS } \\ \S & \text { Includ } \end{array}$	ata.	om unkno	reas before 1	986-87.						

(b) Recreational fisheries

Tarakihi are taken by recreational fishers using lines and set nets. Estimates of recreational catch of tarakihi are given for three separate surveys in Tables 3 and 4. The most recent nationwide recreational survey was undertaken in 2001, but the results are still under review and are not currently available

Table 3: Estimated number and weight of tarakihi harvested by recreational fishers by Fishstock and survey. Surveys were carried out in different years in the Ministry of Fisheries regions: South in 1991-92, Central in 1992-93 and North in 1993-94 (Teirney et al., 1997).

		Total		
Fishstock	Survey	Number	c.v. $(\%)$	Survey harvest (t)
TAR 1	North	333000	15	$225-400$
TAR 1	Central	18000	55	$10-20$
TAR 2	North	7000	-	$0-5$
TAR 2	Central	48000	25	$20-40$
TAR 3	South	1000	-	$0-5$
TAR 5	South	1000	-	$0-5$
TAR 7	Central	29000	25	$5-15$
TAR 7	South	6000	33	$0-5$
TAR 8	Central	10800	60%	$0-10$

Table 4: Estimates of annual number and weight of tarakihi harvested by recreational fishers from national diary surveys in 1996 (Bradford, 1998) and Dec1999-Nov 2000 (Boyd and Reilly 2005). The mean weights used to convert numbers to catch weight are considered the best available estimates. Estimated harvest is also presented as a range to reflect the uncertainty in the point estimates.

Fishstock	Number caught	c.v. (\%)	Estimated harvest range(t)	Point estimate (t)
1996				
TAR 1	498000	8	$280-330$	305
TAR 2	114000	14	$55-75$	65
TAR 3	3000	-	-	-
TAR 5	3000	-	-	-
TAR 7	69000	13	$20-30$	24
TAR 8	46000	17	$25-35$	28
1999/2000	1035000	19	$516-755$	636
TAR 1	310000	27	$139-243$	191
TAR 2	25000	51	$8-23$	15
TAR 3	10000	57	$3-9$	6
TAR 5	87000	18	$27-39$	33
TAR 7	66000	38	$19-42$	30
TAR 8				

A key component of the estimating recreational harvest from diary surveys is determining the proportion of the population that fish. The Recreational Working Group has concluded that the methodological framework used for telephone interviews produced incorrect eligibility figures for the 1996 and previous surveys. Consequently the harvest estimates derived from these surveys are considered to be considerably underestimated and not reliable. However relative comparisons can be made between stocks within these surveys. The Recreational Working Group considered that the 2000 survey using face-to-face interviews better estimated eligibility and that the derived recreational harvest estimates are believed to be more accurate. FMA2 catches are nevertheless considered to be overestimate, probably because of an unrepresentative diarist sample. The 1999/2000 Harvest estimates for each Fishstock should be evaluated with reference to the coefficient of variation.

The TAR 1 recreational harvest estimated during the 1999/2000 survey was almost half (i.e. 46%) of the commercial catch over that period.

(c) Maori customary fisheries

No quantitative information on the level of Maori customary fishing is available.

(d) Illegal catch

No quantitative information on the level of illegal tarakihi catch is available.

(e) Other sources of mortality

No information is available.

2. BIOLOGY

Sexual maturity is reached at 25-35 cm fork length (FL) at an age of 4-6 years, after which the growth rate slows. This species reaches a maximum age of $40+$ years.

Tarakihi spawn in summer-autumn in several areas around New Zealand. The three main identified spawning grounds are Cape Runaway to East Cape, Kaikoura to Pegasus Bay, and the west coast of the South Island near Jackson Bay.

Few larval and postlarval tarakihi have been caught and identified. The postlarvae appear to be pelagic, occur in offshore waters, and are found in surface waters at night. Postlarval metamorphosis to the juvenile stage occurs in spring or early summer when the fish are 7-9 cm FL and 7-12 months old.

Several juvenile nursery areas have been identified in shallower, inshore waters, including the southwest coast of the North Island, Tasman Bay, near Kaikoura, northern Pegasus Bay, Canterbury Bight, Otago and the Chatham Islands. Juveniles move out to deeper water at a length of about 25 cm FL at an age of 3-4 years. Only a small proportion of tarakihi found in commercial catches are immature, suggesting that they do not become vulnerable to fishing operations until they are sexually mature.

The results of tagging experiments carried out near Kaikoura during 1986 and 1987 indicate that some tarakihi are capable of moving long distances. Fish have been recaptured from as far away as the Kaipara Harbour on the west coast of the North Island, south of Whangarei on the east coast of the North Island, and Timaru on the east coast of the South Island.

The best available estimate of M is a value of 0.10 as determined from the age frequency distribution of unexploited and lightly exploited populations. Estimates of Z for the area near Kaikoura made during 1987 ranged from $0.12-0.16$ for fish between 8 and 20 years old. Assuming $\mathrm{M}=0.10$ suggests that F ranged between $0.02-0.06$. Estimates of Z for the area near the Chatham Islands made during 1984 were equal to or less than 0.20 .

Biological parameters relevant to the stock assessment are shown in Table 5.

Table 5: Estimates of biological parameters of tarakihi.

3. STOCKS AND AREAS

There are no new data that would alter the stock boundaries given in previous assessment documents.
The results of tagging experiments have shown that tarakihi move large distances around the coasts of the main islands of New Zealand. The long pelagic larval phase of $7-12$ months indicates that larvae will also be widely dispersed. Taken together with the lack of any evidence of genetic isolation, this suggests that tarakihi around the main islands of New Zealand consist of one continuous stock, and for stock assessment purposes they are considered to be one stock. However, because of the large distance
between the mainland and the Chatham Islands, and the separation of these two areas by water deeper than that which is usually inhabited by adult tarakihi, the tarakihi around the Chatham Islands are considered to be a separate stock.

A second species of tarakihi, "king" tarakihi, has recently been described. Catches of this newly described species have been reported as N. macropterus in the past.

4. STOCK ASSESSMENT

There are no new data which would alter the yield estimates given in the 1996 Plenary Report. The yield estimates are based on commercial landings data. Estimates of fishery parameters are given in Table 6.

(a) Estimates of fishery parameters and abundance

(i) Biological parameters

Table 6: Estimates of fishery parameters for tarakihi.

	Fishstock	Estimate	Comments	Source
1. Fishing mortality (F)				
		TAR 3	$0.02-0.06$	For both sexes during 1987

(ii) Trawl survey indices

Indices of relative biomass are available from recent Kaharoa trawl surveys in TAR 2, TAR 3 and TAR 7 (Table 7). Note that these estimates were revised in 1996 as a result of new doorspread estimates becoming available from SCANMAR measurements. In TAR 2 and TAR 3 no trend is apparent in the biomass estimates. In TAR 7 the biomass estimates declined from 1992 to 2003 with a dramatic increase in 2005. Relative biomass indices are currently being used to estimate biomass and yields for TAR 7. Results will be available in early 2008.

Table 7: Relative biomass estimates (\mathbf{t}) and coefficients of variation (c.v.) for tarakihi available from trawl survey data. $S=$ summer and $W=$ winter survey (Note : because trawl survey biomass estimates are indices, comparisons between different seasons eg. summer and winter in the same area are not strictly valid).

QMA	Area	Year	Trip Code	Biomass (t)	c.v. (\%)
TAR 2	Cape Runaway to Cook Strait	1993	KAH9304	885	27
		1994	KAH9402	1128	20
		1995	KAH9502	791	23
		1996	KAH9602	943	15
TAR 3	Pegasus Bay to Canterbury Bight	1991 W	KAH9105	1657	33
		1992 W	KAH9205	932	26
		1993 W	KAH9306	3805	55
	1994 W	KAH9406	2050	41	
	1996 W	KAH9606	1656	24	
				3818	21
		1996 S	KAH9618	2036	24
		1998 S	KAH9704	2036	
		KAH9809	4277	24	
		2099 S	KAH9917	2606	15
		KAH0014	1510	13	

Table 7 (Continued)

TAR 7	Tasman Bay to Haast	1992	KAH9204	1409
	1994	KAH9404	14420	14
	1995	KAH9504	1389	11
	1997	KAH9701	1087	12
	2000	KAH0004	964	19
	2003	KAH0304	912	20
	2005	KAH0503	2050	12

Summer surveys in the Bay of Plenty (from Mercury Islands to Cape Runaway) have been carried out since 1983. In February 1996 (KAH9601) and 1999 (KAH9902) the surveys were extended to 250 m so that tarakihi depths would be covered. However the estimates of biomass were low ($35 \mathrm{tcv} 46 \%$ in 1996 and $50 \mathrm{t} \mathrm{cv} 27 \%$ in 1999). Most of the catch in the 1999 survey was taken in 150 to 200 m .

(iii) CPUE analysis

Standardised CPUE indices (1989/0-1998/99) were estimated for the bottom trawl fisheries in TAR $1 \mathrm{~W}, 1 \mathrm{E}, 2,3$, and 7 , and the set net fishery in TAR 3 as a possible means of monitoring abundance in these areas (Hanchet and Field 2001). All trawls where tarakihi were targeted and/or caught were extracted from the TCEPR and CELR databases. Linear models of $\log ($ catch/hour/vessel day) were calculated for each area. For the bottom trawl fisheries, standardised CPUE was estimated for all vessels combined and for a subset of vessels with a continuous representation in the fishery. In all cases there was little difference in the indices resulting from the two datasets. However, the all vessels models generally explained more of the variation in CPUE than the subset models, had 1.5-2 times the amount of data, and lower standard deviations.

An update of the TAR 2 bottom trawl indices (1989/90-2001/02) revealed that analyses using all vessels and the subset (with continuous representation in the fishery) had similar indices and explained similar amounts of variation in the data. However the diagnostics for the core vessels were superior, so it is recommended that core vessel results be used in any modeling.

Based on the results of the initial analysis (Hanchet and Field 2001), the Inshore FAWG concluded that the CPUE analyses calculated for TAR 3 from bottom trawl data were probably not tracking abundance. More recent analyses (SeaFIC 2003), based on both lognormal (successful tows) and binomial (probability of zero catch) indices, and spanning a longer period (1989/90 - 2001/02), have however shown more promise.

Figure 1: Relative year effects and approximate 95% confidence intervals for TAR 2 by vessel selection and Statistical area. Top left, all vessels including Statistical areas 009 \& 010; top right, core vessels including Statistical areas $009 \& 010$; bottom left, all vessels excluding Statistical areas 009 \& 010; bottom right, core vessels excluding Statistical areas 009 \& 010.

TAR 1W, 1E, and 2

The indices for TAR $1 \mathrm{~W}, 1 \mathrm{E}$ and 2 are based on relatively large data sets, and most of the tarakihi catch is targeted. The WG considered that the indices are probably monitoring tarakihi abundance in these areas. TAR 1 indices were recently updated to 2003/04 (Kendrick 2006). Standardized CPUE series for the West Coast and East Northland showed some structure, possibly related to recruitment strength, but no overall trend between 1989/90 and 2003/04. Standardized CPUE in the Bay of Plenty was reasonably stable until 1999/2000 and then increased sharply, possibly as a result of good recruitment in 2000/01. Standardized CPUE indices based on successful tows from the TAR 2 bottom trawl fishery declined slightly from 1989/90 to 1991/92, followed by moderate annual increases until 2001/02.

TAR 3, 7

In TAR 3 and 7, tarakihi are mainly reported as bycatch of the red cod and barracouta fisheries. This partly reflects the mixed species nature of these fisheries, but also the target species nominated to allow the bycatch trade. Standardised trawl CPUE for TAR 3 has increased steadily since 1992/93. Although equivalent estimates for the set net fishery have been fairly stable, the trawl CPUE is regarded to be a better index of abundance owing to much better spatial coverage.
The WG considered that the CPUE indices calculated for TAR 7 (1989/90 - 1998/99) were not monitoring tarakihi abundance in the area, and rejected them as indices of abundance.

Figure 2. Plot of the lognormal, binomial and combined models from the east coast South Island bottom trawl fishery (SeaFIC 2003). Error bars for the combined BT index are $\mathbf{9 5 \%}$ bias corrected confidence intervals based on 1000 bootstrap replicates. Also shown are the proportion of zero trips in the BT fishery and the lognormal index from the Area 018 setnet fishery. All indices and the proportion of zero catches have been standardised relative to the geometric mean of each series.

(b) Biomass estimates

Estimates of current absolute biomass are not available.
(c) Estimation of Maximum Constant Yield (MCY)
(i) North and South Islands (all areas except TAR 4 \& 10)

MCY was estimated using the equation $\mathrm{MCY}=\mathrm{cY}_{\mathrm{av}}$ (Method 4). Y_{av} was the average of the combined domestic and foreign landings from 1968 to 1985 (5042 t). This period was one of comparative stability following the developmental phase of the fishery, and fishing mortality and effort were assumed to be relatively constant. Natural mortality is low (0.08 to 0.15), the species is longlived ($40+$ years), and there are generally at least 10 year classes in the fishery. Recruitment is not known to vary much. The value of c was set at 0.9 based on the estimate of $\mathrm{M}=0.10$.

$$
\mathrm{MCY}=0.9 * 5042 \mathrm{t}=4538 \mathrm{t}(\text { rounded to } 4540 \mathrm{t})
$$

The MCY estimate has not changed since 1989.
(ii) Chatham Islands (TAR 4)

MCY cannot be determined.

(d) Estimation of Current Annual Yield (CAY)

Estimates of current biomass are not available and CAY cannot be determined.

Yield estimates are summarised in Table 9.
Table 9: Yield estimates (\mathbf{t}) of tarakihi.

Parameter	Fishstock	Estimate
MCY	All except	4540
CAY	TAR 4 \& 10	
	All	Cannot be determined

5. ANALYSIS OF ADAPTIVE MANAGEMENT PROGRAMMES (AMP)

The Ministry of Fisheries revised the AMP framework in December 2000. The AMP framework is intended to apply to all proposals for a TAC or TACC increase, with the exception of fisheries for which there is a robust stock assessment. In March 2002, the first meeting of the new Adaptive Management Programme Working Group was held. Two changes to the AMP were adopted:

- a new checklist was implemented with more attention being made to the environmental impacts of any new proposal;
- the annual review process was replaced with an annual review of the monitoring requirements only. Full analysis of information is required a minimum of twice during the 5 year AMP.

TAR 2

TAR 2 TACC was increased by 10% (from 1633 to 1796 tonnes) under AMP management, on 1 October 2004.

Annual Review of TAR 2 AMP in 2006

In 2006 the AMP FAWG reviewed the performance of the logbook monitoring programme (Anon 2006) after one year of the current 5-year term. The WG noted:

Log Book Programme

- The TAR 2 entered the AMP in October 2004.
- Proportional coverage was provided but based on low numbers of fish measured is likely to be $<5 \%$.
- Logbook coverage was far too low and needs improvement.

TAR 3

The TAR 3 TACC by 20%, from 1169 to 1403 tonnes, under AMP management, on 1 October 2004.

Annual Review of TAR 3 AMP in 2006

In 2006 the AMP FAWG reviewed the performance of the logbook monitoring programme (Lydon et al. 2006) after one year of the current 5 -year term. The WG noted:

- Approximately two thirds of the TAR 3 catch is taken by bottom trawl. Target levels of coverage are 30% of fishing events in each of the setnet and trawl fisheries.
- Less than 4% of the bottom trawl catch was covered by the trawl log book programme, owing largely to reason given under SCH 3
- Logbook coverage is completely inadequate and requires dramatic improvement.

6. STATUS OF THE STOCKS

Based on relatively stable indices of abundance current catches and the TACC for TAR 1 appear to be sustainable.

For TAR 3 estimates made in the mid 1980s indicated that F was less than $\mathrm{F}_{0.1}$. These estimates are probably still relevant due to the long, stable catch history in these areas. Levels of F near or below F 0.1 are generally considered sustainable. The increasing trend in the TAR 3 CPUE index (1989/902001/02) further indicates that current TACC and catch levels are sustainable. An abundance index of that has increased consistently since 1990/91 suggests that the current TACC (little change since 1988/89) for TAR 2 is sustainable. For TAR 4, the fishery around the Chatham Islands has generally been lightly fished and the stock can probably support higher catch levels for the next few years.

Overall, landings from the North and South Islands have remained relatively stable, since at least the late 1960s, despite changes in effort and methods of fishing. Given the long, stable catch history of this fishery, current catch levels and TACCs are thought to be sustainable. However, for all Fishstocks it is not known if the current TACCs and recent catch levels will allow the stocks to move towards a size that will support the maximum sustainable yield.

Summary of yield estimates (t), TACCs (t) and reported landings (t) of tarakihi for the most recent fishing year.					
				2004-05	2004-05
				Actual	Reported
Fishstock	QMA		MCY	TACC	landings
TAR 1	Auckland (East) (West)	1 \& 9		1399	1527
TAR 2	Central (East)	2		1796	1692
TAR 3	South-East (Coast)	3	4540	1403	905
TAR 4	South-East (Chatham)	4	-	316	262
TAR 5	Southland and Sub-Antarctic	5 \& 6		153	57
TAR 7	Challenger	7		1088	1056
TAR 8	Central (West)	8		225	184
TAR 10	Kermadec	10	-	10	0
Total				6390	5683

7. FOR FURTHER INFORMATION

Anon. (2006). BNS 2 Adaptive Management Programme Report: 2004/05 fishing year. AMP-WG-06/16. Copies held by MFish.
Annala, J.H. (1987). The biology and fishery of tarakihi, Nemadactylus macropterus, in New Zealand waters. Fisheries Research Division Occasional Publication No. 51.16 p.
Annala, J.H. (1988). Tarakihi. N.Z. Fisheries Assessment Research Document 88/28. 31 p.
Annala, J.H.; Wood, B.A.; Smith, D.W. (1989). Age, growth, mortality, and yield-per-recruit estimates of tarakihi from the Chatham Islands during 1984 and 1985. Fisheries Research Centre Internal Report No. 119. 23 p. (Draft report held in NIWA Greta Point library, Wellington.)
Annala, J.H.; Wood, B.A.; Hadfield, J.D.; Banks, D.A. (1990). Age, growth, mortality and yield-per-recruit estimates of tarakihi from the east coast of the South Island during 1987. MAF Fisheries Greta Point Internal Report No. 138. 23 p. (Draft report held in NIWA Greta Point library, Wellington.)
Boyd, R.O., Reilly, J.L. (2005). 1999/2000 national marine recreational fishing survey: harvest estimates. Draft New Zealand Fisheries Assessment Report
Bradford, E. (1998). Harvest estimates from the 1996 national recreational fishing surveys. N.Z. Fisheries Assessment Research Document. 98/16. 27 p.
Hanchet, S.M.; Field, K. (2001). Review of current and historical data for tarakihi (Nemadactylus macropterus) Fishstocks TAR 1, 2, 3, and 7, and recommendations for future monitoring. New Zealand Fisheries Assessment Report 2001/59. 42 p.
Kendrick, T.H. (2006). Updated catch-per-unit-effort indices for three substocks of tarakihi in TAR 1, 1989-90 to 2003-04. New Zealand Fisheries Assessment Report 2006/14. 66 p.
Lydon, G.J.; Middleton, D.A.J.; Starr, P.J. (2006). Performance of the TAR 3 Logbook Programmes. AMP-WG-06/20. (Unpublished manuscript available from the NZ Seafood Industry Council, Wellington.)
Northern Inshore Fisheries Company Ltd (2001). Tarakihi (TAR 1) - revised 30/04/01 Proposal to manage TAR 1 as part of an Adaptive Management Programme.
Phillips N.L.; Hanchet, S.M. (2003). Updated catch-per-unit-effort (CPUE) analysis for tarakihi (Nemadactylus macropterus) in TAR 2 (east coast North Island) and CPUE analysis of tarakihi in Pegasus Bay/Cook Strait (mainly TAR 3). New Zealand Fisheries Assessment Report 2003/59. 54 p.
SeaFIC (2003). Report to the Adaptive Management Programme Fishery Assessment Working Group. TAR 3 Adaptive Management Programme Proposal for the 2004-05 fishing year (dated 11 November 2003). Copies held by MFish.
Stevenson, M.L., Horn, P.L.(2004). Growth and age structure of tarakihi (Nemadactylus macropterus) off the west coast of the South Island. Fisheries Assessment Research Document 2004/11 21 p
Teirney, L.D.; Kilner, A.R.; Millar, R.E.; Bradford, E.; Bell, J.D. (1997). Estimation of recreational catch from 1991/92 to 1993/94 N.Z. Fisheries Assessment Research Document 97/15. 43 p.

